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Abstract: We suggest a certain variant of symbolic calculus for special classes of linear bounded
operators acting in Banach spaces. According to the calculus we formulate an index theorem and
give applications to elliptic pseudo-differential operators on smooth manifolds with non-smooth
boundaries.
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1. Introduction

In this paper, we consider some abstract operators acting in some functional spaces.
These considerations were inspired by studies of I.B. Simonenko [1] related to special operators of a
local type (we say here local operators). Such operators and corresponding equations play an important
role in the theory of pseudo-differential operators and equations [2–4]. There are a lot of books in
mathematics devoted to the theory of pseudo-differential operators and equations on non-smooth
manifolds and manifolds with non-smooth boundaries [5–10], but it seems that the suggested abstract
variant is very close to this theory. Some first steps were done in the author’s paper [11], and here we
develop this abstract variant and give some applications. We think this approach can be useful for
similar problems related to concrete operators.

This way for elliptic pseudo-differential equations was suggested by the author earlier and
partially described in his works of that period: at least two-dimensional situation was desxribed
exactly (such results and review can be found in [4]). The main difference of the author’s approach
from previous works is systematic using the concept of wave factorization of the elliptic symbol.
In other words, we deal with a multi-dimensional version of the Wiener–Hopf method [12] or one of
analogues of the Riemann boundary value problem [13,14].

2. Operator Symbols

2.1. Local Operators

Here we give some constructions and definitions from [1,11]. Here, we consider such functional
spaces which include smooth functions and corresponding multipliers and only local operators.
Additionally, all considered operators are defined up to compact operators.

Let M be a compact m-dimensional manifold with a boundary. Below, we will consider the case
of piecewise smooth boundary, and all singularities will be described. Here, we will try to develop
certain general statements.

Let B1, B2 be Banach spaces consisting of functions defined on compact m-dimensional manifold
M. We assume that smooth functions with compact support are dense in such spaces. Let A : B1 → B2

be a linear bounded operator (We remind that an index of the operator A is called the following
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number dim KerA− dim CokerA [2–4]). We will denote by letter f the function f and the operator of
multiplication by f , so that the notation A · f denotes the following operator:

(A · f )u = A( f u), u ∈ B1.r.

Definition 1. An operator A is called a local operator if the operator

f · A · g

is a compact operator for arbitrary smooth functions f , g defined on M with non-intersecting supports.

A typical example of local operator is a pseudo-differential operator in the Sobolev–Slobodetski
space (see below).

2.2. Operators on a Compact Manifold

On the manifold M, we fix a finite open covering and a partitions of unity corresponding to this
covering {Uj, f j}n

j=1 and choose smooth functions {gj}n
j=1 so that supp gj ⊂ Vj, Uj ⊂ Vj, and gj(x) ≡ 1

for x ∈ supp f j, supp f j ∩ (1− gj) = ∅.

Proposition 1. The operator A on the manifold M can be represented in the form

A =
n

∑
j=1

f j · A · gj + T,

where T : B1 → B2 is a compact operator.

Proof. It is very simple. Since
n

∑
j=1

f j ≡ 1,

then we can write (
n

∑
j=1

f j

)
· A =

n

∑
j=1

f j · A =
n

∑
j=1

f j · A · gj +
n

∑
j=1

f j · A · (1− gj),

so we have the conclusion needed.

Remark 1. The operator A is defined uniquely up to a compact operators that do not have an influence on
an index.

By definition, for an arbitrary operator A : B1 → B2

|||A||| ≡ inf ||A + T||,

where infimum is taken over all compact operators T : B1 → B2.
Let B′1, B′2 be Banach spaces consisting of functions defined on Rm, Ã : B′1 → B′2 be a linear

bounded operator.
Since M is a compact manifold, then, for every point x ∈ M, there exists a neighborhood U 3 x

and diffeomorphism ω : U → D ⊂ Rm, ω(x) ≡ y. We denote by Sω the following operator (Really,
this operator is defined locally; in general, it may be unbounded Bk → B′k (see [15])) acting from Bk to
B′k, k = 1, 2. For every function u ∈ Bk vanishing out of U,

(Sωu)(y) = u(ω−1(y)), y ∈ D, (Sωu)(y) = 0, y /∈ D.
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Of course, for every function v ∈ B′k vanishing out of D, we can define

(S−1
ω v)(x) = v(ω(x)), x ∈ U, (S−1

ω v)(x)− 0, x /∈ U.

Definition 2. A local representative of the operator A : B1 → B2 at the point x ∈ M is called the operator
Ã : B′1 → B′2 such that, ∀ε > 0, there exists the neighborhood Uj of the point x ∈ Uj ⊂ M and diffeomorphism
ω′j : Uj → Dj ⊂ Rm with the property

|||gj · A · f j − S−1
ωj

ĝj · Ã · f̂ jSωj ||| < ε,

where f̂ j, ĝj are the functions f j, gj for other local coordinates.

3. Generating Operator

Let M be a compact m-dimensional manifold with a boundary ∂M, and A(x) be a certain
operator-function defined on M. Let Mk, k = 0, 1,. . . , m− 1, be smooth k-dimensional sub-manifolds
on ∂M so that, by definition, Mm−1 ≡ ∂M, M0 consists of isolated points on ∂M. Furthermore,
we introduce a set of operator classes Tk, k = 0, 1,. . . , m, so that, for x ∈ Mk, A(x) : H(1)

k → H(2)
k is a

linear bounded operator, where H(j)
k , k = 0, 1,. . . , m, j = 1, 2, are some Banach spaces.

We say that sub-manifold Mk is a singular k-sub-manifold if, ∀x ∈ Mk, we have A(x) ∈ Tk.
Additionally, we will assume that, if x ∈ Mr ∩Mk−1 6= ∅, then A(x) ∈ Tk−1.

Definition 3. If the family A(x) consists of local Fredholm operators and this family is continuous on each
component Mk \ ∪k−1

i=0 Mi, k = 0, 1,. . . , m,, then it generates a unique Fredholm operator A acting in the spaces
m
∑

k=0
⊕H(1)

k →
m
∑

k=0
⊕H(2)

k .

Proof. First, we construct such an operator in the following way. Let ε > 0 be small enough. We take
a covering for M by balls as follows. We take a covering for M0; it consists of a finite number
of open sets and denote this covering by U0. Furthermore, we compose M \ U0. For every point
x ∈ M1 ∩ (M \ U0), we take a ball with the center x of radius ε. The union of such balls is covering
for the set x ∈ M1 ∩ (M \ U0). According to compactness of the set, we extract a finite sub-covering
that will be denoted by U1. Then, we compose the set M2 ∩ (M \ (U0 ∪ U1)), repeat the procedure
mentioned above and obtain the sub-covering U2. Continuing the process, we obtain the finite covering
for M of the following type:

M ⊂
m⋃

k=0

Uk ≡ U .

without loss of generality, we can mean that elements of the covering are balls with centers at points
x(k)j ∈ Mk, j = 0, 1, · · · , nk, k = 0, 1, · · · , m.

Since the set M0 consists of isolated points only, we have a finite number of operators acting
H(1)

0 → H(2)
0 . We construct a partition of unity f (k)j for every sub-covering Uk and associated set of

functions g(k)j , j = 0, 1, · · · , nk, k = 1, 2, · · · , m. Let us consider the kth component.
Using a piece of the operator-function A(x) related to Mk, we construct the following sequence of

operators acting H(1)
k → H(2)

k . Let us denote

Ank =
nk

∑
j−1

f (k)j · A(x(k)j ) · g(k)j
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and consider another sub-covering Vk for the set M \ (
k−1⋃
l=0
Ul). Let us suppose that this covering

consists of balls with centers in y(k)i ∈ Mk, i = 1, 2, · · · , rk of a small enough radius. We can construct
the operator

Ark =
rk

∑
i−1

f (k)i · A(y(k)i ) · g(k)i .

We would like to prove the following sentence:

|||Ank − Ark ||| → 0, if nk, rk → ∞. (1)

under an appropriate choice of coverings Uk,Vk.
As soon as the formula (1) is proved, we conclude that the sequence {Ank} is a Cauchy sequence

with respect to the norm ||| · |||. Therefore, there exists the operator limit A(k) = lim
nk→∞

Ank .

The rest of the proof repeats, in general, arguments from [11], but, for reader’s convenience,
we give these reasonings here in view of their values.

We will construct the kth component for the operator A in the following way. Let {εn}∞
n=1 be a

sequence such that εn > 0, ∀n ∈ N, lim
n→∞

εn = 0. Given εn, we choose coverings {U(k)
j }

nk
j=1 ≡ Uk as

above with partition of unity { f (k)j } and corresponding functions {g(k)j } such that

||| f (k)j · (A(x)− A(x(k)j )) · g(k)j ||| < εnk , ∀x ∈ U(k)
j ,

and {V(k)
i }

rk
i=1 ≡ Vk with partition of unity {F(k)

i } and corresponding functions {G(k)
i } such that

|||F(k)
i · (A(x)− A(y(k)i )) · G(k)

i ||| < εrk , ∀x ∈ V(k)
i ;

we remind readers that U(k)
j , V(k)

i are balls with centers at x(k)j , y(k)i ∈ Mk of radius ε and 2ε.
This requirement is possible according to continuity of the operator family A(x) with respect to
the norm ||| · ||| on the sub-manifold Mk.

We can write

Ank =
nk

∑
j=1

f (k)j · A(x(k)j ) · g(k)j =
rk

∑
i=1

F(k)
i ·

nk

∑
j=1

f (k)j · A(x(k)j ) · g(k)j =

rk

∑
i=1

nk

∑
j=1

F(k)
i · f (k)j · A(x(k)j ) · g(k)j =

rk

∑
i=1

nk

∑
j=1

F(k)
i · f (k)j · A(x(k)j ) · g(k)j · G

(k)
i + T1,

and we can write the same for Ark

Ark =
rk

∑
i=1

F(k)
i · A(y(k)i ) · G(k)

i =
nk

∑
j=1

f (k)j ·
rk

∑
i=1

F(k)
i · A(y(k)i ) · G(k)

i =

nk

∑
j=1

rk

∑
i=1

f (k)j · F
(k)
i · A(y(k)i ) · G(k)

i =
nk

∑
j=1

rk

∑
i=1

f (k)j · F
(k)
i · A(y(k)i ) · G(k)

i · g
(k)
j + T2.

Let us consider the difference

|||Ank − Ark ||| = |||
nk

∑
j=1

rk

∑
i=1

f (k)j · F
(k)
i · (A(x(k)j )− A(y(k)i )) · G(k)

i · g
(k)
j |||.
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We take into account only summands with non-vanishing supplements to the formula (4) such
that U(k)

j ∩V(k)
i 6= ∅. A number of such neighborhoods are finite always for arbitrary finite coverings,

hence we obtain

|||Ank − Ark ||| ≤
nk

∑
j=1

rk

∑
i=1
||| f (k)j · F

(k)
i · (A(x(k)j )− A(y(k)i )) · G(k)

i · g
(k)
j ||| ≤

∑
x∈U(k)

j ∩V(k)
i 6=∅

||| f (k)j · F
(k)
i · (A(x(k)j )− A(x)) · G(k)

i · g
(k)
j |||+

∑
x∈U(k)

j ∩V(k)
i 6=∅

||| f (k)j · F
(k)
i · (A(x)− A(y(k)i )) · G(k)

i · g
(k)
j ||| ≤ 2K max[εnk , εrk ],

where K is a universal constant.
Thus, we have proved that the sequence {Ank} is a Cauchy sequence, hence there exists

lim
nk→∞

Ank = A(k).

Using the same process, we can construct all operators A(k) for every k = 0, 1, · · · , m. Let us note
that all operators A(k) : H(1)

k → H(2)
k act in different spaces. Finally, it is easy to compose the resulting

operator A acting in direct sums of such spaces. Indeed, if

u = ⊕
m

∑
k−1

uk,

then we define

Au =
m

∑
k−1

A(k)uk.

This operator A will be a generating operator.

Such operator A is called an elliptic operator if the operator-function A(x) consists of Fredholm
operators ∀x ∈ M. In a certain sense, we can obtain the inverse result.

4. The Index Theorem

4.1. Auxiliaries

We introduce some definitions for an index of a linear bounded operator and describe its principal
properties [16,17].

Let B1, B2 be Banach spaces, A : B1 → B2 be a linear bounded operator. By definition

Ker A = {x ∈ B1 : Ax = 0}.

ImA = {y ∈ B2 : ∃x ∈ B1, Ax = y}.

The factor space B2/ImA is called Coker A. The operator A is called Fredholm operator if

dim Ker A < +∞, dim Coker A < +∞.

The difference
Ind A ≡ dim Ker A− dim Coker A

is called an index of the linear bounded operator A.
Basic properties of an index are as follows:

1. A Stability with Respect to Small and Compact Perturbations;
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2. Homotopical Invariance of an Index.

In other words, it means that, if C : B1 → B2 is linear bounded operator with a small enough
norm, then

Ind (A + C) = Ind A.

If T : B1 → B2 is a compact operator, then

Ind (A + T) = Ind A.

If L(B1, B2) is the space of bounded linear operators acting from B1 into B2, At is a continuous
map [0; 1] → L(B1, B2) (a homotopy), and the operator A0 has Fredholm property, then all
operators At, t ∈ [0, 1] have Fredholm property and

Ind A0 = Ind A1.

4.2. Indices

Here, we will give an index theorem for our operators. It seems that it does not give a real
instrument for calculating indices, but it shows us what kinds of operators we need to study for
obtaining good index formulas.

The family A(x) from a previous section we call an operator symbol of the operator A [11] because
the operator A(x) is a local representative of the operator A at the point x..

We can see (cf [1,18]) this definition preserves basic properties of a symbolic calculus. Up to
compact summands we have

• product and sum of two symbols correspond to product and sum of operators;
• adjoint symbol corresponds to adjoint operator;
• Fredholm property of symbol corresponds to Fredholm property of operator;
• homotopies of symbols correspond to homotopies of operators.

Theorem 1. The index of the operator A on the manifold M is a sum of corresponding indices

Ind A =
m

∑
k=0

Ind A(k). (2)

Proof. Indeed, all operators A(k), k = 0, 1, · · · , m act in different spaces. Therefore, the generating
operator A has the following kernel and co-kernel:

Ker A =
m

∑
k=0

Ker A(k),

Coker A =
m

∑
k=0

Coker A(k).

According to definition for an index, we obtain formula (2).

5. Example: Pseudo-Differential Constructions

5.1. Local Situations

Here we consider a pseudo-differential operator A on compact manifold M with a boundary. This
operators is defined by the function A(x, ξ), (x, ξ) ∈ R2m. We will suppose that the symbol has the
order α ∈ R, i.e.,

c1(1 + |ξ|)α ≤ |A(x, ξ)| ≤ c2(1 + |ξ|)α,
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for all admissible x, ξ with universal positive constants c1, c2.
We consider such a compact manifold M with a boundary that there are some smooth compact

sub-manifolds Mk of dimension 0 ≤ k ≤ m − 1 on the boundary ∂M of manifold M that are
singularities of a boundary. These singular manifolds are introduced by a local representative of
operator A in a point x0 ∈ M on the map U 3 x0 in the following way:

(Ax0 u)(x) =
∫

Dx0

∫
Rm

eiξ·(x−y)A(ϕ(x0), ξ)u(y)dξdy, x ∈ Dx0 , (3)

where ϕ : U → Dx0 is a diffeomorphism, and the canonical domain Dx0 has a distinct form depending
on a placement of the point x0 on manifold M. We consider following canonical domains Dx0 :
Rm, Rm

+ = {x ∈ Rm : x = (x′, xm), xm > 0}, Wk = Rk × Cm−k, where Cm−k is a convex cone in Rm−k.
For instance, if we consider a cube Q in three-dimensional space, then we have four canonical domains:
R3 for inner points, R3

+ = {x ∈ R3 : x = (x1, x2, x3), x3 > 0} for six 2-faces, R× C2 = {x ∈ R3 : x =

(x1, x2, x3), x>0, x3 > 0} for twelve one-dimensional, edges, and C3 = {x ∈ R3 : x = (x1, x2, x3), x1 >

0, x2 > 0, x3 > 0} for eight vertices.
Such an operator A will be considered in Sobolev–Slobodetskii spaces Hs(M), and local variants

of such spaces will be spaces Hs(Dx0).

Definition 4. The symbol of an operator A is called the operator-function A(x) : M → {Ax}x∈M, which is
defined by local representatives of the operator A.

For a simple case when we consider a pseudo-differential operator in Rm, its classical symbol can
be treated as a multiplier.

Under some additional assumptions on smoothness properties of the function A(x, ξ), one has
the following:

Theorem 2. The operator A has a Fredholm property iff its symbol is composed by Fredholm operators.

Simplest variant of this theorem was proved in [1,4]. For general local operators in Lebesgue
spaces, Theorem 3 was proved in [18].

Definition 5. An operator A is said to be an elliptic operator if its symbol consists of invertible operators.

Ellipticity property in our sense can be disappeared for example in boundary points. To avoid
this, they usually add some boundary conditions to obtain elliptic boundary value problem (see [2–4]
and below).

Corollary 1. Elliptic operator is a Fredholm operator.

Remark 2. If an ellipticity property does not hold on sub-manifolds, the Mk one needs to modify local
representatives of the operator A adding a special boundary or co-boundary operators.

Using a special partition of a unity on the manifold M, elliptic symbol A(x) for each x ∈ Mk which
is given by formula (3) and the above constructions from Theorem 1, we obtain m + 1 operators A(k)

according to a number of singular sub-manifolds including whole boundary ∂M and the manifold M.

Theorem 3. Index of the Fredholm pseudo-differential operator A is given by the formula

Ind A =
m

∑
k=0

Ind A(k).
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Proof. Really, this is a simply corollary from Theorem 2. Indeed, we need to show exactly what spaces
we choose as H(j)

k , j = 1, 2; k = 0, 1, · · · , m. We enumerate:

A(m) : Hs(Rm)→ Hs−α(Rm);

A(m−1) : Hs(Rm
+)→ Hs−α(Rm

+)
′

A(k) : Hs(Wk)→ Hs−α(Wk), k = 0, 1, · · ·m− 2,

so that H(1)
m = Hs(Rm), H(2)

m = Hs−α(Rm), H(1)
m−1 = Hs(Rm

+), H(2)
m−1 = Hs−α(Rm

+), H(1)
k =

Hs(Wk), H(2)
k = Hs−α(Wk). Then, we compose the direct sum of such spaces and the operator

A′ acting in these direct sums

A′ : Hs(Rm)⊕ Hs(Rm
+)⊕

m−2

∑
k=0

Hs(Wk) −→ Hs−α(Rm)⊕ Hs−α(Rm
+)⊕

m−2

∑
k=0

Hs−α(Wk).

Let us note that the operator A′ doesn’t coincide with the operator A, but these operators have
the same local representatives, i.e., the same symbols. We call the operator A′ virtual representative
of the operator A. Since homotopies of symbols one-to-one correspond to homotopies of operators,
we complete the index theorem.

Of course, Theorem 4 does not give effective index formulas, but it shows what kinds of operators
we need to consider from an index theory viewpoint.

Remark 3. If we consider an elliptic pseudo-differential operator in Hs(Rm
+) [2] with the smooth symbol

A(x, ξ), we have two decomposition operators: A(m) related to closure of inner points of Rm
+ and A(m−1) related

to boundary points Rm−1. Operator symbols are a distinct nature for inner and boundary points. For the first
case, such a symbol is represented by integral over the whole Rm, but, for the second case, this integral is taken
for a half-space. The index of A(m) will be zero according to a classical Atiyah–Singer theorem, but the index of
A(m−1) depends on the so-called index of factorization for the symbol A(x, ξ) at boundary point x ∈ Rm−1.

5.2. The Wave Factorization: Harmonic Analysis and Complex Variables

To obtain invertibility conditions for local operators, we need some additional characteristics
for the classical symbol of elliptic pseudo-differential operators. The studying invertibility of a local
operator in Wk, or in other words the unique solvability of the equation

(Ax0 u)(x) = v(x), x ∈Wk

in Sobolev–Slobodetskii space Hs(Wk), is equivalent to a unique solvability for a so-called
paired equation

(Ax0 P+U)(x) + (IP−U)(x) = V(x), x ∈ Rm, (4)

in the space Hs(Rm), where P+, P− are projectors on Wk, Rm \Wk, and it can be easily proved.
In addition, now, if we apply the Fourier transform, then we will come to complex spaces [4].

We denote by
∗

Cm−k the conjugate cone for the Cm−k:

∗
Cm−k= {x ∈ Rm : x · y > 0, ∀y ∈ Cm−k}.

T(±
∗

Cm−k) denotes a radial tube domains over the cone ±
∗

Cm−k [19,20], i.e., a domain of

multidimensional complex space Cm of the type Rm±
∗

Cm−k.



Symmetry 2020, 12, 64 9 of 12

Let the classical symbol a(ξ), ξ ∈ Rm, in local coordinates satisfy the condition

c1(1 + |ξ|)α ≤ |a(ξ)| ≤ c1(1 + |ξ|)α.

Let us denote ξ = (ξ ′′, ξ ′), ξ ′′ = (ξ1, · · · , ξk), ξ ′ = (ξk+1, · · · , ξm).

Definition 6. k-wave factorization of the symbol a(ξ) with respect to the cone Cm−k is called its representation
in the form

a(ξ) = a 6=(ξ)a=(ξ),

where the factors a 6=(ξ), a=(ξ) must have the following properties:

(1) a 6=(ξ), a=(ξ) are defined for all ξ ∈ Rm excluding may be the points Rk × ∂

(
∗

Cm−k ∪(−
∗

Cm−k)

)
;

(2) a 6=(ξ), a=(ξ) admit analytical continuation into radial tube domains T(
∗

Cm−k), T(−
∗

Cm−k) for almost
all ξ ′′ ∈ Rk respectively with estimates

|a±1
6= (ξ ′′, ξ ′ + iτ)| ≤ c1(1 + |ξ|+ |τ|)±k ,

|a±1
= (ξ ′′, ξ ′ − iτ)| ≤ c2(1 + |ξ|+ |τ|)±(α−k), ∀τ ∈

∗
Cm−k .

The number k ∈ R is called an index of k-wave factorization.

5.3. Fredholm Properties

For simplicity, we consider here the case when M is a bounded domain in Rm and its classical
symbol looks like A(x, ξ). Here, we assume additionally that a symbol of the operator A is continuous
on Mk, k = 0, 1,. . . , m, family of operators (of course with respect to the norm ||| · |||). This property
holds, for example, if the function A(x, ξ), (x, ξ) ∈ M×Rm is continuous differentiable up to boundary.
Then, according to enveloping theorem [1] using an operator symbol, one can construct n operators Ak.
If these operators have a Fredholm property, then the general operator will have a Fredholm property
with the index according to Theorem 4.

Let n−1(x) be the index of factorization [2] of the function A(x, ξ) in the point x ∈
∂M \ ∪m−2

k=0 Mk, k(x) be indices of k-wave factorization with respect to the cone Cm−k
x at

points x ∈ Mk, k = 0, 1, · · · , m− 2, and we assume that the functions k(x), k = 0, 1, · · · , m − 1,
are continuously continued in Mk.

Remark 4. Similarly, [2] using a uniqueness result for the wave factorization [4], one can verify that the
functions k(x), k = 0, 1, · · · , m− 1, do not depend on local coordinates.

Theorem 4. If the classical elliptic symbol A(x, ξ) admits k-wave factorization with respect to the cones Cm−k

with indices k(x), k = 0, 1, · · · , m− 2, satisfying the condition

|k(x)− s| < 1/2, ∀x ∈ Mk, k = 0, 1, · · · , m− 1, (5)

then the operator A : Hs(M)→ Hs−α(M) has a Fredholm property.

Proof. To prove the theorem, we need to verify invertibility properties for all local representatives for
our pseudo-differential operator A.
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A whole space. This case was historically the first in the theory of pseudo-differential equations.

If x0 ∈
◦

M is an inner point, then the local representative in the formula (3) has the following form
(in local coordinates ϕ)

(Ax0 u)(x) =
∫

Rm

∫
Rm

eiξ·(x−y)A(ϕ(x0), ξ)u(y)dξdy, x ∈ Rm,

and this is classical pseudo-differential operator. [2–4]. The ellipticity condition for the classical symbol

A(x, ξ) 6= 0

for all admissible x, ξ is necessary and the sufficient condition for invertibility of every such operator.
Unfortunately, if we have a piece of the space Rm, we need to study invertibility properties for

the operator on the left-hand side of Equation (4).
A half-space. If x0 ∈ ∂M is smoothness point of ∂M, then a local representative for the operator A

has the following form:

(Ax0 u)(x) =
∫

Rm
+

∫
Rm

eiξ·(x−y)A(ϕ(x0), ξ)u(y)dξdy, x ∈ Rm
+.

To study solvability for a corresponding paired equation (4), a factorization theory and
one-dimensional, singular integral operators were used [2,13,14]. Full solvability theory for such
equations was constructed in Vishik–Eskin papers (see [2]). A principal role takes the index of
factorization, in our notation m−1, if the condition (5) holds, then the operatorHs(Rm

+)→ Hs−α(Rm
+)

is invertible.
A k-wedge. Here, we have more complicated local representative

(Ax0 u)(x) =
∫

Wk

∫
Rm

eiξ·(x−y)A(ϕ(x0), ξ)u(y)dξdy, x ∈Wk,

but the factorization idea works here also in a multidimensional context; if k-wave factorization exists,
then condition (5) is sufficient for invertibility of such operator [4].

Basic components of the proof are the following [4]:
(1) if x0 is a k-wedge point and a(x0, ξ) is symbol of the operator Ax0 in local coordinates, then the

equation with such operator Ax0 in the space Hs(Wk) is equivalent to the paired equation (4) in the
space Hs(Rm);

(2) after applying the Fourier transform to Equation (4), we obtain the so-called multidimensional
Riemann problem with parameter ξ ′′ ∈ Rk. If the symbol a(x0, ξ) admits the k-wave factorization with
respect to Cm−k with the index k(x0), then we can describe solvability conditions for the problem;

(3) these solvability conditions depend on the index k(x0), particularly unique solvability is
possible only if |k(x0)− s| < 1/2 (for all points x0 ∈ Mk). For other cases, we have either a formula
for a general solution (− s = n + δ, n ∈ N, |δ| < 1/2) or solvability conditions for the right-hand side
of the equation (4) (− s = −n + δ, n ∈ N, |δ| < 1/2). Thus, additional conditions related to a k-wedge
are needed for two latter cases only [4].

Remark 5. If the ellipticity property does not hold on sub-manifold Mk, then we need to modify the operator A
adding boundary or co-boundary operators [4]. For example, if one of conditions (5) does not hold we must use
such constructions.

Some considerations related to this paper are given in [15,21–23], particularly these are related to
more complicated singularities and more general spaces.
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6. Conclusions

We have described a new abstract approach to the theory of a wide class of operators.
This approach is based on general principles for special local operators. It will possibly be useful for
studying new classes of pseudo-differential operators and related problems.

In our opinion, such considerations will also be useful for discrete situations in which
pseudo-differential operators are defined in functional spaces of discrete variables. Some first
considerations in this direction were done, for example, in [24]. Moreover, a discrete situation is
more practical, since it permits applying computer calculations. We hope to develop these studies in
this direction including a comparison between discrete and continuous cases.
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