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Graphical Abstract 

 
Abstract 

Advanced onsite wastewater treatment systems (OWTS) designed to remove nitrogen 

from residential wastewater play an important role in protecting environmental and public health.  

Nevertheless, the microbial processes involved in treatment produce greenhouse gases (GHGs) 

that contribute to global climate change, including CO2, CH4, N2O.  We measured GHG 

emissions from 27 advanced N-removal OWTS in the towns of Jamestown and Charlestown, 

Rhode Island, USA, and assessed differences in flux based on OWTS technology, home 

occupancy (year-round vs. seasonal), and zone within the system (oxic vs. anoxic/hypoxic). We 

also investigated the relationship between flux and wastewater properties.  Flux values for CO2, 

CH4, and N2O ranged from -0.44 to 61.8, -0.0029 to 25.3, and -0.02 to 0.23 µmol GHG m-2 s-1, 

respectively.  CO2 and N2O flux varied among technologies, whereas occupancy pattern did not 

significantly impact any GHG fluxes.  CO2 and CH4 – but not N2O – flux was significantly 

higher in the anoxic/hypoxic zone than in the oxic zone.  Greenhouse gas fluxes in the oxic zone 

were not related to any wastewater properties.  CO2 and CH4 flux from the anoxic/hypoxic zone 

peaked at ~22-23oC, and was negatively correlated with dissolved oxygen levels, the latter 
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suggesting that CO2 and CH4 flux result primarily from anaerobic respiration.  Ammonium 

concentration and CH4 flux were positively correlated, likely due to inhibition of CH4 oxidation 

by NH4
+.  N2O flux in the anoxic/hypoxic zone was not correlated to any wastewater property.  

We estimate that advanced N-removal OWTS contribute 262 g CO2 equivalents capita-1 day-1, 

slightly lower than emissions from conventional OWTS.  Our results suggest that technology 

influences CO2 and N2O flux and zone influences CO2 and CH4 flux, while occupancy pattern 

does not appear to impact GHG flux.  Manipulating wastewater properties, such as temperature 

and dissolved oxygen, may help mitigate GHG emissions from these systems. 

Introduction 

Wastewater can be a major source of nitrogen (N) to groundwater and coastal waters.  

Decentralized, advanced N-removal onsite wastewater treatment systems (OWTS) are used to 

mitigate the impact of excess N from wastewater on receiving waters, which includes 

eutrophication, fish and shellfish kills, and threats to public health (Carpenter et al., 1998; Sohail 

& Adeloju, 2016; Ward et al., 2005).  Advanced OWTS remove N by cycling wastewater 

through a treatment train that includes oxic and anoxic/hypoxic zones that promote successive 

nitrification (microbial oxidation of NH4
+ to NO3

-) and denitrification (microbial reduction of 

NO3
- to N2O and N2).  When denitrification proceeds to completion, NO3

- is reduced to harmless 

N2; however, incomplete denitrification produces N2O, a potent greenhouse gas (GHG) with 265 

times the global warming potential of CO2 (Jones et al., 2013; Tomaszek and Czarnota, 2015; 

Wrage et al., 2001).  Advanced N-removal OWTS also emit CO2, which is produced by 

microbial respiration – including processes that remove organic matter – and methane (CH4), 

which is produced by Archaea under anoxic conditions (Kong et al., 2016).   

Greenhouse gas emissions from centralized wastewater treatment plants (WTPs) have 

been quantified (Cakir & Stenstrom, 2005; Foley et al., 2010; Kong et al., 2016; Parravicini et 
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al., 2016).  Nationwide, the U.S. Environmental Protection Agency (USEPA) estimates that 

centralized WTPs treating domestic wastewater in the U.S. contribute 9.2 and 4.9 million metric 

tons of CO2 equivalents of CH4 and N2O, respectively, to the atmosphere every year (USEPA, 

2015).  In 2010, domestic wastewater treatment at WTPs accounted for 1.4% of U.S. N2O 

emissions, and domestic and industrial wastewater treatment combined accounted for 2.4% of 

CH4 emissions (USEPA, 2015).  Assessment of GHG emissions from WTPs typically excludes 

CO2 due to its biogenic origins (Doorn et al., 2006).  However, recent studies have shown that 

non-biogenic CO2 emissions from various C-containing household and personal care products 

can significantly contribute to GHG emissions from WTPs, and should be included in emissions 

analysis (Griffith, et al., 2009; Law et al., 2013; Tseng et al., 2016).    

Unlike WTPs, few studies have quantified GHG emissions from OWTS, which serve 

nearly one quarter of households in the U.S. (U.S. Census Bureau, 2017).  Diaz-Valbuena et al. 

(2011) investigated CO2, CH4, and N2O emissions from conventional OWTS – consisting of a 

septic tank where gravity-separation of wastewater solids takes place, and the clarified effluent is 

treated below ground using soil-based treatment – and found net emission of all three GHGs at 

all study sites, with average values (g capita-1 day-1) of 33.3 for CO2, 11 for CH4, and 0.005 for 

N2O.  Truhlar et al. (2016) assessed CO2, CH4, and N2O emissions from various components of a 

conventional OWTS treatment train, including the roof vent (which releases gases generated in 

the septic tank to the atmosphere) and the soil treatment area (STA).  They also found net 

emission of GHGs from all components, with 0.17 and 0.050 tonnes CO2 equivalents capita-1 

year-1 from the roof vent and STA, respectively.  Somlai-Haase et al. (2017) found that the STA 

for a conventional OWTS emitted 15.0 kg more CO2 per year than a similarly sized control area 
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that received no wastewater inputs, further highlighting the contribution of OWTS to global 

GHG emissions. 

Emissions of N2O from advanced N-removal OWTS were first quantified by Brannon et 

al. (2017). They compared emissions of N2O from nine advanced N-removal OWTS – 

representing three different technologies – to emissions from a WTP with a biological N removal 

(BNR) component that also relies on successive nitrification and denitrification.  They found that 

the flux of N2O ranged from -4 × 10-3 to 3 × 10-1 µmol N2O m-2 s-1 and was typically higher for 

the WTP, followed by the three advanced N-removal treatment technologies.  However, when 

emissions were normalized by treatment tank area and number of people served, the ranges of 

emissions for the WTP and the advanced N-removal technologies overlapped.  Carbon dioxide 

equivalents – calculated based on N2O emissions from the N-removal OWTS – ranged from 1.6 

× 10-3 to  8 × 10-2  tonnes CO2 equivalents capita-1 yr-1.   

As the world’s population increases, the number of OWTS will also increase (Amador & 

Loomis, 2018).  The relatively low cost of installation and limited maintenance required make 

them viable wastewater treatment options, especially in areas with low population densities.  

Advanced N-removal OWTS will be particularly critical in addressing eutrophication of coastal 

ecosystems and groundwater contamination.  Because wastewater treatment produces GHGs, we 

need to consider whether their use shifts the pollution stream from ground and surface waters to 

the atmosphere.  As such, we need to develop a better understanding of the magnitude and 

composition of GHG emissions from OWTS – including advanced N-removal systems – and the 

factors that control them.  

We quantified the flux of CO2, CH4, and N2O from five different advanced N-removal 

OWTS technologies in the towns of Charlestown and Jamestown, Rhode Island, USA: 
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SeptiTech® Series D, Orenco Advantex® AX20, Orenco Advantex® RX30, BioMicrobics 

MicroFAST®, and Norweco Singulair®.  We measured GHG flux in the summer and fall of 

2016, and summer and winter of 2018.  Because differences in home occupancy pattern may 

drive differences in microbial activity and the GHGs produced by this activity, we assessed the 

relationship between home occupancy patterns and GHG emissions by sampling systems used 

year-round and systems only used during the summer season.  GHG emissions result from 

microbial processes that respond to environmental conditions and availability of nutrients, 

electron acceptors, and organic C, and thus we assessed the relationship between gas emissions 

and effluent temperature, pH, and dissolved oxygen (DO), as well as effluent 5-day biochemical 

oxygen demand (BOD5; a proxy for organic C), ammonium, nitrate, and total N concentration.  

We also quantified emissions per capita in terms of CO2 equivalents to allow for comparison 

with other types of wastewater treatment. 

 

Methods 

Study Systems and Measurement Locations 

 We measured CO2, CH4, and N2O emissions, and determined wastewater properties from 

a total of 27 advanced N-removal OWTS serving single-family homes in the towns of 

Jamestown and Charlestown, Rhode Island, USA.  Sites were chosen in collaboration with the 

Rhode Island Department of Environmental Management (RIDEM) and the Office of 

Wastewater Management in each town.  All the sites included in this study rely on well water for 

potable water and discharge effluent to a low-pressure dosed soil treatment area using a pump.  

Sites were selected based on adherence to these criteria, as well as the homeowners’ willingness 

to participate in the study.  Data from Jamestown sites were collected in June and October of 

2016, and data from Charlestown sites were collected in July/August and December of 2018.  
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We sampled 9 systems in Jamestown (3 SeptiTech® Series D, 3 Orenco Advantex® AX20, and 

3 BioMicrobics MicroFAST®), and 18 sites in Charlestown (6 Orenco Advantex® AX20, 6 

Orenco Advantex® RX30, 3 BioMicrobics MicroFAST®, and 3 Norweco Singulair® (models 

960 and DN)).  All 9 systems sampled in 2016 served homes occupied year-round.  Of the 

systems sampled in 2018, 11 served homes occupied year-round and 7 served seasonally-

occupied homes (June to September).  Sampling from systems occupied seasonally and year-

round allowed us to examine differences due to home occupancy.  We assessed occupancy 

pattern based on daily flow data obtained from each system, as well as homeowner self-

identification (Ross et al., 2020a). 

Although specific design configurations vary by technology, all of the systems in this 

study have an oxic zone for nitrification (referred to as H-OX) and an anoxic/hypoxic zone for 

denitrification (referred to as L-OX) (see Supplemental Materials for individual technology 

designs/descriptions). On every sampling event we measured the flux of GHG and obtained a 

sample of wastewater from the oxic (H-OX) and anoxic/hypoxic (L-OX) zones of the treatment 

train.  To avoid impacting GHG emissions from disturbance of the wastewater, GHG flux 

measurements were made prior to wastewater sampling.     

 

Greenhouse Gas Flux Measurements 

 At each study site CO2, CH4, and N2O flux measurements were made using a closed 

chamber connected to a Gas Concentration Analyzer (Model G2518; Picarro, Inc., Santa Clara, 

CA), which uses cavity ring-down spectroscopy to measure GHG concentration every 2 seconds, 

providing real-time flux measurements in the field (Crosson, 2008).  To measure gas flux, we 

placed an open-bottom cylindrical PVC chamber (0.13-m internal dia., 0.40-m length) on the 
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water so that the bottom of the chamber was submerged 7.5 cm below the water surface 

(Brannon et al., 2017).  Air temperature inside the chamber was measured every 10 seconds 

using a Hobo® data logger (Onset, Bourne, MA).  To maintain a consistent submersion depth, 

the chamber was equipped with a stabilizing bar that rested across the top of the system’s access 

riser.  The chamber was deployed for 5 to 10 minutes at each site, providing ample time for gas 

emissions to travel between the system and the gas analyzer (Brannon et al., 2017).  The 

concentration of each gas was plotted against time and the data fitted using a linear regression as 

part of the flux calculation.  An example of the increase of GHG concentrations over time can be 

found in the Supplemental Materials.  We used R statistical software to determine the statistical 

significance of each gas flux value (R Core Team, 2017), as described in Brannon et al. (2017).  

GHG flux values below the detection limits of the instrument, and those with a p value > 0.05 for 

the slope of the linear regression, were assigned a value of zero.  Fluxes above the upper 

detection limits of the instrument were excluded from our analysis.  We calculated per capita 

CO2 equivalents (CO2e) as described in Brannon et al. (2017) using global warming potential 

values published by the IPCC (2014).  

         

Wastewater Analysis 

 Effluent collected from each zone was transferred to a clear, 1-L plastic bottle.  Part of 

the sample was used for in situ determination of temperature, pH and dissolved oxygen 

concentration (DO), and the remainder was stored in the dark at 4oC and transported to the 

laboratory for analysis (within 8 h of sampling).  A Hanna Instruments HI9828 Multiparameter 

Meter (Woonsocket, RI) was used to determine effluent temperature, pH, and DO.  Upon arrival 

at the laboratory, effluent was analyzed for BOD5 with an OxiTop BOD5 measurement system 
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(WTW, Weilheim, Germany).  Ammonium, nitrate, and total N were analyzed using standard 

laboratory colorimetric analysis (Ross et al., 2018).  Values below the detection limit of a 

method were assigned a value of zero.  A summary of wastewater properties for each zone can 

be found in the Supplemental Materials (Table S1). 

 

Statistical Analyses 

 We used R (R Core Team, 2017) to perform a one-way ANOVA on ranks to examine 

statistical differences in GHG fluxes among technologies, and a Mann-Whitney U test to assess 

flux differences between zones (L-OX vs. H-OX) and between home occupancy patterns 

(seasonal vs. year-round).  Dunn’s test was used for ANOVA post-hoc analysis.  In data 

represented by box and whisker plots, the solid line in the middle of each box represents the 

median and the edges of each box represents the first and third quartiles.  Box whiskers extend 

1.5 × the inter-quartile range beyond the edges of the box and the dots represent outliers beyond 

1.5 × the inter-quartile range.   

We used SigmaPlot v11.0 and Microsoft Excel to carry out linear and nonlinear 

regression analyses to assess the relationship between wastewater parameters and GHG fluxes. 

We added 1 as necessary to flux, DO, and nitrate measurements to eliminate negative and zero 

values, which preclude the use of some nonlinear regression models.  We used a p value of less 

than or equal to 0.05 as a measure of statistical significance.   

 

Results and Discussion 

Carbon dioxide flux 

Across all technologies, zones, occupancy patterns, and sampling events, CO2 flux 

ranged from -0.44 to 61.8 µmol CO2 m
-2 s-1 (n = 78) (Fig. 1).  The Advantex AX20 systems 
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produced the highest median CO2 flux (µmol CO2 m
-2 s-1) (range of -0.23 to 61.8; n = 24), 

followed by Norweco Singulair (range of -0.44 to 20.42; n = 6), Advantex RX30 (range of 0 to 

33.64; n = 19), BioMicrobics MicroFAST (range of 0.1 to 10.62; n = 18), and SeptiTech (range 

of 0 to 5.32; n = 11).  Negative CO2 flux values were observed in two systems, likely due to the 

alkaline pH of effluent (8.51 and 7.38) in these systems, which promotes the dissolution of 

atmospheric CO2 in water (Renforth, 2019).  

 The flux of CO2 varied significantly by technology, with AX20 systems producing 

significantly higher CO2 emissions than FAST systems, suggesting that system design – which 

differs considerably between AX20 and FAST systems (Supplemental Materials) – may 

influence CO2 emissions.  FAST systems rely on fixed activated sludge for advanced effluent 

treatment and are socially-dosed, while AX20 systems utilize a textile filter and are time-dosed.  

Variations in system dosing mechanism and treatment train design may drive differences in the 

microbial activity responsible for CO2 emissions. 

 When values for all technologies were considered, CO2 emissions were significantly 

higher in L-OX (anoxic/hypoxic zone) than in H-OX (oxic zone) (Fig. 2).  L-OX typically 

contains significantly higher BOD5 concentrations than H-OX, which can fuel anaerobic 

respiration in L-OX, where anoxic/hypoxic conditions prevail.  The lower amount of organic 

substrate available for aerobic respiration in H-OX may result in lower CO2 emissions. 

 When we considered values across all technologies, CO2 flux did not differ based on 

home occupancy pattern (Fig. 3).  Studies by Ross et al. (2020) found that home occupancy 

pattern did not impact treatment performance (Ross et al., 2020a) or microbial community 

structure or composition (Ross et al., 2020b).  These results suggest that the seasonally-used 
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systems’ microbial communities are robust enough to endure months of not receiving wastewater 

inputs without compromising their biological activity, as evidenced by similar fluxes of CO2.    

  

Methane Flux 

 Across all technologies, zones, home occupancy patterns, and sampling events, CH4 flux 

ranged from -0.0029 to 25.3 µmol CH4 m
-2 s-1 (n = 79) (Fig. 1).  The Advantex RX30 systems 

produced the highest median CH4 flux (µmol CH4 m
-2 s-1) (0 to 25.3: n = 19), followed by 

Norweco Singulair (0 to 13.4; n = 6), Advantex AX20 (0 to 24.7; n = 25), SeptiTech (0 to 2.78; n 

= 11), and Biomicrobics MicroFAST (0 to 8.42; n = 18).  Flux did not differ significantly among 

technologies or between occupancy patterns (Fig. 3), but L-OX consistently produced 

significantly higher CH4 fluxes than H-OX (Fig. 2). Yan et al. (2014) investigated GHG 

emissions from WTPs employing various methods of wastewater treatment. They found that for  

all methods assessed, CH4 emissions were significantly higher in the “grit tank” of the treatment 

trains, which serves a similar purpose as that of the anoxic/hypoxic zone of advanced N-removal 

OWTS (L-OX), than those from the oxic zones.     

 

Nitrous Oxide Flux 

Across all technologies, zones, home occupancy patterns, and sampling events, N2O flux 

ranged from -0.02 to 0.23 µmol N2O m-2 s-1 (n = 78; Fig. 1).  Seventeen N2O flux values were 

either statistically insignificant or below the instrument’s detection limit, and were thus assigned 

a value of 0.  The Norweco Singulair systems produced the highest median N2O flux (µmol N2O 

m-2 s-1) (range of -0.01 to 0.1; n = 6), and exhibited far more variability than the other 

technologies, all of which had a median N2O flux of 0: Advantex AX20 (n = 24) had a range of -
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0.01 to 0.07; Biomicrobics MicroFAST (n = 18) had a range of -0.02 to 0.23; Advantex RX30 (n 

= 19) had a range of 0 to 0.03; and the range for SeptiTech (n = 11) was 0 to 0.01.  The 

variability observed in flux measurements from Norweco systems may be due to intermittent 

on/off cycles of aeration to facilitate successive nitrification and denitrification, and when we 

sampled within that cycle.   

Nitrous oxide flux varied significantly by technology, with RX30 systems producing 

significantly higher N2O emissions than SeptiTech systems, suggesting that system design, 

which differs considerably between these two technologies (Supplemental Materials), may 

influence N2O flux.  Although both technologies utilize textile filters for advanced effluent 

treatment, they differ in the type of media material used, as well as in wastewater dosing 

mechanism. As was the case for differences in dosing mechanism between AX20 and FAST 

systems (which differed significantly in their CO2 emissions), RX30 systems are time-dosed 

while SeptiTech systems are socially-dosed.  The porous nature of the textile material and the 

time dosing employed by RX30 systems may enhance N2O production by denitrification and/or 

nitrification.  

System zone did not significantly impact N2O flux (Fig. 2) indicateing that processes that 

produce N2O, such as nitrification and incomplete denitrification, take place to the same extent in 

both zones. Wigginton et al. (2020) found that the structure and composition of communities of 

ammonia oxidizing and denitrifying bacteria in these two zones in nine advanced N-removal 

OWTS did not differ significantly, suggesting a similar potential for N2O production via these 

processes.  As was the case for the other two gases, N2O flux was not influenced by home 

occupancy pattern, mirroring the fact that the structure and composition of the microbial 

communities of seasonal and year-round systems were similar (Fig. 3).  
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 Our values are comparable to those reported by Brannon et al. (2017) of -0.004 to 0.3 

µmol N2O m-2 s-1, which included nine of the same advanced N-removal OWTS sampled in this 

study. Negative N2O fluxes were reported from a BNR wastewater treatment plant by Brannon et 

al. (2017), and net N2O consumption has been observed in soil and aquatic environments 

(Beaulieu et al., 2015; Chapuis-lardy et al., 2007; Soued et al., 2016).  The final step of 

denitrification consumes N2O as it is reduced to N2, which takes place under hypoxic and anoxic 

conditions when nitrate is available as the terminal electron acceptor (Chapuis-Lardy et al., 

2007).  Because complete denitrification increases with decreased DO, the amount of N2O 

produced from incomplete denitrification is largely dependent on DO.  Six of the 7 negative N2O 

values came from L-OX, the anoxic/hypoxic zone, suggesting that DO concentration played an 

important role in controlling N2O emissions from OWTS.   

 

Relationship between GHG flux and wastewater properties 

 Understanding the relationships between effluent properties and GHG flux may be useful 

in controlling GHG emissions from advanced N-removal OWTS while also maintaining 

effective treatment.  To this end, we performed regression analyses between wastewater 

properties and GHG flux using data across technologies, occupancy patterns, and sampling 

events, allowing us to examine the relationship between wastewater properties and flux at a 

broader scale.  Because there were clear differences between zones in wastewater properties and 

GHG flux values, we performed separate analyses for L-OX and H-OX.       

No relationships were found between any wastewater properties and GHG flux in H-OX, 

the oxic zone.  H-OX contains little organic matter and produced very low CO2 and CH4 fluxes 

in comparison with L-OX.  In addition, we found no significant relationships between N2O flux 
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and any wastewater property.  N2O flux values were typically very low, which likely made it 

difficult to identify a relationship if one exists. 

The flux of CO2 and CH4 in the anoxic/hypoxic zone was correlated with a number of 

wastewater properties (Fig. 4).  There was a positive linear relationship between the BOD5 

concentration and both CO2 and CH4 flux (Fig. 4), in line with the expectation that organic C in 

wastewater serves as substrate for heterotrophic microbial respiration. The relationship between 

flux of CO2 and CH4 and wastewater temperature was similar for both gases (Fig. 4). The flux 

increased with increasing temperature, peaking at 22-23oC, and declining at higher temperatures, 

following a typical response of microbial activity to temperature (Apple et al., 2006). 

There was an inverse relationship – best described by a negative power function – 

between DO levels and the flux of CH4 and CO2 (Fig. 4).  This indicates that, as expected, 

emissions of these two gases in the anoxic/hypoxic zone result from anaerobic respiration 

processes, including methanogenesis.  Acetoclastic methanogenesis contributes significantly to 

anaerobic respiration in anoxic wastewater treatment environments (Qiao et al., 2015).  The 

process produces equimolar amounts of CH4 and CO2.  Linear regression analysis comparing 

CH4 flux with CO2 flux in L-OX confirmed this 1:1 relationship (slope = 1.2; intercept = 3.5; R2 

= 0.32), suggesting that acetoclastic methanogenesis is an important driver of CH4 and CO2 

emissions.  Anaerobic respiration processes are sensitive to the introduction of O2, resulting in 

inhibition at DO levels greater than 2 mg/L (John, 1977; Hernandez & Rowe, 1988; Vaquer-

Sunyer & Duarte, 2008). The presence of O2 interferes with methanogenesis through at least two 

mechanisms: (i) by favoring aerobic metabolic processes, which have a more favorable energy 

yield than CO2, and (ii) through toxic effects on methanogenic Archaea, which are obligate 

anaerobes (Mer et al., 2001).   
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We also observed an inverse relationship between CO2 and CH4 flux and nitrate 

concentration (Fig. 4). Others have reported negative effects of N on CO2 and CH4 flux. For 

example, the flux of CO2 from agricultural soil decreases in response to amendments with 

inorganic N (Ramirez et al., 2010), and Anderson et al. (2019) found that nitrate addition to soil 

amended with anoxic septic tank effluent lowered the flux of both CO2 and CH4. Nitrate is 

potentially toxic to some methanogens (Bollag & Czlonkowski, 1973; Klüber & Conrad, 1998), 

and its favorable energy yield as a terminal electron acceptor relative to CO2 can suppress 

methanogenesis. The inverse relationship between nitrate concentration and the flux of CO2 and 

CH4 in the anoxic/hypoxic zone may also reflect the intermittent introduction of aerated 

wastewater with a high concentration of DO from the oxic zone via recirculation. 

 Methane flux increased linearly with ammonium concentration, but there was no clear 

relationship between ammonium level and CO2 flux (Fig. 4). The flux of CH4 is the net result of 

gross methane production by methanogenic Archaea and gross consumption by methanotrophic 

bacteria. Ammonium is a competitive inhibitor of methane monooxygenase, the enzyme used by 

methanotrophs to oxidize CH4 (Norton et al., 2008; O’Neill & Wilktnson, 1977; Schnell & King, 

1994).  Thus, as the concentration of NH4
+ in wastewater increases, we would expect greater 

inhibition of CH4 oxidation and an increase in CH4 flux, assuming gross rates of methanogenesis 

remain constant. 

The apparent response of CH4 and CO2 emissions to wastewater properties suggests that 

changes in some of these properties may be used to control the flux of these gases. For example, 

maintaining system temperature below 22-23oC – through the use of insulation around and over 

treatment compartments – may help limit CH4 and CO2 flux, provided the temperature is not so 

low that it interferes with performance. Increasing DO levels in wastewater – by changing 
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recirculation ratios and/or mechanical aeration – could help also help mitigate CO2 and CH4 

emissions from these systems. This would also increase nitrate levels, which may also curb 

emissions of these gases. However, the effluent would have to maintain oxygen levels low 

enough to allow for denitrification to take place to maintain effective N removal. Limited 

introduction of oxygen into the anoxic/hypoxic zone may also promote ammonia oxidation, 

reducing its inhibitory effect on methane oxidation. In contrast, although emissions increase with 

increasing concentration of BOD5, the latter is a function of homeowner lifestyle and cannot be 

controlled by changes in system operation. Manipulation of BOD5 levels is thus not a practical 

management strategy for limiting CH4 or CO2 emissions.  

 

CO2 Equivalents and Comparisons to Other Systems  

 Greenhouse gases differ in global warming potential (GWP) due to differences in their 

residence time and reactivity in the atmosphere.  According to the Intergovernmental Panel on 

Climate Change’s Fifth Assessment (2014), CH4 and N2O have 28 and 265 times the GWP of 

CO2, respectively.  Converting GHG flux values into CO2 equivalents (CO2e) accounts for these 

differences in GWP and allows us to assess the relative impact of individual gas fluxes on the 

atmosphere, and to compare emissions from advanced N-removal OWTS those from other 

wastewater treatment technologies. We calculated per capita emissions (CO2e; Brannon et al., 

2017)f or each gas and for the sum of the three gases based on: (i) the average flux from L-OX 

and H-OX at each system across all sampling events, (ii) the cross-sectional area of the tank, and 

(iii) the assumption that each system serves a household of 3 people (Amador et al., 2018). 

Advanced N-removal OWTS contributed a median of 40, 176, and 9 g CO2e capita-1 day-1 for 

CO2, CH4, and N2O, respectively (Fig. 5), with methane emissions accounting for a the bulk of 
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the impact of these systems on the atmosphere.  The median sum of emissions from advanced N-

removal systems based on our data is 262 g CO2e capita-1 day-1 (Fig. 5).  This is slightly below 

the range of values reported by Diaz-Valbuena et al. (2011) of 277 g CO2e capita-1 day-1 for a 

conventional OWTS, and by Truhlar et al. (2016), who found that the roof vent of a conventional 

OWTS, which releases gases produced in the septic tank, produced an average of 469 g CO2e 

capita-1 day-1.  Our systems produced more CH4 (176 CO2e capita-1 day-1) and less N2O (9 CO2e 

capita-1 day-1) when compared with values for centralized WTPs in the U.S of 99 and 52 CO2e 

capita-1 day-1, for CH4 and N2O, respectively (USEPA, 2015).  Higher emissions of CH4 from 

OWTS are not surprising, since organic C, which is a major driver behind CH4 emissions, is 

present in higher concentrations in OWTS than in centralized WTPs, where organic C inputs are 

diluted by large volumes of water with low organic C content (Amador & Loomis, 2018).  

Our results indicate that, despite the enhanced microbial activity facilitated by increased 

aeration and system design, advanced N-removal OWTS do not have higher total GHG 

emissions than conventional OWTS. Advanced N-removal OWTS may have an even lower 

impact than conventional systems on the atmosphere if we consider emissions from the soil 

treatment area (STA). Final effluent from advanced OWTS has a much lower organic C 

concentration than septic tank effluent from a conventional system (Amador and Loomis, 2018). 

This translates into lower amounts of substrate and lower CO2 emissions from heterotrophic 

microbial processes when effluent is dispersed to the STA. A lower concentration of organic 

compounds such as acetate – the substrate for acetoclastic methanogenesis – in effluent from 

advanced N-removal OWTS may also result in lower CH4 emissions from the STA. 
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Conclusions 

Advanced N-removal OWTS rely on microbial processes for wastewater treatment, and 

thus inevitably emit GHGs. Our study provides the first comprehensive assessment of GHG 

emissions from advanced N-removal OWTS.  We observed differences in CO2 and N2O, but not 

CH4, flux based on technology, suggesting that system design and/or dosing mechanism may 

influence emissions of these gases. Home occupancy did not significantly impact the flux of any 

of the three gases measured, suggesting that daily GHG emissions are not affected by seasonal 

and year-round usage patterns and associated differences in the volume of wastewater inputs.  

The flux of CO2 and CH4 – but not N2O – was significantly higher in the anoxic/hypoxic zone 

than in the oxic zone. The flux of both gases – but not N2O – in the anoxic/hypoxic zone was 

related to wastewater properties, including BOD5 concentration, temperature, DO and inorganic 

N levels, providing an opportunity to mitigate GHG emissions through manipulation of some of 

these properties. N2O fluxes from advanced N-removal OWTS appear to be minimal, accounting 

for a small fraction of total CO2e from these systems.  

Daily per capita CO2e for advanced N-removal OWTS were slightly lower than those for 

conventional OWTS. It appears that, despite the enhanced biological N removal that takes place 

in advanced OWTS, their contribution to atmospheric pollution is not different from that for 

systems that remove considerably less N from wastewater.  
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Figures 

 

 

Figure 1. Carbon dioxide, methane, and nitrous oxide fluxes from different advanced N-removal 

OWTS technologies across all home occupancy patterns, sampling dates, and system zones (L-

OX and H-OX).  AX20 = Orenco Advantex® AX20 (9 systems, n = 30); FAST = BioMicrobics 

MicroFAST® (6 systems, n = 19); NOR = Norweco Singulair® (3 systems, n = 6); RX30 = 

Orenco Advantex® RX30 (6 systems, n = 20); SEPT = SeptiTech® Series D (3 systems, n = 12). 
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Figure 2. Carbon dioxide, methane, and nitrous oxide fluxes from the anoxic/hypoxic zone (L-

OX, n = 25-36) and the oxic zone (H-OX, n = 42-43) across technologies, home occupancy 

patterns, and sampling dates.   
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Figure 3. Carbon dioxide, methane, and nitrous oxide fluxes from systems used seasonally (n = 

28-29) and year-round (n = 49-50) across all technologies, system zones, and sampling dates.   
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Figure 4. Relationship between wastewater properties and CH4 and CO2 fluxes in the 

anoxic/hypoxic zone (L-OX) of advanced N-removal OWTS.  Best-fit line is shown in black.  

The regression parameters and equations for the temperature regressions can be found in the 

Supplemental Materials.  
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Figure 5. Carbon dioxide equivalent emissions (n = 85) of carbon dioxide, methane, and nitrous 

oxide, and sum of all GHGs across all technologies, home occupancy patterns, sampling dates, 

and system zones.   
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