CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 15 May 2020
Accepted 28 July 2020

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela

Keywords: crystal structure; Hirshfeld surface; 1H-benzo[d]imidazol-2-yl-1,2,2-trimethylcyclo-pentane-carboxylic acid; active pharmaceutical ingredient; anti-diabetic agents; type 2 diabetes.

CCDC reference: 2019647

Supporting information: this article has supporting information at journals.iucr.org/e

(1R,3S)-3-(1H-Benzo[d]imidazol-2-yl)-1,2,2-tri-methylcyclopentane-1-carboxylic acid as a new anti-diabetic active pharmaceutical ingredient

Sergiy M. Kovalenko, ${ }^{\text {a }}$ Irina S. Konovalova, ${ }^{\text {b }}{ }^{\text {* }}$ Sergiy I. Merzlikin, ${ }^{\text {c }}$ Vladimir P. Chuev ${ }^{\mathrm{d}, \mathrm{e}}$ and Dmitry V. Kravchenko ${ }^{\mathrm{f}}$

 for Single Crystals of the National Academy of Sciences of Ukraine, 61001, Kharkov, Ukraine, ${ }^{\mathrm{c}}$ National University of Pharmacy, 53 Pushkinska St., Kharkiv, 61002, Ukraine, ${ }^{\text {d Federal State Autonomous Educational Institution of Higher }}$ Education Belgorod State University, 85, Pobedy St., Belgorod, 308015, Russian Federation, ${ }^{\text {e }}$ Experimental Plant for Dental Materials Vladmiva, 81d, Michurin St., Belgorod, 308015, Russian Federation, and 'Chemical Diversity Research Institute, 2A Rabochaya St., Khimki, Moscow Region, 141400, Russian Federation. *Correspondence e-mail:
ikonovalova0210@gmail.com

The chiral title compound, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$, which can be used for producing active pharmaceutical ingredients for treatment of type 2 pancreatic diabetes and other pathologies dependent on insulin resistance, was prepared from $(1 R, 3 S)$ camphoric acid and o-phenylenediamine. It crystallized from an ethanol solution in the chiral monoclinic $P 2_{1}$ space group. The five-membered ring adopts a twisted conformation with the methyl-substituted C atoms displaced by -0.273 (5) and 0.407 (5) A from the mean plane through the other three atoms. In the crystal, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming chains along the a-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyze the intermolecular contacts present in the crystal.

1. Chemical context

The incidence of diabetes has taken on the character of an epidemic in the world. According to the forecasts of the World Health Organization, the number of patients with diabetes will double and reach 300 million people by 2025 (Zimmet et al., 2001). In this regard, developing and introducing new antidiabetic drugs is of great importance.

A great number of camphoric acid as well as benzimidazole derivatives exhibit different types of biological activities (Merzlikin et al., 2008; Ivachtchenko et al., 2002, 2019; Kovalenko et al., 1998).

Our research on the molecular design, construction and synthesis of new benzimidazole derivatives of 1,2,2,3-tetra-methylcyclopentane-1-carboxylic acid has shown that $(1 R, 3 S)$ -3-(1H-benzo[d]imidazol-2-yl)-1,2,2-trimethylcyclopentane-1carboxylic acid, 4, exhibits pronounced antidiabetic activity and, in particular, antihyperglycemic effect, which reduces insulin resistance and restores the physiological function of pancreatic β-cells (Jain et al., 2009; Chuev et al., 2017).

Figure 1
Synthesis of ($1 R, 5 S$)-1,8,8-trimethyl-3-oxabicyclo[3.2.1]octane-2,4-dione, 2.

Racemic and enantiomeric crystals are known to possess different activities, which is very important in the pharmaceutical industry. We have found that the disadvantage of the (\pm) and (-) forms of compound 4 described in the patent of Merzlikin et al. (2009) is their poor bioavailability as compared to the $(+)$ form. To obtain $(1 R, 3 S)$-3-($1 H$-benzo $[d]$ imidazol-2-yl)-1,2,2-trimethylcyclopentane-1-carboxylic acid 4, the enantiomerically pure ($1 R, 3 S$)-camphoric acid $\mathbf{1}$ was used.

In the first stage, $(1 R, 5 S)$-1,8,8-trimethyl-3-oxabicyclo[3.2.1] octane-2,4-dione [D-(+)-camphoric anhydride] 2 was obtained by refluxing a mixture of $(1 R, 3 S)$-camphoric acid and acetic anhydride for 2 h (Dong et al., 2016) (Fig. 1).

In the second stage, the synthesis of $(1 R, 3 S)-3-(1 H-$ benzo[d]imidazol-2-yl)-1,2,2- trimethylcyclopentane-1-carboxylic acid 4 was carried out according to Fig. 2 via cyclocondensation of D-(+)-camphoric anhydride 2 with o phenylenediamine $\mathbf{3}$ in a mixture of toluene and DMF (383 K) by refluxing for several hours (Fig. 2).

It should be noted that during the synthesis, the configuration of the chiral centers did not change and the structure of the title molecule was unambiguously confirmed by X-ray analysis.

2. Structural commentary

The asymmetric unit contains one molecule of the title compound 4 (Fig. 3). The bicyclic fragment is planar with a maximum deviation of 0.016 (6) \AA (for atom C16). The saturated five-membered ring adopts a twisted conformation in which the deviations of atoms C11 and C12 from the meansquare plane through the remaining ring atoms are -0.273 (5) and 0.407 (5) \AA, respectively. The cyclopentane ring is turned in relation to the $\mathrm{N} 1-\mathrm{C} 1$ endocyclic bond, the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8-$ C 9 torsion angle being $-30.0(7)^{\circ}$. It can be assumed that the weak intramolecular $\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{~N} 1(\mathrm{H} \cdots \mathrm{N}=2.53 \AA$, $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}=108^{\circ}$) hydrogen bond additionally stabilizes such a location of the saturated ring. The methyl group on the C11

Figure 2
Synthesis of $(1 R, 3 S)$-3-(1H-benzo[d]imidazol-2-yl)-1,2,2- trimethylcyclo-pentane-1-carboxylic acid, 4.

Table 1
Intramolecular short contacts (\AA) in compound 4 together with the sums of the respective van der Waals radii.

The van der Waals radii sum values (Zefirov et al., 1997) are given in parentheses.

H8 $\cdots \mathrm{H} 15 A$	$2.26(2.34)$	H15B $\cdots \mathrm{H} 14 C$	$2.32(2.34)$
H13C $\cdots \mathrm{C} 1$	$2.57(2.87)$	H13B $\cdots \mathrm{C} 16$	$2.54(2.87)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.82	1.82	$2.631(6)$	170
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 1^{\text {ii }}$	0.86	2.16	$2.871(6)$	140
$\mathrm{C} 14-\mathrm{H} 14 C \cdots \mathrm{C}^{\mathrm{iii}}$	0.96	2.81	$3.439(8)$	124

atom is located in the axial position [C9-C10-C11-C15 = $\left.87.5(6)^{\circ}\right]$. The carboxyl group has an equatorial orientation and is almost coplanar to the endocyclic $\mathrm{C} 10-\mathrm{C} 11$ bond [the $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$ and $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16-\mathrm{O} 1$ torsion angles are $-150.8(5)$ and $13.9(8)^{\circ}$, respectively]. This position is stabilized by the formation of weak intramolecular $\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 1$ and $\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O} 2$ hydrogen bonds between the vicinal and geminal substituents $(\mathrm{H} \cdots \mathrm{O}=2.43$ and $2.42 \AA, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}=103$ and 100°, respectively). The presence of geminal substituents on neighboring atoms of the pentane ring leads to significant steric repulsion (the shortened intramolecular contacts are given in Table 1), which causes elongation of the $\mathrm{C} 8-\mathrm{C} 12$ bond to 1.571 (7) \AA, compared with its mean value of $1.556 \AA$ (Burgi et al., 1994).

3. Supramolecular features

In the crystal, molecules of $\mathbf{4}$ form layers parallel to the (100) plane as a result of the strong $\mathrm{N} 2-\mathrm{H} \cdots \mathrm{O} 1$ and $\mathrm{O} 2-\mathrm{H} \cdots \mathrm{N} 1$ and weak $\mathrm{C} 14-\mathrm{H} 14 \mathrm{C} \cdots \mathrm{C} 2(\pi)$ intermolecular hydrogen bonds (Table 2, Fig. 4a,b). The neighboring layers are not bound any specific interactions (Fig. 4a). It is interesting to note that the molecules are linked by hydrogen bonds that use the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ heterosynthon instead of the carboxylic acid dimer homosynthon. Despite the presence of an aromatic ring in the molecule, no stacking interactions are observed in the crystal of 4 . Instead of $\pi-\pi$ interactions, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are formed (Table 2, Fig. 4b).

Figure 3
The molecular structure of the title compound 4 with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 4
(a) View of the structure of compound $\mathbf{4}$ down the b axis and (b) hydrogen bonds within a layer in the crystal of 4.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017) was used to analyze the interactions in the crystal and fingerprint plots mapped over $d_{\text {norm }}$ (Figs. 5 and 6) were generated. The molecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional $d_{\text {norm }}$ surfaces mapped over a fixed color scale of -0.716 (red) to 1.406 (blue) a.u. The red spots indicate regions of donor-acceptor interactions or short contacts. There are three red spots in the $d_{\text {norm }}$ surface for 4 (Fig. 5), which correspond to the interactions listed in Table 2.

All of the intermolecular interactions of the title compound are shown in the two-dimensional fingerprint plot presented in Fig. 6a. The fingerprint plots indicate that the principal contributions are from $\mathrm{H} \cdots \mathrm{H}(61.7 \%$; Fig. $6 b$), $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ (18.1\%; Fig. $6 c$), O $\cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}(13.5 \%$; Fig. $6 d$) and $\mathrm{N} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{N}(6.6 \%$; Fig. $6 e)$ contacts. The $\mathrm{H} \cdots \mathrm{H}$ interactions appear in the middle of the plot scattered over a large area, while the $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts are represented by the 'wings' of the plot. $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ interactions appear as inner spikes and the $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}$ contacts, corresponding to the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interaction, are represented by a pair of sharp outer spikes, which indicate they are the strongest interactions in the crystal of 4 .

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016) for the

Two orientations of the Hirshfeld surface for the title compound mapped over $d_{\text {norm }}$.

1,2,2-trimethylcyclopentane-1-carboxylic acid skeleton yielded 27 hits. Only one structure involves a benzothiazol- 2^{\prime} yl ring in position 3 , viz. $(1 R, 3 S)-(+)-c i s-1,3-b i s($ benzothiazol-2'-yl)-1,2,2-trimethylcyclopentane (CSD refcode XUMXIM; Gilbert et al., 2002). The cyclopentane ring has the twist conformation with the atoms C 1 and C 4 displaced by 0.48 (1) and -0.26 (2) \AA from the mean plane through the other three atoms $[c f . \quad 0.407$ (5) \AA and -0.273 (5) \AA in the title compound].

6. Synthesis and crystallization

(1R,3S)-3-(1H-Benzo[d]imidazol-2-yl)-1,2,2-trimethylcyclo-pentane-1-carboxylic acid, 4

In a glass reactor equipped with a Dean-Stark receiver, D-(+)-camphoric anhydride $2(2.20 \mathrm{~kg}, 12.1 \mathrm{~mol})$, o-phenylenediamine $3(1.31 \mathrm{~kg}, 12.1 \mathrm{~mol})$, toluene $(11.46 \mathrm{~L})$ and dimethylformamide $(0.91 \mathrm{~L})$ were charged. Under stirring, the reaction mixture was heated to boiling (383 K). The mixture was refluxed and the released water was collected in the Dean-Stark receiver. When the removal of water had finished, the reaction mixture was cooled to room temperature. The

Figure 6
(a) The two-dimensional fingerprint plot for compound 4, and those delineated into (b) $\mathrm{H} \cdots \mathrm{H}(61.7 \%),(c) \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}(18.1 \%),(d) \mathrm{O} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{O}(13.5 \%)$ and (e) $\mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}(6.6 \%)$ contacts.
precipitate that formed was filtered in vacuo using a Nutsche filter. The precipitate was thoroughly squeezed, washed twice with toluene $(1.4 \mathrm{~L})$ and re-squeezed. Then the precipitate was washed on the filter with 70% water-ethanol (3.7 L), heated to a temperature of $348 \pm 5 \mathrm{~K}$. Finally, the precipitate of the product 4 was thoroughly squeezed and dried at 343 K for 4 h , yielding $2.41 \mathrm{~kg}(73.2 \%)$ of a white crystal-like powder that is practically insoluble in water, soluble in 96% alcohol, m.p. 527-528 K. UV (ethanol) $\lambda \max (\varepsilon): 204 \mathrm{~nm}$ (48960), 245 nm (6800), 275 nm (9160), 281 nm (9320); IR (KBr): v $\left(\mathrm{cm}^{-1}\right)$ $3450(\mathrm{O}-\mathrm{H}), 3286(\mathrm{~N}-\mathrm{H}), 2970,2935,2887(\mathrm{C}-\mathrm{H}), 1673$ $(\mathrm{C}=\mathrm{O}), 1529,1456,1436,1373,1279,1358,1167,1124,1057$, $740 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.22($ s.br, $1 \mathrm{H}, \mathrm{OH})$, 12.10 (s.br, 1H, NH), 7.52 (s.br, 1H, H-4, H-7), 7.44 (s.br, 1H, $\mathrm{H}-4, \mathrm{H}-7), 7.10(t, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6), 3.41-3.31(m, 1 \mathrm{H}$, $\mathrm{CH}), 2.64-2.54(m, 1 \mathrm{H}, \mathrm{CH}), 2.43-2.33(m, 1 \mathrm{H}, \mathrm{CH}), 2.05-1.95$ ($m, 1 \mathrm{H}, \mathrm{CH}$), 1.55-1.45 ($m, 1 \mathrm{H}, \mathrm{CH}$), $1.25(s, 3 \mathrm{H}, \mathrm{CH} 3), 1.14(s$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathrm{LC} / \mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 273.2[\mathrm{MH}]+$ (100); found, \%: C 70.88; H 7.83; N 10.55. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, \%: C 70.56; H 7.40; N 10.29.

Further crystallization by slow evaporation of an ethanol solution was carried out to provide single block-like colorless crystals (Fig. 7) suitable for X-ray diffraction analysis.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were included in calculated positions and treated as riding on their parent C atom: $\mathrm{C}-\mathrm{H}=0.82-0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}-$ methyl and $\mathrm{O}-$ hydroxyl) and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms. The Flack parameter cannot be determined reliably, because there is no X-ray anomalous scattering because of the absence of heavy atoms in the molecule.

References

Burgi, H.-B. \& Dunitz, J. D. (1994). Structure correlation, Vol. 2, pp. 741-784. Weinheim: VCH.

Figure 7
Crystals of the title compound 4.

Table 3
Experimental details.
Crystal data
Chemical formula
$M_{\text {r }}$
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$

272.34

Monoclinic, $P 2_{1}$
293
7.9805 (7), 10.8671 (8), 8.4912 (7)
94.056 (7)
734.55 (10)

2
Mo $K \alpha$
0.08
$0.3 \times 0.2 \times 0.1$

Rigaku Oxford Diffraction
Xcalibur, Sapphire3
Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
0.182, 1.000

4859, 2455, 1731
0.058
0.594
$0.065,0.180,1.04$
2455
185
1
H-atom parameters constrained
$0.15,-0.19$
Flack x determined using 459
\quad quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
\quad (Parsons et al., 2013)
$-1.8(10)$

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

Chuev, V. P., Buzov, A. A., Kovalenko, S. N., Merzlikin, S. I. \& Shtrygol, S. Yu. (2017). Pharmaceutical antidiabetic composition based on (+)-cis-3-(1H-benzimidazol-2-yl)-1,2,2-trimethylcyclopentane carboxylic acid. Patent RU 2624872, C1, 07 July 2017.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Dong, Y., Li, Q., Wang, J., Lu, L., Wang, Y., Bao, L., Wang, Z. \& Zhang, Y. (2016). Mendeleev Commun. 26, 166-168.
Gilbert, J. G., Addison, A. W., Palaniandavar, M. \& Butcher, R. J. (2002). J. Heterocycl. Chem. 39, 399-404.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Ivachtchenko, A., Kovalenko, S., Parkhomenko, O. \& Chernykh, V. (2002). Heterocycl. Commun. 8, 329-330.

Ivachtchenko, A. V., Mitkin, O. D., Kravchenko, D. V., Kovalenko, S. M., Shishkina, S. V., Bunyatyan, N. D., Konovalova, I. S., Ivanov, V. V., Konovalova, O. D. \& Langer, T. (2019). Crystals, 9, 644-660.

Jain, M., Merzlikin, S. I. \& Merzlikin, D. S. (2009). Benzimidazole derivatives and the use thereof, PCT Int. Appl., WO 2009/093990, 30 July 2009.
Kovalenko, S. N., Vasil'ev, M. V., Sorokina, I. V., Chernykh, V. P., Turov, A. V. \& Rudnev, S. A. (1998). Chem. Heterocycl. Compd. 34, 1412-1415.
Merzlikin, S. I. \& Jain, M. (2009). Method for the treatment of metabolic syndrome X, PCT Int. Appl., WO 2009005483, A1, 08 January 2009.
Merzlikin, S. I. \& Podgayny, D. G. (2008). Zh. Org. Farmats. Khim. 6, 67-71.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

research communications

Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017).

CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
Zefirov, Yu. V. (1997). Kristallographiya, 42, 936-958.
Zimmet, P., Alberti, K. G. M. M. \& Shaw, J. (2001). Nature, 414, 782787.

supporting information

Acta Cryst. (2020). E76, 1407-1411 [https://doi.org/10.1107/S2056989020010439]
($1 R, 3 S$)-3-(1H-Benzo[d]imidazol-2-yl)-1,2,2-trimethylcyclopentane-1-carboxylic acid as a new anti-diabetic active pharmaceutical ingredient

Sergiy M. Kovalenko, Irina S. Konovalova, Sergiy I. Merzlikin, Vladimir P. Chuev and Dmitry V. Kravchenko

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
(1R,3S)-3-(1H-Benzo[d]imidazol-2-yl)-1,2,2-trimethylcyclopentane-1-carboxylic acid

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=272.34$
Monoclinic, $P 2_{1}$
$a=7.9805$ (7) \AA
$b=10.8671$ (8) \AA
$c=8.4912$ (7) \AA
$\beta=94.056$ (7) ${ }^{\circ}$
$V=734.55(10) \AA^{3}$
$Z=2$

Data collection

Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1827 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.180$
$S=1.04$
2455 reflections
185 parameters
1 restraint
$F(000)=292$
$D_{\mathrm{x}}=1.231 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 748 reflections
$\theta=3.6-20.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colourless
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$
$T_{\text {min }}=0.182, T_{\text {max }}=1.000$
4859 measured reflections
2455 independent reflections
1731 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-9 \rightarrow 8$
$k=-12 \rightarrow 11$
$l=-9 \rightarrow 10$

Primary atom site location: dual
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0794 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.15 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Absolute structure: Flack x determined using 459 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: - 1.8 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.3639(6)$	$0.5406(4)$	$0.7106(5)$	$0.0801(12)$
O2	$0.2632(6)$	$0.7051(3)$	$0.5806(5)$	$0.0755(12)$
H2	0.289977	0.738749	0.665107	0.113^{*}
N1	$0.6692(5)$	$0.3376(4)$	$0.1635(5)$	$0.0593(11)$
N2	$0.5767(6)$	$0.4717(4)$	$-0.0168(5)$	$0.0673(13)$
H2A	0.510294	0.522765	-0.067258	0.081^{*}
C1	$0.5454(7)$	$0.4112(5)$	$0.1190(6)$	$0.0584(13)$
C2	$0.7894(7)$	$0.3527(5)$	$0.0550(7)$	$0.0604(14)$
C3	$0.7336(8)$	$0.4365(5)$	$-0.0588(7)$	$0.0654(14)$
C4	$0.8269(10)$	$0.4678(6)$	$-0.1848(8)$	$0.0831(19)$
H4	0.786965	0.523797	-0.261269	0.100^{*}
C5	$0.9807(11)$	$0.4124(8)$	$-0.1914(9)$	$0.096(2)$
H5	1.047951	0.432369	-0.272757	0.115^{*}
C6	$1.0379(9)$	$0.3261(7)$	$-0.0773(9)$	$0.090(2)$
H6	1.142413	0.289532	-0.084821	0.108^{*}
C7	$0.9429(8)$	$0.2942(7)$	$0.0460(8)$	$0.0759(17)$
H7	0.980342	0.235604	0.120267	0.091^{*}
C8	$0.3928(7)$	$0.4359(5)$	$0.2036(6)$	$0.0580(13)$
H8	0.300846	0.455808	0.125078	0.070^{*}
C9	$0.3372(7)$	$0.3271(5)$	$0.3025(7)$	$0.0679(15)$
H9A	0.245558	0.283181	0.246369	0.082^{*}
H9B	0.429868	0.270412	0.324145	0.082^{*}
C10	$0.2806(9)$	$0.3803(5)$	$0.4556(8)$	$0.0716(16)$
H10A	0.360495	0.359711	0.543071	0.086^{*}
H10B	0.171604	0.347548	0.477382	0.086^{*}
C11	$0.2707(6)$	$0.5205(5)$	$0.4334(7)$	$0.0597(14)$
C12	$0.4144(6)$	$0.5465(5)$	$0.3225(6)$	$0.0575(12)$
C13	$0.5865(7)$	$0.5408(6)$	$0.4150(7)$	$0.0707(15)$
H13A	0.597970	0.463626	0.469595	0.106^{*}
H13B	0.595652	0.606974	0.490044	0.106^{*}
H13C	0.673547	0.548409	0.343119	0.106^{*}
C14	$0.3983(9)$	$0.6692(5)$	$0.2366(8)$	$0.0764(17)$
H14A	0.491174	0.679383	0.171902	0.115^{*}
H14B	0.398423	0.734744	0.312382	0.115^{*}
H14C	0.295039	0.670837	0.171336	0.115^{*}

C15	$0.0964(7)$	$0.5560(7)$	$0.3588(8)$	$0.0811(18)$
H15A	0.079109	0.518462	0.256632	0.122^{*}
H15B	0.089416	0.643848	0.348102	0.122^{*}
H15C	0.011624	0.527941	0.425166	0.122^{*}
C16	$0.3042(6)$	$0.5877(5)$	$0.5895(7)$	$0.0612(15)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.100(3)$	$0.086(3)$	$0.053(2)$	$0.005(2)$	$-0.011(2)$	$0.006(2)$
O2	$0.103(3)$	$0.063(2)$	$0.058(3)$	$0.012(2)$	$-0.014(2)$	$-0.0111(18)$
N1	$0.067(3)$	$0.060(3)$	$0.051(3)$	$0.004(2)$	$0.001(2)$	$0.001(2)$
N2	$0.083(3)$	$0.067(3)$	$0.050(3)$	$0.003(2)$	$-0.004(2)$	$0.006(2)$
C1	$0.070(3)$	$0.060(3)$	$0.043(3)$	$-0.001(3)$	$-0.006(2)$	$-0.001(2)$
C2	$0.063(3)$	$0.066(3)$	$0.051(3)$	$-0.002(3)$	$0.000(2)$	$-0.006(3)$
C3	$0.078(4)$	$0.063(3)$	$0.055(3)$	$-0.010(3)$	$0.004(3)$	$-0.005(3)$
C4	$0.104(5)$	$0.088(4)$	$0.059(4)$	$-0.026(4)$	$0.016(3)$	$-0.001(3)$
C5	$0.098(5)$	$0.119(6)$	$0.073(5)$	$-0.039(5)$	$0.027(4)$	$-0.019(4)$
C6	$0.075(4)$	$0.113(6)$	$0.083(5)$	$-0.011(4)$	$0.012(4)$	$-0.026(5)$
C7	$0.071(4)$	$0.090(4)$	$0.066(4)$	$0.000(3)$	$0.001(3)$	$-0.011(3)$
C8	$0.068(3)$	$0.056(3)$	$0.049(3)$	$0.002(2)$	$-0.007(2)$	$-0.002(2)$
C9	$0.074(4)$	$0.055(3)$	$0.074(4)$	$-0.001(3)$	$0.003(3)$	$-0.001(3)$
C10	$0.088(4)$	$0.061(3)$	$0.066(4)$	$-0.005(3)$	$0.008(3)$	$0.005(3)$
C11	$0.056(3)$	$0.055(3)$	$0.067(4)$	$0.003(2)$	$-0.004(2)$	$0.000(3)$
C12	$0.061(3)$	$0.052(3)$	$0.058(3)$	$0.001(2)$	$-0.002(2)$	$0.003(2)$
C13	$0.064(3)$	$0.071(3)$	$0.075(4)$	$0.000(3)$	$-0.005(3)$	$-0.010(3)$
C14	$0.102(5)$	$0.058(3)$	$0.069(4)$	$0.007(3)$	$0.003(3)$	$0.007(3)$
C15	$0.063(3)$	$0.097(4)$	$0.081(4)$	$0.005(4)$	$-0.012(3)$	$-0.019(4)$
C16	$0.057(3)$	$0.068(4)$	$0.058(4)$	$0.001(3)$	$0.001(3)$	$-0.005(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 16$	$1.216(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.401(11)$
$\mathrm{O} 2-\mathrm{C} 16$	$1.319(6)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.380(9)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.307(7)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.533(8)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.386(7)$	$\mathrm{C} 8-\mathrm{C} 12$	$1.571(7)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.366(7)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.520(9)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.381(8)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.536(8)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.481(8)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.560(8)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.378(8)$	$\mathrm{C} 11-\mathrm{C} 15$	$1.537(7)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.387(8)$	$\mathrm{C} 11-\mathrm{C} 16$	$1.520(8)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.388(8)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.534(7)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.372(10)$	$\mathrm{C} 12-\mathrm{C} 14$	$1.521(8)$
		$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$106.8(5)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$106.3(5)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$106.7(5)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$107.9(5)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 15$	$102.7(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$111.0(5)$	$109.7(5)$	

N2-C1-C8	121.9 (5)
N1-C2-C7	129.6 (6)
C3-C2-N1	109.9 (5)
C3-C2-C7	120.5 (6)
N2-C3-C4	132.6 (6)
C2-C3-N2	104.9 (5)
C2-C3-C4	122.5 (6)
C5-C4-C3	117.0 (7)
C4-C5-C6	120.9 (6)
C7-C6-C5	121.6 (7)
C6-C7-C2	117.5 (7)
C1-C8-C9	113.9 (5)
C1-C8-C12	113.2 (4)
C9-C8-C12	105.1 (4)
N1-C1-C8-C9	-30.0 (7)
N1-C1-C8-C12	90.0 (6)
N1-C2-C3-N2	-0.1 (6)
N1-C2-C3-C4	-178.6 (5)
N1-C2-C7-C6	179.1 (5)
N2-C1-C8-C9	153.8 (5)
N2-C1-C8-C12	-86.2 (6)
N2-C3-C4-C5	-178.8 (6)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.0 (6)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	-178.3 (6)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	1.1 (6)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	179.4 (6)
C1-C8-C9-C10	140.0 (5)
C1-C8-C12-C11	-160.0 (4)
C1-C8-C12-C13	-42.5 (6)
C1-C8-C12-C14	78.5 (6)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	1.7 (6)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8$	-174.8 (5)
C2-C3-C4-C5	-0.8 (9)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	-1.8 (6)
C3-N2-C1-C8	174.9 (5)
C3-C2-C7-C6	2.0 (8)
C3-C4-C5-C6	1.4 (10)
C4-C5-C6-C7	-0.4 (10)
C5-C6-C7-C2	-1.3 (9)

$\mathrm{C} 15-\mathrm{C} 11-\mathrm{C} 12$	$112.9(5)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 10$	$111.4(5)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12$	$110.4(4)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 15$	$109.7(4)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 8$	$101.4(4)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 8$	$110.6(4)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$110.7(4)$
$\mathrm{C} 14-\mathrm{C} 12-\mathrm{C} 8$	$111.1(4)$
$\mathrm{C} 14-\mathrm{C} 12-\mathrm{C} 11$	$114.0(5)$
$\mathrm{C} 14-\mathrm{C} 12-\mathrm{C} 13$	$108.8(5)$
$\mathrm{O} 1-\mathrm{C} 16-\mathrm{O} 2$	$122.4(5)$
$\mathrm{O} 1-\mathrm{C} 16-\mathrm{C} 11$	$124.8(5)$
$\mathrm{O} 2-\mathrm{C} 16-\mathrm{C} 11$	$112.8(5)$

177.5 (5)
-1.0 (8)
10.7 (7)
-35.1 (5)
82.4 (6)
-156.6 (5)
-32.7 (6)
87.5 (6)
-150.8 (5)
41.1 (5)
-76.3 (5)
160.6 (5)
13.9 (8)
-166.9 (5)
15.6 (6)
-99.5 (6)
79.7 (5)
-76.9 (5)
165.7 (5)
42.6 (6)
135.5 (6)
-45.3 (7)
160.0 (4)
42.6 (6)
-80.5 (5)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.82	1.82	$2.631(6)$	170

supporting information

$\mathrm{N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.16	$2.871(6)$	140
$\mathrm{C} 14 — \mathrm{H} 14 C \cdots{ }^{\mathrm{Ciii}}$	0.96	2.81	$3.439(8)$	124

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1$; (ii) $x, y, z-1$; (iii) $-x+1, y+1 / 2,-z$.

