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ABSTRACT 

Ranging behavior is one important strategy by which nonhuman primates obtain 

access to resources critical to their biological maintenance and reproductive success. As 

most primates live in permanent social groups, their members must balance the benefits 

of group living with the costs of intragroup competition for resources. However, some taxa 

live in more spatiotemporally flexible social groups, whose members modify patterns of 

association and range use as a method to mitigate these costs. Here, we describe the 

range use of one such taxon, the black-and-white ruffed lemur (Varecia variegata), at an 

undisturbed primary rainforest site in Ranomafana National Park, Madagascar and 

characterize sex-differences in annual home range area, overlap, and daily distances 

traveled. Moreover, we characterize seasonal variability in range use and ask whether 

ranging behaviors can be explained by either climatic or reproductive seasonality. We 

found that females used significantly larger home ranges than males, though sexes 

shared equal and moderate levels of home range overlap. Overall, range use did not vary 

across seasons; though within sexes, male range use varied significantly with climate. 

Moreover, daily path length was best predicted by day length, female reproductive state, 

and sex, but was unrelated to climate variables. While the patterns of range use and 

spatial association presented here share some similarities with ‘bisexually bonded’ 

community models described for chimpanzees, we argue that ruffed lemurs best conform 

to a ‘nuclear neighborhood’ community model wherein nuclear (core) groups share the 

highest levels of home range overlap, and that these groups cluster spatially into adjacent 

‘neighborhoods’ within the larger, communally defended territory. 
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INTRODUCTION  

In many primates, individuals live, travel, and forage together in cohesive units or 

“social groups.” Despite exhibiting variable preferences for social partners [Cords, 2002; 

Silk et al., 2006a, b; Schülke et al., 2010; Seyfarth et al., 2014; Perry, 2013], resource 

utilization [Boinski, 1988; Fragaszy and Boinski, 1995; King et al., 2009], and/or spatial 

position within the group [Janson, 1990a, b; Ron et al., 1996; Hall and Fedigan, 1997; 

reviewed in Hirsch, 2007], patterns of individual movement in these taxa are generally 

broadly coordinated, and range use — including home range size, overlap, and daily path 

length (DPL) — is more or less coincident amongst group members [Strandburg-Peshkin 

et al., 2015]. As such, there is expected to be little variation in individual ranging patterns 

among age-sex classes within cohesive social groups (though these patterns break down 

around natal dispersal and secondary transfer events) [Jack and Isbell, 2009 and 

references therein]. By contrast, in some taxa, group members are able to individually 

optimize the costs and benefits of group living, and groups are much less spatiotemporally 

constrained. In these taxa, members of socially and geographically circumscribed groups 

(or “communities”) associate in temporary, flexible subunits (i.e., “parties” or “subgroups”) 

that vary in size, cohesion, membership, and duration via a strategy known as “fission–

fusion” [sensu Kummer, 1971; reviewed in Aureli et al., 2008]. Such behavioral flexibility 

allows group members to individually adjust their patterns of association in accordance 

with ecological and social constraints [Williams et al., 2002; Symington, 1990; Chapman 

et al., 1995; Lehmann and Boesch, 2004; Mitani et al., 2002 and references therein], 

variation which is in turn reflected in their corresponding patterns of range use [reviewed 

in He et al., 2019].  
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In chimpanzees and spider monkeys—the best-studied of the non-human primates 

exhibiting high fission-fusion dynamics—patterns of social association and range use are 

generally sex-segregated [Goodall, 1986; Symington, 1990; Hasegawa, 1990; Chapman, 

and Wrangham, 1993; Williams et al., 2002]. Males tend to be more gregarious than 

females [Otali and Gilchrist, 2006; Lehmann, and Boesch, 2008; Wrangham, 2000], and 

exhibit stronger social bonds with each other than either mixed-sex or female-female 

dyads [Machanda et al., 2013; Fedigan and Baxter, 1984; Gilby and Wrangham, 2008; 

Shimooka, 2003; Slater et al., 2009]. By contrast, females—particularly those with infants 

or dependent offspring—are more often found alone or in small same-sex parties 

[Nishida, 1968; Wrangham and Smuts, 1980; Goodall, 1986; Symington, 1988a; 

Symington, 1990; Chapman, 1990; Lehmann and Boesch, 2008; Wrangham, 2000].  

Because individual movement in these taxa is generally less constrained, sex 

biases in social association are typically reflected in sex-segregated patterns of range 

use [Wrangham and Smuts, 1980; Stumpf, 2007]. Males tend to travel longer daily 

distances [Wrangham and Smuts, 1980; Doran, 1997; Wallace, 2008], use larger overall 

home ranges [Wrangham and Smuts, 1980; Symington, 1988b; Symington, 1990; 

Chapman and Wrangham, 1993; Williams et al., 2002; Shimooka, 2005; Wrangham et 

al., 1992; Nunes, 1995], and spend more time in the peripheries of their territory than do 

females [Chapman and Wrangham, 1993; Chapman, 1990; Lehmann and Boesch, 2005; 

Mitani and Watts, 2005; Shimooka, 2005; Wallace, 2008]. Males also tend to share larger, 

more overlapping home ranges with other males and most, if not all, females within their 

community [Chapman and Wrangham, 1993; Shimooka, 2005; Symington, 1988b; 

Nunes, 1995; Wrangham, 1979]. Females in these same communities do not typically 
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utilize their entire range, and instead restrict their movement to smaller, more central 

areas within the territory [Wrangham and Smuts, 1980; Chapman and Wrangham, 1993; 

Williams et al., 2002; Shimooka, 2005]. Together, these patterns have been characterized 

by some as following a ‘male-bonded’ community model [Lehmann & Boesch 2005; Fig. 

1].   

There is, however, notable inter- and intra-population variation in the patterns of 

association and range use observed in these species. For instance, some populations of 

chimpanzees (e.g., Bossou and Taï in West Africa) and spider monkeys (e.g., Yasuni) 

can be characterized as more closely adhering to a ‘bisexually-bonded’ community 

model, wherein males and females are equally gregarious, spending more time in mixed-

sex parties [Boesch, 1991], and exhibiting more similar patterns of range use and overlap 

[Sugiyama, 1988; Sakura, 1994; Boesch, 1996; Lehmann and Boesch, 2005, 2008; 

Spehar et al., 2010](Fig. 1), patterns that have been attributed to higher resource 

availability, lower population size/density, and reduced predation and/or anthropogenic 

pressure relative to eastern sites [reviewed in Lehmann and Boesch, 2005].  

This variation is further influenced by inter- and intra-annual seasonality in both 

resource availability and female reproduction. In fact, many argue that fission-fusion 

dynamics may have primarily evolved in response to shifting resource availability, 

allowing individuals to maximize the benefits of group living (e.g., predator avoidance, 

resource defense) while minimizing within-group resource competition [Boesch, and 

Boesch-Achermann, 2000]. For instance, there is evidence that individuals from both 

‘male-bonded’ and ‘bisexually-bonded’ chimpanzee and spider monkey communities will 

form smaller, more dispersed foraging parties when fruit is scarce [Klein and Klein 1977; 
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Symington 1988a; Mitani et al. 2002; Aureli & Schaffner 2008; Riedel et al. 2011], when 

fruit is dispersed [Chapman et al., 1995; Newton-Fisher et al., 2000; Basabose 2004; 

Wittiger and Boesch 2013], or when food patches are small [Isabirye-Basuta 1988; White 

and Wrangham 1988; Chapman 1990; Potts et al., 2011; Wittiger and Boesch, 2013]. 

These seasonal changes in fission-fusion dynamics are often reflected in seasonal 

patterns of range use, including shorter daily travel distances [Doran, 1997; Herbinger et 

al., 2001; Matsumoto-Oda 2002; Moore et al. 2018] and/or smaller, less overlapping 

home ranges during fruit lean periods [Nakamura et al. 2013; Moore et al. 2018]. 

Relationships between food availability, subgroup size, and range use do, however, vary. 

For instance, some communities range in smaller subgroups or utilize smaller home 

ranges [Herbinger et al., 2001] during periods of resource abundance, whereas others 

exhibit little to no correspondence between resource availability and either fission-fusion 

dynamics [Hashimoto et al., 2003; Wakefield, 2008] or ranging behaviors [Boesch & 

Boesch-Achermann, 2000; Basabose, 2005].  

 While the vast majority of primate fission-fusion literature has traditionally focused 

on chimpanzees and spider monkeys, there is growing evidence that fission-fusion 

dynamics are, in fact, more common than previously recognized [Aureli et al., 2008], and 

that the demographic, ecological, and social variables described above can be applied 

more broadly to explain fission-fusion dynamics across the primate order. For instance, 

in many nonhuman primates, group fissions and concomitant changes in ranging 

behavior commonly occur within a feeding context [Dolado et al., 2016, 2017; Izar et al., 

2012; Ren et al., 2012] and/or in accordance with social variables such as subgroup size 

or the presence of sexually receptive mates [Ellis and Di Fiore, 2019; Dias and Strier, 
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2003; Bezanson et al. 2008; Strier, 2018]. Here, we add to this growing body of literature 

by quantifying patterns of range use and overlap in a strepsirrhine with high fission-fusion 

dynamics, the black-and-white ruffed lemur (Varecia variegata) [Baden et al., 2016]. 

 Ruffed lemurs are relatively large-bodied (2.5– 4.8 kg; [Baden et al., 2008]), 

arboreal frugivores endemic to the eastern rainforests of Madagascar [Baden, 2011; 

Balko, 1998; Morland, 1991a; Rigamonti, 1993; Ratsimbazafy, 2002; Vasey, 2000]. 

Ruffed lemurs live in large social groups (e.g., 11 to 31 individuals) that are characterized 

by high levels of fission–fusion social dynamics [Holmes et al., 2016; Baden, 2011; 

Morland, 1991a,b; Rigamonti, 1993; Baden et al., 2016; Vasey, 1997]. Aspects of their 

behavior, including activity budgets, foraging patterns, and subgroup size, composition, 

and cohesion vary by season, resource availability, and female reproductive state 

[Morland, 1991a,b; Rigamonti, 1993; Vasey, 2002, 2005, 2006; Baden et al., 2016; Beeby 

and Baden, in review]. For black-and-white ruffed lemurs, in particular, animals in primary 

rainforest habitats tend to spend more time solitary and are found in smaller, more 

cohesive subgroups during times of resource scarcity, a period that aligns with early 

lactation during austral winter months [Morland 1991a; Baden et al. 2016; but see Holmes 

et al. 2016 for patterns in disturbed sites]. Moreover, recent work has found that ruffed 

lemurs reduce travel time, increase resting time, and exhibit greater use of higher canopy 

levels during this same period, a ‘time minimizing’ behavioral strategy that is thought to 

reduce nutritional requirements for maintaining energetic homeostasis during periods of 

low fruit availability [Beeby and Baden, in review]. As temperature and rainfall increase, 

so too does fruit availability, ruffed lemur activity, and the emergence of larger, less 

cohesive mixed-sex subgroups [Baden et al. 2016; Beeby and Baden, in review].  



Baden & Gerber, 9 
 

 

 
9 

 While there has been a recent uptick in studies investigating seasonality in ruffed 

lemur behavioral ecology and fission-fusion dynamics (e.g., [Holmes et al., 2016; Baden 

et al., 2016; Baden et al. 2020; Beeby and Baden in review], those characterizing 

seasonality in ruffed lemur range use remain limited and provide incongruous results. For 

instance, one study of red ruffed lemurs (Varecia rubra) from the Masoala Peninsula 

described females as utilizing large, seasonally variable home ranges that overlapped 

extensively with other females, and which encompassed the smaller, non-overlapping 

territories of males [Vasey, 2006]. Like eastern chimpanzees, ranging behaviors were 

sex-segregated, though patterns described by Vasey [2006] might be best characterized 

as ‘female bonded’ (Fig. 1). Nevertheless, like many primates with fission-fusion 

dynamics, patterns of red ruffed lemur range use were not uniform throughout the year; 

home range area, overlap, and daily distances traveled shifted in accordance with 

resource availability and female reproductive state. During warm, wet resource abundant 

months, females used large home ranges that overlapped extensively with other females 

in the community. Female ranging behaviors were significantly reduced – home ranges 

became smaller and nonoverlapping – during periods of resource scarcity (cool, dry and 

cool, wet months), seasons that coincided with mating, gestation, and high infant 

dependence. Male range use did not vary by season nor female reproductive state, 

suggesting that differences in range use were driven almost entirely by females [Vasey 

2006]. Moreover, daily distances traveled did not vary between sexes, except within the 

context of the pre-mating period, when males traveled significantly farther than females 

in search of mates. As in an earlier study [Rigamonti 1993], animals were observed 

travelling longer daily distances in warmer months, and both male and female travel was 
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significantly related to female reproductive state: travel was most constrained during the 

gestation period, followed by nonreproductive seasons, and least constrained when 

females were lactating [Vasey 2006]. By contrast, Morland’s [1991a] study of black-and-

white ruffed lemurs (V. variegata) on Nosy Mangabe described males as ranging farther 

(i.e., using larger annual home ranges that overlapped with multiple adjacent 

communities) and traveling on average significantly longer daily distances than females, 

more akin to the patterns described of ‘male-bonded’ chimpanzee communities (Fig. 1). 

However, in accordance with patterns described for red ruffed lemurs [Rigamonti 1993; 

Vasey 2006], both males and females were more active, spending more time traveling, 

covering greater daily distances, and utilizing larger home ranges during warm versus 

cool season months. While these early results stand in stark contrast, previous research 

has noted substantial inter-population variability in other aspects of their demography and 

social behavior, including population density, social organization, and affiliative 

interactions [reviewed in Baden et al., 2016], much like the regional variation noted in 

chimpanzees, suggesting that ruffed lemur range use may be equally as variable.  

Because shared range use provides individuals the opportunity for repeated social 

interactions [Clutton-Brock, 1989; Kossinets and Watts, 2006], it is critical that studies 

consider individual patterns of range use and overlap when investigating the evolution of 

social behavior, particularly within taxa exhibiting high fission-fusion dynamics [e.g., Best 

et al., 2014; Carter et al., 2013; Frère et al., 2010; Strickland et al., 2014; Baden et al. 

2020]. Thus, to broaden our understanding of ruffed lemur social behavior, including 

patterns of social association and fission-fusion dynamics, we must also improve our 

understanding of ruffed lemur range use. To this end, we characterize the annual ranging 
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patterns, including home range area, overlap, and daily path length within one V. 

variegata community during a one-year period. Further, we evaluate whether and how 

ruffed lemur range use varies with seasonal shifts in their ecology and reproductive 

physiology. Based on earlier findings in this and other non-human primate species with 

high fission-fusion dynamics, we hypothesize that (H1) patterns of ruffed lemur range use 

will vary in accordance with climatic seasonality, as do their activity patterns, use of forest 

canopy strata [Beeby and Baden, in review], and fission-fusion social dynamics [Baden 

et al. 2016]. Given the dispersed nature of their social organization and that animals 

spend nearly 50% of their time alone [Baden et al. 2016], resource competition is 

presumed low and equitable between sexes in this population. We therefore predict that 

(P1.1) sexes will not differ in their patterns of range use across climatic seasons. 

However, Madagascar’s pronounced and unpredictable climatic seasonality has created 

conditions that have resulted in resource constraints for lemurs more broadly, favoring 

adaptations that either maximize energy intake or minimize energy expenditure [Richard 

& Dewar 1991; Wright 1999; Pereira et al. 1999; Dewar & Richard 2007]. Many lemurs 

minimize activity (travel less, rest more) during fruit-lean seasons, presumably as an 

energy conservation strategy [Tecot 2008; Campera et al. 2014; Irwin et al. 2015; Baden 

& Beeby, in review]. For this reason, we predict that both males and females will (P1.2) 

travel less (i.e., shorter daily travel distances), and adopt home ranges that are (P1.3) 

smaller, and (P1.4) less spatially overlapping during cool, wet periods of low resource 

abundance to minimize resource competition and thereby energy expenditure. By 

contrast, we expect animals to (P1.5) travel farther, and have (P1.6) larger, (P1.7) more 

overlapping ranges during periods of high resource availability (e.g., warm-wet seasons), 
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maximizing energy intake while fruits are available. Finally, because cool-dry periods 

align with rising resource abundance, we predict that (P1.8) home range size, (P1.9) 

overlap, and (P1.10) daily distances traveled will be intermediate to those exhibited during 

either cool-dry or warm-wet periods.  

Alternatively, because patterns of resource availability are largely, though 

imprecisely concordant with patterns of ruffed lemur reproduction, we hypothesize that 

(H2) range use may instead reflect the unique mating strategies of the species [Baden, 

2011; Baden et al., 2013]. In this regard, we predict that (P2.1) males and females will 

differ in their patterns of range use dependent on their reproductive season. We predict 

that males will (P2.2) travel more, and use ranges that are (P2.3) relatively larger and 

(P2.4) more overlapping with females during the brief mating and subsequent gestation 

season than during either nonbreeding or lactation seasons (i.e., mating/gestation > 

nonbreeding or lactation). By contrast, we predict that females will (P2.5) travel relatively 

longer distances and utilize (P2.6) larger, (P2.7) more overlapping ranges with other 

members of their social community (both males and females) when energetically 

unconstrained by reproduction (i.e., nonbreeding > gestation or lactation). We further 

predict that (P2.8) female home range size and (P2.9) daily distance traveled will be most 

constrained (i.e., smallest and shortest) during the period of lactation and high infant 

dependence, but that these (P2.10) home ranges will nevertheless overlap more with 

other females during lactation than mating/gestation due to their communal créching 

infant care strategy (i.e., gestation < lactation) [Baden et al., 2013; Baden, 2019]. In other 

words, while we expect range size to contract during the communal breeding period, we 

nevertheless expect female range use to shift toward overlapping with other breeding 
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females to facilitate shared infant care. See Table 1 for a synthesis and summary of 

hypotheses and predictions as they relate to seasonality. 

Finally, to contextualize ruffed lemur ranging behaviors within the broader primate 

literature, we test the hypothesis that (H3) ruffed lemurs adhere to a ‘female bonded’ 

community model, based on details described by Vasey [2006]. If this is the case, we 

predict that females will use home ranges that are (P3.1) larger, and (P3.2) more 

overlapping (with both males and females) than males, and that males will use (P3.3) 

small, (P3.4) mutually exclusive ranges relative to each other. 

 

METHODS 

Study site & subjects 

Data presented here were collected from one black-and-white ruffed lemur 

(Varecia variegata) community at Mangevo bushcamp in Ranomafana National Park, 

Madagascar (RNP) during one year of observation (January - December 2008). Mangevo 

(2122’60”S, 4728’0”E) is a mid-elevation (660 - 1,200m) primary rainforest site within 

the southeastern parcel of RNP, 435 km2 of continuous montane rainforest located in the 

southeastern escarpment of Madagascar’s central high plateau (21°02’– 21°25’S and 

47°18’– 47° 37’E; [Wright et al., 2012]).  

At the time of this study, the community included 24 adults and subadults (8 adult 

females, 11 adult males, 5 subadult males). Nineteen infants were born in mid-October 

and were present from October - December 2008. Of the adults, 5 females and 3 males 

were radio-collared and targeted for regular follows. Individuals with collar-tags (but no 
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radio-collar, n = 16) were opportunistically targeted for focal follows. Sampling efforts 

resulted in a total of 4,044 focal observation hours. 

 

Data Collection  

Behavioral monitoring 

Two teams of four observers each conducted dawn-to-dusk follows on focal 

individuals (i.e., two animals were followed daily). A focal animal was located at the 

beginning of each observation period via radio-telemetry. Only independent individuals 

(adults and subadults) were targeted for follows. Animals were never sampled on 

consecutive days and every effort was made to follow all subjects at least once per month. 

If an individual with a collar-tag was located in association with a radio-collared focal 

individual prior to 10:00 h, this individual became the new focal for that observation period. 

Observation periods ranged in duration between 8 to 11 hours depending on seasonal 

differences in day length and time needed to locate animals at dawn.  

Upon initial contact with the focal individual, we recorded the number and identities 

of all other individuals present within the subgroup. Subgroups were defined as all 

independent individuals (i.e., adults and subadults) within a 50 m radius of the 

approximate subgroup center that exhibited coordinated behavior and travel (see [Baden 

et al., 2016] for details). We should note, however, that average group spread is generally 

small (8.02 m  7.21 s.d.)–rarely exceeding 20 m, except in instances of travel—and 

individuals spend 48% of their time alone [Baden et al. 2016]. After initial contact, we 

monitored subsequent changes in subgroup size, composition (age/sex class, individual 

identity), and cohesion (i.e., the greatest distance between any two subgroup members), 
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as well as activity state of the focal subject using instantaneous scan sampling techniques 

collected at 5-min intervals [Altmann, 1974].  

We collected simultaneous data on subgroup location from the approximate group 

center at 10-minute intervals using a handheld Garmin® HCx GPS unit. Spatial 

coordinates were recorded only if estimated positional error was less than 10 m.  

  

Data Analysis 

We performed home range analyses with Home Range Tools [Rodgers et al., 

2007] add-on for ArcGIS (ESRI, Redlands, CA). We did not subsample ranging data, as 

this has been shown to reduce the accuracy and precision of home range estimates [De 

Solla et al., 1999; Blundell et al., 2001; Fortin and Dale, 2005; Fieberg, 2007]. We did, 

however, limit our analyses to only those spatial coordinates for which corresponding data 

on subgroup size and composition were available (n=21,748 points). From this dataset, 

we calculated the communal home range (i.e., the home range used by all members of 

the focal ruffed lemur community), as well as individual home ranges for each of its 

members. Individual home ranges were calculated using location points collected while 

an individual was the subject of focal observations, as well as when the individual was a 

member of the subgroup being followed (i.e., was recorded as present during a focal 

follow of another individual).  

Certain individuals were difficult to locate and were peripheral to social interactions 

within the community. Because home range analyses should use data that encompass 

the full range of movement behavior exhibited by an animal [Harris et al., 1990], data from 

infrequently encountered animals may not be representative of their true movement 
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behaviors. We therefore investigated the relationship between sample size and measures 

of both annual and seasonal home range area with an incremental area analysis (i.e., 

increment plots; [Kenward, 2001; Kenward, and Hodder, 1996], whereby we iteratively 

added spatial locations and estimated home range size for each individual to evaluate 

asymptotic stability in our estimates. This was done for the communal territory, as well as 

for individual territories within the larger communal range. We found that communal 

territory stabilized after ~500 fixes. Annual individual home range estimates tended to 

asymptote earlier, after approximately 250 location points. To account for monthly 

variation in sampling effort, we omitted animals with fewer than 250 location points spread 

across 25 sampling days throughout the year from annual home range analyses. It is 

important to note that, in a majority of cases, sampling effort was evenly distributed 

throughout the year. Thus, while 250 location points was a minimum criterion for 

infrequently encountered animals, most individuals included in the analysis were sampled 

at least twice as often. Similarly, estimates of seasonal home range area reached 

asymptotes around 100 location points, and thus to ensure representative sampling, 

individuals with fewer than 100 location points spread across 10 sampling days within a 

given season were omitted from further analyses. See Appendix I for details. 

 

Annual range use and overlap 

Using the datasets described above, we estimated range use in two ways: using 

kernel density estimates (KDEs) and minimum convex polygons (MCPs). The first 

method, kernel density estimates (KDE) are widely regarded as a robust probabilistic 

estimator for making inferences about home range size, as well as about patterns of use 
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within the home range (utilization distribution: [Worton, 1989; Powell, 2000]). KDEs were 

calculated using a bivariate normal distribution, rescaling X-Y coordinates to unit 

variances as recommended by [Silverman, 1986]. Raster cell size was set to 10 x 10 m 

to accommodate most GPS errors, while maintaining a fine enough resolution for 

estimating accurate home range overlap indices. However, some of the larger GPS errors 

(10 m) may cause some spatial points to be placed in an adjacent cell to the correct one, 

but this would occur rarely and randomly to not cause systematic bias. Kernel home range 

estimators are sensitive to the choice of smoothing parameter [Silverman, 1986]; this is 

especially true with large datasets and when animals exhibit strong site fidelity [Hemson 

et al., 2005]. Given our large dataset and observations that animals regularly transverse 

the same areas, we used the root-n smoothing parameter, as it has been found to 

overcome these issues [Steury et al., 2010]. Home range size was estimated for the 

community as a whole, as well as for all individuals separately, and ranges were 

evaluated using 95% kernel isopleths.  

The second method, minimum convex polygons (MCPs), creates individual 

polygons that include all locations where a particular individual was recorded [Mohr, 

1947]. However, the method suffers from sample size effects and is greatly affected by 

outliers, such that MCP estimates often contain large areas never used by an animal 

[Laver and Kelly, 2008; Powell, 2000]. MCP estimates might also affect small-scale 

comparisons, i.e., within species or populations, although when large differences occur 

most of the variation is due to real differences [Nilsen et al., 2008]. This method was used 

exclusively to facilitate comparison with previous studies of ruffed lemurs. To help mitigate 

outlier effects, we calculated 95% MCPs via the fixed mean, a method employed to control 



Baden & Gerber, 18 
 

 

 
18 

for rare but observed excursions outside of the home range.  

In addition to home range area, we also generated estimates of home range 

overlap. Kernel overlap was calculated using a utilization distribution overlap index 

(UDOI; [Fieberg and Kochanny, 2005]) implemented in the R package adehabitat 

[Calenge, 2006]. The UDOI is an index of space-use sharing between two utilization 

distributions. If home ranges are uniformly distributed, UDOI values can range from 0 to 

1, with a UDOI of 0 indicating no home range overlap and a UDOI of 1 indicating 100% 

overlap. Values can also be >1 if both UDs are nonuniformly distributed and also have a 

high degree of overlap. Values <1 indicate less overlap relative to uniform space, whereas 

values >1 indicate higher than normal overlap relative to uniform space. We calculated 

annual and seasonal UDOIs for all pairs of individuals included in our study. MCP overlap 

in individual home ranges was calculated as the proportion of shared area between two 

polygons. MCP overlap was calculated for communal home range area and individual 

annual home range areas only. 

 

Neighborhood Analysis 

 To contextualize annual patterns of ruffed lemur range use and overlap within the 

broader primate fission-fusion literature, and test the hypothesis that (H3) ruffed lemurs 

adhere to a ‘female-bonded’ community model, we ran a hierarchical cluster analysis 

using methods modeled after Williams et al. [2002]. We used the Mean Center tool in the 

Spatial Statistics Toolbox of ArcGIS Pro 2.5 to identify geographic centers (i.e., center of 

concentration) of each individual’s 95% KDE home range. From this, we used the dist 

function in the r package factoextra (Kassambara & Mundt 2018) to create a dissimilarity 
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matrix by summing the squared Euclidean distances between the mean centers of all 

pairs of individuals within the community. Dissimilarity metrics were centered and scaled 

prior to further analysis, as recommended by Becker et al. [1988]. We then used the 

“average” agglomeration method of the hclust function in the package NbClust [Charrad 

et al. 2014] to produce a dendrogram, which allowed us to visualize the similarities 

between individual ranges [Sokal & Michener 1958]. Based on the final dendrogram, we 

defined the smallest reducible clusters of individuals sharing the most similar ranging 

patterns as ‘nuclear groups’ or ‘core groups’, which further clustered into larger 

agglomerations of individuals, which we termed ‘neighborhoods’ following Williams et al. 

[2002]. 

 

Seasonal range use 

We consider a home range as “the space which the animal both uses and 

traverses” during an ecologically meaningful time period [Burt, 1943]. Thus, to further 

investigate patterns of ruffed lemur spatial ecology, we also calculated seasonal 

measures of individual home range area and overlap. Specifically, we used data on 

climate, phenology, and female reproductive state to separate months into discrete 

seasons with intervening transitional periods (see [Baden, 2011; Baden et al., 2016] for 

detailed methods), and then analyzed data in accordance with the climatic or reproductive 

season in which they were collected.  

Measures of fruiting seasonality and climate were closely associated [Baden et al., 

2016]. We therefore used natural breaks in the data to categorize ranging coordinates as 

falling into one of three climatic seasons (Warm-Wet/Peak Fruiting: January – February 
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2008; Cool-Wet/Fruit Scarcity: May-July 2008; and Cool-Dry/Low-to-Moderate Fruiting: 

August-September 2008; March, April, and October were considered transitional seasons 

and were excluded from this analysis), as well as one of three reproductive seasons 

(Nonbreeding: January-June 2008; Gestation: July-October 2008; Lactation: November-

December 2008) (Appendix II; see also Fig. 1 in [Baden et al., 2016]).  

 

Daily range use 

Finally, to gain a finer-scale understanding of daily range use, we calculated daily 

path lengths (DPL) for each individual as the sum of the Euclidean distances between 

consecutive GPS coordinates taken every 10-minutes. We included only full-day follows 

of focal individuals for which locations were recorded completely between morning and 

evening sleep trees, or data collection started prior to 0700 h with ≥ 9 subsequent hours 

of observation and fewer than 5% missing observations.  

 

Statistical analyses 

All analyses were conducted in R version 3.6.2 (R Core Team 2019). Alpha was 

set a priori at α = 0.05. Individual home range area and overlap were statistically 

compared by sex or subgroup type and season using a combination of nonparametric 

Skillings-Mack and Mann Whitney-U tests. Daily path lengths were analyzed using a 

generalized linear mixed-effects model in the lme4 package [Bates et al., 2014] in R. 

Fixed effects included sex, day length, mean daily rainfall, a categorical classification of 

climatic season, a categorical classification of reproductive state, and the presence and 

number of infants. To explicitly account for individual variation in DPL, we included 
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Individual ID as a random effect. Using additive and interactive effects of our variables of 

interest, we a priori constructed biologically driven models; we evaluated model 

parsimony using Akaike’s Information Criterion with a small sample size bias correction 

(AICc). To incorporate model selection uncertainty, we model-averaged all parameter 

estimates [Burnham and Anderson, 2002].  

 

RESULTS 

Annual range use  

Home range estimates for the entire Mangevo ruffed lemur community were 

between 87 ha (KDE) and 120 ha (MCP). Within the community, individual annual home 

ranges varied between 11.5 and 20.6 (KDE) and 13.6 and 38.7 ha (MCP). Females (n=5) 

used significantly larger annual home ranges than did males (n=7) (MCP: Mann-Whitney 

U = 10.0, P = 0.04; Kernel: Mann-Whitney U = 9.0, P = 0.03; Table 2). On average, female 

home ranges were estimated to encompass 16.9 ha ± 1.74 SD (KDE) to 26.3 ha ± 4.50 

SD (MCP), whereas an average male’s home range was estimated to cover 13.04 ha ± 

0.98 SD (KDE) to 17.5 ha ± 1.22 SD (MCP)(Fig. 2). 

Neither sex used the entire communal home range. Rather, males and females 

concentrated their total annual space-use to only a proportion of the larger communal 

territory. Females used, on average, between 19.2% - 21.8% of the total community home 

range (KDE: mean % of communal range = 19.2%, n = 5, range = 13.1 – 23.5%; MCP: 

mean % of communal range = 21.8%, n = 5, range = 11.3 – 32.2%), while males used 

between 11.5% - 15.7% (KDE: mean % of communal range = 15.7%, n = 7, range = 13.7 

– 19.4%; MCP: mean % of communal range = 11.5%, n = 7, range = 10.0 – 14.1%).  
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Across same-sex and mixed-sex dyads, home range overlap was low to moderate 

(KDE: 16 – 29%; MCP overlap: 35 – 41%) and sexes did not differ significantly in their 

proportion of home range overlap (Table 2; Fig. 2). 

 

Neighborhoods 

 The hierarchical clustering analysis of pairwise dissimilarity indices identified four 

spatial clusters within the full-year dataset that broadly corresponded to nuclear ‘core 

groups’ of preferred male-female dyads (presumed mates) and mothers and their pre-

dispersal aged offspring. These clusters further sorted into two adjacent northern and 

southern ‘neighborhoods’ within the larger communal range (Fig. 3).  

 

Seasonal range use 

Overall, individual home range size did not vary significantly across climatic 

seasons (Skillings-Mack test, SM = 4.87, df = 2, P = 0.09), although patterns of range use 

did differ between sexes (Table 3; Fig. 4). Within sexes, female home range size did not 

vary significantly by climatic seasons (Skillings-Mack test, SM = 3.60, df = 2, P = 0.17). 

By contrast, males exhibited marked seasonal variability in home range size (Skillings-

Mack test, SM = 8.14, df = 2, P = 0.02). Males used significantly smaller home ranges 

during the cool-wet season than either the cool-dry season (Wilcoxon Signed Ranks, Z = 

28.0, P = 0.02), or the warm-wet season (Wilcoxon Signed Ranks, Z = 15.0, P = 0.04)(Fig. 

4). Male home ranges did not differ significantly between cool-dry and warm-wet seasons 

(Wilcoxon Signed Ranks, Z = 10.0, P = 0.50). Further, male and female home range size 

differed in two of three climatic seasons: males used significantly smaller home ranges 
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than females during the cool-wet (females = 14.59 h, males = 6.42 ha; Mann-Whitney U 

= 3.0, P = 0.02) and warm-wet seasons (females = 16.38 ha, males = 9.64 ha, Mann-

Whitney U = 3.0, P = 0.05; Table 3). Home range areas were similar in size only during 

the cool-dry season, when female range use decreased (females = 11.84 ha, males = 

10.69 ha, Mann-Whitney U = 13.0, P = 0.53; Table 3). We found no significant difference 

in home range overlap across seasons among same- and mixed-sex dyads (Skillings-

Mack test, SM = 2.05, df = 2, P = 0.36).  

 By contrast, there was no discernable variation in spatial community structure for 

females or males across reproductive seasons (Table 3). Overall, sexes did not differ 

significantly in home range size (Skillings-Mack test, SM = 1.07, df = 2, P = 0.59) or 

overlap (Skillings-Mack test, SM = 2.04, df = 2, P = 0.36) across reproductive seasons, 

nor did home range size (Skillings-Mack test, SMmales = 1.79, df = 2, P = 0.41; SMfemales = 

0.400, df = 2, P = 0.82) or overlap (Skillings-Mack test, SMMM = 1.66, df = 2, P = 0.44; 

SMFF = 0.95, df = 2, P = 0.62; SMMF = 0.50, df = 2, P = 0.78) vary significantly within sexes 

across reproductive seasons. 

  

Daily range use 

Overall, females and males did not differ in their daily path lengths (DPL) (Mann-

Whitney U=9323.5, P=0.926). Females traveled, on average, a daily distance of 1,659.28 

m ± 555.21 m whereas males traveled an average of 1,673.83 m ± 598.69 m. However, 

when included as a fixed effect in our mixed models, we found strong support that DPL 

was positively related to day length (  = 0.654, SE=0.111) and varied with reproductive 

season (Model Weight = 88.1 %; Table 4); the only two models with any support included 
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both of these variables (Table 4). We also found strong support for a sex difference by 

reproductive season and day length; the model including the sex variable had seven times 

the support as the model without it (0.881 versus 0.119).  We found males to generally 

move more per day than females (  = 11.49, SE=3.79; males = 1, females = 0), with the 

strongest difference occurring in the lactation season (Table 4). Standardizing to 12 hours 

of daylight, DPL in both the non-breeding season (female: 1761 ± SE 57.6 m; male: 

1948.6 ± SE 122.0 m) and gestation seasons (female: 1736.1 ± 99.48 m; male: 1917.0 ± 

296.8 m) were more similar than during lactation, when daily distances traveled by 

females (840.6 ± SE 106.2 m) were far more restricted than males (1824.6 ± SE 196.7 

m).   

 

DISCUSSION 

Previous work on wild ruffed lemurs has helped to characterize the genus Varecia 

as a taxon notable for its degree of social flexibility; populations exhibit striking variation 

in group size, social organization, and patterns of range use [reviewed in Vasey, 2003; 

Baden et al., 2016]. To some extent, this variation can be attributed to sample size, study 

duration and/or sampling method. However, even in long-term studies (>12 months of 

behavioral observation) populations have demonstrated remarkable variation in annual 

and seasonal fluctuations in demographics and behavior [Morland, 1991a,b; Vasey, 2006; 

Rigamonti, 1993; Baden, 2011].  

 Results from this study reveal mixed patterns of ruffed lemur range use, overlap, 

and daily distances traveled when compared with earlier work (e.g., Varecia rubra: 

[Rigamonti, 1993; Vasey, 2006]; Varecia variegata: Morland, 1991a, b; Balko, 1998; 
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Ratsimbazafy, 2002; Table 5). We found that animals travel, on average, nearly 2 km per 

day. Multiple males and females exploit ranges that together comprise large, communal 

territories that are more or less spatially distinct from other neighboring social 

communities. Communal territory size was estimated at approximately 87 hectares using 

KDE methods, though even with older MCP methods, our estimates fell well within the 

range of previously reported values (25 to 150 hectares; reviewed in [Vasey, 2003]. 

Variation between our two size estimates, as well as among ours and earlier studies are 

largely driven by the methods used to estimate home range area (MCP vs. Kernel 

Density) and should thus be taken into consideration when comparing range use across 

studies. Generally, KDEs are more likely to capture the realized spatial distribution 

compared to MCPs, as they are more robust to outliers, and thus more appropriate for 

comparison [Powell, 2000; Laver and Kelly, 2008]. Because ours is the first study to 

employ the KDE method, we argue that our estimates likely reflect more conservative, 

and perhaps more biologically meaningful measures of ruffed lemur range use compared 

to earlier work. 

Neither sex ranged widely throughout the entire communal territory. Rather, both 

males and females concentrated their movement to only a fraction of the communal 

range. We report significantly different patterns of range use for males and females; 

males utilized home ranges that were, on average, 20% smaller than females. These 

results are largely consistent with sex-segregated patterns of range use described by 

Morland [1991a,b] and lend support to earlier studies describing females as being central 

to ruffed lemur social behavior [Morland, 1991a,b; Baden et al., 2016]. Our results differ, 

however, in that the individual ranges we observed were distributed evenly throughout 
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the communal territory and both males and females exhibited on average moderate levels 

of annual home range overlap among both same- and mixed-sex dyads. This is in contrast 

to earlier reports describing males either as using small ranges that overlapped 

extensively with females, but which were discrete from (i.e., non-overlapping with) other 

neighboring males [Vasey, 2006], or as ranging extensively and more widely than females 

throughout the entire community, and sometimes even into adjacent communities 

[Morland 1991a]. 

Nevertheless, when considering all available data, broad patterns of ruffed lemur 

spatial dynamics emerge. It appears that ruffed lemur communities comprise large, multi-

male, multi-female groups that live within a communally defended territory, particularly in 

populations exhibiting high levels of fission-fusion dynamics (e.g., Andranobe, Nosy 

Mangabe, Kianjavato, Mangevo) [Morland, 1991a,b; Vasey, 2006; Holmes et al., 2016; 

Baden et al., 2016, 2020]. Females consistently utilize larger annual home ranges than 

males, though range use—including DPL— appears to vary both within and between 

sexes dependent upon climatic season and reproductive state [Morland, 1991a,b; Vasey, 

2006; this study]. Moreover, females are consistently described as being central to the 

formation of nuclear (‘core’) groups, both in terms of social interactions [Morland, 1991a,b; 

Vasey, 2006; Baden et al., 2016] and spatial association [Vasey 2006; this study]. 

 

Seasonal variation in range size, overlap and daily distances traveled 

Beyond broad characterizations of annual home range size and overlap, we 

detected significant sex-differences in ranging behavior across seasons. Interestingly, 

female home range size did not vary significantly by climatic (H1) or reproductive season 
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(H2). Of five females for which we had comparable data across seasons, only one 

exhibited the expected patterns of home range size variation predicted for seasonal 

climatic shifts (i.e., largest ranges during warm-wet periods of resource abundance 

(P1.6); smallest ranges during cool-wet periods of resource scarcity (P1.3), as per [Vasey, 

2006]; of the remaining four females, two used the relatively largest ranges during the 

cool-wet (i.e., resource poor) period, while the remaining two females exploited large, and 

roughly equivalently-sized home ranges in warm-wet (i.e., resource abundant) and cool-

dry (i.e., moderate resource) versus cool-wet (i.e., resource poor) seasons (Table 3). 

Female range use was equally variable across reproductive seasons (H2) and none met 

our expectations of home range size (P2.6, 2.9) or overlap (P2.7, 2.10). 

Thus, it appears that sex differences in home range size variation were driven 

primarily by males, whose ranges varied significantly across climatic (H1), but not 

reproductive seasons (H2). Male range use did not, however, follow expected patterns. 

We predicted (P1.6) that home range size would be largest during the warm-wet, resource 

abundant period. Instead, male ranges were largest during the cool-dry period, and 

directly contradict earlier reports describing seasonal variation in range use as being 

driven exclusively by females [Vasey, 2006]. Rather, our results more closely align to 

those of Morland [1991a]. Males in our study consistently traveled longer daily distances 

than females (~1.9 km vs. ~1.7km/day), and daily female travel was constrained by 

reproductive state. Female daily path length was consistent across non-breeding and 

gestation periods (January – September, ~1.7 km/day), but decreased precipitously 

during the first three months following birth (October – December, ~0.8 km/day). Taken 

together, our results suggest sex-segregated patterns of range use in ruffed lemurs: 
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females in the Mangevo ruffed lemur community used large, seasonally stable home 

ranges, but daily travel was constrained during the lactation period by the presence of 

dependent offspring. By contrast, males consistently traveled longer daily distances than 

females, but within smaller, more seasonally flexible areas. While unexpected, we 

propose a few hypotheses that may help to explain these patterns.  

First, in many primate fission-fusion systems, the density and distribution of food 

resources impact patterns of spatial association [e.g., Lehmann, and Boesch, 2005]. That 

female range use in this study did not vary according to climatic seasonality suggests that 

resources may have been evenly and/or abundantly distributed throughout the communal 

territory, and that female ranges each may have encompassed high-quality food. 

Alternatively, given the individual variation we observed, it could be that females in lower 

quality territories adopted ‘time (energy) minimizing strategies’ by resting more and/or 

feeding on lower quality food resources until conditions improved (see [Tecot, 2008] for 

review). Anecdotally, we found asynchronous fruit availability across female home 

ranges, even within the same feeding tree species [Baden, unpublished data], suggesting 

this may be a valuable line of further inquiry. These and further investigations relating 

habitat structure and quality to individual patterns of activity and range use in the Mangevo 

ruffed lemur community are currently underway. 

It is also possible that our use of ‘climatic season’ was a poor proxy for resource 

availability. Although studies have found a direct relationship between rainfall and fruit 

availability in Madagascar [Dewar and Richard, 2007; Grassi, 2001; Hemingway, 1996; 

Overdorff, 1993; Meyers and Wright, 1993] —including earlier work at this site [Baden et 

al., 2016]—Ranomafana is particularly notable for its highly variable climatic conditions; 
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annual rainfall, phenology, and the presence and duration of wet versus dry seasons vary 

considerably inter-annually [Wright et al., 2005]. Moreover, earlier work in the region and 

elsewhere has demonstrated that relationships between rainfall and fruiting patterns 

might not always exist [Tecot, 2008; Hemingway, 1998; van Schaik and Pfannes, 2005]. 

Nevertheless, the imperfect relationship between climate and phenology still cannot 

explain why males—but not females—exhibited seasonal variation in range use. It should 

be noted that while male range size varied significantly with climatic season, patterns 

were inconsistent with our expectations. If males were, in fact, altering range use in 

accordance with resource availability and in accordance with the ‘time minimizing’ 

strategy of the species [Beeby and Baden, in review], we might expect larger home range 

sizes during resource rich months (e.g., [Vasey, 2006]). However, male range size 

peaked during the cool-dry season, a period of low, but rising resource abundance, 

suggesting that males may not be modifying spatial patterns according to fruit availability. 

Instead, we argue that males may, instead, be mapping their ranges onto those of females 

(i.e., the limiting resource to males), as socioecological theory predicts [Sterck et al., 

1997], particularly in the days during the cool-dry season that occur just prior to, during, 

and following the brief mating period. In support of this hypothesis, we observed higher 

than average association among males and females according to female reproductive 

state [Baden et al., 2016]. Thus, it is possible that the observed variation in male home 

range size at Mangevo is actually a result of males expanding their otherwise small home 

ranges to map their range use on to those of female associates just prior to the brief 

mating period in late-June thru early-July. 
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That male ranging patterns did not vary according to reproductive seasonality is 

therefore likely an issue of temporal scale in our analysis. Ruffed lemurs, as with other 

Malagasy primates, are characterized by strict seasonal breeding, and are generally only 

sexually receptive for two to three days during the year [Brockman et al., 1987; Foerg, 

1982; Baden et al., 2013]. The brevity of estrus in ruffed lemurs therefore complicates 

seasonal home range estimates according to reproductive state, as it can be difficult to 

accurately identify the appropriate time frame for analysis. While our behavioral data 

recorded increased association between males and females during the “courtship” (pre-

receptive, nonbreeding) period (March-June) [Baden et al. 2016], these changes in 

behavior were not reflected in our ranging results. In fact, female-male kernel overlap was 

lowest during the non-breeding season—a period that encompassed this early courtship 

phase. Unfortunately, we believe that our current temporal scale, which ranged from three 

to five months per ‘season’, was simply too large to accurately reflect the shifting patterns 

of range use across these more fine-scale reproductive stages.  

Similarly, we expected patterns of female range use to correspond more closely 

with reproductive state. Ruffed lemurs bear large litters of altricial young, and are notable 

for their shared nest use and communal infant care, particularly during the first several 

months after birth [Baden et al., 2013; Morland, 1993; Pereira et al., 1987; Vasey, 2007]. 

Because infants cannot cling, and must instead be transported orally by mothers between 

nests, we expected female movement, and thereby home range size, to be constrained 

during the period of early lactation and high infant dependence. Moreover, we anticipated 

female ranges to exhibit greater overlap, a pattern which would have facilitated the 

communal infant care observed later in infant development (ca. 6-8 weeks; [Baden et al., 
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2013]. While patterns of association and daily path length met expectations (i.e., females 

were significantly less social and daily distances traveled were more constrained during 

early stages of lactation and high infant dependence [Baden et al., 2016; this study], home 

range area and overlap did not differ significantly from other reproductive seasons. 

Anecdotally, females traveled faster, took more direct routes, and regularly visited diverse 

areas throughout their range during this time (Baden, unpublished data). Thus, future 

studies will use newer and more nuanced methods (e.g., ctmm, [Calabrese et al., 2016]; 

dynamic social network analyses, [Blonder et al., 2012]) to further refine these results. 

Finally, ruffed lemurs are ‘boom-or-bust’ breeders, reproducing only during years 

when conditions allow [Ratsimbazafy, 2002; Baden et al., 2013]. Thus, it may be that 

patterns of home range area and overlap differ between breeding and non-breeding 

years, and that the moderate overlap in home ranges observed during this study are 

actually high relative to years when females do not reproduce. This would also help 

explain reports of monogamy in the taxon if studies were conducted during non-

reproductive years when animals are less social, group members are less cohesive and 

individuals use smaller, less overlapping home ranges [Baden, unpublished data]. Future 

studies will attempt to document ruffed lemur ranging behaviors across boom and bust 

years to allow us to test this hypothesis. 

 

Ruffed lemur range use in context 

Earlier work has characterized ruffed lemurs as displaying a distinct pattern of 

fission–fusion dynamics that is both markedly different from and strikingly similar to 

haplorrhines with fluid fission–fusion grouping patterns [Baden et al., 2016]. Compared to 



Baden & Gerber, 32 
 

 

 
32 

haplorrhines, ruffed lemurs exhibit relatively smaller subgroup size; dramatically lower 

rates of association; and a female-centered social organization. Adult males and females 

are equally gregarious, sharing similar numbers of social partners (with the exception of 

adult male-male dyads [Baden et al., 2016]). Nevertheless, dyadic ruffed lemur social 

associations are generally sparse and weak, and average relatedness within the 

community is low [Baden et al., 2020]. Our present study further refines this 

characterization by adding a spatiotemporal component to our understanding of ruffed 

lemur fission-fusion dynamics. We found that males and females are more-or-less evenly 

distributed throughout a large, female-defended range, and while female home ranges 

are larger than males’, group members exhibit equal and moderate home range overlap 

with other members of the community.  

Thus, the available data suggest that ruffed lemurs do not adhere to the ‘female-

bonded’ community model as described for red ruffed lemurs from Andranobe [Vasey 

1997, 2006; Fig. 1], nor do they adhere to classic ‘male-bonded’ or ‘bisexually-bonded’ 

community models exhibited by chimpanzees or spider monkeys, two other primates with 

high fission-fusion dynamics [reviewed in Lehmann and Boesch, 2005; Fig. 1]. Instead, 

results from this study describe a system that integrates aspects from both ‘bisexually-

bonded’ and ‘female-bonded’ community models. ‘Bisexually-bonded’ chimpanzee 

communities in West Africa (e.g., Taï: Lehmann & Boesch, 2005; Lemoine et al. 2019; 

Bossou, Guinea: Sakura, 1994) and spider monkeys in Yasuni [Spehar et al., 2010] tend 

to contain males and females that are equally gregarious and range together, with minor 

ranging differences between sexes due to differential usage of peripheral areas [Lehmann 

& Boesch, 2005]. Similar to these communities, male and female ruffed lemurs share 



Baden & Gerber, 33 
 

 

 
33 

strong bisexually-bonded social associations [Baden et al. 2016], and sexes share similar 

and moderately overlapping home ranges [this study]. However, neither sex ranges 

widely throughout the communal range, instead concentrating their range use to small 

portions of the larger female-defended territory.  

Moreover, although females are central to social relationships (i.e., female-female 

and female-male social associations are stronger than male-male associations; [Baden 

et al. 2016]), as in the ‘female-bonded’ ruffed lemur communities of Andranobe [Vasey 

2006], the smallest units of social and spatial organization in the Mangevo community are 

comprised of small nuclear units or ‘core groups’ (sensu Vasey 1997), that comprise an 

adult male, female, and her pre-dispersal aged young. Nuclear (core) groups have been 

found to preferentially associate and share space with eachother moreso than with 

members of other core groups [Baden et al. 2016, 2020]. In fact, recent work has found 

that social associations in this species are primarily driven by space use [Baden et al. 

2020]. Home range overlap significantly predicts the strength of social interactions, 

moreso than kinship, suggesting that neighbors are more likely to interact than even close 

relatives. Thus, taken together, the unusual patterns of range use and association 

described herein can best be characterized as a ‘nuclear neighborhood’ (Fig. 1).  

Most nuclear (core) groups in this study comprised an adult male and female pair. 

However, Radio-Red and Radio-Blue, females in the northern and southern 

neighborhoods, respectively, shared their ranges with an adult male, as well as with their 

subadult and adult offspring. In the case of Radio-Red female, her offspring included two 

young males, as determined by their patterns of dental wear and body weights at the time 

of capture (Baden, unpublished data), and were estimated to be no older than two years 
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old. Given that dispersal is unbiased in this species (i.e., both sexes disperse; [Baden et 

al. 2014]), it is assumed that the males were approaching dispersal age, and would soon 

leave in search of new territories. By contrast, although also determined to be a mother-

offspring pair [Baden, 2011], Radio-Blue shared her home range with her adult daughter 

(Radio-Green). An earlier study suggests that ruffed lemur daughters may inherit their 

territory from their mother upon eviction or death [White 2009], similar to patterns 

observed in chimpanzees [Williams et al., 2002; Murray et al., 2008; Langergraber et al. 

2009, 2013]. While it is not currently possible to assess home range inheritance at this 

time, Radio-Blue and Radio-Green resided in the same territory for at least three years 

prior to this study (since 2005), and remained in the territory together until at least 2011, 

lending anecdotal support for this hypothesis. Ongoing data collection efforts will soon 

allow us to investigate site fidelity as it relates to resource availability and distribution 

within this community, as well as the dynamics of home range turnovers after the 

occurrence of deaths from old age and/or predation events.  

Nuclear (core) groups in this study were spatially organized into larger 

agglomerations of ‘neighborhoods’ within the communal territory. The concept of 

‘neighborhoods’ is not new in the primate fission-fusion literature. For instance, although 

East African chimpanzees (P. t. schweinfurthii) generally conform to a ‘male-bonded’ 

community model (i.e., females are generally less social than males and use much 

smaller, more stable ranges than male community members; [Wrangham and Smuts 

1980; Williams et al. 2002]), several research groups have now described females as 

utilizing core areas that cluster spatially into neighborhoods within a larger male-defended 

range [Gombe: Wrangham and Smuts, 1980; Williams et al., 2002b; Murray et al., 2008; 
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Kanyawara: Emery Thompson et al., 2007; Ngogo: Wakefield, 2008; Langergraber et al., 

2009, 2013]. In chimpanzees, the presence of ‘neighborhoods’ [e.g., [Williams et al., 

2002; Emery Thompson et al., 2007; Murray et al., 2008; Wakefield, 2008; Langergraber 

et al., 2009] has been described as an outcome of male territory defense [Williams et al., 

2002]. Theoretically, in the absence of males, the optimal female foraging strategy might 

be for chimpanzees to distribute themselves evenly across the landscape so as to feed 

and forage alone or in small groups where they have an intimate knowledge of food 

distribution. However, the territorial behavior of males renders the peripheries of 

communities unsafe for females [Hamai et al., 1992; Arcadi & Wrangham, 1999; Williams, 

1999; Watts & Mitani, 2000, 2001], thereby forcing them to cluster toward the center of 

the male-defended range [Williams et al., 2002]. By contrast, female ruffed lemurs tend 

to be dominant to males, and even then, rates of aggression within the species are very 

low [Overdorff et al., 2005]. It is therefore unlikely that the spatial organization of ruffed 

lemur neighborhoods is related to safety from members of adjacent communities. Rather, 

we hypothesize that ruffed lemur spatial organization is largely shaped by their ecology. 

In Gombe, steep valleys result in a patchy, heterogenous habitat, and female 

neighborhoods center around food-rich resources separated by intervening low-quality 

areas, suggesting that neighborhoods may be a product of the site’s geography [Williams 

et al., 2002]. Anecdotally, community boundaries in Mangevo appear to segregate along 

mountain ridges, and researchers have suggested that both ruffed lemur communities 

and the neighborhoods within them may too be structured around the presence and 

distribution of valuable food resources [Baden, personal observation].  
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Finally, neighborhood membership in chimpanzee females has significant 

implications for female reproductive success [Williams et al., 2002; Emery Thompson et 

al., 2007], with females in lower quality neighborhoods having less access to preferred 

foods, lower ovarian hormone levels, and decreased infant survival [Emery Thompson et 

al., 2007]. How similar patterns of site quality relate to ruffed lemur behavioral ecology, 

reproductive physiology, and evolution remain to be seen, but will provide countless 

valuable avenues for future research.  
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Table 1. Hypotheses and predictions for seasonal patterns of ranging behaviors in black-and-white ruffed lemurs 
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Table 2. Individual annual home range area and overlap. Females used significantly larger home ranges than males (MCP: 

Mann-Whitney U = 10.0, P = 0.04; Kernel: Mann-Whitney U = 9.0, P = 0.03). However, sexes did not differ in their degree 

of home range overlap. Analysis includes individuals with ≥ 25 annual sampling days. 

Collar ID Sex Located days # location points 95% MCP (ha) 95% Kernel (ha)

RADIO-BLUE (rB) F 90 4277 38.7 20.6

RADIO-BLUE-GREEN (rG) F 107 4578 32.9 19.4

RADIO-ORANGE (rO) F 75 3386 26.6 18.7

RADIO-RED (rR) F 92 3960 19.6 14.1

RADIO-BLUE-YELLOW (rY) F 72 3640 13.6 11.5

Female Mean 87.2 3968.2 26.3 16.9

BLACK-GREEN (BG) M 48 808 22.8 17.0

NO COLLAR (NC) M 49 735 18.3 13.8

RADIO-BLACK-GREEN (rBG) M 74 2163 20.6 16.1

RADIO-PURPLE-SILVER (rPS) M 76 2403 14.8 12.3

BLACK-BLUE (BB) M 58 1792 14.9 12.0

RED-GREEN (RG) M 58 1276 15.8 12.4

YELLOW-PURPLE (YP) M 56 1607 15.0 12.7

Male Mean 59.9 1540.6 17.5 13.8

p 0.04 0.03

N dyads 95% MCP 95% Kernel

10 0.41 ± 0.09 0.16 ± 0.05

21 0.35 ± 0.07 0.24 ± 0.09

35 0.40 ± 0.05 0.29 ± 0.07

p 0.62 0.70

Overlap

Sex-Sex

Female-Female

Male-Male

Female-Male
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Table 3. Average seasonal home range area and overlap between sexes. Comparisons 

include only those individuals with ≥ 10 sampling days per season and home range 

estimates from at least two of three seasons. Note that statistical comparisons were 

among only those individuals for which data were available from at least two of the three 

sampling periods. 

 

A. Home range area (ha) by climatic season

Sex N Warm-Wet N Cool-Wet N Cool-Dry p

Females 8 15.53 ± 5.04 5 12.79 ± 5.82 5 11.84 ± 2.37 ns

Males 5 8.78 ± 3.17 7 6.08 ± 1.09 7 10.69 ± 2.48 *

p * * ns

B. Home range overlap (UDOI) by climatic season

Overlap type N Warm-Wet N Cool-Wet N Cool-Dry p

Female-Female 28 0.21 ± 0.36 10 0.11 ± 0.21 10 0.12 ± 0.06 ns

Female-Male 40 0.29 ± 0.46 35 0.31 ± 0.57 35 0.34 ± 0.54 ns

Male-Male 10 0.09 ± 0.27 21 0.30 ± 0.56 21 0.35 ± 0.75 ns

p ns ns ns

C. Home range area (ha) by reproductive season

Sex N Nonbreeding N Gestation N Lactation p

Females 5 14.76 ± 5.45 5 12.12 ± 2.30 7 11.40 ± 2.78 ns

Males 7 9.93 ± 2.55 8 9.24 ± 2.50 5 8.64 ± 2.07 ns

p ns ns ns

D. Home range overlap (UDOI) by reproductive season

Overlap type N Nonbreeding N Gestation N Lactation p

Female-Female 10 0.15 ± 0.30 10 0.12 ± 0.21 15 0.14 ± 0.32 ns

Female-Male 35 0.22 ± 0.39 40 0.33 ± 0.56 30 0.33 ± 0.62 ns

Male-Male 21 0.16 ± 0.36 28 0.33 ± 0.77 10 0.07 ± 0.18 ns

p ns ns ns

*p < 0.05, **p<0.01, ***p<0.001  
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Table 4. Models using a generalized linear mixed-effects model to estimate daily path length of Varecia variegata in the 

Mangevo community, a primary rainforest site within Ranomafana National Park, Madagascar. Sampling occurred between 

6am and 5pm. Fixed effects included day length, daily rainfall (mm), sex, presence of infants, climatic season, and 

reproductive season. To account for individual variation, ‘individual’ was treated as a random effect. K indicates the number 

of model parameters. 

 

Model K AICc ΔAICc

Model 

Likelihood

Model 

Weight (wl) Deviance

Reproductive season + day length + sex 13 5721.53 0.00 1.00 0.88 5695.53

Reproductive season + day length 7 5725.53 4.00 0.14 0.12 5711.53

Climatic season + day length + sex 17 5745.85 24.32 0.00 0.00 5711.85

Climatic season + day length 9 5747.60 26.07 0.00 0.00 5729.60

Day length 3 5748.47 26.94 0.00 0.00 5742.47

Climatic season + sex 9 5749.19 27.66 0.00 0.00 5731.19

Climatic season 5 5750.87 29.34 0.00 0.00 5740.87

Rainfall 3 5754.58 33.05 0.00 0.00 5748.58

(Null) 2 5755.66 34.13 0.00 0.00 5751.66

Sex 3 5757.41 35.88 0.00 0.00 5751.41

Rainfall + sex 5 5757.79 36.26 0.00 0.00 5747.79

Reproductive season 4 5758.92 37.39 0.00 0.00 5750.92

Infants + sex 4 5759.45 37.92 0.00 0.00 5751.45

Reproductive season + sex 7 5761.00 39.47 0.00 0.00 5747.00  
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Table 5. Table comparing results across published ruffed lemur studies. 

Species Study site Data collection

Analysis 

method

Population 

density/km
2

Social organization

Group home 

range (ha)

Group home 

range overlap

Female home 

range (ha)

Male home 

range (ha)

Individual 

range (ha)

Individual  

range overlap

Sample size 

(adults)

Study 

duration 

(months)

Observatio

n hours

Varecia rubra Ambatonakolahy 

(Masoala)
1

travel mapped 

during 

observations

Quadrats 21.5 - 23.3 fission-fusion 24.6 Low unk. unk. unk. unk. 8 (4 females, 

4 males)

11 704

Varecia rubra                                                   Andranobe 

(Masoala)
2

travel mapped 

during 

observations

MCP 31.2 - 53.4 fission-fusion 57.7 None 30.9 16.2 F > M FF: high

MM: none

MF: high

8 (5 females, 

3 males)

12 672

Varecia variegata Nosy Mangabe
3 sleep and feed 

trees mapped 

during 

MCP 29 - 43 fission-fusion 30 Low unk. unk. unk. FF: moderate?

MM: moderate?

MF: moderate?

14 (9 females, 

5 males)

13 1,793

Varecia variegata Vatoharanana 

(Ranomafana)
4

unk. unk. unk. dispersed monogamy197 None unk. unk. unk. FF: n/a

MM: n/a

FM: high

2 (1 female, 

1 male)

2 112

Varecia variegata Vatoharanana 

(Ranomafana)
5

travel mapped 

during 

observations

MCP 3 cohesive mm:mf 150 None unk. unk. unk. FF: high

MM: high

MF: high

5 (2 females, 

3 males)

18 1,700

Varecia variegata Valohoaka 

(Ranomafana)
5

travel mapped 

during 

observations

MCP 6 cohesive mm:mf 100 None unk. unk. unk. FF: high

MM: high

MF: high

12 (5 females, 

7 males)

18 1,700

Varecia variegata Mangevo 

(Ranomafana)
6

GPS coordinates                                     

(10-min)

MCP / Kernel 23.4 fission-fusion 120.4 / 87.8 Low 26.3 / 16.9 17.5 / 13.8 F > M FF: moderate

MM: moderate

MF: moderate

28 (13 

females, 

15 males)

12 4,000+

Varecia variegata Manombo
7 GPS coordinates               

(5-min)

MCP 0.25 dispersed mm:mf 30 - 70 None unk. unk. F > M FF: high

MM: high

MF: high

5 (3 females, 

2 males)

18 1,431

1
Rigamonti 1993; 

2
Vasey 1997, 2003, 2006; 

3
Morland 1991; 

4
White 1991; 

5
Balko 1998; 

6
Baden 2011; Baden & Gerber this study;  

7
Ratsimbazafy 2002
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FIGURES  

 

Figure 1. Though traditionally used to characterize chimpanzees, community models of 

fission-fusion dynamics allow for clear predictions regarding home range (HR) size, 

overlap, and the spatial distribution of males and females in any nonhuman primate. 

White circles indicate female ranges; gray circles indicate male ranges. 
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Figure 2. Differences in annual home range size and overlap for females (A & C, top, n=5) 

and males (B & D, bottom, n=8) using minimum convex polygon (MCP: A & B, left) and 

95% kernel density estimates (KDE: C & D, right).  

 



Baden & Gerber, 64 
 

 

 
64 

 

Figure 3. Nuclear (core) groups and neighborhoods as illustrated by overlapping 95% 

KDE estimates of annual home ranges (left) and the dendrogram resulting from 

hierarchical clustering analysis of averaged Euclidean distances between individual 

centers of range use (right) by members of the Mangevo ruffed lemur community. Nuclear 

groups are denoted by A-D (left & right). Regular text on the dendrogram indicates 

membership in the northern neighborhood; bold italic text indicates membership in the 

southern neighborhood.  
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Figure 4. Differences in home range area by sex and both climatic (A) and reproductive 

(B) seasons. Male range use differed significantly across climatic seasons, using 

significantly smaller home ranges than females during warm wet and cool wet seasons. 

Males and females home range size did not differ significantly during the cool-wet period. 

By contrast, home range size did not differ by sex across reproductive seasons. 
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