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Discovering communities for microgrids with spatial-temporal net
energy

Shangyu XIE1, Han WANG1, Shengbin WANG2, Haibing LU3,

Yuan HONG1 , Dong JIN1, Qi LIU4

Abstract Smart grid has integrated an increasing number

of distributed energy resources to improve the efficiency

and flexibility of power generation and consumption as

well as the resilience of the power grid. The energy con-

sumers on the power grid, e.g., households, equipped with

distributed energy resources can be considered as ‘‘mi-

crogrids’’ that both generate and consume electricity. In

this paper, we study the energy community discovery

problems which identify energy communities for the

microgrids to facilitate energy management, e.g., load

balancing, energy sharing and trading on the grid. Specif-

ically, we present efficient algorithms to discover such

communities of microgrids considering both their geo-lo-

cations and net energy (NE) over any period. Finally, we

experimentally validate the performance of the algorithms

using both synthetic and real datasets.

Keywords Smart grid, Microgrid, Community discovery,

Net energy (NE), Clustering

1 Introduction

The smart grid infrastructure enables the integration of

renewable energy resources at the individual consumer

level [1]. It creates a paradigm where any individual con-

sumer in the grid can also be a power supplier. This

facilitates the creation of microgrids. Microgrids are the

localized grids that can be separated from the larger power

grid to operate autonomously and be self-sufficient in the

power. A microgrid typically consists of renewable (wind

turbines, solar panels, etc.) and/or non-renewable (micro-

turbines, fuel cells, etc.) energy resources, energy storage

devices, and energy consuming devices/appliances, all of

which are connected through a power and communication

network [2]. A microgrid can operate in a grid with the

connected or islanded mode. In the islanded mode, it could

be connected to other microgrids or operate independently.
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Therefore, microgrids can provide energy independence to

individual communities or entities who intend to manage

their own power generation and distribution [3]. Moreover,

microgrids can provide resilience against large-scale fail-

ures across the grid. They can continue to operate if large-

scale blackouts occur [3].

With autonomous energy, microgrids may fully or par-

tially feed their local demand. Numerous microgrids would

have great flexibility to utilize their local energy to col-

laboratively advance the energy management in the power

grid, e.g., load balancing [4, 5], energy sharing [6, 7], and

load shifting [8]. Thus, it is desirable to discover microgrid

communities that can efficiently implement their coopera-

tion in the grid [9–11]. For instance, the grid can identify

communities for a mixed set of microgrids, some of which

request external power supply while the others have

excessive electricity, such that the microgrids within each

community can supply their demand load by themselves

regularly or when power outage occurs in the main grid.

More specifically, based on every microgrid’s local

energy amount (supply) and its local consumption amount

(demand load), we can simply derive its net energy (NE) as

the amount of supply minus the demand load, which can be

either positive or negative at specific time. If the NE of a

microgrid is 0 in ½T1; T2�, we can simply skip it or assign it to

the nearest community. Thus, in this paper, we only consider

the microgrids whose NE is either positive or negative.

Clearly, a microgrid with positive at time tmeans that it has

excessive electricity at time t; otherwise, it requests external

power supply at time t. In addition, we denote the time series

NE of amicrogridmi over a period ½T1; T2�, where T1\T2, as

8t 2 ½T1; T2�; eiðtÞ, which can be either positive or negative.

Then, some energy communities with respect to time inter-

val ½T1; T2� can be defined as follows.

1.1 Energy communities

1.1.1 Definition 1: homogeneous energy community (HEC)

A group of microgrids whose NE are exclusively posi-

tive, or exclusively negative at any time in ½T1; T2�.
In this case, all the microgrids in the community can

feed themselves using their local energy, or all the

microgrids in the community request external supply. On

the contrary, if the microgrids in the community have

different NE status (positive and negative) at any time over

the period ½T1; T2�, we define such community as the

follows.

1.1.2 Definition 2: mixed energy community (MEC)

A group of microgrids whose NE are mixed with posi-

tive and negative at any time in ½T1; T2�.

Hence, we can categorize the energy community dis-

covery problems [10] based on their inputs (the NE of all

the microgrids is homogeneous or mixed between time T1
and T2): � HECs discovery; ` MECs discovery. Figure 1

presents the examples for two different energy communi-

ties in the grid at a specific time, respectively. Note that if

T1 ¼ T2, HECs and MECs are obtained for a specific time

instead of a time interval.

Furthermore, we define a special form of MEC in which

all the microgrids’ local energy can fully supply the overall

demand of the community.

1.1.3 Definition 3: self-sufficient energy community (SEC)

A mixed energy community whose total NE is non-

negative at any time in ½T1; T2�.
Sinceclassicclusteringalgorithms(e.g.,K-means,DBSCAN)

can be tailored to discover HECs by integrating the NE amounts

[10], we focus on the MEC discovery and SEC discovery.

1.2 Related work

As the important building blocks on the grid, microgrids

have attracted significant interests in both industry and acade-

mia in the past decade. In such context, many recent research

are conducted to designmicrogrids and/or energymanagement

schemes so as to improve the performance of the power grid

such as load management techniques [12], demand response

solutions [13], and home automation [14]. More specifically,

[15] and [16] propose techniques for establishingmicrogrids in

the power grid based on different criteria such as cost mini-

mization [15] andpowerflowoptimization [16]. In addition, the

analysis of data collected from distributed microgrids (e.g.,

demand load, energy generation and storage) has advanced the

energy management of the grid and microgrids [17]. Such

applications include short term load forecasting for microgrids

[18], load restoration for microgrids [19], load shifting [8],

energy trading [20, 21], etc.

Moreover, some cooperative models among distributed

microgrids have been investigated in multiple applications,

e.g., optimizing the power loss via a unified microgrid
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Fig. 1 Energy communities of microgrids on power grid (‘‘?’’

represents positive NE while ‘‘-’’ represents negative NE)
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voltage profile [22], eliminating the central energy man-

agement unit and price coordinator via localized smart

devices [23], distributed energy dispatch and demand

response [24], privacy preserving energy management

among networked microgrids [25], and load management

via sharing local electricity [6, 26]. In this paper, we

develop techniques to identify communities of microgrids

which can directly implement all these cooperative appli-

cations within each energy community to further improve

the grid performance.

1.3 Contributions

Community discovery problems generally group data

objects which share similar characteristics or are close to

each other, e.g., detecting communities of individuals who

have similar interests on the social network [27], and an-

alyzing the spatial datasets to identify geographical com-

munities [28]. The energy community discovery problems

are significantly different from the aforementioned prior

community discovery problems studied in other contexts.

The key difference is that the criteria of grouping two

microgrids into the same energy community should con-

sider not only the spatial distances on the power grid but

also their NE amounts of time series. Moreover, additional

constraints may apply in the problems, for example, MECs

and SECs may require all the microgrids in each commu-

nity to balance their demand and supply, and to bound the

overall NE within a small number or even as 0 [4]; SECs

require a nonnegative overall NE for each community. In

addition, both energy consumption and generation of

microgrids (e.g., wind and solar) are generally stochastic,

thus the energy communities (e.g., MECs and SECs) may

vary over time. To the best of our knowledge, these have

not been investigated and tackled in literature. To address

these issues, this paper has the following primary

contributions.

1) We define the energy community discovery problems

for MECs and SECs as well as the proposed new

algorithms to effectively and efficiently generate

MECs and SECs.

2) We discuss how to realize MECs and SECs in the

current energy management system, and define some

utility metrics to evaluate their performance.

3) We conduct comprehensive experiments to validate

the performance of our approaches using both syn-

thetic and real-world microgrid datasets.

The rest of this paper is organized as follows. Sections 2

and 3 illustrate how to discover MECs and SECs, respec-

tively. Section 4 discusses how to realize the discovered

communities in the current energy management system on

the power grid. Section 5 demonstrates the experimental

results. Finally, Section 6 presents the concluding remarks

and discusses the future work.

2 Discovering MECs

Among thousands of microgrids on the power grid,

some of them may have excessive energy while some

others may request the energy from external resources,

e.g., the main grid. Therefore, adjacent microgrids can

share or trade their locally generated electricity for

avoiding wasting excessive energy while ensuring better

reliability and resilience of power supply [6, 26]. Such

microgrids can form an energy community to occasionally

feed their local energy demands, e.g., via trading, which

are beneficial to both the power grid and themselves.

Clearly, the NE of the microgrids in the communities is

mixed with negative and positive, thus called as MECs.

The ideal case of the discovered MECs is that all the

microgrids in the same MEC are geographically close to

each other while balancing their demand and supply of

each MEC within a tight margin [4, 9, 29] (then microgrids

can fully consume their local energy). We now propose an

algorithm to identify such MECs on the grid towards this

goal.

Specifically, we denote each NE microgrid mi at time

t as eiðtÞ, which can be either positive or negative. While

grouping two microgrids, e.g., mi and mj, into an MEC,

besides the spatial distance between them on the grid

Disðmi;mjÞ, we also have to consider their NE ei and ej
towards the load balancing of their community. The overall

demand and supply at different time should be balanced

(ideally, equal to each other). For example, if one micro-

grid has an NE ei while the other has an NE demand �ei,

such two microgrids can supply their demands using their

local energy. Thus, we define a new measure namely ‘‘NE

distance’’ of two microgrids mi and mj in time interval

½T1; T2� as:

NEðmi;mjÞ ¼
X

t2½T1;T2�
jeiðtÞ þ ejðtÞj ð1Þ

If 8t 2 ½T1; T2�, eiðtÞ þ ejðtÞ ¼ 0 holds, we have

NEðmi;mjÞ ¼ 0. If 8t 2 ½T1; T2�, eiðtÞ ¼ ejðtÞ holds, how-

ever, we have NEðmi;mjÞ ¼ 2
P

t2½T1;T2�
jeij. The NE distance

differs from other distance measures used in traditional

community discovery problems due to its unique feature:

two opposite values, e.g., ei and �ei, are measured as

‘‘close’’.
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Algorithm 1 Discovery of two-threshold MECs
Input: : maximum threshold of the NE distances

: maximum threshold of the spatial distances
Output: MECs
1: while any ungrouped microgrid mi in m1,m2, . . . ,m N do
2: initialize a new MEC with mi : c j = {mi }
3: for each ungrouped microgrid mk do
4: compute MEC c j ’s net energy at time ∀t ∈ [T1, T2]: E j (t)

and its centroid’s geo-location µ j
5: if N E(µ j ,mk ) ≤ and Dis(µ j ,mk ) ≤ then
6: c j = c j ∪ mk (add mk to the MEC c j )
7: update ∀t ∈ [T1, T2], E j (t) and µ j
8: end if
9: end for
10: end while
11: considering each MEC c j as a microgrid with net energy E j (t) at

time t and geo-location µ j , repeat lines 1-7 to hierarchically merge
the MECs based on and until convergence

ξ

ξ

ξξ

ξ

ξ

Therefore, the difference of the overall supply and

demand of every MEC is bounded/balanced at different

time by n, and the spatial distance between any microgrid

and its MEC centroid is bounded by n0.
For the MEC discovery, we define two maximum dis-

tance thresholds for the normalized NE distances and the

normalized spatial distances, respectively: n; n0 2 ½0; 1�.
Then, we propose a new agglomerative algorithm [30] to

identify MECs by utilizing n and n0 to specify the criteria

for bounding the differences between the overall supply

and demand of each community and the spatial distances

between the microgrids in each community. Specifically,

we let each microgrid find its nearest microgrid (with an

NE distance no more than n and a spatial distance

Disðlj;mkÞ no more than n0) to form an MEC, update the

MEC centroid geo-location and NE, and then hierarchically

merge ‘‘small MECs’’ to form ‘‘large MECs’’ for better

resilience. The merging process terminates if the NE dis-

tance between any two MECs’ centroids exceeds n or their

spatial distance exceeds n0 as shown in Algorithm 1.

3 Discovering SECs

Many real-world applications require that the microgrids

in each MEC can fully supply their demand with their local

energy, e.g., large-scale blackouts. Therefore, it is also

desirable to discover the SECs with nonnegative NE

[11].

Specifically, given N microgrids m1;m2; . . .;mN , we

denote the number of SECs for the N microgrids as K.

Then, denoting K SECs as c1; c2; . . .; cK , we can define

binary variables 8i 2 ½1;N�; 8j 2 ½1;K�; xij 2 f0; 1g to

indicate if the microgrid mi is included in SEC cj or not: if

xij ¼ 1, mi 2 cj; otherwise, mi 62 cj.

3.1 Optimization-based SEC discovery

If the aggregated NE of the given microgrids is non-

negative in ½T1;T2�, we can formulate an optimization

problem to discover SECs. We first consider the clustering

constraints. Note every microgrid can only be assigned to

exactly one SEC. This creates a group of clustering con-

straints
PK

j¼1

xij ¼ 1; 8i 2 ½1;N�.

Secondly, recall that the NE of any SEC should be

non-negative at any time t 2 ½T1; T2�. This criterion

creates another group of clustering constraints:

PN

i¼1

½eiðtÞxij� � 0; 8t 2 ½T1; T2�; 8j 2 ½1;K�.

Then, we can summarize clustering constraints of SECs

as:

s:t:
PK

j¼1

xij ¼ 1 8i 2 ½1;N�

PN

i¼1

½eiðtÞxij� � 0 8t 2 ½T1; T2�; 8j 2 ½1;K�

8i 2 ½1;N�; xij 2 f0; 1g

8
>>>>>>><

>>>>>>>:

ð2Þ

3.1.1 Problem formulation

If all the binary variables satisfy all the constraints in

(2), all the output energy communities would be SECs.

Thus, we can solve the constraint satisfaction problem

(CSP) without an objective function to find out feasible

solutions for SECs. Note that such CSP problem is NP-hard

due to the involvement of a large number of binary

variables.

More importantly, besides the constraint satisfaction

problem, we can formulate the SEC discovery problem by

minimizing the overall load on the transmission lines (en-

ergy loss in transmission) in all the SECs. Then, we can

denote the energy loss rate as h. For example, transmitting

an amount of energy 100 W, the load on 1 unit distance is

100h W. Given mi with positive NE at time t as eiðtÞ and
any other microgrid ms with negative NE at time t as esðtÞ,
we define the amount of energy from mi to ms at time t as

yisðtÞ. Thus, the overall load on the transmission lines can

be represented using the model in [26]:

XT2

t¼T1

XK

j¼1

XN

i¼1

XN

s¼1;s6¼i

½xijxsjyisðtÞh � Disðmi;msÞ� ð3Þ

If xij ¼ 1 and xsj ¼ 1 (mi;ms 2 cj), then the load of the

power flow from mi to ms at time t is derived as

yisðtÞh � Disðmi;msÞ. If xij or xsj ¼ 0 (they are not in the

same community), there is no power transmission from mi

to ms, and the load is 0. Then, the overall load on the

Discovering communities for microgrids with spatial-temporal net energy 1539
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transmission lines can be aggregated as (3). Meanwhile,

there are two additional sets of power flow constraints:

s:t:
PN

s¼1;s6¼i

½xijxsjyisðtÞ� � eiðtÞ 8t; 8i 2 ½1;N�

XN

i¼1;i 6¼s

½xijxsjyisðtÞ�ð1� hÞ� jesðtÞj 8t; 8s 2 ½1;N�

yisðtÞ� 0 8t; 8i; 8s 2 ½1;N�

8
>>>>>>>>><

>>>>>>>>>:

ð4Þ

where the above two sets of constraints ensure that the

overall outgoing energy of every microgrid with positive

NE is no greater than its current excessive energy, and the

overall incoming energy of every microgrid with negative

energy is no less than its current demand, respectively

[26].

In summary, we consider (3) as the objective function,

and combine (2) and (4) as constraints.

3.1.2 Tabu search based algorithm

Due to the NP-hardness of the optimization problem, we

propose a Tabu search [31] based meta-heuristic algorithm

to solve the problem. Specifically, the algorithm first

specifies a range for the number of SECs

K 2 fKmin;Kminþ1; . . .;Kmaxg, and arbitrarily partitions all

the microgrids into K groups based on their geo-locations.

Then, for every K 2 fKmin;Kminþ1; . . .;Kmaxg, the algo-

rithm iteratively searches the neighboring solutions to

make the number of SECs reach K where ‘‘moving a

microgrid from one group to another nearest group’’ is

defined as one of its neighboring solutions. After obtaining

a set of candidate neighboring solutions (different moves),

the neighboring solution can mostly improve the objective

function (reduce the load with the greatest amount), then

replace the current solution with the neighboring solution.

To improve the performance of searching performance, the

following criteria are integrated in the algorithm.

1) An initial community assignment should be specified

in Tabu search, e.g., assigning all the microgrids to

random communities based on their geo-locations.

2) To avoid the solutions getting stuck in local optimum

while searching SECs for every K, a Tabu list is

defined with length S which stores S most recent

solutions that replaced the previous solution. Then, in

the searching process, if any neighboring solution is

found in the Tabu list, the searching process continues

without visiting such neighboring solution.

3) Among all the SECs, select the SEC with the highest

NE (positive) at most times in ½T1; T2�, and then move

each microgrid with the positive NE to the corre-

sponding nearest non-SEC, so that a set of candidate

neighboring solutions can be found.

The load based objective function cannot be reduced for

the current K. Then, the algorithm moves to the next

K 2 fKmin;Kminþ1; . . .;Kmaxg. Among all the discovered

SECs for all K 2 fKmin;Kminþ1; . . .;Kmaxg, the best solu-

tion (with the minimum overall load on the transmission

lines while satisfying all the constraints) will be selected as

the output SECs.

3.2 A two-phase algorithm for discovering SECs

Besides the optimization-based approach which formu-

lates the optimization problem and solves the problem with

a Tabu search based algorithm, we present a two-phase

algorithm to discover a subset of microgrids to form the

SECs. Note that, if the overall NE of all the given micro-

grids are negative in ½T1;T2�, the constraints in the opti-

mization-based approach cannot be satisfied

simultaneously to form the SECs for all the given micro-

grids. Instead, the proposed two-phase heuristic algorithm

can still effectively discover SECs out of the given

microgrids.

Specifically, among all the N microgrids, we denote the

set of microgrids with positive NE at any time in ½T1; T2� as
Mþ, and the set of microgrids with any negative NE in

½T1; T2� as M�. Then, the two phases are illustrated as

follows.

Phase 1: the algorithm first clusters all the microgrids in

Mþ based on their geo-locations, where each cluster can be

considered as a ‘‘merged microgrid’’ with aggregated

positive NE. In this phase, we extend the K-means algo-

rithm [32] to cluster such microgrids based on their geo-

locations by specifying different

K 2 fKmin;Kminþ1; . . .;Kmaxg. Then, the algorithm applies

different K values to K-means and chooses the best clus-

tering result – the minimum sum of squared errors (SSE) of

the spatial distances [30] in all the clustering results.

Phase 2: Denote the clustering result of Mþ as

c�1; c
�
2; . . .; c

�
K , and the NE of any cluster 8j 2 ½1;K�, c�j at

time t can be aggregated as
P

8mi2c�j
eiðtÞ. Then, 8j 2 ½1;K�; c�j

iteratively adds the nearest ungrouped microgrid of its

centroid in M� until its NE drops close to 0 at any time in

½T1; T2�
Finally, the updated c�1; c

�
2; . . .; c

�
K are identified as

K different SECs. The details of the two-phase algorithm

are given in Algorithm 2. Note that Algorithm 2 involves

all the microgrids in Mþ in the SECs, but may not involve

1540 Shangyu XIE et al.
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all the microgrids in M� (depending on the NE of the

microgrids in Mþ and M�). Furthermore, the NE of most

self-sufficient communities can be well balanced to form

‘‘zero NE’’ communities [9].

Algorithm 2 Discovery of two-phase SECs
Input: M+: set of microgrids with positive net energy

M−: set of microgrids with negative net energy
{Kmin, Kmin +1, . . . , Kmax} : possible values for K

Output: SECs
1: for K = Kmin, Kmin +1, . . . , Kmax do
2: run K -means for all microgrids in M+ based on their geo-

locations to obtain c1, c2, . . . , cK
3: end for
4: choose the best clustering result with theminimumSSE for different

K : c∗
1, c∗

2 , . . . , c∗
K (best K )

5: for j ∈ [1, K ] do
6: compute the centroid of c∗

j as µ
∗
j

7: while ∀t ∈ [T1, T2],
∀mi ∈c∗

j

ei (t) ≥ 0 do

8: find µ∗
j ’s nearest ungrouped microgrid in M−: mk

9: c∗
j = c∗

j ∪ mk (add mk to the SEC c j )
10: update the geo-location of µ∗

j and c∗
j ’s net energy:

11: for each t ∈ [T1, T2] do
12:

∀mi ∈c∗
j

ei (t)+ = ek (t)

13: end for
14: end while
15: end for
16: return the updated c∗

1 , c∗
2, . . . , c∗

K as SECs

4 Realizing MEC and SEC

After discovering MECs and SECs, microgrids could

cooperate with each other by sharing/trading their local

energy [6, 20, 26]. Since every microgrid can only be either

a power supplier or consumer [6] at any specific time,

MECs and SECs are implemented as a bipartite graph on

the power grid. In each MEC or SEC, the power might be

routed from any microgrid with positive NE to any

microgrid with negative NE.

Note that the structure of the bipartite graph may change

over time (e.g., M1 might be a supplier at time T1 and it

may become a consumer at time T2). Also, the connection

between every pair of microgrids can be available via the

power transmission network of the main grid [1, 26]. As

illustrated in Section 3.1.1, the optimal energy transmis-

sion solution (power flow) within each community can be

obtained using the model in [26] (which is simplified from

the optimization model in Section 3.1.1):

min
P
8i;8s

yisðtÞ

s:t:X

8s
yisðtÞ� eiðtÞ 8i

X

8i
yisðtÞð1� hÞ� jesðtÞj 8s

yisðtÞ� 0 8i; 8s

8
>>>>>>>>>><

>>>>>>>>>>:

ð5Þ

Note that SECs are always feasible in the above problem

(due to their relatively large amounts of excessive energy).

If MECs cannot find an optimal solution (overall demand

exceeds overall supply in any MEC), the main grid will fill

the gap [26]. Similarly, we can also identify some utility

measures for evaluating MECs and SECs.

1) Average distance between every pair of power supplier

(positive NE) and consumer (negative NE): shorter

distance could reduce the energy loss during trans-

mission from the power supplier to the power

consumer. Since the structure of the bipartite graph

may change over time, we still use the metric of the

(spatial) SSE of all the communities to measure such

average distance.

2) The average NE of each MEC or SEC by taking into

account each microgrid’s NE at different time in

½T1; T2� denotes |t| as the number of timestamps

utilized for energy community discovery. We identify

MECs and SECs based on the energy status of micro-

grids over a longer period ½T1; T2� (a larger |t|), which

would reflect more accurate results of the

communities.

3) The load on transmission lines: MECs and SECs have

better utility if such load is lower.

5 Experiments

5.1 Experimental setup

Our experimental simulations are conducted on the

synthetic data generated from three real-world datasets: a

spatial dataset and two power generation and consumption

datasets. Firstly, the spatial dataset of 115475 cities/towns

in the US is collected by the US geological survey on 7

July, 2012 and is available in National Imagery and

Mapping Agency [33]. Secondly, two power generation

and consumption datasets are collected in [34] in East

Midlands, UK, and in Massachusetts [35], US. Specifically,

[34] collectes 22 dwellings’ power consumption over 2

years. Reference [35] collects a low resolution dataset

(Umass smart* home dataset) with 443 households’ power

consumption on 2 April, 2011. And it collects a high
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resolution dataset (Umass smart* microgrid dataset) with

three microgrids’ power generation and consumption over

3 months in 2012. In the Umass smart* microgrid dataset,

both solar panels and wind turbines are installed.

In our experiments, we generate synthetic datasets based

on the real-world spatial dataset, and the time-series genera-

tion and consumption datasets: � we aggregate all the gen-

eration and consumption datasets with the frequency of one

reading per 15 min; ` to test the MECs, we generate two

synthetic datasets by sampling 50000 microgrids’ power

generation and consumption over 1 month based on the

microgrid dataset in [35], and then randomly assigning geo-

locations in the spatial dataset [33] to the 50000 microgrids;

´ to test the SECs, we use the data in ` MEC discovery to

evaluate the two-phase algorithm. To compare the optimiza-

tion-based approach and the two-phase algorithm, we selecte

10000 microgrids with a high percent of microgrids with

positive NE out of the 50000 microgrids with both generation

and consumption, ensuring that the optimization-based algo-

rithm can find a feasible solution.

We use Euclidean distance to measure the spatial dis-

tance between any two microgrids on the grid. Both the

Euclidean distances and the NE distances are normalized

into [0, 1] in all the experiments.

5.2 MEC discovery

Recall that the NE of all the 50000 microgrids (overall

power generation minus overall power consumption) is

negative. To test the effectiveness of Algorithm 1 in two

different cases: � positive NE, and ` negative NE, we

extract two subgroups of microgrids from the 50000

microgrids, each of which includes 20000 microgrids,

mixed with positive and negative NE at 2880 different

time. For the simplicity of notations, these two subsets of

microgrids are named as ‘‘positive’’ and ‘‘negative’’,

respectively. Note that the ‘‘positive’’ means all the

microgrids are mixed with positive and the negative NE

(and the overall NE of all the microgrids is positive);

‘‘negative’’ means all the microgrids are also mixed with

positive and negative NE (but the overall NE of all the

microgrids is negative).

Firstly, we implemented Algorithm 1 with

n 2 ½0:03; 0:3�, where the normalized spatial distance

threshold n0 is fixed as a reasonable value 0.05. Then,

Fig. 2a shows the average, maximum and minimum NE of

all the communities generated from ‘‘positive’’ where

n 2 ½0:03; 0:3�. As n increases from 0.03 to 0.3, the allowed

maximum differences between the overall demand and

overall supply in every MEC increase significantly. The

average, maximum and minimum NE then increase as n

increases. Thus, the demand and supply of the MECs

become better balanced with an NE closer to 0. On the

contrary, Fig. 2c demonstrates the results for ‘‘negative’’,

which presents a reverse trend as ‘‘positive’’, but still tend

to better balanced load (NE also becomes closer to 0) as n
decreases.

Secondly, we also had some other findings in the MEC

discovery by utilizing microgrid time series NE over dif-

ferent lengths of periods (varying number of timestamps

|t|). As shown in Fig. 2b and 2d, as the NE of microgrids

over a longer period (larger |t|) is utilized in the MEC

discovery, the average NE of the identified MECs can have

both increasing and decreasing trends. This is because

larger |t| can possibly lead to involving either more or less

microgrids in every MEC (i.e., NE distance of two

microgrids might be large in the short term but small in the

long term, and vice-versa). Then, we cannot determine

whether the number of microgrids in each MEC can

increase or decrease as |t| increases in Fig. 2b and 2d.

Furthermore, also in Fig. 2b and 2d, larger n would lead to

a higher average NE (positive) and lower average NE

(negative). This is because larger n (the threshold of NE

distance) allows more microgrids to be clustered in every

MEC.

Thirdly, we also measure the geo-locations of the

microgrids in the MECs. On one hand, we have examined

the (spatial) SSE of the discovered MECs by utilizing

microgrid time series NE over different length of periods

(different |t|). As shown in Fig. 3a, for any |t|, larger n leads

to higher SSE of MECs since microgrids in the same MEC

would be less cohesive if more microgrids are clustered

with a larger n. Meanwhile, larger |t| (more timestamps)

results in lower SSE of MECs. This means less microgrids

are clustered in each MEC as |t| increases. Indeed, this fact

cannot be observed from Fig. 2b and 2d. Even if larger |t|

gives more average number of microgrids in each MEC,

since such mixed microgrids can have either positive or

negative NE, more microgrids in each MEC do not nec-

essarily make the NE of the MECs (positive case) higher

nor make the NE of the MECs (negative case) lower. This

matches the observations in Fig. 2b and 2d.

On the other hand, we fix n ¼ 1 and n0 ¼ 0:05 in

Algorithm 1, which then removes the constraint of NE

distances and turns into a traditional agglomerative clus-

tering problem based on geo-locations. Then, we compute

the (spatial) SSE in the above case as the benchmark SSE

(SSE0) and test how the spatial distances (SSE) within each

MEC vary for different levels of balanced load (different

n). More specifically, we fix n0 ¼ 1 (Algorithm 1 only

specifies the maximum NE distance threshold n and

removes the constraint of spatial distances), generate the
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MECs with n 2 ½0:03; 0:3� for two inputs ‘‘positive’’ and

‘‘negative’’, respectively, and compute the corresponding

(spatial) SSE for each MEC. Then, we define a new mea-

sure SSE ratio as SSE
SSE0

and plot it in Fig. 3b. Clearly, the

(spatial) SSE increases as n declines – an MEC with better

balanced load includes the furthest microgrids from each

other if the spatial distances within each MEC are not

bounded (since n0 ¼ 1).

Finally, we let h ¼ 0:0001 per normalized distance of

0.1, randomly simulate five substations, and derive the

average distance between each of the 50000 microgrids and

its nearest substation. Then, we compare the overall load

on transmission lines at 2880 timestamps for 50000

microgrids in two cases (with or without MECs). Table 1

also shows that such energy loss can be greatly reduced

with MECs.

5.3 SEC discovery

We implement both the optimization-based approach

and the two-phase algorithm to discover the SECs. For the

optimization-based approach, we solve the optimization

problem using the proposed Tabu Search [31] based

algorithm (the length of Tabu list was set as S ¼ 10). If the

algorithm cannot find a feasible solution within 10000

seconds, the algorithm will be terminated. As mentioned

earlier, to compare the two approaches, we have generated

a synthetic dataset for 10000 microgrids with mixed NE

(more microgrids with positive NE in ½T1; T2�). Tables 2
and 3 present the experimental results of these two

approaches. We have the following observations.
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Firstly, both approaches are effective to discover SECs.

Optimization-based approach can assign all the microgrids

to the corresponding SECs as long as the all the constraints

are satisfied. However, as a heuristic algorithm, when

jtj � 900, the two-phase algorithm cannot involve all the

microgrids in the SECs (feasible solution indeed exists as

solved by the optimization-based approach). Among all the

microgrids, the two-phase algorithm has missed some

microgrids with negative NE in ½T1; T2� as jtj � 900. Then,

the average NE of all the SECs discovered by the two-

phase algorithm is greater than that of the optimization-

based approach (as jtj � 900).

Secondly, the SECs discovered by the optimization-

based approach are more cohesive than that discovered by

the two-phase algorithm (smaller SSE), since the opti-

mization-based approach minimizes the SSE out of all the

K values. In addition, we use K-means to simulate five

substations of the main grid, and derive the average dis-

tance to the main grid (nearest substation) for the 10000

microgrids, which represents the average transmission

distance (from the main grid to microgrids). Then, we find

out that utilizing SECs for sharing local energy can sig-

nificantly reduce the energy loss in the transmission, since

SSE (the average transmission distance using SECs) is far

Table 1 Load on transmission lines (MEC discovery)

Load With MECs Without MECs

0.03 102795 3265520

0.12 291694 3265520

0.21 487679 3265520

0.30 720731 3265520

Table 2 SEC discovery (optimization-based approach, 10000 microgrids)

No. of |t|

timestamps

Average

NE (all the

SECs in

½T1; T2�)

No. of SECs:

best K (found

by Tabu

search)

No. of

micorgrids

in all the

SECs

Average no.

of

microgrids

in the SECs

Microgrids

(with positive

NE at all times

in ½T1;T2�)

Microgrids

(with negative

NE at any time

in ½T1;T2�)

SSE (average

transmission

distance using

SECs)

Average

distance to

main grid (if

no SECs)

1 732 100 10000 100 6588 3412 0.097 0.247

300 704 110 10000 90.9 6588 3412 0.097 0.247

600 656 110 10000 90.9 6588 3412 0.097 0.247

900 621 120 10000 83.3 6588 3412 0.097 0.247

1200 587 120 10000 83.3 6588 3412 0.097 0.247

1500 543 130 10000 76.9 6588 3412 0.097 0.247

1800 488 130 10000 76.9 6588 3412 0.097 0.247

2100 432 130 10000 76.9 6588 3412 0.097 0.247

2400 381 140 10000 71.4 6588 3412 0.097 0.247

2700 324 140 10000 71.4 6588 3412 0.097 0.247

Table 3 SEC discovery (two-phase algorithm, 10000 microgrids)

No. of |t|

timestamps

Average

NE (all the

SECs in

½T1; T2�)

No. of SECs:

best

K (found by

K-means)

No. of

micorgrids

in all SECs

Average

no. of

microgrids

in SECs

Microgrids (with

positive NE at

all times in

½T1;T2�)

Microgrids (with

negative NE at

any time in

½T1;T2�)

SSE (average

transmission

distance using

SECs)

Average

distance to

main grid (if

no SECs)

1 732 80 10000 125.0 6588 3412 0.124 0.247

300 704 80 10000 125.0 6588 3412 0.126 0.247

600 656 80 10000 125.0 6588 3412 0.129 0.247

900 681 80 9577 119.7 6588 3019 0.112 0.247

1200 717 80 9103 113.8 6588 2515 0.119 0.247

1500 743 80 8672 108.4 6588 2084 0.118 0.247

1800 748 80 8557 107.0 6588 1969 0.109 0.247

2100 758 80 8390 104.9 6588 1802 0.106 0.247

2400 774 80 8115 101.4 6588 1527 0.113 0.247

2700 789 80 8046 100.6 6588 1476 0.108 0.247
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less than the average distance to the main grid (0.097/0.108

vs. 0.247). Also, Table 4 shows that the load on trans-

mission lines can be significantly reduced using the SECs

discovered by both approaches.

Thirdly, for both approaches, K is selected as

f50; 60; . . .; 200g, which is a reasonable set of values for

10000 microgrids (6588 microgrids in Mþ). Then, the

average number of microgrids with positive NE in each

community varies from 32.94 to 131.76. Tables 2 and 3

show that the optimization-based approach identifies more

SECs than the two-phase algorithm. For any |t|, the number

of SECs identified by the two-phase algorithm is fixed

(since the best K is determined only by the microgrids’

geo-locations with positive NE in ½T1; T2�, in the first

phase). However, the optimization-based approach may

identify different numbers of SECs if different |t| are

considered.

6 Conclusion and future work

Energy communities formed by distributed energy

resources (microgrids) could facilitate the power grid to

advance energy management and enable microgrids to find

peer microgrids to cooperate (e.g., sharing/trading energy).

In this paper, we have proposed a series of approaches to

identify different energy communities for the microgrids

such as mixed energy communities and self-sufficient

energy communities. We have also validated the effec-

tiveness and efficiency of the approaches using real-world

spatial dataset as well as the power generation and con-

sumption datasets.

In the future, we will investigate and solve some other

variants of energy community discovery problems for

microgrids and we will try to incorporate such preferences

into the energy community discovery problems. In addi-

tion, besides integrating all the energy generation and

consumption over a period into the MECs and SECs dis-

covery, we will explore stochastic optimization models for

energy community discovery based on the prediction of the

future power generation and consumption, which is

expected to improve the efficiency of the energy

community discovery algorithms. Finally, energy commu-

nity discovery requests data collection from all the

microgrids, which may compromise their privacy [36]. It is

also interesting and challenging to propose privacy pre-

serving energy community discovery techniques which

enable the cooperation of microgrids while protecting their

local information [5, 7].
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