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RIEMANN–HILBERT PROBLEM FOR FIRST-ORDER ELLIPTIC SYSTEMS
WITH CONSTANT LEADING COEFFICIENTS ON THE PLANE

A. P. Soldatov and O. V. Chernova UDC 517.9

Abstract. In a finite domain D of the complex plane bounded by a smooth contour Γ, we consider the
Riemann–Hilbert boundary-value problem ReCU+ = f for the first-order elliptic system

∂U

∂y
−A

∂U

∂x
+ a(z)U(z) + b(z)U(z) = F (z)

with constant leading coefficients. Here + means the boundary value of the function U on Γ, the
constant matrices A1, A2 ∈ C

l×l and the (l × l)-matrix coefficients a and b belong to the Hölder class
Cµ, 0 < μ < 1, and (l × l)-matrix function C belongs to the class Cµ(Γ). We prove that in the class

U ∈ Cµ(D) ∩ C1(D), this problem is a Fredholm problem and its index is given by the formula

κ = −
m∑

j=1

1

π

[
arg detG

]
Γj

+ (2−m)l.

Keywords and phrases: elliptic systems, Riemann–Hilbert problem, index formula, Fredholm oper-
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In a finite domain D of the complex plane bounded by a smooth contour Γ we consider the first-order
elliptic system

A1
∂U

∂x
+A2

∂U

∂x
+ a(z)U(z) + b(z)U(z) = F (z), z ∈ D,

where the constant matrices A1, A2 ∈ C
l×l and (l× l)-matrix coefficients a and b belong to the Hölder

class Cμ(D), 0 < μ < 1. The ellipticity condition is as follows: both matrices Aj are invertible and

the matrix A = −A−1
2 A1 has no real eigenvalues. Multiplying the system by A−1

2 and introducing new
notation, we can write it in the form

∂U

∂y
−A

∂U

∂x
+ a(z)U(z) + b(z)U(z) = F (z). (1)

It is convenient to represent the set of eigenvalues of the matrix A as the union σ1 ∪σ2, where both
sets σ1 and σ2 lie in the upper half-plane Im ν > 0 and σ2 = {ν̄, ν ∈ σ2}. Then the matrix A can be
reduced to the following Jordan form:

˜B−1A ˜B = ˜J, ˜J = diag(J1, J2), (2)

where Jk ∈ C
lk×lk , k = 1, 2, consists of Jordan cells with eigenvalues ν ∈ σk. Surely, l = l1+ l2 and the

cases l1 = 0 or l2 = 0, when one of the sets σk is empty, are not excluded. Thus, in this representation

the eigenvalues of the matrix Jk form the set σk. According to (2), we represent the matrix ˜B in the
block form

˜B = (B1, B2), Bk ∈ C
l×lk . (3)

For a given (l× l)-matrix-valued function C ∈ Cμ(Γ), we consider the Riemann–Hilbert boundary-
value problem for the system (1):

ReCU+ = f, (4)
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where + means the boundary value of the function U on Γ. Assuming that F ∈ Cμ(D) and f ∈ Cμ(Γ),
it is natural to consider this problem in the class of classical solutions Cμ(D)∩C1(D) of the system (1).

In the space of right-hand sides (F, f) ∈ Cμ(D)× Cμ(Γ), we introduce the bilinear form

〈

(F, f), ( ˜F , ˜f)
〉

=

∫

D

Re
[

F (z) ˜F (z)
]

d2z +

∫

Γ

f(t) ˜f(t)d1t, (5)

where d2z and d1t mean the area and arclength elements, respectively, and the notation F ˜F for two

vectors F = (F1, . . . , Fl) and ˜F = ( ˜F1, . . . , ˜Fl) means their scalar product F1
˜F1 + . . . + Fl

˜Fl; the

notation f ˜f has a similar sense.
The main result of this paper consists of establishing a criterion for the Fredholm property of

the problem (1), (4) in the class U ∈ Cμ(D) ∩ C1(D) and the formula of its index. The Fredholm
property is understood in the following sense: the space X of solutions of the homogeneous problem
(i.e., problems with zero right-hand sides F = 0 and f = 0) is finite-dimensional and there exists a

finite-dimensional subspace ˜X ⊆ Cμ(D)× Cμ(Γ) such that the orthogonality conditions
〈

(F, f), ( ˜F , ˜f)
〉

= 0, ( ˜F, ˜f) ∈ ˜X,

are necessary and sufficient for the solvability of the inhomogeneous problem. The difference

κ = dimX − dim ˜X

determines the index of the problem.

Theorem 1. Let Γ ∈ C1,ν and C ∈ Cν(Γ), μ < ν < 1, so that the matrix-valued function G(t) =

(C(t)B1, C(t)B2) (see the notation (3)) belongs to the class Cν(Γ). Then the condition

detG(t) �= 0, t ∈ Γ, (6)

holds if and only if the problem (1), (4) be is a Fredholm problem in the class Cμ(D)∩C1(D), and its
index is given by the formula

κ = −
m
∑

j=1

1

π
[arg detG]Γj + (2−m)l, (7)

where Γ1, . . . ,Γm are simple contours composing Γ and the increment [ ]Γj along Γj is taken in the
direction of leaving the domain D to the left.

If, in addition, C ∈ C1,ν(Γ), then any solution U ∈ Cμ(D) ∩ C1(D) of the problem with the right-
hand side f ∈ C1,μ(Γ) actually belongs to C1,μ(D).

Proof. According to (2), we write the vector-valued function ˜φ = ˜B−1U as a pair (φ1, φ2) with
lk-vectors φk. After this substitution, (1) turns into the system

∂˜φ

∂y
− ˜J

∂˜φ

∂x
+ ã(z)˜φ(z) +˜b(z)˜φ(z) = ˜f1(z)

with the coefficients ã = ˜B−1a ˜B and ˜b = ˜B−1b ˜B and the right-hand side ˜f1 = ˜B−1F . We rewrite it
in the componentwise block form:

∂φ1

∂y
− J1

∂φ1

∂x
+ a11φ1 + a12φ2 + b11φ1 + b12φ2 = f1

1 ,

∂φ2

∂y
− J2

∂φ2

∂x
+ a21φ1 + a22φ2 + b21φ1 + b22φ2 = f

1
2,
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where (aij) = ã and (bij) = ˜b are block matrices and (f1
1 , f

1
2) =

˜f1. Replacing the second equation of
this system by its complex conjugate, we obtain the following system for the vector φ = (φ1, φ2):

∂φ

∂y
− J

∂φ

∂x
+ cφ+ dφ = f1, (8)

where J = diag(J1, J2) is a block-diagonal matrix, the right-hand side f1 = (f1
1 , f

1
2 ) ∈ Cμ(D), and

the coefficients have the form

c =

(

a11 b12
b21 a22

)

, d =

(

b11 a12
a21 b22

)

∈ Cμ(D).

Since U = ˜B˜φ = B1φ1 +B2φ2, after this substitution the boundary condition (4) takes the form

ReGφ+ = f0, (9)

where for uniformity with (8) we denote the function f by f0.
The problem (8), (9) for this system (under the assumption that Γ is a simple contour) is studied

in [10]. The corresponding arguments of that paper with minor changes are also suitable for the
considered case of a composite contour. Keeping in mind the smoothness of solutions to the problem,
we briefly recall these arguments.

Using the matrix notation zJ = x · 1 + y · J , for z = x + iy ∈ C, we introduce the following
Cauchy-type integral operator:

(I0ϕ)(z) =
1

2πi

∫

Γ

(t− z)−1
J dtJϕ(t), z ∈ D,

where t = t1 + it2 is a point on the contour Γ, which is oriented positively with respect to D, dtJ
denotes the complex matrix differential dt11 + dt2J , and the singular Cauchy operator

(S0ϕ)(t0) =
1

πi

∫

Γ

(t− t0)
−1
J dtJϕ(t), t0 ∈ Γ,

where ϕ ∈ Cμ(Γ) is a real l-vector-valued function.
Following [7], we say that the function φ = I0ψ is J-analytic in the domain D, i.e., it satisfies the

equation
∂φ

∂y
− J

∂φ

∂x
= 0. (10)

For J = i, this system becomes the classical Cauchy–Riemann system. As was shown in [7], all basic
facts of the theory of analytic functions associated with the integral Cauchy formula can be extended
to solutions of the system (14).

According to [6], the integral operator I0 : Cμ(Γ) → Cμ(D) is bounded and the following Sokhotsk—
Plemelj formula is valid:

2(I0ϕ)+(t0) = ϕ(t0) + (S0ϕ)(t0), t0 ∈ Γ. (11)

Obviously, in the case of the scalar matrix J = i, the operator S0 becomes a classical singular
Cauchy operator, which we denote by S. As was shown in [6], under the assumption Γ ∈ C1,ν, the
difference S0 − S is a compact operator in the space Cμ(Γ), and all principal results of the classical
theory of singular operators (see [4]) can also be applied to the operator

2N0ϕ = Re
[

G(ϕ + S0ϕ)
]

(12)

acting in the space of real l-vector-valued functions ϕ ∈ Cμ(Γ).
Thus, this operator is a Fredholm operator if and only if the condition (6) is satisfied, and its index

is given by the formula

indN0 = − 1

π

[

arg detG
]∣

∣

Γ
. (13)
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Now we introduce integral operators in the domain

(I1ϕ)(z) =
1

πi

∫

D

(t− z)−1
J ϕ(t)d2t, z ∈ D,

(S1ϕ)(z) =
1

πi

∫

D

(t− z)−2
J ϕ(t)d2t, z ∈ D.

The last integral is singular and is understood in the corresponding sense. It is easy to verify the
following necessary condition for the existence of this integral:

∫

T

ξ−2
J d1ξ = 0,

where T is the unit circle. We note that, due to the evenness of the function ξ−2
J , the relation

∫

T+

ξ−2
J d1ξ = 0 (14)

also holds, where T
+ means any semicircle.

As was shown in [11], for ϕ ∈ Cμ(D) the function I1ϕ is continuously differentiable in the domain D
and the following formulas are valid:

∂(I1ϕ)

∂x
= σ1ϕ+ S1ϕ,

∂(I1ϕ)

∂y
= σ2ϕ+ JS1ϕ, (15)

where σk ∈ Cl×l are certain matrices related by the equation σ2 = Jσ1. In particular,
(

∂

∂y
− J

∂

∂x

)

I1ϕ = 0. (16)

By (14), we can apply [9, Theorem 3.5.1] to the singular integral operator S1. According to this
theorem, this operator is bounded in Cμ(D). Taking into account (15), we conclude that the operator
I1 : Cμ(D) → C1,μ(D) is bounded.

We consider the functional class

φ ∈ Cμ(D) ∩ C1(D),

(

∂

∂y
− J

∂

∂x

)

φ ∈ Cμ(D). (17)

Obviously, any solution φ ∈ Cμ(D) ∩ C1(D) of Eq. (8) automatically belongs to this class.
For definiteness, we assume that the contour Γm encircles the remaining contours Γ1, . . . ,Γm−1.

Then any function φ ∈ Cμ(D) can be uniquely represented in the form

φ = I1ϕ1 + I0ϕ0 + iξ, ξ ∈ R
l, (18)

with some complex l-vector-valued function ϕ0 ∈ Cμ(Γ) and a real vector-valued function ϕ0 ∈ Cμ(Γ)
satisfying the conditions

∫

Γj

ϕ(t)d1t = 0, 1 ≤ j ≤ m− 1. (19)

In fact, we assume

ϕ1 =

(

∂

∂y
− J

∂

∂x

)

φ

and let φ0 = φ−I1ϕ1. Then, due to (16), the function φ0 is J-analytic in the domain D, i.e., it satisfies
Eq. (10) and belongs to the class C1,μ(D). Therefore, the problem is reduced to the representation

φ0 = I0ϕ0 + iξ, ξ ∈ R
l,
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under the conditions (19) on the real density ϕ, which is established in [6] (see also [8]).
Using the representation (18) and the Sokhotski–Plemelj formula (11), we can reduce the prob-

lem (8), (9) to the following equivalent system of operator equations:

N1ϕ1 +N10ϕ0 + i(c− d)ξ = f1, N01ϕ1 +N0ϕ0 − (ImG)ξ = f0, (20)

where, in addition to (12), for brevity we introduce the notation

N1ϕ1 = ϕ1 + c(I1ϕ1) + d(I1ϕ1),

N10ϕ0 = c(I1ϕ0) + d(I1ϕ0), N01ϕ1 = ReG(I1ϕ1)+.

This system is considered with respect to the set (ϕ1, ϕ0, ξ), subject to the conditions (19). We can
write it briefly using the notation ϕ = (ϕ1, ϕ0):

Nϕ+ Tξ = f (21)

with the right-hand side f = (f1, f0) and the operator matrices

N =

(

N1 N10

N01 N0

)

, T =

(

ic− id
− ImG

)

.

Obviously, the space Cμ(D)× Cμ(Γ)× R
l is an extension of the space Cμ(D)×Cμ(Γ) to l dimen-

sions; therefore, based on well-known properties of Fredholm operators (see [5]), we conclude that the
operators (N,T ) and N are Fredholm equivalent and their indices are related by the formula

ind(N,T ) = indN + l. (22)

On the other hand, the condition (19) determines a closed subspace of codimension l(m − 1) in the
space Cμ(Γ); therefore, from the same considerations, the index κ of the system (19), (20) is related
to the index of the operator (N,T ) by the formula

κ = ind(N,T )− l(m− 1). (23)

Let us consider in detail the operators appeared in (20). We will write N1 ∼ N2 if the difference
N1 −N2 is a compact operator. Recall that the operator I1 is compact in Cμ(D); then we can write
N1 ∼ 1, N01 ∼ 0, and consequently,

N ∼ M =

(

1 N1,0

0 N0

)

. (24)

Assume that the condition (6) is satisfied. Then, as was noted above, the operator N0 is a Fredholm
operator and its index is given by the formula (13). In particular, there exists its regularizer, i.e. an
operator R0 in Cμ(Γ) possessing the property R0N0 ∼ N0R0 ∼ 1. One can directly verify that the
operator

R =

(

1 −N1,0R0

0 R0

)

is a regularizer of the operator M and hence the operator M is a Fredholm operator. This implies that
the operator N is a Fredholm operator and hence the initial problem (1), (4) is a Fredholm problem.

Conversely, let the problem (1), (4) be a Fredholm problem such that N and hence M are Fredholm
operators. Let R be the regularizer written in the block form:

R =

(

R1 R10

R01 R0

)

.

Then it follows directly from the relations MR ∼ MR ∼ 1 that N0R0 ∼ R0N0 ∼ 1, so that N0 is a
Fredholm operator. As was noted above, this implies the condition (6).

In order to prove the formula (7) for the index, we introduce the operator M(t) depending on
the parameter 0 ≤ t ≤ 1, which is obtained by replacing of N10 by tN10 in the definition (24) of the
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operator M . The same arguments show that M(t) is also a Fredholm operator. Since it depends on t
continuously, its index is independent of t and, in particular,

indM = indM(0) = indN0.

Hence indN = indN0, which together with (13), (22), and (23) completes the proof of the index
formula (7).

Now we turn to the last assertion of the theorem and assume that the functions C and hence G also
belong to C1,μ(Γ). Then for f0 ∈ C1,μ(Γ), the terms N01ϕ1 and (ImG)ξ in the second equation (20)
also belong to C1,μ(Γ). Thus, the function ϕ0 ∈ Cμ(Γ) satisfies the equation N0ϕ0 = g with the right-
hand side g ∈ C1,μ(Γ). As was shown in [1], in this case ϕ0 ∈ C1,μ(Γ). According to the differentiation
formula for the Cauchy-type integral φ = I0ϕ (see [9]), the function I0ϕ0 belongs to C1,μ(D), so that
the function φ in the representation (18) belongs to this class, and hence the solution U = B1φ1+B2φ2

of the original problem (1), (4) also belongs to this class. �
Note that due to the last assertion of the theorem, the problem (1), (4) is a Fredholm problem in

the class C1,μ(D) with the same index.
The case of the elliptic system

∂U

∂y
−A

∂U

∂x
+ a(z)U(z) = F (z) (25)

with real coefficients A ∈ R
2l×2l and a(z) can be considered similarly. In this case, eigenvalues of the

matrix A form the set σ ∪ σ, where σ ⊆ {ν, Im ν > 0}. Therefore, the relations (2) and (3) take the
form

˜B−1A ˜B = ˜J, ˜J = diag(J, J), ˜B = (B,B), B ∈ C
2l×l.

Here the boundary condition

CU+ = f (26)

with a (l × 2l)-matrix C(t), t ∈ Γ, is an analog of the Riemann–Hilbert problem; respectively, the
following assertion (with the same proof) is an analog of Theorem 1.

Theorem 2. Let Γ ∈ C1,ν and an (l× 2l)-matrix C belong to the class Cν(Γ), μ < ν < 1, so that we
have G(t) = C(t)B ∈ Cν(Γ) (see the notation (3). The problem (25), (26) is a Fredholm problem in the
class Cμ(D) ∩C1(D) if and only if the condition (6) holds, and its index is given by the formula (7).

If, in addition, C ∈ C1,ν(Γ), then any solution U ∈ Cμ(D) ∩ C1(D) of the problem with the right-
hand side f ∈ C1,μ(Γ) actually belongs to C1,μ(D).

We note that in a few more general classes, Theorem 2 was established by B. Bojarski in [2] (see
also [3]).

Up to now, the domain D has been assumed to be finite, i.e., lying inside a certain circle. Now we
consider the case where the domain D is still bounded by a contour Γ ∈ C1,ν but is infinite, i.e., it
contains the outer domain of a certain circle. In this case, all simple contours Γj, 1 ≤ j ≤ m, which

form the contour Γ, are equivalent. For simplicity, we assume that the point z = 0 lies outside D.
We perform our considerations in the weighted Hölder space Cμ

δ (D,∞), δ ∈ R, with power behav-

ior O(|z|δ) at infinity (see [9]). We briefly recall its definition. The space Cμ
0 (D,∞) consists of all

bounded functions ϕ(z), z ∈ D with finite norm |ϕ| = |ϕ|0 + {ϕ}μ, where

|ϕ|0 = sup
z∈D

|ϕ(z)|, {ϕ}μ = sup
z1 �=z2

|z1|μ|ϕ(z1)− ϕ(z2)|
|z1 − z2|μ .

This space is a Banach algebra with respect to multiplication, and the weighted space Cμ
δ is ob-

tained from Cμ
0 by multiplying its elements by |z|δ (with the transferred norm). By definition, the
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space C1,μ
δ (D,∞) consists of functions ϕ ∈ Cμ

δ (D,∞)∩C1(D) whose partial derivatives belong to the

class Cμ
δ−1(D,∞):

∂ϕ

∂x
,
∂ϕ

∂y
∈ Cμ

δ−1(D,∞).

We consider Eq. (1) in the infinite domain D in the class

Cμ
λ (D,∞) ∩ C1(D), −1 < λ < 0, (27)

assuming that
a, b ∈ Cμ

−1−ε(D,∞), F ∈ Cμ
λ−1(D,∞) (28)

with some ε > 0.
Consider the operators I0 and I1 introduced above. In the case considered, the function (I0ϕ)(z)

has the following expansion in a neighborhood of ∞:

(I0ϕ)(z) =
∑

k≤−1

ckz
k
J , ck = − 1

2πi

∫

Γ

t−k−1
J dtjϕ(t),

and since −1 < λ < 0, the operator I0HCμ(Γ) → Cμ
λ (D,∞) is bounded. We state the corresponding

properties of the operator I1.

Theorem 3. The operator I1 considered as an operator Cμ
λ−1(D,∞) → Cμ

λ (D,∞) is bounded and

being considered as an operator Cμ
λ−1(D,∞) → Cμ

λ+ε(D,∞), ε > 0, it is compact. Moreover, any
function φ of the class

φ ∈ Cμ
λ (D) ∩ C1(D),

(

∂

∂y
− J

∂

∂x

)

φ ∈ Cμ
λ−1(D),

can be uniquely represented in the form

φ = I0ϕ0 + I1ϕ1

with a real vector-valued function ϕ0 ∈ Cμ(Γ) satisfying the condition
∫

Γj

ϕ(t)d1t = 0, 1 ≤ j ≤ m,

and a complex vector-valued function ϕ1 ∈ Cμ
λ−1(D,∞).

Proof. The first statement of the theorem on the boundedness of the operator I1 : Cμ
λ−1(D,∞) →

Cμ
λ (D,∞) is established similarly to [9]. It was also established in [9] that the singular operator S1 is

bounded in the space Cμ
λ−1(D,∞). Hence, taking into account (16) and the compactness property of

the embedding mentioned in [9],

Cμ+ε
δ−ε (D,∞) ⊆ Cμ

δ (D,∞), ε > 0,

we conclude that the operator I1 is compact.
The second part of the theorem is established similarly to the case of a finite domain. �
Using Theorem 3 and following the scheme of the proof of Theorem 1, we arrive at the validity of

the following assertion.

Theorem 4. Assume that a contour Γ belongs to the class C1,ν, C belongs to the class Cν(Γ), μ <
ν < 1, and G = (CB1, CB2). Then under the assumption (28), the problem (1), (4) is a Fredholm
problem in the class (27) if and only if the condition (6) holds. Moreover, its index is given by the
formula

κ = −
m
∑

j=1

1

π

[

arg detG
]

Γj
−ml.
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If, in addition, C ∈ C1,ν(Γ), then any solution U of the problem of this class with right-hand side

f ∈ C1,μ(Γ) in fact belongs to C1,μ
λ (D,∞).

An analog of Theorem 2 for the system (1) with real coefficients can be formulated similarly.
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