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ABSTRACT. Let R be an arbitrary ring with identity and M a right R-module
with S = Endg(M). In this paper, we introduce a class of modules that is
a generalization of principally quasi-Baer rings and Baer modules. The mod-
ule gM is called principally quasi-Baer if for any m € M, lg(Sm) = Se for
some €2 = e € S. Tt is proved that (1) if M is regular and semicommutative
module or (2) if Mg is principally semisimple and gM is abelian, then gM is
a principally quasi-Baer module. The connection between a principally quasi-
Baer module g M and polynomial extension, power series extension, Laurent
polynomial extension, Laurent power series extension of gM is investigated.

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity, and mod-
ules will be unitary right R-modules. For a module M, S = Endg (M) denotes the
ring of right R-module endomorphisms of M. Then M is a left S-module, right
R-module and (S, R)-bimodule. In this work, for any rings S and R and any (S, R)-
bimodule M, rr(.) and I3;(.) denote the right annihilator of a subset of M in R
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and the left annihilator of a subset of R in M, respectively. Similarly, ls(.) and
rar(.) will be the left annihilator of a subset of M in S and the right annihilator of
a subset of S in M, respectively. A ring R is reduced if it has no nonzero nilpotent
elements. Recently the reduced ring concept was extended to modules by Lee and
Zhou in [9], that is, a module M is called reduced if for any m € M and any a € R,
ma = 0 implies mR N Ma = 0. A ring R is called semicommutative if for any
a,b € R, ab= 0 implies aRb = 0. The module gM is called semicommutative if for
any f € S and m € M, fm = 0 implies fSm = 0 (see [3] for details). Baer rings
[7] are introduced as rings in which the right (left) annihilator of every nonempty
subset is generated by an idempotent. A ring R is said to be right quasi-Baer [5]
if the right annihilator of each right ideal of R is generated (as a right ideal) by an
idempotent. A ring R is called right principally quasi-Baer [4] if the right annihila-
tor of a principal right ideal of R is generated by an idempotent. An R-module g M
is called Baer [12] if for all R-submodules N of M, Ig(N) = Se with e = ¢ € S.
The module gM is said to be quasi-Baer if for all fully invariant R-submodules NV
of M, ls(N) = Se with 2 = e € S. A ring R is called abelian if every idempotent
element is central, that is, ae = ea for any e? = e, a € R. Abelian modules are
introduced in the context by Roos in [14] and studied by Goodearl and Boyle [6],
Rizvi and Roman [13]. A module gM is called abelian if for any f € S, e? =e € S,
m € M, we have fem = efm. Note that gM is an abelian module if and only if S
is an abelian ring. In what follows, by Z, Q, Z,, and Z/nZ we denote integers, ra-
tional numbers, the ring of integers modulo n and the Z-module of integers modulo
n, respectively.

2. PRINCIPALLY QUASI-BAER MODULES

Some properties of R-modules do not characterize the ring R, namely there are
reduced R-modules but R need not be reduced and there are abelian R-modules but
R is not an abelian ring. Because of that the investigation of some classes of modules
in terms of their endomorphism rings are done by the present authors (see [2] for
details). In this section we introduce a class of modules that is a generalization
of principally quasi-Baer rings and Baer modules. We prove that some results of
principally quasi-Baer rings can be extended to this general setting.

Definition 2.1. Let M be an R-module with S = Endg(M). The module ¢M is
called principally quasi-Baer if for any m € M, lg(Sm) = Se for some e? =e € S.

It is straightforward that all Baer, quasi-Baer, semisimple modules are princi-
pally quasi-Baer. But a submodule of principally quasi-Baer module may not be
principally quasi-Baer. If e is an idempotent element in the ring R and ere = re
(ere = er) for all » € R, then e is called left (right) semicentral. In the following
proposition we prove that idempotents in the definition of principally quasi-Baer
modules are right semicentral.

Proposition 2.2. Let M be an R-module with S = Endr(M). If sM is a prin-
cipally quasi-Baer module, then there exists a Tight semicentral idempotent e € S
such that ls(Sm) = Se for each m € M.

Proof. Let m € M and gM be a principally quasi-Baer module. By hypothesis,
there exists e = e € S with I5(Sm) = Se. Since SefSm C SeSm = 0, we have
SefSm = 0 for all f € S. Hence, Sef C lg(Sm) = Se. Thus, ef = efe for all
fes. O
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Theorem 2.3. Let M be an R-module with S = Endr(M). The following are
equivalent.
(1) sM is principally quasi-Baer.
(2) The left annihilator of every finitely generated S-submodule of sM in S is
generated (as a left ideal) by an idempotent.

Proof. (1) = (2) Let N = > Sm; (n € N) be a finitely generated S-submodule

1=1

of M. Then, lg(N) = () ls(Sm;). Since M is principally quasi-Baer, there exist
i=1

e? = e; € S such that [5(Sm;) = Se; for i = 1,2,...,n. So ls(N) = [ Se; with

each e; a right semicentral idempotent of S by Proposition 2.2. Now we éhow that
Sey; N Sey = Sejes. Since Sejes = Sejeqzer, then Sejes C Sep N Ses. In order to
see other inclusion, let f = fie; = foes € Seyp N Sey for some f1, fo € S. Then,
fea = fieites = foes = f € Sejes. Thus, Se; N Ses C Sejes. On the other
hand (ejez)? = ejeq, because e; is right semicentral. In a similar way, we have

Is(N) = [ Se; = S(erea...e,) with (e1ez...e,)% =e1ea...e,.

i=1
(2) = (1) It is obvious from (2) since every cyclic S-submodule of ¢M is finitely
generated. (Il

Corollary 2.4. Let M be an R-module with S = Endg(M). If sM is a finitely
generated module and S is a principal ideal domain (or a Noetherian ring), then
the following are equivalent.

(1) sM is Baer.

(2) sM is quasi-Baer.

(3) sM is principally quasi-Baer.

Proposition 2.5. Let M be an R-module with S = Endr(M). If sM is a prin-
cipally quasi-Baer module and N a direct summand of M, then v N is principally
quasi-Baer, where T = Endgr(N).

Proof. Let N be a direct summand of M. There exists e2 = e € S such that
N = eM. So the endomorphism ring 7" of N is eSe. Let n € N. Since sM
is a principally quasi-Baer module, there exists a right semicentral idempotent f
in S such that Is(Sn) = Sf. Hence, efe is an idempotent of eSe. We claim
that lese(Tn) = (eSe)(efe). For any g € S, egefeTn = 0, and so (eSe)(efe) <
lese(Tn). On the other hand, let x € Sf NeSe. Then, 2Tn = zeSen = xeSn <
xSn = 0. Hence we have © € l.s.(T'n). This implies that Sf NeSe < lese(Tn).
Now let eye € los.(T'n) with y € S. Since eyeT'n = eyeSen = eyeSn = 0, we have
eye € Sf. It follows that l.g.(Tn) < SfNneSe. Thus, l.g.(Tn) = SfNeSe. In order
to see lese(Tn) < (eSe)(efe), let @ € loge(Tn). Then, x = s1f = esqe for some
s1,82 € S. Notice that z = xf = s1f = esqsef and x = ze = s fe = esze. Hence,
x =1xe =xfe = s fe=eszefe € (eSe)(efe). Thus, lese(Tn) < (eSe)(efe). This
completes the proof. (Il

The direct sum of principally quasi-Baer modules is not principally quasi-Baer
as the following example shows.

Example 2.6. Consider M = Z & Zs as a Z-module. Since Z is a domain and
Zs is simple, Z and Zs are Baer and so principally quasi-Baer Z-modules. It can
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Z 0

be easily determined that S = Endz(M) is
Ly Lo

]. For m = (2,1) € M,

Is(Sm) = [ ZQQ 8 ] and lg(Sm) is not a direct summand of S. This implies that

sM is not principally quasi-Baer.

Theorem 2.7. Let M = My & My be an R-module with S = Endr(M). If g, M,
and g, My are principally quasi-Baer, where S1 = Endg(Mi), So = Endr(Ms) and
Hom(M;, M;) =0 fori#j, i =j=1,2, then ¢M is also principally quasi-Baer.

Proof. By hypothesis, Hom(M;,M;) = 0 for i # j, i = j = 1,2, we have S =
S1 @ Se. Let m = (mq,mz2) € M for some m; € My and mg € Ms. Since g, M;
is principally quasi-Baer, there exists an idempotent e; € S; with lg, (S;m;) = S;e;
for i = 1,2. On the other hand, we have lg(Sm) = lg, (S1m1) & ls, (S2m2), and so
ls(Sm) is a direct summand of S. O

Let M be an R-module with § = Endr(M). Recall that the submodule N of
M is called fully invariant if f(N) < N for all f € S.

Proposition 2.8. Let M be an R-module with S = Endr(M). If sM is a prin-
cipally quasi-Baer module, then every principal fully invariant submodule of M is
not essential in M.

Proof. Let mR be a fully invariant submodule of M. Since M is a principally
quasi-Baer module, there exists €2 = e¢ € S with l5(Sm) = Se. Then we have
Sm Cry(lg(Sm)) = rar(Se) = (1 —e)M. Hence, mR is not essential in M. O

A module M is said to be principally semisimple if every principal submodule is
a direct summand of M.

Proposition 2.9. Let M be an R-module with S = Endg(M). If Mg is principally
semisimple and sM is abelian, then gM is a principally quasi-Baer module.

Proof. If m € M, then by hypothesis M = mR & K for some submodule K of M.
Let e denote the projection of M onto mR. It is routine to show that lg(Sm) <
S(1—e). Since m = em and gM is abelian, we have S(1 —e)Sm = S(1 —e)Sem =
S(1—e)eSm = 0. Thus, S(1 —e) <lg(Sm). This completes the proof. O

A left T-module M is called regular (in the sense Zelmanowitz [15]) if for any
m € M there exists a left T-homomorphism M % T such that m = o(m)m.

Proposition 2.10. Let M be an R-module with S = Endr(M). If sM is regular
and semicommutative, then sM is a principally quasi-Baer module.

Proof. If m € M, then by hypothesis there exists a left S-homomorphism
M % S such that m = ¢(m)m. Note that ¢(m) is an idempotent of S. We
prove lg(Sm) = S(1 —¢(m)). Since (1 —¢p(m))m = 0 and gM is semicommutative,
we have (1 — ¢(m))Sm = 0. Then, S(1 — ¢(m)) < lg(Sm). Now let f € lg(Sm).

Hence, fm = 0 and so ¢(fm) = fo(m) = 0. Thus, f = f— fo(m) = f(1—¢(m)) €
S(1 — ¢(m)). Therefore, lg(Sm) < S(1 — ¢(m)), and this completes the proof. O

Lemma 2.11. Let M be an R-module with S = Endr(M). If sM is a semicom-
mutative module, then lg(Sm) = lg(m) for any m € M.
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Proof. We always have lg(Sm) C ls(m). Conversely, let f € lg(m). Since sM is a
semicommutative module, fm = 0 implies f € Ig(Sm). O

According to Lambek, a ring R is called symmetric [8] if whenever a,b,c € R
satisfy abc = 0 implies cab = 0. The module Mp, is called symmetric ([8] and [10]) if
whenever a,b € R, m € M satisfy mab = 0, we have mba = 0. Symmetric modules
are also studied by the present authors in [1] and [11]. In our case, we have the
following.

Definition 2.12. Let M be an R-module with S = Endg(M). The module s M
is called symmetric if for any m € M and f, g € S, fgm = 0 implies gfm = 0.

Example 2.13. Let M be a finitely generated torsion Z-module. Then M is iso-
morphic to the Z-module (Z/Zp* ) ®(Z)Zpy? ) ®...®(Z/Zpy*) where p; (i =1,...,t)
are distinct prime numbers and n; (i = 1,...,t) are positive integers. Endz (M) is
isomorphic to the commutative ring (Z,m ) @ (Zyn2) © ... ® (Zyre). So sM is a
symmetric module.

Lemma 2.14. Let M be an R-module with S = Endr(M). If sM is symmetric,
then sM is semicommutative. Converse is true if sM is a principally quasi-Baer
module.

Proof. Let f € S and m € M with fm = 0. Then for all ¢ € S, gfm =0
implies fgm = 0. So fSm = 0. Conversely, let f,g € S and m € M with
fgm = 0. By Lemma 2.11, f € ls(gm) = l5(Sgm) = Se for some e? = ¢ € S.
So f = fe and egm = 0. Since gM is semicommutative, egSm = 0. Therefore,
gfm = gfem = gefm = egfm = 0 because e is central. g

The proof of Proposition 2.15 is straightforward.

Proposition 2.15. Let M be an R-module with S = Endr(M). Consider the
following conditions for f € S.

(1) SKerfnImf =0.

(2) Whenever m € M, fm =0 if and only if Imf N Sm = 0.

Then (1) = (2). If sM is a semicommutative module, then (2) = (1).

A module ¢ M is called reduced if condition (2) of Proposition 2.15 holds for each
fes.

Example 2.16. Let p be any prime integer and M the Z-module (Z/pZ) @ Q.

Then S = Endg(M) is isomorphic to the matrix ring { { 8 2 ] |a €Zybe Q}.

It is evident that ¢M is a reduced module.
Proposition 2.17. Let M be an R-module with S = Endr(M). Then the following
are equivalent.

(1) sM is a reduced module.
(2) For any f € S and m € M, f>m = 0 implies fSm = 0.

Proof. Tt follows from [9, Lemma 1.2]. O

Lemma 2.18. Let M be an R-module with S = Endr(M). If sM is a reduced
module, then sM is symmetric. The converse holds if sM is a principally quasi-
Baer module.
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Proof. For any f,g € S and m € M suppose that fgm = 0. Then, (fg)%(m) =0
and by hypothesis fgSm = 0. So fgfm = 0 and (gf)?>m = 0. Then, gfSm = 0
implies gfm = 0. Therefore, gM is symmetric. Conversely, let f € S and m € M
with f2m = 0. By Lemma 2.14, sM is semicommutative and from Lemma 2.11,
f€ls(fm) =1s(Sfm) = Se for some €2 =e € S. So f = fe and efm = 0. Since
sM is semicommutative, efSm = 0. Then, fgm = fegm = efgm = 0 for any
g € S. Therefore, fSm =0 and so gM is a reduced module. (I

Next example shows that the reverse implication of the first statement in Lemma,
2.18 is not true in general, i.e., there exists a symmetric module which is neither
reduced nor principally quasi-Baer.

Example 2.19. Consider the ring

[a b

R_{_O a_|a,b€Z}
_ .

M:{- b_|a,bEZ}.

M

and the right R-module

0

Let f € Sand f { L ltiplying the latter by { 0 (1) ] we have
0 ;
0

0
0 0 0 [ a 0 a 0 ac
f[O 1]_{ c} For any b GM’f[a b}_[ac ad—|—bc}

1 0 ¢ 0 0 0 0
0 _[c’ d’}Then’g[o 1}_[0 c’}
b

b

=

QU O
{f O—— & O

Similarly, let g € S and ¢ [ 0

1
Forany[O Q}EM,Q{S

that for any { “ }

0 ac’ .
= ad ad +be | Then it is easy to check

(=l

0 _f ac | o0 ac’c
a ac’ ad +bc |~ | acc ad'c+ add +bc'c
and
s 0 a| 0 ac _ 0 acc’
9706 v |79 ac ad+be | = | acd acd + ac'd + bec
Hence, fg = ¢gf for all f, g € S. Therefore, S is commutative and so M is
symmetric. DeﬁnefeSbyf{O a]:[o g}where[g Z} € M. Then,

b 0
01} [0 O 2| 0 1 | .
f{l 1] = [O 1} nd f [ 1] = 0. Hence, M is not reduced. Let
m = 8 (1) . By Lemma 2.14, ¢ M is semicommutative and so by Lemma 2.11,

ls(Sm) = lg(m) # 0 since the endomorphism f defined preceding belongs to the
ls(m). The module M is indecomposable as a right R-module, therefore S does
not have any idempotents other than zero and identity. Hence, ls(Sm) can not be
generated by an idempotent as a left ideal of S.

We can summarize the relations between reduced modules, symmetric modules
and semicommutative modules by using principally quasi-Baer modules.
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Theorem 2.20. Let M be an R-module with S = Endr(M). If s M is a principally
quasi-Baer module, then the following conditions are equivalent.

(1) M is a reduced module.

(2) sM is a symmetric module.

(3) sM is a semicommutative module.

Proof. 1t follows from Lemma 2.18 and Lemma 2.14. O

In the sequel we investigate extensions of principally quasi-Baer modules. We
show that there is a strong connection between principally quasi-Baer modules
and polynomial extension, power series extension, Laurent polynomial extension,
Laurent power series extension of M.

Let R[z], R[[z]], R[x,2~'] and R[[x,2~}]] be the polynomial ring, the power se-
ries ring, the Laurent polynomial ring and the Laurent power series ring over R,
respectively and M an R-module with S = Endg(M). Lee and Zhou [9] introduced
the following notations. Consider

M[x}:{imixi : sZO,miEM},
M[[:zc]]:{ZmZaUZ :miEM}7

t
Mz, z™1] :{Zmixi : s>0,1§>0,7m—€M}7

1=—35

Mz, z71]] :{imixi : s >0,my; EM}.

1=—S

Each of these is an abelian group under an obvious addition operation. For a
module M, M|z] is a left S[z]-module by the scalar product:

m(x) = ijznj e Mz] , ax)= Zfzxz € S[x]
j=0 =0

s+t
a(z)m(z) = Z Z fim; | «*.
k=0 \i+j=k

With a similar scalar product, M[[z]], M[z,z~'] and M[[z,z~]] become left
modules over S[[z]], S[z,z7!] and S[[z,z7!]], respectively. The modules Mz],
M[[x]], M[xz,2~ '] and M[[z,x~!]] are called the polynomial extension, the power
series extension, Laurent polynomial extension and the Laurent power series exten-
sion of M, respectively. The module M|z] is called a principally quasi-Baer if for
any m(z) € Mlz], there exists € = e € S[z] such that lg;,)(S[z]m(z)) = S[x]e.
Also M|[[z]], M[z,x~'] and M[[x,2~!]] may be defined in a similar way.

Theorem 2.21. Let M be an R-module with S = Endr(M). Then

(1) Mlz] is a principally quasi-Baer module if and only if sM is a principally
quasi-Baer module.

(2) If M[[z]] is a principally quasi-Baer module, then sM is a principally quasi-
Baer module.
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(3) If M[x, 2] is a principally quasi-Baer module, then sM is a principally quasi-
Baer module.

(4) If M[[z,27Y]] is a principally quasi-Baer module, then sM is a principally
quasi-Baer module.

Proof. (1) Assume that M [x] is a principally quasi-Baer module and m € M.
There exists e(x)? e(r) € Slz] such that lgp(S[xlm) = Slxle(r). Thus,
l

Slale(a) € Isia(Sm) = Ls(Sm)al. For f(x) = 3 fir' € Ls(Sm)le]. fiSm = 0

for all 4 > 0. For any g(z) = i ;xd € S[zlm, f(x)g(x) = ZZfigij‘j =0. So

f(x) € lgz)(S[zlm). Thus, Is(Sm)[z] = S[zle(x). Write e(z) = Z e;z’, where all

=0
e; € lg(Sm). Then for any h € lg(Sm),h = hi(z)e(z) for some hy(z) € S[z].
So he(z) = hi(x)e(x)e(z) = hi(x)e(x) = h. It follows that h = hey for all
h € lg(Sm). Thus, ls(Sm) = Sey with €3 = eg. It means that ¢M is princi-
pally quasi-Baer. Conversely, assume gM is a principally quasi-Baer module. Let
m(z) =mo +miz + ... + mya™ € Mz]. Then, lg(Sm;) = Se; where e;’s are right
semicentral idempotents for all ¢ = 0,1,....,n. Let e = egey...e,. Then e is also
n
a right semicentral in S and Se = [ Is(Sm;). Hence, S[z]e C lgp)(S[xlm(z)).

=0
Note that lgp,)(S[z]m(z)) = lsm(Sm(z)). So, S[zle C g (Sm(r)). Now, let
h(z) = ho + haz + ... + hypz® € I (Sm(x)). Then, (ho + hiz + ... + hxa*)S(mg +
miz + ... + mya™) = 0. Hence for any o € S, we have

hoamo =0 (1)
hoamy + hiamg =0 (2)
hoamg + hlaml + hQOémo =0 (3)

By the first equation, hg € ls(Smg) = Seg. It means that hg = hgeg and
SegSmog = 0. For f € S consider egf instead of « in (2). Then, hoegfmy +
hleofmo = hoeofml = hofml =0. So h() € ZS(Sml) = 561. ThUS, ho S 56061.
Since hoSmy = 0, (2) yields h1.Smo = 0. Hence, hy € lg(Smg) = Seg. Now we take
a =eperf € S and apply in (3). Then, hoeger fma + hieger fmy + haeger frmg = 0.
But hleoelfml = hoeger fmg = 0. Hence, hgeger fme = hofme = 0. So hg €
Is( ﬂ ls(Sm;)) = Sepeiea. By (3), we have hy.Smy + haSmo = 0. Then we have
hleofml + hge()fm() = 0. But hgeofmo = 0 SO hleofml = hlfml = 0. Thus
hi € ls(ﬂ ls(Sm;)) = Seper and haSmy = 0. Hence, he € lg(Smg) = Sep.

i=0
Continuing this procedure, yields h; € Se for all i = 1,2, ..., k. Hence, h(z) € S[z]e.
Consequently S[z]e = lg(,(S[z]m(z)).
(2), (3) and (4) are proved similarly. O
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