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Abstract
This paper gives an overview of systematic and analytic approach of operational
technique involves to study multi-variable special functions significant in both
mathematical and applied framework and to introduce new families of special
polynomials. Motivation of this paper is to construct a new class of generalized
Fubini-type polynomials of the parametric kind via operational view point. The
generating functions, differential equations, and other properties for these
polynomials are established within the context of the monomiality principle. Using
the generating functions, various interesting identities and relations related to the
generalized Fubini-type polynomials are derived. Further, we obtain certain partial
derivative formulas including the generalized Fubini-type polynomials. In addition,
certain members belonging to the aforementioned general class of polynomials are
considered. The numerical results to calculate the zeros and approximate solutions of
these polynomials are given and their graphical representation are shown.
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1 Introduction
Special polynomials and numbers have significant roles in various branches of mathemat-
ics, theoretical physics, and engineering. The problems arising in mathematical physics
and engineering are framed in terms of differential equations. Most of these equations
can only be treated by using various families of special polynomials which provide new
means of mathematical analysis. They are widely used in computational models of scien-
tific and engineering problems. In addition, these special polynomials allow the derivation
of different useful identities in a fairly straightforward way and help in introducing new
families of special polynomials. Throughout this article, we use the following notations
and definitions:

Let N = {1, 2, 3, . . .} and N0 = N ∪ {0}, Z denotes the set of integer numbers, R denotes
the set of real numbers and C denotes the set of complex numbers.

The Fubini-type polynomials appear in combinatorial mathematics and play an impor-
tant role in the theory and applications of mathematics, thus many number theory and
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combinatorics experts have extensively studied their properties and obtained series of in-
teresting results [7, 12, 14].

Kilar and Simsek [12] introduced the Fubini-type polynomials F (υ)
n (x) of order υ , which

are defined by the generating function

2υ

(2 – et)2υ
ext =

∞∑

n=0

F (υ)
n (x)

tn

n!
(
υ ∈N0; |t| < log 2

)
. (1.1)

For x = 0, Eq. (1.1) becomes

2υ

(2 – et)2υ
=

∞∑

n=0

F (υ)
n

tn

n!
(
υ ∈N0; |t| < log 2

)
, (1.2)

where F (υ)
n denotes the Fubini-type numbers of order υ .

The Fubini-type numbers are related to Apostol–Bernoulli numbers and proven to be
an effective tool in different topics in combinatorics and analysis.

For x, y ∈ R, the Taylor–Maclaurin expansions of the two functions ext cos(yt) and
ext sin(yt) are given, respectively, by (see [20])

ext cos(yt) =
∞∑

n=0

Cn(x, y)
tn

n!
(1.3)

and

ext sin(yt) =
∞∑

n=0

Sn(x, y)
tn

n!
, (1.4)

where the functions Cn(x, y) and Sn(x, y) are defined as

Cn(x, y) =
[ n

2 ]∑

κ=0

(–1)κ
(

n
2κ

)
xn–2κy2κ (1.5)

and

Sn(x, y) =
[ n–1

2 ]∑

κ=0

(–1)κ
(

n
2κ + 1

)
xn–2κ–1y2κ+1. (1.6)

Recently, Srivastava and Kızılateş [22] introduced two parametric kinds of the Fubini-
type polynomials which are defined by the generating functions

2υ

(2 – et)2υ
ext cos(yt) =

∞∑

n=0

F (c,υ)
n (x, y)

tn

n!
(
υ ∈N0; |t| < log 2

)
(1.7)

and

2υ

(2 – et)2υ
ext sin(yt) =

∞∑

n=0

F (s,υ)
n (x, y)

tn

n!
(
υ ∈ N0; |t| < log 2

)
. (1.8)
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The Apostol-type polynomials and their numerous properties have been investigated in
the literature extensively and widely [3, 5, 6, 13, 15–19].

The Apostol–Bernoulli polynomials B(υ)
n (x;λ) [18] of order υ are defined by

(
t

λet – 1

)υ

ext =
∞∑

n=0

B
(υ)
n (x;λ)

tn

n!
(1.9)

(|t| < 2π when λ = 1 and |t| < | logλ| when λ �= 1;λ ∈C
)
,

where B
(υ)
n (0;λ) := B

(υ)
n (λ) denotes the Apostol–Bernoulli numbers of order υ .

The Apostol–Euler polynomials E (υ)
n (x;λ) [16] of order υ are defined by

(
2

λet + 1

)υ

ext =
∞∑

n=0

E (υ)
n (x;λ)

tn

n!
(1.10)

(|t| < π when λ = 1 and |t| <
∣∣log(–λ)

∣∣ when λ �= 1;λ ∈C
)
,

where E (υ)
n (0;λ) := E (υ)

n (λ) denotes the Apostol–Euler numbers of order υ .
The Apostol–Genocchi polynomials G(υ)

n (x;λ) [17] of order υ are defined by

(
2t

λet + 1

)υ

ext =
∞∑

n=0

G(υ)
n (x;λ)

tn

n!
(1.11)

(|t| < π when λ = 1 and |t| <
∣∣log(–λ)

∣∣ when λ �= 1;λ ∈C
)
,

where G(υ)
n (0;λ) := G(υ)

n (λ) denotes the Apostol–Genocchi numbers of order υ .
In [23], Srivastava et al. introduced two parameter kinds of each of the Apostol–

Bernoulli polynomials Bn(x;λ), Apostol–Euler polynomials En(x;λ) and Apostol–Ge-
nocchi polynomials Gn(x;λ). Recently, the parametric kinds of each of the Apostol–
Bernoulli polynomials B

(υ)
n (x;λ) of order υ , the Apostol–Euler polynomials E (υ)

n (x;λ) of
order υ and the Apostol–Genocchi polynomials G(υ)

n (x;λ) of order υ were introduced by
Srivastava and Kızılateş [22] as

(
t

λet – 1

)υ

ext cos(yt) =
∞∑

n=0

B
(c,υ)
n (x, y;λ)

tn

n!
(1.12)

and

(
t

λet – 1

)υ

ext sin(yt) =
∞∑

n=0

B
(s,υ)
n (x, y;λ)

tn

n!
; (1.13)

(
2

λet + 1

)υ

ext cos(yt) =
∞∑

n=0

E (c,υ)
n (x, y;λ)

tn

n!
(1.14)

and

(
2

λet + 1

)υ

ext sin(yt) =
∞∑

n=0

E (s,υ)
n (x, y;λ)

tn

n!
; (1.15)
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(
2t

λet + 1

)υ

ext cos(yt) =
∞∑

n=0

G(c,υ)
n (x, y;λ)

tn

n!
(1.16)

and

(
2t

λet + 1

)υ

ext sin(yt) =
∞∑

n=0

G(s,υ)
n (x, y;λ)

tn

n!
. (1.17)

In recent years, active research on multivariable and generalized forms of special func-
tions of mathematical physics has been witnessed. Most of the multivariable and general-
ized special functions of mathematical physics arises in various branches of mathematics
ranging from the theory of partial differential equations to the abstract group theory. We
recall the following two variable form of special polynomials.

The 2-variable general polynomials (2VGP) Gn(x, y) [8] are defined by

extϕ(y, t) =
∞∑

n=0

Gn(x, y)
tn

n!
, G0(x, y) = 1, (1.18)

where

ϕ(y, t) =
∞∑

n=0

ϕn(y)
tn

n!
, ϕ0(y) �= 0. (1.19)

Over the last few years, many authors have used the operational methods combined with
the monomiality principle [1] to introduce and study new families of special polynomials
[9, 21, 24–27]. Operational techniques are applicable to solve problems both in classical
and quantum mechanics.

The 2VGP Gn(x, y) are quasi-monomial [8] with respect to the following multiplicative
and derivative operators:

M̂G = x +
ϕ′(y, Dx)
ϕ(y, Dx)

(
Dx :=

∂

∂x
;ϕ′(y, t) :=

∂

∂t
ϕ(y, t)

)
(1.20)

and

P̂G = Dx, (1.21)

respectively.
In view of the monomiality principle, the 2VGP Gn(x, y) satisfy the following relations:

M̂G

{
Gn(x, y)

}
= Gn+1(x, y), (1.22)

P̂G

{
Gn(x, y)

}
= nGn–1(x, y), (1.23)

M̂GP̂G

{
Gn(x, y)

}
= nGn(x, y), (1.24)

exp(M̂Gt){1} =
∞∑

n=0

Gn(x, y)
tn

n!
(|t| < ∞)

. (1.25)
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Table 1 Certain members of 2VGP familyGn(x, y)

S. no. ϕ(y, t) Generating functions Polynomials

I. eyt
r

ext+yt
r
=

∑∞
n=0H

(r)
n (x, y)

tn
n! The Gould–Hopper polynomialsH(r)

n (x, y) [4]

II. C0(yt) extC0(yt) =
∑∞

n=0 Ln(y, x)
tn
n! The 2-variable Laguerre polynomials Ln(y, x) [1]

III. 1
1–yts

1
1–yts e

xt =
∑∞

n=0 e
(s)
n (x, y) t

n
n! , The 2-variable truncated exponential of order s e(s)n (x, y) [2]

VI. A(t)eyt
2

A(t)ext+yt
2
=

∑∞
n=0 HAn(x, y) t

n
n! , The Hermite–Appell polynomialsHAn(x, y) [10]

The 2VGP family Gn(x, y) contains a number of significant 2-variable special polynomi-
als. Based on suitable selection for the function ϕ(y, t), different members belonging to the
family of 2-variable general polynomials Gn(x, y) can be obtained. These members along
with their notations, names and generating functions are mentioned in Table 1.

The article is organized as follows: In Sect. 2, two parametric types of the generalized
Fubini-type polynomials are introduced via monomiality principle. The generating func-
tions, multiplicative and derivative operators and differential equations for these families
of polynomials are established. In Sect. 3, series definitions and certain other important
relations for the generalized Fubini-type polynomials are derived. In Sect. 4, some partial
derivative equations including these polynomials are obtained. In Sect. 5, certain members
related to the generalized Fubini-type polynomials are considered as special cases.

2 Generalized Fubini-type polynomials via monomiality principle
In this section, with the help of the monomiality principle, two parametric types of the
generalized Fubini-type polynomials are introduced by means of the generating functions.
Further, quasi-monomial properties and differential equations satisfied by these polyno-
mials are established.

Theorem 1 The generating functions for the generalized Fubini-type polynomials
GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) are given as follows:

2υ

(2 – et)2υ
extϕ(y, t) cos(zt) =

∞∑

n=0
GF (c,υ)

n (x, y, z)
tn

n!
(
υ ∈N0; |t| < log 2

)
(2.1)

and

2υ

(2 – et)2υ
extϕ(y, t) sin(zt) =

∞∑

n=0
GF (s,υ)

n (x, y, z)
tn

n!
(
υ ∈N0; |t| < log 2

)
, (2.2)

respectively.

Proof In Eq. (1.7), replacing x and y by the multiplicative operator M̂G of the 2VGPGn(x, y)
and z, respectively, gives

2υ

(2 – et)2υ
exp(M̂Gt) cos(zt) =

∞∑

n=0

F (c,υ)
n (M̂G, z)

tn

n!
, (2.3)
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which, upon using Eq. (1.25) in the left hand side and Eq. (1.20) in the right hand side,
gives

2υ

(2 – et)2υ

( ∞∑

n=0

Gn(x, y)
tn

n!

)
cos(zt) =

∞∑

n=0

F (c,υ)
n

(
x +

ϕ′(y, Dx)
ϕ(y, Dx)

, z
)

tn

n!
. (2.4)

Finally, using Eq. (1.18) in the left hand side and denoting the resultant generalized Fubini-
type polynomials in the right hand side by GF (c,υ)

n (x, y, z), that is,

GF (c,υ)
n (x, y, z) = F (c,υ)

n

(
x +

ϕ′(y, Dx)
ϕ(y, Dx)

, z
)

, (2.5)

we get the assertion in Eq. (2.1). Similarly, we can prove the assertion in Eq. (2.2). �

In order to derive the quasi-monomial properties of Fubini-type polynomials
GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z), we prove the following results.

Theorem 2 The generalized Fubini-type polynomials GF (c,υ)
n (x, y, z) and GF (s,υ)

n (x, y, z) are
quasi-monomial with respect to the following multiplicative and derivative operators:

M̂GFc = x +
ϕ′(y, Dx)
ϕ(y, Dx)

+
2υeDx

2 – eDx
– z tan(zDx) (2.6)

and

P̂GFc = Dx; (2.7)

M̂GFs = x +
ϕ′(y, Dx)
ϕ(y, Dx)

+
2υeDx

2 – eDx
+ z cot(zDx) (2.8)

and

P̂GFs = Dx, (2.9)

respectively.

Proof Differentiating Eq. (2.1) partially with respect to t gives

(
x +

ϕ′(y, t)
ϕ(y, t)

+
2υet

2 – et – z tan(zt)
)(

2υ

(2 – et)2υ

)
extϕ(y, t) cos(zt)

=
∞∑

n=0
GF (c,υ)

n+1 (x, y, z)
tn

n!
(2.10)

which, in view of Eq. (2.1), becomes

∞∑

n=0

(
x +

ϕ′(y, t)
ϕ(y, t)

+
2υet

2 – et – z tan(zt)
){

GF (s,υ)
n (x, y, z)

tn

n!

}
=

∞∑

n=0
GF (c,υ)

n+1 (x, y, z)
tn

n!
. (2.11)
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Now, applying the identity

Dx
(
extϕ(y, t)

)
= t

(
extϕ(y, t)

)
(2.12)

in Eq. (2.11) and equating the coefficients of like powers of t in both sides of the resultant
equation, we get

(
x +

ϕ′(y, Dx)
ϕ(y, Dx)

+
2υeDx

2 – eDx
– z tan(zDx)

){
GF (s,υ)

n (x, y, z)
}

= GF (c,υ)
n+1 (x, y, z), (2.13)

which in view of the monomiality principle given in Eq. (1.22) (for GF (c,υ)
n (x, y, z)) yields the

assertion in Eq. (2.6).
Next, differentiating Eq. (2.1) partially with respect to x gives

Dx

{ ∞∑

n=0
GF (c,υ)

n (x, y, z)
tn

n!

}
=

∞∑

n=0
GF (c,υ)

n–1 (x, y, z)
tn

(n – 1)!
, (2.14)

which, upon equating the coefficients of like powers of t together with the use of mono-
miality principle given in Eq. (1.23) (for GF (c,υ)

n (x, y, z)), yields the assertion in Eq. (2.7).
Furthermore, using similar arguments as in the proof of Eqs. (2.6) and (2.7), we can prove
the assertions in Eqs. (2.8) and (2.9). �

Theorem 3 The generalized Fubini-type polynomials GF (c,υ)
n (x, y, z) and GF (s,υ)

n (x, y, z) sat-
isfy the following differential equations:

(
xDx +

ϕ′(y, Dx)
ϕ(y, Dx)

Dx +
2υeDx

2 – eDx
Dx – z tan(zDx)Dx – n

)
GF (c,υ)

n (x, y, z) = 0 (2.15)

and

(
xDx +

ϕ′(y, Dx)
ϕ(y, Dx)

Dx +
2υeDx

2 – eDx
Dx + z cot(zDx)Dx – n

)
GF (s,υ)

n (x, y, z) = 0, (2.16)

respectively.

Proof Using operators (2.6) and (2.7) and in view of the monomiality principle in
Eq. (1.24), we get the assertion in Eq. (2.15). Similarly, we can prove the assertion in
Eq. (2.16). �

The properties established in this section show that the operational technique provides
a mechanism to obtain results for these polynomials as well as their generalizations and
demonstrate the usefulness of method in problems of both physics and mathematics.

3 Identities and relations
In this section, by using generating functions (2.1) and (2.2), we establish various novel
identities and relations including the generalized Fubini-type polynomials.
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Theorem 4 The generalized Fubini-type polynomials GF (c,υ)
n (x, y, z) and GF (s,υ)

n (x, y, z) are
defined by the following series representations:

GF (c,υ)
n (x, y, z) =

n∑

κ=0

(
n
κ

)
F (c,υ)

n–κ (z)Gκ (x, y) (3.1)

and

GF (s,υ)
n (x, y, z) =

n∑

κ=0

(
n
κ

)
F (s,υ)

n–κ (z)Gκ (x, y), (3.2)

respectively.

Proof Utilizing generating relations (1.7) and (1.18) in generating relation (2.1) and mak-
ing use of the Cauchy product rule in the resultant equation, we get

∞∑

n=0
GF (c,υ)

n (x, y, z)
tn

n!
=

∞∑

n=0

n∑

κ=0

(
n
κ

)
F (c,υ)

n–κ (z)Gκ (x, y)
tn

n!
. (3.3)

Comparing the coefficients of the analogous powers of t in both sides of the above equa-
tion, we get the assertion in Eq. (3.1). Similarly, we can get the assertion in Eq. (3.2). �

Theorem 5 The following summation formulae for the generalized Fubini-type polynomi-
als GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) hold true:

GF (c,υ)
n (x, y, z) =

n∑

κ=0

(
n
κ

)
ϕκ (y)F (c,υ)

n–κ (x, z), (3.4)

GF (s,υ)
n (x, y, z) =

n∑

κ=0

(
n
κ

)
ϕκ (y)F (s,υ)

n–κ (x, z). (3.5)

Proof Utilizing generating relations (1.7) and (1.19) in generating relation (2.1) and mak-
ing use of the Cauchy product rule in the resultant equation, we get

∞∑

n=0
GF (c,υ)

n (x, y, z)
tn

n!
=

∞∑

n=0

n∑

κ=0

(
n
κ

)
ϕk(y)F (c,υ)

n–κ (x, z)
tn

n!
. (3.6)

Comparing the coefficients of the analogous powers of t in both sides of the above equa-
tion, we get the assertion in Eq. (3.4). Similarly, we can get the assertion in Eq. (3.5). �

Theorem 6 The following implicit summation formula for the generalized Fubini-type
polynomials GF (c,υ)

n (x, y, z) holds true:

GF (c,υ)
n (x + u, y, z) =

n∑

κ=0

(
n
κ

)
GF (c,υ)

n–κ (x, y, z)uκ . (3.7)
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Proof In Eq. (2.1), replacing x by x + u then making use of Eq. (2.1) together with the series
expansion of eut in the resultant equation, we get

∞∑

n=0
GF (c,υ)

n (x + u, y, z)
tn

n!
=

∞∑

n=0

∞∑

κ=0
GF (c,υ)

n (x, y, z)uκ tn+κ

n!κ !
, (3.8)

which, upon replacing n by n – κ in the right hand side and then comparing the coeffi-
cients of the like powers of t in both sides of the resultant equation yields the assertion in
Eq. (3.7). �

Corollary 1 For u = x in Eq. (3.7), we have

GF (c,υ)
n (2x, y, z) =

n∑

κ=0

(
n
κ

)
GF (c,υ)

n–κ (x, y, z)xκ . (3.9)

Corollary 2 For u = 1 in Eq. (3.7), we have

GF (c,υ)
n (x + 1, y, z) =

n∑

κ=0

(
n
κ

)
GF (c,υ)

n–κ (x, y, z). (3.10)

Theorem 7 The following implicit summation formula for the generalized Fubini-type
polynomials GF (s,υ)

n (x, y, z) holds true:

GF (s,υ)
n (x + u, y, z) =

n∑

κ=0

(
n
κ

)
F (s,υ)

n–κ (x, z)Gκ (u, y). (3.11)

Proof In Eq. (2.1), replacing x by x + u then making use of Eqs. (1.8) and (1.18) in the
resultant equation, we get

∞∑

n=0
GF (s,υ)

n (x + u, y, z)
tn

n!
=

∞∑

n=0

∞∑

κ=0

F (s,υ)
n (x, z)Gκ (u, y)

tn+κ

n!κ !
, (3.12)

which, upon simplification, gives the desired result. �

Theorem 8 The following implicit summation formula for the generalized Fubini-type
polynomials GF (c,υ)

n (x, y, z) holds true:

GF (c,υ)
n+κ (ω, y, z) =

n∑

l=0

κ∑

m=0

(
n
l

)(
κ

m

)
(ω – x)l+m

GF (c,υ)
n+κ–l–m(x, y, z). (3.13)

Proof Consider the following identity [11]:

∞∑

m=0

g(m)
(x + y)m

m!
=

∞∑

s,r=0

g(s + r)
xsyr

s!r!
. (3.14)
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Replacing t by t + s in the generating function (2.1) and making use of the identity (3.14),
we have

2υ

(2 – e(t+s))2υ
ϕ(y, t + s) cos

(
z(t + s)

)
= e–x(t+s)

∞∑

n,κ=0
GF (c,υ)

n+κ (x, y, z)
tnsκ

n!κ !
. (3.15)

Replacing x by ω in Eq. (3.15), equating the resultant equation to Eq. (3.15) and then
expanding the exponential function, we get

∞∑

n,κ=0
GF (c,υ)

n+κ (ω, y, z)
tnsκ

n!κ !
=

∞∑

χ=0

((ω – x)(t + s))χ

χ !

∞∑

n,κ=0
GF (c,υ)

n+κ (x, y, z)
tnsκ

n!κ !
. (3.16)

Now, making use of identity (3.14) in the right hand side of the above equation then
replacing n by n – l and κ by κ – m in the right hand side of the resultant equation gives

∞∑

n,κ=0
GF (c,υ)

n+κ (ω, y, z)
tnsκ

n!κ !
=

∞∑

n,κ=0

n,κ∑

l,m=0

(ω – x)l+m
GF (c,υ)

n+κ–l–m(x, y, z)tnsκ

l!m!(n – l)!(κ – m)!
. (3.17)

Finally, comparing the coefficients of the like powers of t and s in both sides of Eq. (3.17)
yields the assertion in Eq. (3.13). �

Corollary 3 Taking z = 0 and replacing ω by ω + x Eq. (3.13), we get

GF (υ)
n+κ (ω + x, y) =

n∑

l=0

κ∑

m=0

(
n
l

)(
κ

m

)
ωl+m

GF (υ)
n+κ–l–m(x, y). (3.18)

Theorem 9 Let υ,σ ∈N0, then the following identities hold true:

GF (c,υ+σ )
n (x, y, z) =

n∑

κ=0

(
n
κ

)
F (υ)

κ GF (c,σ )
n–κ (x, y, z) (3.19)

and

GF (s,υ+σ )
n (x, y, z) =

n∑

κ=0

(
n
κ

)
F (υ)

κ GF (s,σ )
n–κ (x, y, z). (3.20)

Proof Rewriting generating relation (2.1) in the following form:

∞∑

n=0
GF (c,υ+σ )

n (x, y, z)
tn

n!
=

2υ+σ

(2 – et)2(υ+σ ) extϕ(y, t) cos(zt)

=
2υ

(2 – et)2υ

2σ

(2 – et)2σ
extϕ(y, t) cos(zt), (3.21)

which, upon using Eqs. (1.2) and (2.1) and then after simplification yields the assertion in
Eq. (3.19). The assertion in Eq. (3.20) can be proved similarly. �

Theorem 10 Let n ∈N0 and i =
√

–1 ∈C, then

GF (υ)
n (x + iz, y) = GF (c,υ)

n (x, y, z) + iGF (s,υ)
n (x, y, z). (3.22)
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Proof Taking z = 0 and replacing x by x + iz in Eq. (2.1), it follows that

∞∑

n=0
GF (υ)

n (x + iz, y)
tn

n!
=

2υ

(2 – et)2υ
e(x+iz)tϕ(y, t)

=
2υ

(2 – et)2υ
extϕ(y, t) cos(zt) + i

2υ

(2 – et)2υ
extϕ(y, t) sin(zt), (3.23)

which, upon using Eqs. (2.1) and (2.2) in the right hand side and then comparing the co-
efficients of the like powers of t in both sides of the resultant equation yields the assertion
in Eq. (3.22). �

Theorem 11 For υ ∈ N0, the following identities hold true:

xnϕ(y, t) cos(zt) =
2υ∑

δ=0

n∑

κ=0

(–1)δ
(

2υ

δ

)(
n
κ

)
2υ–δδn–κ

GF (c,υ)
κ (x, y, z) (3.24)

and

xnϕ(y, t) sin(zt) =
2υ∑

δ=0

n∑

κ=0

(–1)δ
(

2υ

δ

)(
n
κ

)
2υ–δδn–κ

GF (s,υ)
κ (x, y, z). (3.25)

Proof Rewriting generating relation (2.1) in the following form:

2υextϕ(y, t) cos(zt) =
(
2 – et)2υ

∞∑

n=0
GF (c,υ)

n (x, y, z)
tn

n!
, (3.26)

which can be written as

2υextϕ(y, t) cos(zt) =
2υ∑

δ=0

(–1)δ
(

2υ

δ

)
22υ–δeδt

∞∑

n=0
GF (c,υ)

n (x, y, z)
tn

n!
. (3.27)

Finally, expanding the exponentials in both sides of the above equation and then after
simplification, gives the assertion in Eq. (3.24). Similarly, the assertion in Eq. (3.25) can be
proved. �

Theorem 12 For n ∈N0, the following identity holds true:

n∑

κ=0

(
n
κ

)
F (υ)

n–κ (x)GF (s,σ )
κ (x, y, 2z) = 2

n∑

κ=0

(
n
κ

)
F (s,υ)

κ (x, z)GF (c,σ )
n–κ (x, y, z). (3.28)

Proof In view of Eqs. (1.1) and (2.2), we have

∞∑

n=0

F (υ)
n (x)

tn

n!

∞∑

n=0
GF (s,σ )

n (x, y, 2z)
tn

n!

=
2υ

(2 – et)2υ
ext 2σ

(2 – et)2σ
extϕ(y, t) sin(2zt)

= 2
2υ

(2 – et)2υ
ext sin(zt)

2σ

(2 – et)2σ
extϕ(y, t) cos(zt), (3.29)
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which, upon using Eqs. (1.8) and (2.1) and then after simplification and comparing the co-
efficients of the like powers of t in both sides of the resultant equation yields the assertion
in Eq. (3.28). �

4 Partial derivative equations
In this section, we establish various partial derivative equations including the general-
ized Fubini-type polynomials GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) by applying partial deriva-

tive operator to generating relations (2.1) and (2.2). To achieve this, the following results
are proved.

Theorem 13 Let m, n ∈ N with n � m. Then the following partial derivative formulas for
the generalized Fubini-type polynomials GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) hold true:

∂m

∂xm

{
GF (c,υ)

n (x, y, z)
}

= 2– 3δ
2

n∑

κ=0

m!
(

n
κ

)(
n – κ

m

)
E (δ)

κ

(
–

1
2

)
GF (c,υ– δ

2 )
n–κ–m (x, y, z) (4.1)

and

∂m

∂xm

{
GF (s,υ)

n (x, y, z)
}

= 2– δ
2

n∑

κ=0

m!κ !
(κ + δ)!

(
n
κ

)(
n – κ

m

)
B

(δ)
κ+δ

(
1
2

)
GF (s,υ– δ

2 )
n–κ–m (x, y, z), (4.2)

respectively.

Proof Applying the derivative operator ∂m

∂xm to the generating relation (2.1) gives

∞∑

n=0

∂m

∂xm

{
GF (c,υ)

n (x, y, z)
} tn

n!

= tm
{

2υ

(2 – et)2υ
extϕ(y, t) cos(zt)

}

= tm
{

2– 3δ
2

(
2

– 1
2 et + 1

)δ 2υ– δ
2

(2 – et)2(υ– δ
2 )

extϕ(y, t) cos(zt)
}

, (4.3)

which, in view of Eqs. (1.10) and (2.1) and after simplification, becomes

∞∑

n=0

∂m

∂xm

{
GF (c,υ)

n (x, y, z)
} tn

n!

= 2– 3δ
2

∞∑

n=0

n∑

κ=0

m!
(

n
κ

)(
n – κ

m

)
E (δ)

κ

(
–

1
2

)
GF (c,υ– δ

2 )
n–κ–m (x, y, z)

tn

n!
. (4.4)

Finally, comparing the coefficients of tn

n! on both sides of the above equation, we are led
at the assertion in Eq. (4.1). The assertion (4.2) can be proved in a similar way. �
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Theorem 14 Let m, n ∈N with n � m. Then

∂m

∂xm

{
GF (s,υ)

n (x + u, y, z + ω)
}

=
n∑

κ=0

m!
(

n
κ

)(
κ

m

){
GF (s,υ)

κ–m(x, y, z)Cn–κ (u,ω) + GF (c,υ)
κ–m(x, y, z)Sn–κ (u,ω)

}
. (4.5)

Proof Replacing x by x + u and z by z + ω in Eq. (2.2) and then applying the derivative
operator ∂m

∂xm to the resultant equation, it follows that

∞∑

n=0

∂m

∂xm

{
GF (s,υ)

n (x + u, y, z + ω)
} tn

n!

= tm
{

2υ

(2 – et)2υ
e(x+u)tϕ(y, t) sin

(
(z + ω)t

)}

= tm
{

2υ

(2 – et)2υ
extϕ(y, t) sin(zt)eut cos(ωt)

+
2υ

(2 – et)2υ
extϕ(y, t) cos(zt)eut sin(ωt)

}
. (4.6)

Next, in view of Eqs. (1.3), (1.4), (2.1) and (2.2), Eq. (4.6) becomes

∞∑

n=0

∂m

∂xm

{
GF (s,υ)

n (x + u, y, z + ω)
} tn

n!

=
∞∑

n=0

n∑

κ=0

m!
(

κ

m

)
GF (s,υ)

κ–m(x, y, z)Cn–κ (u,ω)
tn

κ !(n – κ)!

+
∞∑

n=0

n∑

κ=0

m!
(

κ

m

)
GF (c,υ)

κ–m(x, y, z)Sn–κ (u,ω)
tn

κ !(n – κ)!
, (4.7)

which, upon simplification, yields the desired result (4.5). �

Theorem 15 Let υ,σ ∈N0 and m, n ∈ N with n � m. Then

∂m

∂um

{
GF (c,υ+σ )

n (x + u, y, z)
}

=
n!

2υ (n + 2υ)!

n+2υ∑

κ=0

m!
(

n + 2υ

κ

)(
κ

m

)
B

(2υ)
κ–m

(
x,

1
2

)
GF (c,σ )

n+2υ–κ (u, y, z) (4.8)

and

∂m

∂um

{
GF (s,υ+σ )

n (x + u, y, z)
}

=
n!

23υ (n + 2υ)!

n+2υ∑

κ=0

m!
(

n + 2υ

κ

)(
κ

m

)
G(2υ)

κ–m

(
x, –

1
2

)
GF (s,σ )

n+2υ–κ (u, y, z). (4.9)
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Proof Replacing x by x + u and υ by υ + σ in Eq. (2.1) and then applying the derivative
operator ∂m

∂xm to the resultant equation, it follows that

∞∑

n=0

∂m

∂xm

{
GF (c,υ+σ )

n (x + u, y, z)
} tn

n!

= tm
{

2υ+σ

(2 – et)2(υ+σ ) e(x+u)tϕ(y, t) cos(zt)
}

= tm
{

2υ

(2 – et)2υ
ext 2σ

(2 – et)2σ
eutϕ(y, t) cos(zt)

}

= tm
{

2–υ t–2υ

(
t

1
2 et – 1

)2υ

ext 2σ

(2 – et)2σ
eutϕ(y, t) cos(zt)

}
, (4.10)

which, in view of Eqs. (1.9) and (2.1), becomes

∞∑

n=0

∂m

∂xm

{
GF (c,υ+σ )

n (x + u, y, z)
} tn

n!

= tm

{
2–υ t–2υ

∞∑

n=0

B
(2υ)
n

(
x,

1
2

)
tn

n!

∞∑

n=0
GF (c,σ )

n (u, y, z)
tn

n!

}
. (4.11)

Finally, simplifying and then equating the coefficients of the like powers of t in the re-
sultant equation yields the assertion in Eq. (4.8). Similarly, we can prove the desired result
(4.9). �

Theorem 16 For n ∈N, we have

∂

∂x
{
GF (c,υ)

n (x, y, z)
}

=
1

23δ

n∑

κ=0

(n – κ)
(

n
κ

)
E (2δ)

κ

(
–

1
2

)
GF (c,υ–δ)

n–κ–1 (x, y, z) (4.12)

and

∂

∂x
{
GF (s,υ)

n (x, y, z)
}

=
1

23δ

n∑

κ=0

(n – κ)κ !
(κ + 2δ)!

(
n
κ

)
G(2δ)

κ+2δ

(
–

1
2

)
GF (s,υ–δ)

n–κ–1 (x, y, z). (4.13)

Proof Differentiating generating relation (2.1) with respect to x, gives

∞∑

n=0

∂

∂x
{
GF (c,υ)

n (x, y, z)
} tn

n!

= t
{

1
23δ

(
2

– 1
2 et + 1

)2δ( 2υ–δ

(2 – et)2(υ–δ)

)
extϕ(y, t) cos(zt)

}
, (4.14)

which, upon using Eqs. (1.10) and (2.1) then simplifying and equating the coefficients of
the like powers of t in the resultant equation yields the assertion in Eq. (4.12). The result
(4.13) can be derived similarly. �
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Remark 1 For n ∈ N and in view of Eqs. (2.1) and (2.2), the following results can be ob-
tained:

∂

∂x
{
GF (c,υ)

n (x, y, z)
}

= nGF (c,υ)
n–1 (x, y, z), (4.15)

∂

∂x
{
GF (s,υ)

n (x, y, z)
}

= nGF (s,υ)
n–1 (x, y, z), (4.16)

∂

∂z
{
GF (c,υ)

n (x, y, z)
}

= –nGF (s,υ)
n–1 (x, y, z), (4.17)

and

∂

∂z
{
GF (s,υ)

n (x, y, z)
}

= nGF (c,υ)
n–1 (x, y, z). (4.18)

Furthermore, we have

∂

∂x
{
GF (c,υ)

n (x, y, z)
}

=
∂

∂z
{
GF (s,υ)

n (x, y, z)
}

. (4.19)

The theory of hybrid special polynomials has been one of the most emerging research
topic in mathematical analysis and extensively studied to find useful properties and iden-
tities. Applications of various properties of multivariable hybrid special polynomials arise
in problems of number theory, combinatorics, theoretical physics and other areas of pure
and applied mathematics provide motivation for introducing a new class of generalized
Fubini-type polynomials and explore its properties.

The properties and applications of these polynomials lie within the root polynomials.
To explore the applications of the hybrid class of generalized Fubini-type polynomials, we
have:

1. The hybrid polynomials comprising Fubini type polynomials occurs in many
application not only in combinatorial analysis, but also other branches of
mathematics, engineering and related areas.

2. The reason of interest for the hybrid polynomials related with truncated
exponential polynomials originates from the fact that they appear in the theory of
flattened Beam which assumes a role of foremost significance in optics and
particularly in super-Gaussian optical resonators and plays an important role to
evaluate integrals including products of special functions.

3. The motivation for the hybrid polynomials related with Laguerre polynomials is
because of their intrinsic scientific significance and to the way that these
polynomials are demonstrated to be natural solutions of a particular set of partial
differential equations which often appear in the treatment of radiation physics
problems such as the electromagnetic wave propagation and quantum beam
life-time in storage rings.

4. The hybrid polynomials involving Hermite polynomials occur in probability as the
Edgeworth series; in combinatorics, they arise in the umbral calculus as an example
of an Appell sequence (play an important role in various problems connected with
functional equations, interpolation problems, approximation theory, summation
methods); in numerical analysis, they play a role in Gaussian quadrature; and in
physics, they appear in quantum mechanical and optical beam transport problems.
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In the next section, certain special cases of the generalized Fubini-type polynomials
GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) are considered.

5 Special cases
We note that corresponding to each member belonging to the 2VGP Gn(x, y), there exists
a new special hybrid polynomial belonging to the generalized Fubini-type polynomials of
parametric kind GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z). The results related to these special hybrid

polynomials can be obtained from the results established in the previous sections.

5.1 Gould–Hopper–Fubini-type polynomials
Since, for ϕ(y, t) = eytr , the 2VGP Gn(x, y) reduce to the Gould–Hopper polynomials
H(r)

n (x, y) (Table 1(I)), for the same choices of ϕ(y, t), the generalized Fubini-type poly-
nomials GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) reduce to the Gould–Hopper–Fubini-type poly-

nomials (GHFTP) H(r) F (c,υ)
n (x, y, z) and H(r) F (s,υ)

n (x, y, z). Thus, by taking ϕ(y, t) = eytr in the
results established in Sects. 2–4, we can obtain the corresponding results for the GHFTP

H(r) F (c,υ)
n (x, y, z) and H(r) F (s,υ)

n (x, y, z), these results are listed in Tables 2 and 3.

Table 2 Results for H(r)F(c,υ)n (x, y, z)

Generating function 2υ

(2–et )2υ
ext+yt

r
cos(zt) =

∑∞
n=0 H(r)F

(c,υ)
n (x, y, z) t

n
n!

Multiplicative and
derivative operators

M̂GHFc = x + ryDr–1
x + 2υeDx

2–eDx
– z tan(zDx ), P̂GHFc := Dx

Differential
equation

(xDx + ryDr
x +

2υeDx

2–eDx
Dx – z tan(zDx )Dx – n)H(r)F

(c,υ)
n (x, y, z) = 0

Identities and
relations

H(r)F
(c,υ)
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(c,υ)n–κ (z)H(r)

κ (x, y)

H(r)F
(c,υ)
n (x + u, y, z) =

∑n
κ=0

(n
κ

)
H(r)F

(c,υ)
n–κ (x, y, z)uκ

H(r)F
(c,υ)
n+κ (ω, y, z) =

∑n
l=0

∑κ
m=0

(n
l

)(κ
m

)
(ω – x)l+mH(r)F

(c,υ)
n+κ–l–m(x, y, z)

H(r)F
(c,υ+σ )
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(υ)κ H(r)F

(c,σ )
n–κ (x, y, z)

xneyt
r
cos(zt) =

∑2υ
δ=0

∑n
κ=0(–1)

δ
(2υ

δ

)(n
κ

)
2υ–δδn–κH(r)F

(c,υ)
κ (x, y, z)

Partial derivatives
equations

∂m

∂xm {H(r)F
(c,υ)
n (x, y, z)} = 2–

3δ
2

∑n
κ=0m!

(n
κ

)(n–κ
m

)
E (δ)

κ (– 1
2 )H(r)F

(c,υ– δ
2 )

n–κ–m (x, y, z)
∂m

∂um {H(r)F
(c,υ+σ )
n (x + u, y, z)} = n!

2υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
B

(2υ)
κ–m(x,

1
2 )H(r)F

(c,σ )
n+2υ–κ (u, y, z)

∂
∂x {H(r)F

(c,υ)
n (x, y, z)} = 1

23δ

∑n
κ=0(n – κ )

(n
κ

)
E (2δ)

κ (– 1
2 )H(r)F

(c,υ–δ)
n–κ–1 (x, y, z)

Table 3 Results for H(r)F(s,υ)n (x, y, z)

Generating function 2υ

(2–et )2υ
ext+yt

r
sin(zt) =

∑∞
n=0 H(r)F

(s,υ)
n (x, y, z) t

n
n!

Multiplicative and
derivative operators

M̂GHFs = x + ryDr–1
x + 2υeDx

2–eDx
+ z cot(zDx ), P̂GHFs := Dx

Differential
equation

(xDx + ryDr
x +

2υeDx

2–eDx
Dx + z cot(zDx )Dx – n)H(r)F

(s,υ)
n (x, y, z) = 0

Identities and
relations

H(r)F
(s,υ)
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (z)H(r)

κ (x, y)

H(r)F
(s,υ)
n (x + u, y, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (x, z)H(r)

κ (u, y)

H(r)F
(s,υ+σ )
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(υ)κ H(r)F

(s,σ )
n–κ (x, y, z)

xneyt
r
sin(zt) =

∑2υ
δ=0

∑n
κ=0(–1)

δ
(2υ

δ

)(n
κ

)
2υ–δδn–κH(r)F

(s,υ)
κ (x, y, z)

Partial derivatives
equations

∂m

∂xm {H(r)F
(s,υ)
n (x, y, z)} = 2–

δ
2

∑n
κ=0

m!κ !
(κ+δ)!

(n
κ

)(n–κ
m

)
B

(δ)
κ+δ (

1
2 )H(r)F

(s,υ– δ
2 )

n–κ–m (x, y, z)
∂m

∂um {H(r)F
(s,υ+σ )
n (x + u, y, z)} = n!

23υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
G(2υ)

κ–m(x, –
1
2 )H(r)F

(s,σ )
n+2υ–κ (u, y, z)

∂
∂x {H(r)F

(s,υ)
n (x, y, z)} = 1

23δ

∑n
κ=0

(n–κ )κ !
(κ+2δ)!

(n
κ

)
G(2δ)

κ+2δ (–
1
2 )H(r)F

(s,υ–δ)
n–κ–1 (x, y, z)
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Furthermore, in view of Eqs. (3.22), (3.28) and (4.5), we have

H(r) F (υ)
n (x + iz, y) = H(r) F (c,υ)

n (x, y, z) + iH(r) F (s,υ)
n (x, y, z), (5.1)

n∑

κ=0

(
n
κ

)
F (υ)

n–κ (x)H(r) F (s,σ )
κ (x, y, 2z)

= 2
n∑

κ=0

(
n
κ

)
F (s,υ)

κ (x, z)H(r) F (c,σ )
n–κ (x, y, z) (5.2)

and

∂m

∂xm

{
H(r) F (s,υ)

n (x + u, y, z + ω)
}

=
n∑

κ=0

m!
(

n
κ

)(
κ

m

){
H(r) F (s,υ)

κ–m(x, y, z)Cn–κ (u,ω) + H(r) F (c,υ)
κ–m(x, y, z)Sn–κ (u,ω)

}
. (5.3)

5.2 Laguerre–Fubini-type polynomials
Since, for ϕ(y, t) = C0(yt), the 2VGP Gn(x, y) reduce to the Laguerre polynomials Ln(y, x)
(Table 1(II)). Therefore, for the same choice of ϕ(y, t), the generalized Fubini-type poly-
nomials GF (c,υ)

n (y, x, z) and GF (s,υ)
n (y, x, z) reduce to Laguerre–Fubini-type polynomials

LF (c,υ)
n (y, x, z) and LF (s,υ)

n (y, x, z). Thus, by taking ϕ(y, t) = C0(yt) in the results established in
Sects. 2–4, we can obtain the corresponding results for Laguerre–Fubini-type polynomi-
als LF (c,υ)

n (y, x, z) and LF (s,υ)
n (y, x, z), these results are listed in Tables 4 and 5.

Furthermore, in view of Eqs. (3.22), (3.28) and (4.5), we have

LF (υ)
n (y, x + iz) = LF (c,υ)

n (y, x, z) + iLF (s,υ)
n (y, x, z), (5.4)

n∑

κ=0

(
n
κ

)
F (υ)

n–κ (x)LF (s,σ )
κ (y, x, 2z) = 2

n∑

κ=0

(
n
κ

)
F (s,υ)

κ (x, z)LF (c,σ )
n–κ (y, x, z) (5.5)

Table 4 Results for LF
(c,υ)
n (y, x, z)

Generating function 2υ

(2–et )2υ
extC0(yt) cos(zt) =

∑∞
n=0 LF

(c,υ)
n (y, x, z) t

n
n!

Multiplicative and
derivative operators

M̂LFc = x – D–1
y + 2υeDx

2–eDx
– z tan(zDx ), P̂LFc := Dx

Differential
equation

(xDx – D–1
y Dx + 2υeDx

2–eDx
Dx – z tan(zDx )Dx – n)LF

(c,υ)
n (y, x, z) = 0

Identities and
relations

LF
(c,υ)
n (y, x, z) =

∑n
κ=0

(n
κ

)
F(c,υ)n–κ (z)Lκ (y, x)

LF
(c,υ)
n (y, x + u, z) =

∑n
κ=0

(n
κ

)
LF

(c,υ)
n–κ (y, x, z)uκ

LF
(c,υ)
n+κ (ω, x, z) =

∑n
l=0

∑κ
m=0

(n
l

)(κ
m

)
(ω – x)l+mLF

(c,υ)
n+κ–l–m(y, x, z)

LF
(c,υ+σ )
n (y, x, z) =

∑n
κ=0

(n
κ

)
F(υ)κ LF

(c,σ )
n–κ (y, x, z)

xnC0(yt) cos(zt) =
∑2υ

δ=0
∑n

κ=0(–1)
δ
(2υ

δ

)(n
κ

)
2υ–δδn–κLF

(c,υ)
κ (y, x, z)

Partial derivatives
equations

∂m

∂xm {LF(c,υ)n (y, x, z)} = 2–
3δ
2

∑n
κ=0m!

(n
κ

)(n–κ
m

)
E (δ)

κ (– 1
2 )LF

(c,υ– δ
2 )

n–κ–m (y, x, z)
∂m

∂um {LF(c,υ+σ )
n (y, x + u, z)} = n!

2υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
B

(2υ)
κ–m(x,

1
2 )LF

(c,σ )
n+2υ–κ (u, x, z)

∂
∂x {LF(c,υ)n (y, x, z)} = 1

23δ

∑n
κ=0(n – κ )

(n
κ

)
E (2δ)

κ (– 1
2 )LF

(c,υ–δ)
n–κ–1 (y, x, z)
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Table 5 Results for LF
(s,υ)
n (y, x, z)

Generating function 2υ

(2–et )2υ
extC0(yt) sin(zt) =

∑∞
n=0 LF

(s,υ)
n (y, x, z) t

n
n!

Multiplicative and
derivative operators

M̂LFs = x – D–1
y + 2υeDx

2–eDx
+ z cot(zDx ), P̂LFs := Dx

Differential
equation

(xDx – D–1
y Dx + 2υeDx

2–eDx
Dx + z cot(zDx )Dx – n)LF

(s,υ)
n (y, x, z) = 0

Identities and
relations

LF
(s,υ)
n (y, x, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (z)Lκ (y, x)

LF
(s,υ)
n (y, x + u, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (x, z)Lκ (y,u)

LF
(s,υ+σ )
n (y, x, z) =

∑n
κ=0

(n
κ

)
F(υ)κ LF

(s,σ )
n–κ (y, x, z)

xnC0(yt) sin(zt) =
∑2υ

δ=0
∑n

κ=0(–1)
δ
(2υ

δ

)(n
κ

)
2υ–δδn–κLF

(s,υ)
κ (y, x, z)

Partial derivatives
equations

∂m

∂xm {LF(s,υ)n (y, x, z)} = 2–
δ
2

∑n
κ=0

m!κ !
(κ+δ)!

(n
κ

)(n–κ
m

)
B

(δ)
κ+δ (

1
2 )LF

(s,υ– δ
2 )

n–κ–m (y, x, z)
∂m

∂um {LF(s,υ+σ )
n (y, x + u, z)} = n!

23υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
G(2υ)

κ–m(x, –
1
2 )LF

(s,σ )
n+2υ–κ (y,u, z)

∂
∂x {LF(s,υ)n (y, x, z)} = 1

23δ

∑n
κ=0

(n–κ )κ !
(κ+2δ)!

(n
κ

)
G(2δ)

κ+2δ (–
1
2 )LF

(s,υ–δ)
n–κ–1 (y, x, z)

Table 6 Results for e(s)F
(c,υ)
n (x, y, z)

Generating function ( 2υ

(2–et )2υ
)( ext

1–yts ) cos(zt) =
∑∞

n=0 e(s)F
(c,υ)
n (x, y, z) t

n
n!

Multiplicative and
derivative operators

M̂TEFc = x + syDs–1x
1–yDsx

+ 2υeDx

2–eDx
– z tan(zDx ), P̂TEFc := Dx

Differential
equation

(xDx +
syDsx
1–yDsx

+ 2υeDx

2–eDx
Dx – z tan(zDx )Dx – n)e(s)F

(c,υ)
n (x, y, z) = 0

Identities and
relations

e(s)F
(c,υ)
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(c,υ)n–κ (z)e(s)κ (x, y)

e(s)F
(c,υ)
n (x + u, y, z) =

∑n
κ=0

(n
κ

)
e(s)F

(c,υ)
n–κ (x, y, z)uκ

e(s)F
(c,υ)
n+κ (ω, y, z) =

∑n
l=0

∑κ
m=0

(n
l

)(κ
m

)
(ω – x)l+me(s)F

(c,υ)
n+κ–l–m(x, y, z)

e(s)F
(c,υ+σ )
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(υ)κ e(s)F

(c,σ )
n–κ (x, y, z)

( xn

1–yts ) cos(zt) =
∑2υ

δ=0
∑n

κ=0(–1)
δ
(2υ

δ

)(n
κ

)
2υ–δδn–κ e(s)F

(c,υ)
κ (x, y, z)

Partial derivatives
equations

∂m

∂xm {e(s)F(c,υ)n (x, y, z)} = 2–
3δ
2

∑n
κ=0m!

(n
κ

)(n–κ
m

)
E (δ)

κ (– 1
2 )e(s)F

(c,υ– δ
2 )

n–κ–m (x, y, z)
∂m

∂um {e(s)F(c,υ+σ )
n (x + u, y, z)} = n!

2υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
B

(2υ)
κ–m(x,

1
2 )e(s)F

(c,σ )
n+2υ–κ (u, y, z)

∂
∂x {e(s)F(c,υ)n (x, y, z)} = 1

23δ

∑n
κ=0(n – κ )

(n
κ

)
E (2δ)

κ (– 1
2 )e(s)F

(c,υ–δ)
n–κ–1 (x, y, z)

and

∂m

∂xm

{
LF (s,υ)

n (y, x + u, z + ω)
}

=
n∑

κ=0

m!
(

n
κ

)(
κ

m

){
LF (s,υ)

κ–m(y, x, z)Cn–κ (u,ω) + LF (c,υ)
κ–m(y, x, z)Sn–κ (u,ω)

}
. (5.6)

5.3 Truncated exponential–Fubini-type polynomials
Since, for ϕ(y, t) = 1

1–yts , the 2VGP Gn(x, y) reduce to the truncated exponential polynomi-
als of order s e(s)

n (x, y) (Table 1(III)). Therefore, for the same choice of ϕ(y, t), the generalized
Fubini-type polynomials GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) reduce to truncated exponential–

Fubini-type polynomials e(s) F (c,υ)
n (x, y, z) and e(s) F (s,υ)

n (x, y, z). Thus, by taking ϕ(y, t) = 1
1–yts

in the results established in Sects. 2–4, we can obtain the corresponding results for the
truncated exponential–Fubini-type polynomials e(s) F (c,υ)

n (x, y, z) and e(s) F (s,υ)
n (x, y, z), these

results are listed in Tables 6 and 7.
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Table 7 Results for e(s)F
(s,υ)
n (x, y, z)

Generating function 2υ

(2–et )2υ
( ext

1–yts ) sin(zt) =
∑∞

n=0 e(s)F
(s,υ)
n (x, y, z) t

n
n!

Multiplicative and
derivative operators

M̂TEFs = x + syDs–1x
1–yDsx

+ 2υeDx

2–eDx
+ z cot(zDx ), P̂TEFs := Dx

Differential
equation

(xDx +
syDsx
1–yDsx

+ 2υeDx

2–eDx
Dx + z cot(zDx )Dx – n)e(s)F

(s,υ)
n (x, y, z) = 0

Identities and
relations

e(s)F
(s,υ)
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (z)e

(s)
κ (x, y)

e(s)F
(s,υ)
n (x + u, y, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (x, z)e

(s)
κ (u, y)

e(s)F
(s,υ+σ )
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(υ)κ e(s)F

(s,σ )
n–κ (x, y, z)

( xn

1–yts ) sin(zt) =
∑2υ

δ=0
∑n

κ=0(–1)
δ
(2υ

δ

)(n
κ

)
2υ–δδn–κ e(s)F

(s,υ)
κ (x, y, z)

Partial derivatives
equations

∂m

∂xm {e(s)F(s,υ)n (x, y, z)} = 2–
δ
2

∑n
κ=0

m!κ !
(κ+δ)!

(n
κ

)(n–κ
m

)
B

(δ)
κ+δ (

1
2 )e(s)F

(s,υ– δ
2 )

n–κ–m (x, y, z)
∂m

∂um {e(s)F(s,υ+σ )
n (x + u, y, z)} = n!

23υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
G(2υ)

κ–m(x, –
1
2 )e(s)F

(s,σ )
n+2υ–κ (u, y, z)

∂
∂x {e(s)F(s,υ)n (x, y, z)} = 1

23δ

∑n
κ=0

(n–κ )κ !
(κ+2δ)!

(n
κ

)
G(2δ)

κ+2δ (–
1
2 )e(s)F

(s,υ–δ)
n–κ–1 (x, y, z)

Furthermore, in view of Eqs. (3.22), (3.28) and (4.5), we have

e(s) F (υ)
n (x + iz, y) = e(s) F (c,υ)

n (x, y, z) + ie(s) F (s,υ)
n (x, y, z), (5.7)

n∑

κ=0

(
n
κ

)
F (υ)

n–κ (x)e(s) F (s,σ )
κ (x, y, 2z) = 2

n∑

κ=0

(
n
κ

)
F (s,υ)

κ (x, z)e(s) F (c,σ )
n–κ (x, y, z) (5.8)

and

∂m

∂xm

{
e(s) F (s,υ)

n (x + u, y, z + ω)
}

=
n∑

κ=0

m!
(

n
κ

)(
κ

m

){
e(s) F (s,υ)

κ–m(x, y, z)Cn–κ (u,ω) + e(s) F (c,υ)
κ–m(x, y, z)Sn–κ (u,ω)

}
. (5.9)

5.4 Hermite–Appell–Fubini-type polynomials
Since, for ϕ(y, t) = A(t)eyt2 , the 2VGP Gn(x, y) reduce to the Hermite–Appell polynomials
HAn(x, y) (Table 1(IV)). Therefore, for the same choice of ϕ(y, t), the generalized Fubini-
type polynomials GF (c,υ)

n (x, y, z) and GF (s,υ)
n (x, y, z) reduce to Hermite–Appell–Fubini-type

polynomials HAF (c,υ)
n (x, y, z) and HAF (s,υ)

n (x, y, z). Thus, by taking ϕ(y, t) = eytr in the re-
sults established in Sects. 2–4, we can obtain the corresponding results for the Hermite–
Appell–Fubini-type polynomials HAF (c,υ)

n (x, y, z) and HAF (s,υ)
n (x, y, z), these results are listed

in Tables 8 and 9.
Furthermore, in view of Eqs. (3.22), (3.28) and (4.5), we have

HAF (υ)
n (x + iz, y) = HAF (c,υ)

n (x, y, z) + iHAF (s,υ)
n (x, y, z), (5.10)

n∑

κ=0

(
n
κ

)
F (υ)

n–κ (x)HAF (s,σ )
κ (x, y, 2z) = 2

n∑

κ=0

(
n
κ

)
F (s,υ)

κ (x, z)HAF (c,σ )
n–κ (x, y, z) (5.11)

and

∂m

∂xm

{
HAF (s,υ)

n (x + u, y, z + ω)
}

=
n∑

κ=0

m!
(

n
κ

)(
κ

m

){
HAF (s,υ)

κ–m(x, y, z)Cn–κ (u,ω) + HAF (c,υ)
κ–m(x, y, z)Sn–κ (u,ω)

}
. (5.12)
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Table 8 Results for HAF
(c,υ)
n (x, y, z)

Generating function 2υA(t)
(2–et )2υ

ext+yt
2
cos(zt) =

∑∞
n=0 HAF

(c,υ)
n (x, y, z) t

n
n!

Multiplicative and
derivative operators

M̂HAFc = x + 2yDx +
A′ (Dx )
A(Dx )

+ 2υeDx

2–eDx
– z tan(zDx ), P̂HAFc := Dx

Differential
equation

(xDx + 2yD2
x +

A′ (Dx )
A(Dx )

Dx + 2υeDx

2–eDx
Dx – z tan(zDx )Dx – n)HAF

(c,υ)
n (x, y, z) = 0

Identities and
relations

HAF
(c,υ)
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(c,υ)n–κ (z)HAκ (x, y)

HAF
(c,υ)
n (x + u, y, z) =

∑n
κ=0

(n
κ

)
HAF

(c,υ)
n–κ (x, y, z)uκ

HAF
(c,υ)
n+κ (ω, y, z) =

∑n
l=0

∑κ
m=0

(n
l

)(κ
m

)
(ω – x)l+mHAF

(c,υ)
n+κ–l–m(x, y, z)

HAF
(c,υ+σ )
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(υ)κ HAF

(c,σ )
n–κ (x, y, z)

xnA(t)eyt
2
cos(zt) =

∑2υ
δ=0

∑n
κ=0(–1)

δ
(2υ

δ

)(n
κ

)
2υ–δδn–κHAF

(c,υ)
κ (x, y, z)

Partial derivatives
equations

∂m

∂xm {HAF
(c,υ)
n (x, y, z)} = 2–

3δ
2

∑n
κ=0m!

(n
κ

)(n–κ
m

)
E (δ)

κ (– 1
2 )HAF

(c,υ– δ
2 )

n–κ–m (x, y, z)
∂m

∂um {HAF
(c,υ+σ )
n (x + u, y, z)} = n!

2υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
B

(2υ)
κ–m(x,

1
2 )HAF

(c,σ )
n+2υ–κ (u, y, z)

∂
∂x {HAF

(c,υ)
n (x, y, z)} = 1

23δ

∑n
κ=0(n – κ )

(n
κ

)
E (2δ)

κ (– 1
2 )HAF

(c,υ–δ)
n–κ–1 (x, y, z)

Table 9 Results for HAF
(s,υ)
n (x, y, z)

Generating function 2υA(t)
(2–et )2υ

ext+yt
2
sin(zt) =

∑∞
n=0 HAF

(s,υ)
n (x, y, z) t

n
n!

Multiplicative and
derivative operators

M̂HAFs = x + 2yDx +
A′ (Dx )
A(Dx )

+ 2υeDx

2–eDx
+ z cot(zDx ), P̂HAFs := Dx

Differential
equation

(xDx + 2yD2
x +

A′ (Dx )
A(Dx )

Dx + 2υeDx

2–eDx
Dx + z cot(zDx )Dx – n)HAF

(s,υ)
n (x, y, z) = 0

Identities and
relations

HAF
(s,υ)
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (z)HAκ (x, y)

HAF
(s,υ)
n (x + u, y, z) =

∑n
κ=0

(n
κ

)
F(s,υ)n–κ (x, z)HAκ (u, y)

HAF
(s,υ+σ )
n (x, y, z) =

∑n
κ=0

(n
κ

)
F(υ)κ HAF

(s,σ )
n–κ (x, y, z)

xnA(t)eyt
2
sin(zt) =

∑2υ
δ=0

∑n
κ=0(–1)

δ
(2υ

δ

)(n
κ

)
2υ–δδn–κHAF

(s,υ)
κ (x, y, z)

Partial derivatives
equations

∂m

∂xm {HAF
(s,υ)
n (x, y, z)} = 2–

δ
2

∑n
κ=0

m!κ !
(κ+δ)!

(n
κ

)(n–κ
m

)
B

(δ)
κ+δ (

1
2 )HAF

(s,υ– δ
2 )

n–κ–m (x, y, z)
∂m

∂um {HAF
(s,υ+σ )
n (x + u, y, z)} = n!

23υ (n+2υ)!

∑n+2υ
κ=0 m!

(n+2υ
κ

)(κ
m

)
G(2υ)

κ–m(x, –
1
2 )HAF

(s,σ )
n+2υ–κ (u, y, z)

∂
∂x {HAF

(s,υ)
n (x, y, z)} = 1

23δ

∑n
κ=0

(n–κ )κ !
(κ+2δ)!

(n
κ

)
G(2δ)

κ+2δ (–
1
2 )HAF

(s,υ–δ)
n–κ–1 (x, y, z)

6 Conclusions
In our present work, two-hybrid classes of the generalized Fubini-type polynomials of a
parametric kind are introduced, and their properties are investigated with the help of op-
erational methods. Several important identities and relations are established for these hy-
brid type polynomials. Partial derivative formulas including the generalized Fubini-type
polynomials are also derived. The Gould–Hopper–Fubini-type polynomials, Laguerre–
Fubini-type polynomials, truncated exponential-Fubini-type polynomials, and Hermite–
Appell–Fubini-type polynomials are introduced as special cases of the generalized Fubini-
type polynomials of a parametric kind. The numerical computations of zeros and graphs
related to these special cases can also be done. Furthermore, the symmetry identities, dif-
ferential and integral equations associated with the generalized Fubini-type polynomials
can be established. These aspects may be considered in further investigation.

Appendix
The 3D surface plots are more informative and better for analysis. It helps to visualize the
response surface and hence to provide a clearer concept.
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In this section, we give some interesting graphical representations for GHFTP

H(r) F (c,υ)
n (x, y, z) for suitable values of the parameters and indices. The first few GHFTP

H(r) F (c,υ)
n (x, y, z) for r = 2 and v = 4 are

H(r) F (c,υ)
0 (x, y, z) = 16,

H(r) F (c,υ)
1 (x, y, z) = 128 + 16x,

H(r) F (c,υ)
2 (x, y, z) = 1280 + 256x + 16x2 + 32y – 16z2,

H(r) F (c,υ)
3 (x, y, z) = 15,104 + 3840x + 384x2 + 16x3 + 768y + 96xy – 384z2 – 48xz2,

H(r) F (c,υ)
4 (x, y, z) = 204,032 + 60,416x + 7680x2 + 512x3 + 16x4 + 15,360y + 3072xy

+ 192x2y + 192y2 – 7680z2 – 1536xz2 – 96x2z2 – 192yz2 + 16z4.

The shapes of the GHFTP H(r) F (c,υ)
n (x, y, z) for r = 2, v = 4, y = 3, z = 5 and –100 ≤ x ≤ 100

for n = 1, 2, 3, . . . , 10 are displayed in Fig. 1.
The surface plots of the GHFTP H(r) F (c,υ)

n (x, y, z) for r = 2, v = 4, y = 3 and n = 20 are
displayed in Fig. 2.

Numerical results for number of real and complex zeros of the GHFTP H(r) F (c,υ)
n (x, y, z)

for r = 2, s = 4, y = 3 and z = 5 are listed in Table 10.
Approximate solutions satisfying the GHFP H(r) F (c,v)

n (x, y, z) = 0 for r = 2, v = 4, y = 3 and
z = 4 are given in Table 11.

The zeros of the GHFP H(r) F (c,v)
n (x, y, z) = 0 for r = 2, y = 3, z = 5, n = 20 and x ∈ C are

plotted in Fig. 3.
In Fig. 3, we choose v = 10 (top-left), v = 20 (top-right), v = 30 (bottom-left) and v = 40

(bottom-right).
For b, d ∈ R and x ∈ C, GHFP H(r) F (c,v)

n (x, b, d) has Im(x) = 0 reflection symmetry which
is shown graphically in Fig. 4.

Figure 1 Curve of GHFTP H(r)F
(c,υ)
n (x, y, z)
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Figure 2 Surface plot of GHFTP H(r)F
(c,υ)
n (x, y, z)

Table 10 Numbers of real and complex zeros of H(r)F
(c,v)
n (x, y, z) = 0

Degree n Number of real zeros Number of complex zeros

1 1 0
2 2 0
3 1 2
4 2 2
5 3 2
6 2 4
7 3 4

Table 11 Approximate solutions of H(r)F(c,υ)n (x, y, z)

Degree n Real roots Complex roots

1 –8.0 –
2 –9.7321, –6.2679 –
3 –12.4486 –5.7757 – 2.4171i, –5.7757 + 2.4171i
4 –15.7331, –3.2498 –6.5085 – 5.0405i, –6.5085 + 5.0405i
5 –18.8334, –8.0471, –0.4824 –6.3186 – 7.73086i, –6.3186 + 7.73086i

6 –21.9822, 2.4281 –8.4121 – 3.3098i, –8.4121 + 3.3098i,
–5.8108 – 10.0564i, –5.81082 + 10.0564i

7 –25.1389, –9.3486, 5.3876 –8.2941 – 5.9519i, –8.2941 + 5.9519i,
–5.1559 – 12.1304i, –5.1559 + 12.1304i

Real zeros of the GHFP H(r) F (c,v)
n (x, y, z) = 0 for r = 2, s = 4, y = 3, z = –5, x ∈ R and 1 ≤

n ≤ 20 are plotted in Fig. 5.
Stacks of zeros of GHFP H(r) F (c,v)

n (x, y, z) = 0 for r = 2, v = 4, y = 3, z = 5 and 1 ≤ n ≤ 20
form a 3-D structure and are presented in Fig. 6.
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Figure 3 Zeros of GHFTP H(r)F
(c,υ)
n (x, y, z)

Figure 4 H(r)F
(c,v)
30 (x,b, c) has Im(x) = 0 reflection symmetry

Mathematical problems can be investigated more effectively and more thoroughly using
computers. The ability to make the figures on the computer screen empowers us to en-
vision and produce numerous problems, analyze the properties of figures and search for
new patterns.
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Figure 5 Real zeros of H(r)F
(c,v)
n (x, y, z) = 0

Figure 6 Stacks of zeros of GHFP H(r)F
(c,v)
n (x, y, z) = 0
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