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Abstract. Let R be an arbitrary ring with identity and M a right R-module

with S = EndR(M). In this paper, we introduce a class of modules that is
a generalization of principally quasi-Baer rings and Baer modules. The mod-

ule SM is called principally quasi-Baer if for any m ∈ M , lS(Sm) = Se for

some e2 = e ∈ S. It is proved that (1) if SM is regular and semicommutative
module or (2) if MR is principally semisimple and SM is abelian, then SM is

a principally quasi-Baer module. The connection between a principally quasi-
Baer module SM and polynomial extension, power series extension, Laurent

polynomial extension, Laurent power series extension of SM is investigated.

1. Introduction

Throughout this paper R denotes an associative ring with identity, and mod-
ules will be unitary right R-modules. For a module M , S = EndR(M) denotes the
ring of right R-module endomorphisms of M . Then M is a left S-module, right
R-module and (S,R)-bimodule. In this work, for any rings S and R and any (S,R)-
bimodule M , rR(.) and lM (.) denote the right annihilator of a subset of M in R
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and the left annihilator of a subset of R in M , respectively. Similarly, lS(.) and
rM (.) will be the left annihilator of a subset of M in S and the right annihilator of
a subset of S in M , respectively. A ring R is reduced if it has no nonzero nilpotent
elements. Recently the reduced ring concept was extended to modules by Lee and
Zhou in [9], that is, a module M is called reduced if for any m ∈M and any a ∈ R,
ma = 0 implies mR ∩Ma = 0. A ring R is called semicommutative if for any
a, b ∈ R, ab = 0 implies aRb = 0. The module SM is called semicommutative if for
any f ∈ S and m ∈ M , fm = 0 implies fSm = 0 (see [3] for details). Baer rings
[7] are introduced as rings in which the right (left) annihilator of every nonempty
subset is generated by an idempotent. A ring R is said to be right quasi-Baer [5]
if the right annihilator of each right ideal of R is generated (as a right ideal) by an
idempotent. A ring R is called right principally quasi-Baer [4] if the right annihila-
tor of a principal right ideal of R is generated by an idempotent. An R-module SM
is called Baer [12] if for all R-submodules N of M , lS(N) = Se with e2 = e ∈ S.
The module SM is said to be quasi-Baer if for all fully invariant R-submodules N
of M , lS(N) = Se with e2 = e ∈ S. A ring R is called abelian if every idempotent
element is central, that is, ae = ea for any e2 = e, a ∈ R. Abelian modules are
introduced in the context by Roos in [14] and studied by Goodearl and Boyle [6],
Rizvi and Roman [13]. A module SM is called abelian if for any f ∈ S, e2 = e ∈ S,
m ∈M , we have fem = efm. Note that SM is an abelian module if and only if S
is an abelian ring. In what follows, by Z, Q, Zn and Z/nZ we denote integers, ra-
tional numbers, the ring of integers modulo n and the Z-module of integers modulo
n, respectively.

2. Principally Quasi-Baer Modules

Some properties of R-modules do not characterize the ring R, namely there are
reduced R-modules but R need not be reduced and there are abelian R-modules but
R is not an abelian ring. Because of that the investigation of some classes of modules
in terms of their endomorphism rings are done by the present authors (see [2] for
details). In this section we introduce a class of modules that is a generalization
of principally quasi-Baer rings and Baer modules. We prove that some results of
principally quasi-Baer rings can be extended to this general setting.

Definition 2.1. Let M be an R-module with S = EndR(M). The module SM is
called principally quasi-Baer if for any m ∈M , lS(Sm) = Se for some e2 = e ∈ S.

It is straightforward that all Baer, quasi-Baer, semisimple modules are princi-
pally quasi-Baer. But a submodule of principally quasi-Baer module may not be
principally quasi-Baer. If e is an idempotent element in the ring R and ere = re
(ere = er) for all r ∈ R, then e is called left (right) semicentral. In the following
proposition we prove that idempotents in the definition of principally quasi-Baer
modules are right semicentral.

Proposition 2.2. Let M be an R-module with S = EndR(M). If SM is a prin-
cipally quasi-Baer module, then there exists a right semicentral idempotent e ∈ S
such that lS(Sm) = Se for each m ∈M .

Proof. Let m ∈ M and SM be a principally quasi-Baer module. By hypothesis,
there exists e2 = e ∈ S with lS(Sm) = Se. Since SefSm ⊆ SeSm = 0, we have
SefSm = 0 for all f ∈ S. Hence, Sef ⊆ lS(Sm) = Se. Thus, ef = efe for all
f ∈ S. �
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Theorem 2.3. Let M be an R-module with S = EndR(M). The following are
equivalent.

(1) SM is principally quasi-Baer.
(2) The left annihilator of every finitely generated S-submodule of SM in S is

generated (as a left ideal) by an idempotent.

Proof. (1) ⇒ (2) Let N =
n∑
i=1

Smi (n ∈ N) be a finitely generated S-submodule

of M . Then, lS(N) =
n⋂
i=1

lS(Smi). Since M is principally quasi-Baer, there exist

e2i = ei ∈ S such that lS(Smi) = Sei for i = 1, 2, . . . , n. So lS(N) =
n⋂
i=1

Sei with

each ei a right semicentral idempotent of S by Proposition 2.2. Now we show that
Se1 ∩ Se2 = Se1e2. Since Se1e2 = Se1e2e1, then Se1e2 ⊆ Se1 ∩ Se2. In order to
see other inclusion, let f = f1e1 = f2e2 ∈ Se1 ∩ Se2 for some f1, f2 ∈ S. Then,
fe2 = f1e1e2 = f2e2 = f ∈ Se1e2. Thus, Se1 ∩ Se2 ⊆ Se1e2. On the other
hand (e1e2)2 = e1e2, because e1 is right semicentral. In a similar way, we have

lS(N) =
n⋂
i=1

Sei = S(e1e2 . . . en) with (e1e2 . . . en)2 = e1e2 . . . en.

(2) ⇒ (1) It is obvious from (2) since every cyclic S-submodule of SM is finitely
generated. �

Corollary 2.4. Let M be an R-module with S = EndR(M). If SM is a finitely
generated module and S is a principal ideal domain (or a Noetherian ring), then
the following are equivalent.

(1) SM is Baer.
(2) SM is quasi-Baer.
(3) SM is principally quasi-Baer.

Proposition 2.5. Let M be an R-module with S = EndR(M). If SM is a prin-
cipally quasi-Baer module and N a direct summand of M , then TN is principally
quasi-Baer, where T = EndR(N).

Proof. Let N be a direct summand of M . There exists e2 = e ∈ S such that
N = eM . So the endomorphism ring T of N is eSe. Let n ∈ N . Since SM
is a principally quasi-Baer module, there exists a right semicentral idempotent f
in S such that lS(Sn) = Sf . Hence, efe is an idempotent of eSe. We claim
that leSe(Tn) = (eSe)(efe). For any g ∈ S, egefeTn = 0, and so (eSe)(efe) ≤
leSe(Tn). On the other hand, let x ∈ Sf ∩ eSe. Then, xTn = xeSen = xeSn ≤
xSn = 0. Hence we have x ∈ leSe(Tn). This implies that Sf ∩ eSe ≤ leSe(Tn).
Now let eye ∈ leSe(Tn) with y ∈ S. Since eyeTn = eyeSen = eyeSn = 0, we have
eye ∈ Sf . It follows that leSe(Tn) ≤ Sf∩eSe. Thus, leSe(Tn) = Sf∩eSe. In order
to see leSe(Tn) ≤ (eSe)(efe), let x ∈ leSe(Tn). Then, x = s1f = es2e for some
s1, s2 ∈ S. Notice that x = xf = s1f = es2ef and x = xe = s1fe = es2e. Hence,
x = xe = xfe = s1fe = es2efe ∈ (eSe)(efe). Thus, leSe(Tn) ≤ (eSe)(efe). This
completes the proof. �

The direct sum of principally quasi-Baer modules is not principally quasi-Baer
as the following example shows.

Example 2.6. Consider M = Z ⊕ Z2 as a Z-module. Since Z is a domain and
Z2 is simple, Z and Z2 are Baer and so principally quasi-Baer Z-modules. It can
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be easily determined that S = EndZ(M) is

[
Z 0
Z2 Z2

]
. For m = (2, 1) ∈ M ,

lS(Sm) =

[
0 0
Z2 0

]
and lS(Sm) is not a direct summand of S. This implies that

SM is not principally quasi-Baer.

Theorem 2.7. Let M = M1 ⊕M2 be an R-module with S = EndR(M). If S1M1

and S2M2 are principally quasi-Baer, where S1 = EndR(M1), S2 = EndR(M2) and
Hom(Mi,Mj) = 0 for i 6= j, i = j = 1, 2, then SM is also principally quasi-Baer.

Proof. By hypothesis, Hom(Mi,Mj) = 0 for i 6= j, i = j = 1, 2, we have S =
S1 ⊕ S2. Let m = (m1,m2) ∈ M for some m1 ∈ M1 and m2 ∈ M2. Since SiMi

is principally quasi-Baer, there exists an idempotent ei ∈ Si with lSi(Simi) = Siei
for i = 1, 2. On the other hand, we have lS(Sm) = lS1

(S1m1)⊕ lS2
(S2m2), and so

lS(Sm) is a direct summand of S. �

Let M be an R-module with S = EndR(M). Recall that the submodule N of
M is called fully invariant if f(N) ≤ N for all f ∈ S.

Proposition 2.8. Let M be an R-module with S = EndR(M). If SM is a prin-
cipally quasi-Baer module, then every principal fully invariant submodule of M is
not essential in M .

Proof. Let mR be a fully invariant submodule of M . Since SM is a principally
quasi-Baer module, there exists e2 = e ∈ S with lS(Sm) = Se. Then we have
Sm ⊆ rM (lS(Sm)) = rM (Se) = (1− e)M . Hence, mR is not essential in M . �

A module M is said to be principally semisimple if every principal submodule is
a direct summand of M .

Proposition 2.9. Let M be an R-module with S = EndR(M). If MR is principally
semisimple and SM is abelian, then SM is a principally quasi-Baer module.

Proof. If m ∈M , then by hypothesis M = mR ⊕K for some submodule K of M .
Let e denote the projection of M onto mR. It is routine to show that lS(Sm) ≤
S(1− e). Since m = em and SM is abelian, we have S(1− e)Sm = S(1− e)Sem =
S(1− e)eSm = 0. Thus, S(1− e) ≤ lS(Sm). This completes the proof. �

A left T -module M is called regular (in the sense Zelmanowitz [15]) if for any

m ∈M there exists a left T -homomorphism M
φ→ T such that m = φ(m)m.

Proposition 2.10. Let M be an R-module with S = EndR(M). If SM is regular
and semicommutative, then SM is a principally quasi-Baer module.

Proof. If m ∈ M , then by hypothesis there exists a left S-homomorphism

M
φ→ S such that m = φ(m)m. Note that φ(m) is an idempotent of S. We

prove lS(Sm) = S(1−φ(m)). Since (1−φ(m))m = 0 and SM is semicommutative,
we have (1 − φ(m))Sm = 0. Then, S(1 − φ(m)) ≤ lS(Sm). Now let f ∈ lS(Sm).
Hence, fm = 0 and so φ(fm) = fφ(m) = 0. Thus, f = f−fφ(m) = f(1−φ(m)) ∈
S(1− φ(m)). Therefore, lS(Sm) ≤ S(1− φ(m)), and this completes the proof. �

Lemma 2.11. Let M be an R-module with S = EndR(M). If SM is a semicom-
mutative module, then lS(Sm) = lS(m) for any m ∈M .
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Proof. We always have lS(Sm) ⊆ lS(m). Conversely, let f ∈ lS(m). Since SM is a
semicommutative module, fm = 0 implies f ∈ lS(Sm). �

According to Lambek, a ring R is called symmetric [8] if whenever a, b, c ∈ R
satisfy abc = 0 implies cab = 0. The module MR is called symmetric ([8] and [10]) if
whenever a, b ∈ R, m ∈M satisfy mab = 0, we have mba = 0. Symmetric modules
are also studied by the present authors in [1] and [11]. In our case, we have the
following.

Definition 2.12. Let M be an R-module with S = EndR(M). The module SM
is called symmetric if for any m ∈M and f , g ∈ S, fgm = 0 implies gfm = 0.

Example 2.13. Let M be a finitely generated torsion Z-module. Then M is iso-
morphic to the Z-module (Z/Zpn1

1 )⊕(Z/Zpn2
2 )⊕...⊕(Z/Zpnt

t ) where pi (i = 1, ..., t)
are distinct prime numbers and ni (i = 1, ..., t) are positive integers. EndZ(M) is
isomorphic to the commutative ring (Zpn1

1
) ⊕ (Zpn2

2
) ⊕ ... ⊕ (Zpnt

t
). So SM is a

symmetric module.

Lemma 2.14. Let M be an R-module with S = EndR(M). If SM is symmetric,
then SM is semicommutative. Converse is true if SM is a principally quasi-Baer
module.

Proof. Let f ∈ S and m ∈ M with fm = 0. Then for all g ∈ S, gfm = 0
implies fgm = 0. So fSm = 0. Conversely, let f, g ∈ S and m ∈ M with
fgm = 0. By Lemma 2.11, f ∈ lS(gm) = lS(Sgm) = Se for some e2 = e ∈ S.
So f = fe and egm = 0. Since SM is semicommutative, egSm = 0. Therefore,
gfm = gfem = gefm = egfm = 0 because e is central. �

The proof of Proposition 2.15 is straightforward.

Proposition 2.15. Let M be an R-module with S = EndR(M). Consider the
following conditions for f ∈ S.
(1) SKerf ∩ Imf = 0.
(2) Whenever m ∈M , fm = 0 if and only if Imf ∩ Sm = 0.
Then (1) ⇒ (2). If SM is a semicommutative module, then (2) ⇒ (1).

A module SM is called reduced if condition (2) of Proposition 2.15 holds for each
f ∈ S.

Example 2.16. Let p be any prime integer and M the Z-module (Z/pZ) ⊕ Q.

Then S = EndR(M) is isomorphic to the matrix ring

{[
a 0
0 b

]
| a ∈ Zp, b ∈ Q

}
.

It is evident that SM is a reduced module.

Proposition 2.17. Let M be an R-module with S = EndR(M). Then the following
are equivalent.
(1) SM is a reduced module.
(2) For any f ∈ S and m ∈M , f2m = 0 implies fSm = 0.

Proof. It follows from [9, Lemma 1.2]. �

Lemma 2.18. Let M be an R-module with S = EndR(M). If SM is a reduced
module, then SM is symmetric. The converse holds if SM is a principally quasi-
Baer module.
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Proof. For any f, g ∈ S and m ∈ M suppose that fgm = 0. Then, (fg)2(m) = 0
and by hypothesis fgSm = 0. So fgfm = 0 and (gf)2m = 0. Then, gfSm = 0
implies gfm = 0. Therefore, SM is symmetric. Conversely, let f ∈ S and m ∈ M
with f2m = 0. By Lemma 2.14, SM is semicommutative and from Lemma 2.11,
f ∈ lS(fm) = lS(Sfm) = Se for some e2 = e ∈ S. So f = fe and efm = 0. Since

SM is semicommutative, efSm = 0. Then, fgm = fegm = efgm = 0 for any
g ∈ S. Therefore, fSm = 0 and so SM is a reduced module. �

Next example shows that the reverse implication of the first statement in Lemma
2.18 is not true in general, i.e., there exists a symmetric module which is neither
reduced nor principally quasi-Baer.

Example 2.19. Consider the ring

R =

{[
a b
0 a

]
| a, b ∈ Z

}
and the right R-module

M =

{[
0 a
a b

]
| a, b ∈ Z

}
.

Let f ∈ S and f

[
0 1
1 0

]
=

[
0 c
c d

]
. Multiplying the latter by

[
0 1
0 0

]
we have

f

[
0 0
0 1

]
=

[
0 0
0 c

]
. For any

[
0 a
a b

]
∈ M , f

[
0 a
a b

]
=

[
0 ac
ac ad+ bc

]
.

Similarly, let g ∈ S and g

[
0 1
1 0

]
=

[
0 c′

c′ d′

]
. Then, g

[
0 0
0 1

]
=

[
0 0
0 c′

]
.

For any

[
0 a
a b

]
∈M , g

[
0 a
a b

]
=

[
0 ac′

ac′ ad′ + bc′

]
. Then it is easy to check

that for any

[
0 a
a b

]
∈M ,

fg

[
0 a
a b

]
= f

[
0 ac′

ac′ ad′ + bc′

]
=

[
0 ac′c
ac′c ad′c+ adc′ + bc′c

]
and

gf

[
0 a
a b

]
= g

[
0 ac
ac ad+ bc

]
=

[
0 acc′

acc′ acd′ + ac′d+ bcc′

]
Hence, fg = gf for all f , g ∈ S. Therefore, S is commutative and so SM is

symmetric. Define f ∈ S by f

[
0 a
a b

]
=

[
0 0
0 a

]
where

[
0 a
a b

]
∈ M . Then,

f

[
0 1
1 1

]
=

[
0 0
0 1

]
and f2

[
0 1
1 1

]
= 0. Hence, SM is not reduced. Let

m =

[
0 0
0 1

]
. By Lemma 2.14, SM is semicommutative and so by Lemma 2.11,

lS(Sm) = lS(m) 6= 0 since the endomorphism f defined preceding belongs to the
lS(m). The module M is indecomposable as a right R-module, therefore S does
not have any idempotents other than zero and identity. Hence, lS(Sm) can not be
generated by an idempotent as a left ideal of S.

We can summarize the relations between reduced modules, symmetric modules
and semicommutative modules by using principally quasi-Baer modules.
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Theorem 2.20. Let M be an R-module with S = EndR(M). If SM is a principally
quasi-Baer module, then the following conditions are equivalent.
(1) SM is a reduced module.
(2) SM is a symmetric module.
(3) SM is a semicommutative module.

Proof. It follows from Lemma 2.18 and Lemma 2.14. �

In the sequel we investigate extensions of principally quasi-Baer modules. We
show that there is a strong connection between principally quasi-Baer modules
and polynomial extension, power series extension, Laurent polynomial extension,
Laurent power series extension of M .

Let R[x], R[[x]], R[x, x−1] and R[[x, x−1]] be the polynomial ring, the power se-
ries ring, the Laurent polynomial ring and the Laurent power series ring over R,
respectively and M an R-module with S = EndR(M). Lee and Zhou [9] introduced
the following notations. Consider

M [x] =

{
s∑
i=0

mix
i : s ≥ 0,mi ∈M

}
,

M [[x]] =

{ ∞∑
i=0

mix
i : mi ∈M

}
,

M [x, x−1] =

{
t∑

i=−s
mix

i : s ≥ 0, t ≥ 0,mi ∈M

}
,

M [[x, x−1]] =

{ ∞∑
i=−s

mix
i : s ≥ 0,mi ∈M

}
.

Each of these is an abelian group under an obvious addition operation. For a
module M , M [x] is a left S[x]-module by the scalar product:

m(x) =

s∑
j=0

mjx
j ∈M [x] , α(x) =

t∑
i=0

fix
i ∈ S[x]

α(x)m(x) =

s+t∑
k=0

 ∑
i+j=k

fimj

xk.

With a similar scalar product, M [[x]], M [x, x−1] and M [[x, x−1]] become left
modules over S[[x]], S[x, x−1] and S[[x, x−1]], respectively. The modules M [x],
M [[x]], M [x, x−1] and M [[x, x−1]] are called the polynomial extension, the power
series extension, Laurent polynomial extension and the Laurent power series exten-
sion of M , respectively. The module M [x] is called a principally quasi-Baer if for
any m(x) ∈ M [x], there exists e2 = e ∈ S[x] such that lS[x](S[x]m(x)) = S[x]e.

Also M [[x]], M [x, x−1] and M [[x, x−1]] may be defined in a similar way.

Theorem 2.21. Let M be an R-module with S = EndR(M). Then
(1) M [x] is a principally quasi-Baer module if and only if SM is a principally
quasi-Baer module.
(2) If M [[x]] is a principally quasi-Baer module, then SM is a principally quasi-
Baer module.



172 ON PRINCIPALLY QUASI-BAER MODULES

(3) If M [x, x−1] is a principally quasi-Baer module, then SM is a principally quasi-
Baer module.
(4) If M [[x, x−1]] is a principally quasi-Baer module, then SM is a principally
quasi-Baer module.

Proof. (1) Assume that M [x] is a principally quasi-Baer module and m ∈ M .
There exists e(x)2 = e(x) ∈ S[x] such that lS[x](S[x]m) = S[x]e(x). Thus,

S[x]e(x) ⊆ lS[x](Sm) = lS(Sm)[x]. For f(x) =
n∑
i=0

fix
i ∈ lS(Sm)[x], fiSm = 0

for all i ≥ 0. For any g(x) =
k∑
j=0

gjx
j ∈ S[x]m, f(x)g(x) =

∑
i

∑
j

figjx
i+j = 0. So

f(x) ∈ lS[x](S[x]m). Thus, lS(Sm)[x] = S[x]e(x). Write e(x) =
t∑
i=0

eix
i, where all

ei ∈ lS(Sm). Then for any h ∈ lS(Sm), h = h1(x)e(x) for some h1(x) ∈ S[x].
So he(x) = h1(x)e(x)e(x) = h1(x)e(x) = h. It follows that h = he0 for all
h ∈ lS(Sm). Thus, lS(Sm) = Se0 with e20 = e0. It means that SM is princi-
pally quasi-Baer. Conversely, assume SM is a principally quasi-Baer module. Let
m(x) = m0 +m1x+ ...+mnx

n ∈M [x]. Then, lS(Smi) = Sei where ei’s are right
semicentral idempotents for all i = 0, 1, ..., n. Let e = e0e1...en. Then e is also

a right semicentral in S and Se =
n⋂
i=0

lS(Smi). Hence, S[x]e ⊆ lS[x](S[x]m(x)).

Note that lS[x](S[x]m(x)) = lS[x](Sm(x)). So, S[x]e ⊆ lS[x](Sm(x)). Now, let

h(x) = h0 + h1x+ ...+ hkx
k ∈ lS[x](Sm(x)). Then, (h0 + h1x+ ...+ hkx

k)S(m0 +
m1x+ ...+mnx

n) = 0. Hence for any α ∈ S, we have

h0αm0 = 0

h0αm1 + h1αm0 = 0

h0αm2 + h1αm1 + h2αm0 = 0

...

(1)

(2)

(3)

...

By the first equation, h0 ∈ lS(Sm0) = Se0. It means that h0 = h0e0 and
Se0Sm0 = 0. For f ∈ S consider e0f instead of α in (2). Then, h0e0fm1 +
h1e0fm0 = h0e0fm1 = h0fm1 = 0. So h0 ∈ lS(Sm1) = Se1. Thus, h0 ∈ Se0e1.
Since h0Sm1 = 0, (2) yields h1Sm0 = 0. Hence, h1 ∈ lS(Sm0) = Se0. Now we take
α = e0e1f ∈ S and apply in (3). Then, h0e0e1fm2 + h1e0e1fm1 + h2e0e1fm0 = 0.
But h1e0e1fm1 = h2e0e1fm0 = 0. Hence, h0e0e1fm2 = h0fm2 = 0. So h0 ∈

lS(
2⋂
i=0

lS(Smi)) = Se0e1e2. By (3), we have h1Sm1 + h2Sm0 = 0. Then we have

h1e0fm1 + h2e0fm0 = 0. But h2e0fm0 = 0, so h1e0fm1 = h1fm1 = 0. Thus,

h1 ∈ lS(
1⋂
i=0

lS(Smi)) = Se0e1 and h2Sm0 = 0. Hence, h2 ∈ lS(Sm0) = Se0.

Continuing this procedure, yields hi ∈ Se for all i = 1, 2, ..., k. Hence, h(x) ∈ S[x]e.
Consequently S[x]e = lS[x](S[x]m(x)).

(2), (3) and (4) are proved similarly. �
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