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Abstract

This Ph.D. thesis studies the interplay of cooperativity and noise in realistic systems,
largely focusing on superradiance. Cooperative effects emerge from the collective in-
teraction of an ensemble of elements to an external field. Notable examples are su-
perconductivity, where the electron Cooper pairs interact with the lattice vibrations,
plasmon excitations, arising from the collective interaction of electrons in a metal with
the Coulomb field, and superradiance, that is a cooperative spontaneous emission pro-
cess stemming from an aggregate of identical emitters. Cooperative effects are typically
robust to disorder and noise, making them interesting for applications to quantum de-
vices operating at room temperature. In this work, we first present a general mas-
ter equation formalism that describes the collective coupling of an aggregate of emit-
ters/absorbers to the electromagnetic field, valid both when the size of the aggregate is
larger or smaller than the emitted/absorbed wavelength. Also, the formalism is valid
both for weak and strong coupling of the emitters to the electromagnetic field and, most
importantly, it allows to correctly describe superradiance in different regimes.

Within such formalism, the interplay of superradiance and thermal noise is stud-
ied both for molecular nanotubes (of size smaller than the transition wavelength) that
are present in the antenna complexes of photosynthetic Green Sulfur Bacteria, and also
for novel solid state quantum dot superlattices, having size larger than the emitted
wavelength. In both cases it is shown that coherence can persist in presence of ther-
mal noise at the temperatures where these systems have been experimentally analyzed
(room temperature for molecular nanotubes, and 6 K for quantum dot superlattices).
Specifically, in natural molecular nanotubes we show that the macroscopic coherent
delocalization of the excitation at room temperature, covering hundreds of molecules,
can be considered an emergent effect originating from the combined effect of the spe-
cific geometric disposition of the molecules and the presence of cooperatively enhanced
couplings between cylinder subunits. These results open the path to new ways of engi-
neering quantum wires robust to noise thanks to cooperativity. Moreover, our analysis
of solid state systems based on perovskite (CsPbBr3) quantum dot superlattices pro-
vides a theoretical framework able to explain recent observations of superradiant emis-
sion. Based on our theory, we suggest that further experiments, using smaller quan-
tum dots, could significantly increase the robustness of the system to thermal noise,
paving the way towards room-temperature superradiance in solid-state systems. We
also considered the antenna complexes of Purple Bacteria, where cooperative effects are
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well known to boost the transfer and storage of photo-absorbed excitations. We show
how these properties can be exploited to create a bio-inspired molecular aggregate laser
medium, where natural sunlight, although weak, would be used as a pumping source.
The efficient energy transfer within this system would effectively focus the absorbed
excitation on a suitably chosen molecular dimer, composed by a pair of interacting
molecules. The orientation of the molecule transition dipole moment in each dimer is
such to concentrate all the dipole strength in the highest energy level, leaving the lower
excitonic state dark. A molecular dimer in such configuration, which is ideal to achieve
population inversion, is called H-dimer. Such an H-dimer in our proposed architecture
for a bio-inspired laser medium, is placed at the center of the bio-inspired molecular
aggregates. The H-dimers, pumped by the surrounding molecular aggregates, reach
population inversion and, therefore, can lase when such aggregates are placed in an
optical cavity. Turning the incoherent energy supply provided by the Sun into a coher-
ent laser beam would overcome several of the practical limitations inherent in using
sunlight as a source of clean energy. For example, laser beams are highly effective at
driving chemical reactions which convert sunlight into chemical energy. Further, since
bacterial photosynthetic complexes tend to operate in the near-infrared spectral region,
our proposal naturally lends itself for realising short-wavelength infrared lasers which
would allow their beams to travel nearly losslessly over large distances, thus efficiently
distributing the collected sunlight energy.

In search of a common mechanism to cooperativity and its robustness, we have
compared the Cooper pair model of superconductivity and single-excitation superra-
diance, showing many similarities between the two: in particular, superradiant systems
present an imaginary gap in the complex plane (that is, a segregation between the life-
times of the system eigenstates) that, similarly to the superconducting gap, makes these
systems robust to static disorder. More in general, we show that any long-range inter-
action between the constituents of a system generates collective behaviours, manifested
by gaps in the excitonic spectrum. Therefore, our further analysis considers the effect
of long-range interactions on excitation transport along disordered chains. We show
that the presence of a gapped, collective state affects the whole spectrum of the system,
generating quite counter-intuitive disorder-enhanced and disorder-independent trans-
port regimes, that extend over many orders of magnitude of the disorder strength. We
also prove that a chain strongly coupled to a cavity mode is equivalent to a long-range
interacting chain, thus being very promising for future experiments and applications.
Specifically, we show that realistic molecular chains, state-of-the-art trapped ions and
Rydberg atoms are all able to reach the needed long-range interaction strength that
would show disorder-enhanced or disorder-independent transport, aiming to the real-
ization of dissipationless transport of energy in disordered quantum wires.
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Boldizsár Jankó for their expert guidance. Thank you both for showing me and teach-
ing me a methodical approach to research, how to face unexpected results and how to
focus the work consistently to a target. I also thank Ken Kuno for his crucial intuitions
that initiated my research in Notre Dame, and for his constant and efficient tutoring
during my time at Notre Dame. Without any doubt, I have grown significantly as a sci-
entist thanks to our interactions. Moreover, I thank the other members of my Research
Committee at Notre Dame, Mark Caprio and Morten Eskildsen. Our discussions have
been of great help in focusing my research. I am also grateful to Luca Gavioli, Prashant
Kamat and all the people who ideated and directed the International Program in Sci-
ence: it is a unique opportunity, that has allowed me to meet a lot of experts from
various backgrounds, increasing my experience significantly.

Now, I would like to thank some people that I met in the various places where I have
conducted my research. First, many thanks to the Quantum Biology group at Univer-
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Chapter 1

Introduction

Cooperativity is the ability of many elements in a system to act in coordination, so that
some physical property of the system results different from that of a single element.
Cooperative quantum effects emerge from the interaction between the constituents of
a system and they are often connected to important functional aspects. Cooperative
effects show also robustness to disorder and noise, so that their understanding can be
essential to develop quantum devices able to work at room temperature.

In this thesis we have explored different cooperative effects showing how they can
help to shed new light into the functionality of biological systems, molecular and solid-
state aggregates, and in general for interacting emitters where light-matter interaction
is a relevant factor. Cooperative effects have always been at the center different research
fields for their functional properties [1–7]. In particular the discovery of the role of co-
operative effects in biological systems, for instance superradiance and super-transfer in
photosynthetic systems, have inspired different proposals of bio-mimetic devices. Fol-
lowing this line of research on bio-mimetic quantum devices, we have proposed a de-
sign for a bio-inspired sunlight-pumped laser. Specifically, a new architecture, inspired
to photosynthetic systems, for a sunlight-pumped laser has been shown to lower the
lasing threshold by different orders of magnitude, making a laser pumped by natural
sunlight possible. Such a laser, if realized, could greatly help the solution of the energy
problem, transforming the incoherent sunlight into coherent laser beams, that can be
used to drive chemical reactions and, therefore, being good candidates for absorbing
sunlight energy and storing it efficiently [8–11].

At the same time, we have followed a more fundamental line of research in this the-
sis, focusing on the common mechanism to cooperativity and its robustness to disorder
and noise. There are many examples of cooperative effects in condensed matter physics
such as superconductivity, superradiance, plasmon excitations and giant resonances in
nuclei. As was pointed out by U. Fano [12], a common mechanism underlies all the
above mentioned collective phenomena. Following Fano’s point of view, we unveil a
deep connection between cooperative effects, long-range interactions and robustness to
noise.

In this chapter we introduce and discuss these points, by first recalling Fano’s idea
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2 CHAPTER 1. INTRODUCTION

on a common mechanism behind cooperative effects, then connecting it to long-range
interactions, and presenting the effects of superradiance and supertransfer that these
interactions can induce. Finally, we show different coupling strength regimes where
cooperative effects can emerge and, in these regimes, we discuss in which sense coop-
erativity can emerge and how it can make the systems robust to disorder and noise.

1.1 Collective phenomena: a common mechanism

When studying the interaction of aggregates of similar physical objects (e.g. electrons,
atoms, molecules. . . ) with propagating fields, such as photons or phonons, cooperative
effects arise, due to the mutual interaction between the different components of the sys-
tem, mediated by their common coupling to the field. Such interaction induces a wide
range of collective phenomena: superconductivity, plasmon excitations, superradiance.

Different theoretical treatments for these phenomena have been developed in the
late 1950s [13–15]. Though originating from quite different physics, they share the
same mathematical mechanism, as pointed out by U. Fano [12]. Common to these
phenomena is the presence of a dense spectrum of independent levels, εn, satisfying
the Schrödinger equation

H0 |n〉 = εn |n〉 . (1.1)

The common coupling to the field modifies the Hamiltonian, that becomes H = H0 +V.
An eigenstate |ψ〉 of the full Hamiltonian H satisfies

H |ψ〉 = E |ψ〉 (1.2)

and it can be decomposed on the basis of H0 as |ψ〉 = ∑n cn |n〉. Calculating the expec-
tation value 〈m|H|ψ〉 = 〈m|(H0 + V)|ψ〉 and solving for cm gives the identity

cm =
∑n cnVmn

E− εm
(1.3)

where Vmn = 〈m|V|n〉 is the coupling between the levels induced by the field.
Fano observes [12] that cooperative phenomena emerge when the field-induced

coupling between the levels can be factorized as

Vmn = v∗mvn . (1.4)

This condition applies for example to the BCS theory of superconductivity [13, 16],
where the electron-phonon coupling between the electron levels close to the Fermi sur-
face is well approximated by a constant, Vk,k′ = −V0 for εk − εk′ < h̄ωD (ωD being the
Debye frequency). This is also true for plasmon excitations, where the dipole-dipole
interaction between oscillating charges in a lattice, when written in terms of the nor-
mal modes |n〉 having wavelengths much longer than the lattice step, are factorized
as Vmn ∝ f 1/2

m f 1/2
n , where fn is the oscillator strength of the n-th normal mode [12].

Finally, as we describe more in detail in Chapter 6, in the case of superradiance, for
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Figure 1.1: Graphic solutions of the gap equation (1.5) in the case of plasmon excita-
tions. Following Ref. [12], the right-hand side of Eq. (1.5) is interpreted as the product
Cα(ω) between the polarizability function α(ω) (continuous curve in the figure) and
a polarization factor C, which can be positive (Cl = 2

3 for longitudinal polarization)
or negative (Ct = − 1

3 for transverse polarization), see horizontal dashed lines. The
electron oscillations are treated as coupled classical harmonic oscillators, as done in
Ref. [12], and one still obtains Eq. (1.5), where the energies in the denominator are re-
placed by the squared frequencies (E → ω2 and εn → ω2

n). Figure reproduced from
Ref. [12].

aggregates smaller than their emitted wavelength, the field induces an effective non-
Hermitian coupling between the emitter single-excitation states |j〉, and such coupling
has the factorized expression Vij ≈ −i γ

2 in the simple case where the emitters are all
parallel.

Having established this requirement, Eq. (1.4) can be substituted into Eq. (1.3).
Then, multiplying both sides of Eq. (1.3) by vm, summing both sides over m and di-
viding by ∑m cmvm gives the relation

1 = ∑
n

|vn|2
E− εn

, (1.5)

that we call gap equation as a reference to the corresponding BCS equation [13, 16]. The
gap equation can be parametrized in terms of some physical quantities relevant to the
problem, and the solution of Eq. (1.5) for the case of plasmon excitations is shown in
Fig. 1.1. The specific case of plasmon excitations already shows a more general feature
of collective phenomena: the effect of the dipole-dipole interaction, although weak, is
all concentrated in one collective state. As proved in Ref. [12], such collective state
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retains most of the oscillator strength of the whole system and it is gapped on the low-
energy or high-energy side of the spectrum, depending on the polarization, as shown
in Fig. 1.1.

Such gap is a mathematical consequence of having a unit-rank interaction. Indeed,
see Eq. (1.4), the factorized interaction matrix V is a unit-rank matrix with only one
eigenvalue different from zero and equal to ∑n |vn|2.

The gap has the same expression both for the case of plasmon excitations and for
the Cooper problem of superconductivity and, with a proper generalization, also for the
case of superradiance. Indeed Fano mentions the case of molecular aggregates and how
some collective, extended states can retain all the oscillator strength, basically extending
his approach to superradiance (more details in Chapter 6).

When the interaction V is strong, one eigenstate of the whole system hamiltonian H
becomes identical to the eigenstate of the interaction matrix V that has a non-zero eigen-
value, thus producing a gapped state which concentrates all the interaction strength.
The presence of a gapped state allows the manifestation cooperative effects despite the
presence of noise and disorder. Thus the emergence of cooperative effects in general oc-
curs only above a critical strength of the interaction V (this has been discussed in Chap-
ter 6). Nevertheless, in presence of symmetries in the system, such that [H0, V] = 0,
already for weak coupling V the system can show cooperative effects. This is the case
of several molecular aggregates discussed in this thesis, see Chapters 3 and 4. Finally,
we would like to stress that even if one eigenstate of the system concentrates all the
coupling strength of V, either due to symmetry or to a large enough V, in order for
cooperativity to emerge, the coherent collective behaviour connected with the cooper-
ative eigenstates must be robust to the disorder or noise present in the system, as we
discuss in section 1.6.

1.2 Extension of Fano’s approach: long-range interactions and
energy gaps

In the previous section, following Fano’s approach [12], we have shown a mathemat-
ical condition that determines collective behaviours: the interaction operator induced
by the external field among the system levels must be unit-rank, so that it can be fac-
torized as in Eq. (1.4). A simple example of unit-rank interaction is where the system
hamiltonian H0 in Eq. (1.1) represents unperturbed eigenstates |n〉, with an additional
all-to-all coupling Vmn = V0 ∀m, n, that represents an infinite-range interaction be-
tween the eigenstates of H0. This all-to-all interaction is present both in the Cooper
pair model of superconductivity and the the superradiance model in the small-volume
limit, where the wavelength is larger than the system size, as shown in Chapter 6. This
is clearly an example of long-range interaction, and it is characterized by having one
non-vanishing eigenvalue, NV0, where all the interaction strength is collectively con-
centrated, and (N− 1) vanishing eigenvalues, that are gapped by an amount NV0 from
the first one. The eigenstate corresponding to the gapped eigenvalue is the fully ex-
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tended state |ψ〉 = 1√
N ∑n |n〉.

Indeed, all the examples of factorized interactions introduced in section 1.1 involve
long-range interactions: long-range Coulomb forces are present in the case of plasmon
excitations; long-range interactions, mediated by the presence of a coupling to a com-
mon external environment, are present both in superconductivity and superradiance.
In the case of superconductivity, phonons mediate an attractive interaction between the
electrons (which is long-range in momentum space), while in the case of superradiance,
the interaction mediated by the electromagnetic field (EMF) is long-range in real space.

Up to now we have only considered unit-rank interactions. In the following, we
propose some extensions of Fano’s approach to cases where the interaction is not unit-
rank. The first extension that we are going to propose is where V is a long-range in-
teraction. The second extension of Fano’s theory that we will discuss is to the case of
non-hermitian interactions V. The third extension is related to intrinsic cooperative ef-
fects that are not due to the range of interaction but to intrinsic geometric properties of
the system.

When the interaction range is not infinite, the rank of the interaction is not unit but,
as we show in Chapter 6, we propose to extend the mechanism proposed by Fano to
more generic long-range interactions of the form Vmn ∝ |m− n|−α (where α < d, and d
is the dimensionality of the system) are effectively low-rank, meaning that the interaction
matrix is characterized by few very large engenvalues with the rest of the eigenvalues
being very small. This implies that their spectra show similar features to the infinite-
range interaction discussed above: one (or few) of their eigenvalues are gapped from
the rest of the (nearly) vanishing eigenvalues. The presence of a gapped, collective
state also affects the robustness of the system to noise and disorder, as we discuss in
section 1.6.

Motivated by this analogy, in this work we analyze different long-range interact-
ing systems, that can be reconducted to this scheme, and we analyze their interplay
with disorder and noise. Indeed, all the physical systems considered in this thesis are
characterized by long-range interactions. In the case of superradiance, the coupling
of emitters to a common EMF induces a non-Hermitian interaction, meaning that the
V interaction matrix is non-hermitian, V = VR + iVI . Non-Hermiticity arises from
the fact that an excitation can be lost by emission, making the physics of this system
non-unitary. Both the real and the imaginary part are characterized by long-range in-
teractions which decay as 1/r3 at short distances and 1/r at large distances, where r is
the distance between the emitters. Different regimes exist, depending on the size and
dimensionality of the system, where VR or VI (or both of them, or even neither) can
have an effective low rank. For instance, in the small-volume limit (r � λ, where λ
is the emitter transition wavelength), VR represents a dipole interaction, which is not
low-rank due to the fact that the dipole coupling VR ∼ 1/r3 is not long-range. On the
other side, in the small-volume limit, VI represents an all-to-all interaction, which has
unity rank. If the imaginary part of the interaction is particularly strong, an imaginary
gap can arise in correspondence of superradiant states, characterized by large imag-
inary energy (corresponding to their decay width or inverse lifetime). Interestingly
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even an imaginary gap can donate robustness to the system as we discuss in Chapter 6.
Such a scheme of a complex V applies to all our studies of molecular aggregates (Green
Sulfur Bacteria nanotubes in Chapter 3, Purple Bacteria in Chapter 4) and solid-state
systems (perovskites quantum dots superlattices in Chapter 5). We also focused on
systems with intrinsic long-range interactions, showing the different transport regimes
which arise due to the emergence of cooperativity and energy gaps in such systems
(see Chapter 7). This analysis has implications in many realistic systems as trapped
ions, Rydberg atoms, polar molecules and emitters in cavities. Specifically, in Chapter 7
we demonstrate that the coupling to a cavity mode induces a long-range interaction
between the emitters.

Finally, note that long-range interactions are not the only possible extension of
Fano’s approach that we discuss in this thesis. Indeed, in Chapter 3 we show that even
an effective short-range interaction (VR ∼ 1/r3 is a short-range interaction in quasi-
one-dimensional nanotubes) can lead to strong cooperative effects, due to the specific
geometry of the system, and these effects are robust to thermal noise and disorder. This
shows that the low rank of the interaction might not be a necessary requirement for im-
portant cooperative effects to emerge, and this opens another path for extending Fano’s
approach on cooperativity.

1.3 Superradiance, i.e. cooperative light-matter coupling

One of the most interesting cooperative effects is superradiance. As introduced by
Dicke in 1954 [15], superradiance is the collective emission of light from an ensemble
of identical emitters, due to the formation of coherent, extended excitations among the
emitters. Superradiance manifests itself both in the time domain and in the frequency
domain, and it has been observed in a variety of systems [17], with some of the most
recent examples being cold atomic clouds [18], photosynthetic antenna complexes [19],
molecular aggregates [20, 21], quantum dots [22, 23] and nitrogen vacancies in nan-
odiamonds [24]. This effect is relevant in enhancing absorption and energy transfer,
which has been proposed to improve the efficiency of light-harvesting systems [1–5].
Superradiance also leads to spectrally ultranarrow laser beams [6].

Being a collective effect, superradiance is quenched by inhomogeneities such as
static disorder and noise [25, 26]. As regards the spatial arrangement, superradiance
may or may not require a regular disposition on the emitters, depending on the aggre-
gate size and its density. Specifically, for a very dense aggregate of emitters occupying
a volume smaller than the emission wavelength (such as the case of molecular aggre-
gates), a regular arrangement is required to produce a collective coupling to the light
field. On the other hand, for dilute aggregates of emitters extended over a volume
much larger than their emission wavelength (like the case of cold atomic clouds), su-
perradiance does not require an ordered arrangement, and collective coupling to the
light field is present also for completely random dispositions of the elements.

In the following we give some examples of the main experimental signatures of
superradiance for different physical systems.
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Figure 1.2: Comparison between the general characteristics of ordinary fluorescence
and superradiance experiments. (a) Ordinary spontaneous emission is essentially
isotropic with an exponentially decaying intensity (time constant τsp). (b) Superradi-
ance is anisotropic with an emission occurring in a short burst of duration ∼ τsp/N.
Figure reproduced from Ref. [27].

1.3.1 Superradiance in the time domain: superlinear scaling, single-
excitation superradiance and subradiance

The main signature of superradiance can be observed when an aggregate of N emit-
ters is prepared in a state where all the emitters are excited. In such situation, where
N excitations are initially present in the system, the emitters will spontaneously decay
by emitting a light intensity, that ultimately decays with time. As clearly described by
Gross and Haroche [27], see Fig. 1.2, the emitted light intensity from an ensemble of in-
dependent emitters would be isotropic and it would decay in time exponentially with
the single-emitter radiative lifetime τsp (see Fig. 1.2a), independent of the number N of
emitters. On the other hand, if the emitters are densely packed, so that they interact co-
operatively with the light field, they emit along a well-defined direction that depends
upon the sample geometry and the emitted intensity increases initially with time, pro-
ducing a light burst that lasts ≈ τsp/N and whose intensity scales superlinearly as N2

(see Fig. 1.2b). These signatures reflects the fact that the collective interaction with the
EMF induces a build-up of a collective polarization, that is responsible of the coopera-
tive light emission.

Interestingly, cooperative emission shows clear signatures also when the system is
not initially fully excited, but a single excitation is photo-induced in the system. In this
situation, superradiance is related to a coherent delocalization of the excitation among
the emitters, and it results in a fast decay of the emitted light, with a collective lifetime
faster than the individual emitters. Moreover, the emission is along the same direction
of the incoming light that excited the system, as opposed to the isotropic spontaneous
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Figure 1.3: Scheme of an experiment to observe single-excitation superradiance and
subradiance from cold atomic clouds. Figure reproduced from Ref. [28].

emission that one would have from independent emitters. Such effect is a clear mani-
festation of the coherent delocalization of the initial excitation, and it has therefore been
referred to by Marlan Scully as “The super of superradiance” [28], or single-excitation su-
perradiance. Moreover, when the initial state is not exactly a collective eigenstate of the
light-matter coupling, at long times the excitation decays much slower than the single-
emitter case. Such phenomenon, called subradiance, is due to the presence of collective
states where a destructive interference slows down the spontaneous emission process.

Single-excitation superradiance and subradiance have been observed in a variety
of systems. Many interesting results have been obtained in cold atomic clouds, where
the single-excitation state is initially created by exciting the system with an off-resonant
laser, as sketched in Fig. 1.3a. As a result, the light is emitted mostly along the same
direction of the excitation laser, see Fig. 1.3b. Once the excitation laser turns off, the
emitted radiation decays in time faster than the single-atom spontaneous decay time,
as is shown in Fig. 1.4(a,b). The decay is faster when the optical thickness b0 (a pa-
rameter that quantifies cooperativity in this system) is increased. At long times, on the
other hand, the intensity emitted by such cold atomic clouds decays much slower than
the single-atom case, as is shown in Fig. 1.4(c). Such subradiant decay has a coopera-
tive origin, as is proven by the fact that the decay gets slower when the cooperativity
parameter b0 is increased.

A striking variation of the radiative recombination time due to cooperative emission
has also been observed in pseudoisocyanine (PIC) bromide molecular aggregates [20].
These aggregates are classified as J-aggregates, as most of the coupling of the aggre-
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Figure 1.4: Decay of the measured fluorescence power after switching off the excitation
laser (black line) in time from a cloud of 87Rb atoms at temperature T ≈ 50 µK. Here
b0 = 3N/(kR)2 is the optical thickness of the cloud, where N ≈ 109 is the number of
atoms, k = 2π/λ is the wavenumber related to the atomic transition (λ = 780 nm) and
R ≈ 1 mm is the radius of the sample. Here the laser is detuned by ∆ = −6γ from the
atomic transition, with γ/(2π) = 6 MHz being the single-atom radiative decay rate.
Panel (b) shows the same data as panel (a), but on a shorter time scale and including
an exponential fit of the decays. Panel (c) shows a different experiment under the same
conditions, reaching longer times. In all panels, the dashed lines represent the single-
atom exponential decay. Panels (a,b) reproduced from Ref. [18], panel (c) reproduced
from Ref. [29].

Figure 1.5: Radiative recombination rate from pseudoisocyanine (PIC) bromide molec-
ular aggregates. The rates are obtained from the fluorescence lifetime, as a function
of the inverse temperature. Open and filled symbols refer to the emission at different
wavelengths, while the lines serve as a guide for the eye. The radiative rate at high
temperature is equal to the monomer rate. As temperature is lowered, the rate becomes
dominated by the lowest-energy eigenstate, that is superradiant. Figure reproduced
from Ref. [20].
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Figure 1.6: (a) Radiative lifetime of a layer of self-assembled CdSe/ZnSe quantum dots
vs. the aggregate size (“mesa size”). The radiative lifetime is measured from an ex-
ponential fit of the photoluminescence decay (see inset). As the size of the ensemble
grows, the lifetimes decreases up to the whole ensemble lifetime (dashed line), indicat-
ing cooperative enhancement of the radiative rate. In panel (b) the meaning of the mesa
size is pictorially represented: the quantum dot layer is separated into independent
subsystems, each of area equal to the “mesa size”. Figure reproduced from Ref. [22].

gate to the light is concentrated in a collective, red-shifted state extended along the
whole aggregate. At zero temperature, all the fluorescence emission comes from this
extended state, while at very high temperatures, the aggregate emits in the same way
as independent molecules would do. As is shown in Fig. 1.5, the radiative recombina-
tion rate obtained from fluorescence experiments in PIC aggregates increases by a large
factor as the temperature is decreased towards zero, thus showing the emergence of
superradiance.

Finally, superradiant emission has also been observed in quantum dot aggre-
gates [22]. In the experiment shown in Fig. 1.6, the radiative decay time of a dense
ensemble of quantum dots is measured by artificially varying the size of the aggregate
(“mesa size” in Fig. 1.6). As the aggregate gets larger, the emission lifetime gets shorter,
suggesting the presence of cooperative radiation from the ensemble.

1.3.2 Superradiance in the frequency domain

Single-excitation superradiance originates from the existence of extended, coherent
states across an ensemble of emitters, where most of the coupling to the EMF is con-
centrated. The presence of these extended states can also produce observable features
in the absorption and fluorescence spectra of the aggregates. In fact, such extended
states manifest themselves as a very bright and sharp peak in the absorption spectrum
and, for the case of the so-called J-aggregates, also in the fluorescence spectrum. This
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a b

Figure 1.7: (a) Representation of a C8S3 nanotube, with a distinction between the inner
wall and the outer wall of the tube. (b) Absorption spectrum of C8S3 nanotubes (red
line) compared to the monomer absorption spectrum (black line). The peak (1) is asso-
ciated to the inner wall, while the peak (2) to the outer wall. Figure reproduced from
Ref. [30].

peak originates from the segregation of the whole oscillator strength (quantifying the
coupling to the EMF) of the aggregate to one (or few) extended state(s). Since these
eigenstates are extended, they are less affected by inhomogeneous broadening, due to
self-averaging of the fluctuations throughout the emitters, and therefore they appear
narrower than their single-emitter counterparts.

The energy of the extended superradiant states is typically shifted with respect of
that of a single emitter, by an amount proportional to the coupling between the emit-
ters. This is particularly evident in molecular aggregates, where the couplings are typ-
ically strong, as compared to kBT (with T = 300 K). Molecular aggregates that show a
blue-shift of their main absorption peak are called H-aggregates, while the ones having a
red-shifted peak are defined J-aggregates. An example of this is shown in Fig. 1.7, where
the absorption spectrum of self-assembled molecular dye nanotubes is compared with
the spectrum of the corresponding monomers. As one can see, the aggregate spectrum
shows two distinct, bright and narrow absorption lines, that are associated to delocal-
ized eigenstates along the inner and outer walls of the nanotube.

A redshifted peak is also observed from natural nanotubular structures. Specifically,
Fig. 1.8(a,b,c) shows the fluorescence spectrum of the antenna complexes of Chloro-
bium tepidum, a kind of Green Sulfur Bacteria, from Ref. [31]. Such antenna com-
plexes are formed by tubular structures of bacterio-chlorophyll molecules, forming J-
aggregates that lie on the bacterial membrane. As it can be seen from Fig. 1.8(a,b,c),
their emission spectrum peaks between 750 nm and 800 nm, which is significantly red-
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Figure 1.8: Fluorescence peak for wild type Chlorobium tepidum chlorosomes. Panels
(a,b,c) are reproduced from Ref. [31], and each panel show a single-chlorosome fluo-
rescence spectrum. Panel (d) shows the dipole strength from single-walled WT tube
simulations (results presented also in Chapter 3). The monomer transition frequency at
650 nm is marked in panel (d).

shifted from the BChl fluorescence peak (650 nm). We analyze these models more in
detail in Chapter 3, where we introduce a model able to reproduce the emission peak
between 750 nm and 800 nm, reported also here in Fig. 1.8(d).

Finally, circular dichroism is a further specific feature of the light emitted by sym-
metrically arranged molecular aggregates, and it has been associated to cooperative
emission [31].

1.3.3 Superradiance in the photon statistics: photon bunching

Superradiant emission can also be identified from the photon statistics of the emit-
ted light. Specifically, the photons emitted from a superradiant medium show bunch-
ing, that is a correlation effect where the photons tend to be emitted in groups. Pho-
ton correlation can be measured by splitting the emitted light and introducing a de-
lay ∆τ between the two beams, as schematically shown in the inset of Fig. 1.9a.
For example, in Ref. [32] some molecular aggregates have been switched between a
J-aggregate configuration (see Fig. 1.9b) and different configurations, having mixed
(J/H)-aggregate features (Fig. 1.9a) or no specific aggregation at all (Fig. 1.9c). As
we mentioned in the previous section, J-aggregates are characterized by superradi-
ant emission. As it can be seen from Fig. 1.9, the superradiant J-aggregate configu-
ration shows photon bunching, characterized by a photon cross-correlation parameter
g(2)(∆τ) = 〈I(t)I(t + ∆τ)〉 / 〈I(t)〉2 that is higher than unity for small ∆τ and decreases
exponentially to one for large ∆τ. Moreover, photon bunching in Fig. 1.9 is seen only
for the superradiant J-aggregate configuration. This example reflects the general rela-
tionship that exists between superradiance and photon bunching.

1.4 Supertransfer of excitations

Another important cooperative effect, that is connected to single-excitation superradi-
ance, is supertransfer of excitation between aggregates [7]. If two aggregates have su-
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Figure 1.9: Second-order cross-correlation function g(2)(∆τ) = 〈I(t)I(t + ∆τ)〉 / 〈I(t)〉2
of the emitted fluorescence intensity I(t) in time from PPEB aggregates. Different pan-
els show different configurations, where PPEB-2 is a J-aggregate, PPEB-1 has mixed
features of J- and H- aggregates, while PPEB-3 is neither a J- nor an H- aggregate. In
panel (b), the orange exponential fit highlights photon bunching for |∆τ| > 0. Figure
reproduced from Ref. [32].
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C) LHI and LH2 rings (d = 9.8 nm) E) two LH2 rings (d = 7.5 nm)
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Figure 1.10: (a,b) Pictorial example of the supertransfer effect. In panel (b), two emit-
ters at a distance d have a dipole-dipole coupling≈ µ2/d3, where µ is the single-emitter
transition dipole moment. In panel (a), two Purple Bacteria LH2 aggregates are at the
same distance d. Each LH2 aggregate has a superradiant state with dipole strength
≈
√

Nµ, where N = 18 is the number of emitters in each aggregate. As a result, the
coupling between the aggregates is Nµ2/d3, enhanced by a factor N. (c,d,e) Supetrans-
fer coupling between the eigenstates of LHI and LH2 Purple Bacteria antenna complex
(see Chapter 4). On the axes, the index indicate the eigenstates ordered by energy.
Both LHI and LH2 have two superradiant states (states nr. 2 and 3 in the figure) and
N − 1 subradiant states. On the color bar, the absolute value of the coupling between
eigenstates is shown, divided by the average coupling between molecules of the two
aggregates considered in each panel. Both LHI and LH2 are rings with radii, respec-
tively, RLHI = 4.7 nm and RLH2 = 2.6 nm, and containing NLHI = 32 and NLH2 = 18
molecules, respectively.
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perradiant eigenstates characterized by a large transition dipole, at large distances each
aggregate can be characterized by the dipole moment of its superradiant state and the
transfer between aggregates can be boosted by a factor proportional to the number of
emitters in the aggregates.

To better illustrate, let us consider the example shown in Fig. 1.10(a,b): we have
two small, regular ring-like aggregates, at a distance d much larger than each aggregate
diameter. The regular arrangement of the emitters in each aggregate results in the pres-
ence of a superradiant state, whose transition dipole moment is ≈

√
Nµ, much larger

than the single-emitter transition dipole moment µ. Now, if the two aggregates are at
a distance much larger than the aggregate size (as illustrated in Fig. 1.10a), then each
aggregate is well approximated by a giant point dipole with magnitude ≈

√
Nµ, so

that the dipole coupling between the aggregates is ≈ Nµ2/d3. As a comparison, the
dipole coupling between two independent emitters at the same distance (see Fig. 1.10b)
is ≈ µ2/d3. The coupling is thus enhanced by a factor N, the number of emitters in
each aggregate, due to cooperative effects. The coupling determines the speed at which
the excitation is transferred, so an enhanced coupling implies a faster, super-transfer of
excitation.

Super-transfer can also occur between aggregates at small distances d with d � L,
where L is the aggregate size. For aggregates at small distances, it is the specific geom-
etry which determines which eigenstates have an enhanced coupling with respect to
the single molecules. The possible relevance of short-distance super-transfer in natural
light-harvesting complexes is an important question that has been discussed in litera-
ture [3, 33–35]. An example of supertransfer taken from natural photosynthetic systems
is shown in Fig. 1.10(c,d,e), where we consider the coupling between the eigenstates of
LHI and LH2 aggregates of Purple Bacteria antenna complexes (see Chapter 4). Both
LHI and LH2 are ring-like aggregates, and they both possess two superradiant states
each, corresponding to the first and second excited states. In Fig. 1.10d the coupling
between the eigenstates of two far apart LH2 rings (the center-to-center distance d is 3.7
times the ring radius) shows that the two superradiant states of each ring are strongly
coupled between one another, with a coupling up to 14 times larger than the average
coupling between molecules of the two aggregates. Such enhancement factor is close to
N = 18 and denotes supertransfer. On the other hand, all the other subradiant eigen-
states have nearly vanishing couplings: this effect is called subtransfer and it emerges
between the subradiant states of aggregates very far apart. Then, in Fig. 1.10e we show
the couplings between eigenstates of two LH2 rings at the nearest distance that they
have in nature: here d is just 1.5 times the ring diameter. In this case, due to the short
distance, there are large couplings also between subradiant eigenstates. Interestingly,
because of the symmetry in the LH2 rings, supertransfer couplings are present between
some pairs of eigenstates, with enhancement factors of up to 12. Similarly, supertrans-
fer couplings are present between the LH2 and the LHI rings at their natural distance
(d is comparable to the diameters), see Fig. 1.10c, with enhancement factors of up to
12. Notably, the enhanced couplings are accumulated in the lower part of the spec-
trum, where most of the excitation is present at thermal equilibrium. Therefore, these
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cooperative effects could be relevant also at finite temperature.
In conclusion, cooperativity with respect to energy transfer is determined by the

coupling matrix V between the aggregates. The coupling matrix ultimately depends
on the specific geometry and, for small distances, V selects different cooperative states
than the ones selected by the coupling with the EMF (superradiant states). Surpris-
ingly, in natural system, the geometry of the aggregates is such to make it possible to
have both a super-absorption of light and a super-transfer between aggregates at room
temperature, as discussed in Chapters 3, 4 and references therein. Nevertheless, the
functional role of symmetries in natural antenna complexes is still under debate [33–
35].

1.5 Coupling strength to the electromagnetic field

The aim of this thesis is to analyze the interplay of cooperative effects (with a larger
focus on superradiance) with disorder and noise in aggregates of point-like emitters.
The specific examples of point-like emitters under our consideration are molecular ag-
gregates and quantum-dot super-lattices, but we also show the applicability of part
of our results to generic two-level systems, such as trapped ions and Rydberg atoms.
Specifically, we are interested in how such interplay affects the optical properties of the
aggregate and its efficiency in transport and storage of energy.

Our analysis considers systems where the strength of the collective EMF-mediated
coupling varies significantly. We propose to quantify the cooperative coupling strength
by the “gap” induced in the spectrum: in the case of unit-rank imaginary coupling,
the energy gap is imaginary and equal to the maximal energy width h̄ΓSR of the super-
radiant state, while in the case of unit-rank real coupling, the energy gap is real and
equal to the energy difference between the extended ground state and the first excited
state. Here, we propose to use the imaginary gap h̄ΓSR to quantify the strength of coop-
erativity in all the systems under our study that exhibit superradiance, namely Green
Sulfur Bacteria nanotubes (Chapter 3), Purple Bacteria antenna complexes (Chapter 4)
and quantum dot superlattices (Chapter 5). In the case of molecular chains in cavities
(Chapter 7), we instead quantify the cooperative coupling by means of the real energy
gap induced by the coupling to the cavity mode.

Under such definition, following a common characterization used in cavity
physics [36–40], the weak coupling is defined as where the gap is much smaller than the
mean level spacing. Then, the strong coupling regime is where the gap is much larger
than the mean level spacing. Finally, the ultra-strong coupling regime is characterized by
gaps even larger than the spectral width of the excitonic spectrum, that we define as the
max{4Ω, W, kBT}, where 4Ω roughly quantifies the spectral width in absence of disor-
der at T = 0 K, Ω is the nearest-neigbour coupling, W is the amount of static disorder
(inhomogeneous broadening) and kBT is the thermal energy (homogeneous broaden-
ing). In this regime, the gapped collective states are well separated from the rest of
the spectrum, they can achieve very large populations and an entirely different physics
can emerge. In Fig. 1.11 we show how the realistic systems described in the following
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Figure 1.11: A diagram of the coupling regimes as described in the text. The realistic
systems described in the thesis are placed at their corresponding parameters, see Ta-
ble 1.1. The mean level spacing is computed in absence of disorder. The spectral width
here is defined as max{4Ω, W, kBT}, where 4Ω quantifies the spectral width in absence
of disorder, Ω is the nearest-neighbour coupling, W is the static disorder and kBT is
the thermal energy. Note that the spectral width cannot be smaller than the mean level
spacing, so that the gap cannot at the same time be larger than the spectral width and
smaller than the mean level spacing: for this reason, the upper-left part of the diagram
is always empty and undefined.
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System
Green Sulfur

Bacteria
nanotubes

Purple Bacteria
antenna complexes

Perovskite
quantum dot
superlattices

Molecular chains
in cavities

Chapter 3 4 5 7
Gap 1.2 · 10−4 eV 7 · 10−7 eV 3 · 10−3 eV 3 eV

ΓSR/γ 5000 16 2000 —
MLS 6 · 10−5 eV 10−2 eV 7 · 10−8 eV 4 · 10−6 eV

Ω 7 · 10−2 eV 7 · 10−2 eV 1.4 · 10−4 eV 1.2 · 10−2 eV
W 2.5 · 10−2 eV 2.5 · 10−2 eV 2 · 10−3 eV 2.5 · 10−2 eV

kBT 2.5 · 10−2 eV 2.5 · 10−2 eV 5 · 10−4 eV 2.5 · 10−2 eV
h̄ω0 1.9 eV 1.6 eV 2.4 eV 2 eV

Table 1.1: Summary of the relevant parameters for the systems considered in this the-
sis, and reference to the corresponding chapters. Here, the gap is either the imaginary
gap h̄ΓSR (where ΓSR is the most superradiant decay rate), or the polaritonic gap (only
in the case of molecular chains in cavities), while ΓSR/γ is the ratio of the maximal
superradiant rate over the single emitter radiative rate (the quantity is undefined for
molecular chains in cavities), MLS is the mean level spacing in absence of disorder, Ω
is the nearest-neighbour coupling, W is the strength of static disorder, kBT is the exper-
imental temperature at which these systems are studied, and h̄ω0 is the single-emitter
excitation energy. The parameters in this table are used to plot the points in Fig. 1.11.
The parameters for Green Sulfur Bacteria are referred to the largest set of 4 concentric
cylindrical structures (N = 19680, see Figs. 3.10, 3.21), while for Purple Bacteria are re-
ferred to a single LHI ring (N = 32, see section 4.6.13), for the superlattice we consider
the largest simulated structure (N = 303, see Fig. 5.1a) and for the molecular chains in
a cavity we refer to the longest simulated chain (N = 104, see Fig. 7.3).

chapters are located in these regimes. The corresponding values of the parameters are
reported in Table 1.1.

It is important to note that our definition of the cooperative coupling strength has
clear meaning for unit-rank interactions that are purely hermitian (V = VR) or purely
anti-hermitian (V = iVI), but it has some limitations for more general long-range in-
teractions. Finite-range interactions of the form Vmn ∝ |m− n|−α (α > 0), for example,
may not create a unique gap in the spectrum, but many gaps, or more in general they
can affect the density of states of a certain part of the spectrum. Moreover, as we show
in Chapter 3, some cooperative effects can emerge even in presence of short-range in-
teractions, depending on the system geometric features. Therefore, focusing on the gap
of a single state may not always be the best choice to quantify cooperativity. Moreover,
in the case of complex interactions (V = VR + iVI), the imaginary gap would mostly
account for the cooperative interaction contained in VI , neglecting the collective effects
present in VR. Collective effects in VR can be very important, because they can lower
the density of states and make the system robust to thermal noise, as our results in
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Chapter 3 show.
Therefore, our proposed quantification of cooperative coupling is a starting point

that is certainly valid for purely real or purely imaginary unit-rank interactions. In the
future we plan to generalize our classification of the coupling strength regimes by ex-
tending it to general non unit-rank interactions, also including both the effect of the
hermitian and anti-hermitian parts, VR and VI , in the measure of cooperativity. More-
over, inspired by our results in Chapter 3, we should also try to quantify cooperativity
that emerges from short-range interactions for reasons different from the interaction
range, such as some geometric properties.

1.6 Cooperativity, long-range interactions and robustness to
disorder and noise

Cooperativity, stemming from long-range interactions, can make a system robust to
static disorder, dephasing and thermal noise by different mechanisms. Different effects
arise depending on the rank of the long-range interaction, that is unity (for infinite-
range interactions) or low-rank (for more general finite-range interactions, see discus-
sion in section 1.2). An important role is also played by the form of the long-range
interaction, V (see section 1.1), that can be hermitian (represented by a real matrix VR),
anti-hermitian (represented by a purely imaginary symmetric matrix iVI), or generically
non-hermitian (represented by a symmetric matrix of the form VR + iVI). The effect of
cooperativity depends also on the strength of the coupling, whether it is weak, strong
or ultra-strong (see section 1.5).

1.6.1 Unit-rank interactions: robustness to static disorder

The case of unit-rank long-range interactions is better understood. As regards static
disorder, for unit-rank anti-hermitian (V = iVI) long-range interactions, it is known
that the robustness to such disorder [25, 41] depends on the coupling strength: (a) in
the weak-coupling regime, the robustness of the system is unaffected by the long-range
interaction, while (b) in the strong coupling regime the long-range interaction makes
the system more robust to disorder and (c) in the ultra-strong coupling regime, the
robustness to static disorder is even stronger, and it is determined by the imaginary
gap induced by the long-range interaction. These conclusions are drawn in Chapter 6,
and in Ref. [42].

Also in the unit-rank hermitian case, for weak coupling the robustness to disorder
is unaffected by the long-range interaction, while in the ultra-strong coupling regime
the emergence of a real-energy gap gives the system cooperative robustness to disorder,
affecting its transport properties [42, 43] (see Chapter 7).
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1.6.2 Unit-rank interactions: robustness to dephasing

Dephasing is the decay of quantum coherences in a system, and it is typically caused
by random dynamical fluctuations of the site energies. In excitonic systems, the role of
dephasing is often studied within the Haken-Strobl approach [26, 44, 45], that assumes
uncorrelated white-noise fluctuations of the site energies within a given range h̄γφ,
representing the dephasing strength.

The interplay of dephasing with unit-rank anti-hermitian long-range interactions
has been studied in Refs. [26, 46], showing that: (a) the interplay of two different envi-
ronments, one inducing dephasing and another inducing imaginary cooperative decay,
can be described in terms of a master equation which includes dephasing and the anti-
hermitian long-range term V = iVI in an additive way [46], as long as the dephasing
strength is smaller than the bandwidth of the environment that induces decay; (b) the
imaginary gap induces cooperative robustness to dephasing, in the sense that the de-
phasing strength needed to destroy cooperativiy increases proportionally to the system
size N [26].

For hermitian unit-rank interactions, in the ultra-strong coupling regime, the pres-
ence of a gap is also expected to make the system robust to dephasing, similarly to what
happens with static disorder.

1.6.3 Unit-rank interactions: robustness to thermal noise

Finally, as regards the interplay of unit-rank interactions with finite temperature noise,
a clear picture can be drawn for hermitian long-range interactions (V = VR): (a) in
the weak coupling regime the spectrum is basically unaffected by the long-range term,
and therefore the interplay with thermal noise is the same as the case without long-
range interactions; (b) in the ultra-strong coupling regime, a gap emerges between the
lowest excitonic eigenstate and the rest of the spectrum, and at thermal equilibrium
the cooperative ground state will be populated with near-unity probability, as long as
the thermal energy kBT is much smaller than the gap, thus allowing the cooperative
properties of the ground state to emerge even at finite temperature.

On the other hand, the interplay of finite temperature noise with anti-hermitian
unit-rank interactions is more complicated: (a) for weak coupling, the imaginary long-
range interaction can be considered as a small perturbation to the hermitian spectrum,
and one can assume thermal equilibrium on the real energies determined by the her-
mitian part; in this regime, cooperative effects can survive to thermal noise, as long as
kBT is smaller than the spectral range (we followed this approach in Chapter 5); (b) for
strong and ultra-strong coupling regimes, the interplay of different environments (in-
ducing thermal relaxation and cooperative decay) is less trivial. To better understand
what is the problem in studying the interplay of thermal relaxation and cooperativity
in the strong or ultra-strong coupling regimes (with respect to the imaginary coupling
VI) one can note the following: standard master equation approaches are based on
well-defined system eigenstates and energy. In the case of strong and ultra-strong cou-
pling, the energies of the system eigenstates are not well-defined due to the coupling
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to another environment which induces a finite lifetime (energy width) to the states. In
this case what are the energies according to which the system can thermalize is not
clear, and a microscopic master equation approach should be developed to address this
problem consistently. We plan to address this problem in the future.

1.6.4 Finite-range interactions: robustness to static disorder, dephasing and
thermal noise

In the general case, the coupling to an external field does not induce neither a unit-rank
Hermitian nor a purely anti-hermitian interaction matrix, but instead a non-hermitian
matrix V = VR + iVI characterized by long-range interactions. The rank of V can be
small but different from unity. Specifically, VR and VI can have different ranks and
different coupling strength. This is the case of the radiative hamiltonian presented in
Chapter 2 and applied to Green Sulfur Bacteria nanotubes (Chapter 3), Purple Bacteria
antenna complexes (Chapter 4) and perovskite quantum-dot superlattices (Chapter 5).
In these general cases, the classification of the cooperativity strength presented in sec-
tion 1.5, based on the presence of an energy gap (either imaginary or real), may not be
the best choice to properly represent the effect of cooperativity. Indeed, different routes
to robustness can arise in this case. For instance, even if the imaginary part of the in-
teraction is in the weak coupling regime, the contribution of the real part together with
the specific geometry of the system can donate robustness to the cooperative effects.

In the case of Purple Bacteria antenna complexes (Chapter 4), the ring arrangement
of the molecules allows the emergence of a superradiant state close to the ground state.
Indeed in this case VI commutes the Hermitian part of the Hamiltonian due to the
geometry of the system, allowing the coupling to the EMF to be concentrated in few
specific states, despite the weakness of such coupling. Moreover, even if the effect
of long-range interactions is very weak, the system is intrinsically robust to disorder
and thermal noise, because the couplings between the molecules are very strong with
respect to kBT and the system is small, producing large level spacings.

The case of Green Sulfur Bacteria (Chapter 3) is similar in the sense that the imagi-
nary part VI is unit-rank and almost commutes with the Hermitian part of the Hamilto-
nian, allowing the emergence of a superradiant state close to the ground state. Nev-
ertheless, it is also different from the case of Purple Bacteria since in such antenna
complexes a large number of molecules (105) is involved. This might suggest a high
density of states and thus a high sensitivity of the system to noise and disorder. Nev-
ertheless, as we show in Chapter 3, the Hermitian part of the interaction with the EMF
produces a strong suppression of the density of states close to the ground state, making
cooperative effects robust to thermal noise and disorder. Therefore VR, even if it is a
short-range interaction (1/r3 in quasi-1D systems), produces effects on the system that
are very similar to the presence of a gap, by suppressing the density of states near the
ground state (the presence of a gap can be considered a special case of a suppressed
density of states). This occurs due to the specific arrangement of the molecules in natu-
ral photosynthetic nanotubes. This further suggests that long-range interactions might



22 CHAPTER 1. INTRODUCTION

not be required to have strong cooperativity, and specific geometric features may also
induce collective behaviours.

Finally, in the case of perovskite superlattices (Chapter 5) neither VR nor VI is unit
rank, but the role of long range interaction is important and VI has a low rank and
it lies close to the ultra-strong coupling regime in absence of disorder, as can be seen
in Fig. 1.11. In this regime we observe gaps in the complex spectrum of the ordered
system that are larger than the mean level spacing on the real axis (see Fig. 5.1a). The
presence of such gaps effectively suppresses the density of states in the complex eigen-
value plane. The low-rank imaginary coupling VI plays therefore a major role and the
overall effect of VR + iVI makes the system robust to static disorder, as it can be seen
from Fig. 5.12. Note that, if one includes the effect of natural disorder, the imaginary
gap h̄ΓSR becomes smaller, moving the system towards the weak-coupling regime. Be-
cause of this, in Chapter 5 we were able to study the effect of thermal noise assuming a
weak coupling regime, meaning that thermal equilibrium is determined just by the real
parts of the complex energies, and we also discussed how to improve the robustness of
the system to thermal noise.

In conclusion, long-range interactions are certainly important and they constitute
a natural generalization of the common mechanism to robust cooperative effects pro-
posed by U. Fano, as explored in this thesis in Chapter 6. Nevertheless, in realistic
systems the presence of long-range interactions cannot by itself explain the robustness
of cooperative effects, and the symmetries present in the system, with respect to the
interaction matrix with the field, play an essential role. We plan to further investigate
the different mechanisms to robust cooperative effects based on long range interactions
and symmetries in the future.

1.7 Thesis outline

In the following, we give a brief outline of the thesis, pointing also to which cou-
pling regime is considered in each chapter, following the classification proposed in sec-
tion 1.5. Chapters 2-5 focus more specifically on superradiance, its interplay with dis-
order and noise and possible applications. Chapters 6-7 focus instead on more general
long-range interactions within aggregates, their consequences on the aggregate spectra
and their effect on transport.

Specifically, in Chapter 2 the interaction of an aggregate of emitters with the EMF
is calculated, starting from a first-principle Hamiltonian for the whole system, includ-
ing the emitters and the modes of the quantized EMF. A quantum master equation
is derived, which describes the collective coupling to the EMF, it is equivalent to a
non-Hermitian Hamiltonian in the single-excitation regime and it is then employed
throughout the following chapters.

In Chapter 3 the interplay of collective radiation and thermal noise is studied in the
case of natural molecular nanotubes present on the membranes of Green Sulfur Bacte-
ria. These systems lie on the boundary between the weak- and strong-coupling regimes,
as it can be seen in Fig. 1.11, but they fall more in the weak-coupling description. In
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Figure 1.12: Coupling of all the eigenstates of a system to the elecromagnetic field,
computed in a perturbative way (the dipole strength, |Dn|2, see Chapter 3) and in a non-
perturbative way (the relative radiative width Γn/γ, see Chapter 3). The dashed line is
the identity (where |Dn|2 = Γn/γ). “Q.dot superlattice” is a cubic CsPbBr3 quantum-
dot superlattice made of N = 203 quantum dots (see Chapter 5), that is in the strong-
coupling regime (Gap/mean level spacing ≈ 104). “GSB MT tube” refers to a single-
wall Green Sulfur Bacteria nanotube mutant type made of N = 6000 molecules (see
Chapter 3), that is in the weak-coupling regime (Gap/mean level spacing ≈ 0.1).

this regime, as it can be seen in Fig. 1.12, the correct coupling of all the eigenstates to
the EMF, Γn/γ, is well captured by the perturbative method of the dipole strengths,
|Dn|2. In particular, the effect of the EMF-mediated hopping is studied, by estimating
the coherence present in the nanotubes at room temperature. Our results show that
the natural configuration of Green Sulfur Bacteria photosynthetic nanotubular antenna
complexes ensures a high, macroscopic coherence at thermal equilibrium, as compared
to alternative tubular configurations, thanks to the effect of EMF-mediated long-range
hopping of excitation.

In Chapter 4 the well-known efficiency of photosynthetic Purple Bacteria in absorb-
ing sunlight and storing the excitation thanks of cooperative effects is used as a basis
for proposed applications. Purple Bacteria lie clearly in the weak-coupling regime, as
it is seen from Fig. 1.11. Specifically, the excitation funneling mechanism is proposed
to overcome the known limitations of sunlight-pumped lasers, stemming from the ex-
tremely dilute nature of sunlight.

In Chapter 5 a theory of collective radiation is presented for a novel material: su-
perlattices made of CsPbBr3 quantum dots. These systems lie between the strong and
the ultra-strong coupling regimes because of the large static disorder (see Fig. 1.11 and
Table 1.1), and in this regime the perturbative dipole strength approach fails to correctly
reproduce the correct coupling to the EMF (see Fig. 1.12). Recent experiments on such
systems [47] have shown the hallmarks of superradiance, at the cryogenic temperature
T = 6 K. We provide a theory that explains the experiments, specifically we show that
the surprisingly low degree of collective emission observed in this material is a result
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of the interplay of long-range radiative interactions, thermal noise and static disorder.
Moreover, our proposed theory is used to make quantitative predictions, indicating the
way to obtain superradiance at higher temperatures in such system.

Inspired by the many interesting properties of superradiance, and motivated by the
similarity between different collective phenomena introduced here in Section 1.1, in
Chapter 6 we analyze the more general problem of the effect of long-range interactions
between levels with a constant density of states. A comparison is made between the
purely imaginary long-range coupling associated to superradiant emission, and the real
long-range coupling, typical of single-excitation superconductivity. While the real long-
range coupling ultimately reproduces the well-known superconducting gap, a novel
parallel is drawn between such real gap and the purely imaginary gap arising in the
superradiant case. Both gaps, although different in the physical meaning, are shown to
provide robustness to static disorder.

In Chapter 7 we study how energy transport is affected by the interplay of long-
range interactions and disorder. Studying a paradigmatic model, that is shown to
be realized by placing a nano-chain inside a resonant cavity, we find that such inter-
play produces quite nontrivial disorder-enhanced and disorder-independent transport
regimes. The molecular chains analyzed here lie in the ultra-strong coupling regime, as
is shown in Fig. 1.11.

Finally, in Chapter 8 we summarize the main conclusions from the previous chap-
ters and we indicate some perspectives.



Chapter 2

Cooperative effects in light-matter
interaction

In this chapter the problem of an ensemble of emitters coupled to the models of the electromag-
netic field is considered. The field is considered as coming from a black body at a finite temper-
ature, which is a rough model for sunlight. A master equation is derived that is valid both for
aggregates smaller than the transition wavelength and larger than that, reproducing previous
results [27, 48]. When the black-body temperature is vanishing, the master equation models
cooperative radiative decay. A simple case of two coupled emitters is shown to exhibit super-
radiance, and the master equation is compared to the well-known non-Hermitian Hamiltonian
approach.

2.1 Hamiltonian and Master Equation for the whole system

Let us consider an aggregate of N two-level systems all having the same excitation
energy ω0. Below we refer to the two-level systems as “sites”. In these calculations we
use natural units so that h̄ = 1. The aggregate is assumed to interact with the radiation
emitted by a black body at temperature TS. The full Hamiltonian is written as

Ĥ = ĤS + ĤB + ĤI . (2.1)

Here the site Hamiltonian is

ĤS =
ω0

2

N

∑
j=1

σ̂z
j (2.2)

with σ̂z
j being the z Pauli matrix for the j-th site. The black body Hamiltonian is

ĤB = ∑
~k,λ

ωk b̂†
~k,λ

b̂~k,λ (2.3)

where the summation runs over the modes~k and the polarizations λ = 1, 2 of the field,
the dispersion relation is ωk = ck and the creation/annihilations operators follow the

25
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commutation rules [b̂~k,λ, b̂†
~k′,λ′

] = δ~k,~k′δλ,λ′ . Finally, the interaction Hamiltonian is

ĤI = −
N

∑
j=1

~̂Dj · ~̂E(~rj) (2.4)

where
~̂Dj = ~dj(σ̂

+
j + σ̂−j ) (2.5)

is the dipole operator on the j-th site, ~dj is the transition dipole moment of the same
site, σ̂±j = (σ̂x

j ± iσ̂y
j )/2 and

~̂E(~rj) = i ∑
~k,λ

√
2πωk

V
~e~k,λ

[
ei~k·~rj b̂~k,λ − e−i~k·~rj b̂†

~k,λ

]
(2.6)

is the electric field in the position~rj, with ~e~k,λ being a unit vector which specifies the
polarization.

The dynamics of the full system is described by the Liouville master equation
which, in the interaction picture, reads [49]

dρ̂(t)
dt

= −i
[
ĤI(t), ρ̂(t)

]
(2.7)

where ρ̂(t) is the density matrix in the interaction picture and it is related to the density
matrix in the Schrödinger picture ρ̂ by

ρ̂(t) = ei(ĤS+ĤB)t ρ̂ e−i(ĤS+ĤB)t . (2.8)

Note that also the density matrix ρ̂ in the Schrödinger picture is time-dependent. Here
we choose to write explcitly the dependence on time just for the operators representend
in the interaction picture, to distinguish them to their respective Schrödinger represen-
tation.

The interaction Hamiltonian in the interaction picture can be factorized as

ĤI(t) = ∑
ω=±ω0

N

∑
j=1

e−iωt Âj(ω)⊗ B̂j(t) = ∑
ω=±ω0

N

∑
j=1

e+iωt Â†
j (ω)⊗ B̂j(t) (2.9a)

where Âj(ω) are operators acting on the system,

Âj(ω0) = σ̂−j , Âj(−ω0) = Â†
j (ω0) = σ̂+

j (2.10)

and B̂j(t) are hermitian operators acting only on the black body, given by

B̂j(t) = i ∑
~k,λ

√
2πωk

V

(
~dj ·~e~k,λ

) [
ei(~k·~rj−ωkt)b̂~k,λ − e−i(~k·~rj−ωkt)b̂†

~k,λ

]
. (2.11)
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2.2 Born and Markov approximations

Eq. (2.7) can be integrated from 0 to t to obtain

ρ̂(t) = ρ̂(0)− i
∫ t

0
dt′
[
ĤI(t′), ρ̂(t′)

]
(2.12)

which, substituted back into (2.7), gives the integro-differential equation

dρ̂(t)
dt

= −i
[
ĤI(t), ρ̂(0)

]
−
∫ t

0
dt′
[
ĤI(t),

[
ĤI(t′), ρ̂(t′)

]]
. (2.13)

Here, we perform the Born approximation: the interaction between the system and
the black body is assumed to be weak, so that it does not affect the black body, not even
generating correlations between the system and the black body. Formally, the Born
approximation translates in approximating the density matrix of the full system as [49]

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂B, (2.14)

where the black-body part ρ̂B is also assumed independent of time, so that [ĤB, ρ̂B] = 0.
Making the change of variable τ = t− t′ into the integral, taking the trace trB{. . . } over
the degrees of freedom of the black body and assuming that the average value of the
electric field vanishes, i.e.

trB
{[

ĤI(t), ρ̂(0)
]}

= 0 , (2.15)

we have
dρ̂S(t)

dt
= −

∫ t

0
dτ trB

{[
ĤI(t),

[
ĤI(t− τ), ρ̂S(t− τ)⊗ ρ̂B

]]}
. (2.16)

Now we perform the Markov approximation [49]: the memory effects between the
system and the black body are neglected, i.e., formally we approximate the density
matrix as

ρ̂S(t− τ) ≈ ρ̂S(t) (2.17)

(first Markov approximation) and we extend the integration to ∞ (second Markov ap-
proximation). This gives the Redfield Equation

dρ̂S(t)
dt

= −
∫ ∞

0
dτ trB

{[
ĤI(t),

[
ĤI(t− τ), ρ̂S(t)⊗ ρ̂B

]]}
. (2.18)

2.3 Secular approximation

Let us now rewrite Eq. (2.18) more explicitly. We use the notation〈
Ĉ
〉

B = trB
{

Ĉρ̂B
}

(2.19)

to indicate the average value of some operator Ĉ on the black body and “h.c.” for the
Hermitian conjugate. Thus, Eq. (2.18) becomes

dρ̂S(t)
dt

=
∫ ∞

0
dτ
[〈

ĤI(t− τ)ρ̂S(t)ĤI(t)
〉

B −
〈

ĤI(t)ĤI(t− τ)ρ̂S(t)
〉

B

]
+ h.c. (2.20)
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Now we use Eq. (2.9) to write the interaction Hamiltonian explicitly as

ĤI(t) = ∑
ω′=±ω0

N

∑
i=1

eiω′t Â†
i (ω

′)⊗ B̂i(t) (2.21)

ĤI(t− τ) = ∑
ω=±ω0

N

∑
j=1

e−iω(t−τ) Âj(ω)⊗ B̂j(t− τ) (2.22)

and, substituting into (2.20), we have

dρ̂S(t)
dt

= ∑
ω,ω′

ei(ω′−ω)t ∑
i,j

Γij(ω, t)
[

Âj(ω)ρ̂S(t)Â†
i (ω

′)− Â†
i (ω

′)Âj(ω)ρ̂S(t)
]
+ h.c.

(2.23)

where we have defined the rates Γij(ω, t) as the half-sided Fourier transformed corre-
lators of the black body

Γij(ω, t) =
∫ ∞

0
dτ eiωτ

〈
B̂i(t)B̂j(t− τ)

〉
B . (2.24)

Since we assumed ρ̂B stationary, the rates Γij(ω) are independent of time, namely

Γij(ω) =
∫ ∞

0
dτ eiωτ

〈
B̂i(τ)B̂j(0)

〉
B . (2.25)

At this point we perform the secular approximation: we neglect the terms proportional
to e±2iω0t, which oscillate faster than the relaxation time and, in a coarse-grained time
scale, they average to 0 [49]. So, keeping just the terms with ω = ω′, we get a master
equation in the Lindblad form [49]:

dρ̂S(t)
dt

= ∑
ω=±ω0

∑
i,j

Γij(ω)
[

Âj(ω)ρ̂S(t)Â†
i (ω)− Â†

i (ω)Âj(ω)ρ̂S(t)
]
+ h.c. (2.26)

It is important to stress that the positivity of populations is guaranteed only by
the secular approximation. The Redfield Eq. (2.18) can have unphysical solutions with
negative populations.

2.4 Explicit calculation of the rates

Now we proceed to write explicitly the rates Γij(ω). By substituting the expres-
sions (2.11) into (2.25) we have

Γij(ω) =
∫ ∞

0
dτ eiωτ ∑

~k,λ,~k′,λ′

2π
√

ωkωk′

V

(
~di ·~e~k,λ

) (
~dj ·~e~k′,λ′

) [
ei(~k·~ri−~k′·~rj−ωkτ)

〈
b̂~k,λb̂†

~k′,λ′

〉
B

− ei(~k·~ri+~k′·~rj−ωkτ)
〈

b̂~k,λb̂~k′,λ′
〉

B
+ e−i(~k·~ri−~k′·~rj−ωkτ)

〈
b̂†
~k,λ

b̂~k′,λ′
〉

B

−e−i(~k·~ri+~k′·~rj−ωkτ)
〈

b̂†
~k,λ

b̂†
~k′,λ′

〉
B

]
. (2.27)
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Now we assume that the black body is at thermal equilibrium, i.e.

ρ̂B =
e−βĤB

trB

{
e−βĤB

} (2.28)

where β = 1/(kBT) is the inverse temperature. In this case one can show that the
correlators in (2.27) are 〈

b̂~k,λb̂~k′,λ′
〉

B
= 0 (2.29a)〈

b̂†
~k,λ

b̂†
~k′,λ′

〉
B
= 0 (2.29b)〈

b̂~k,λb̂†
~k′,λ′

〉
B
= δ~k,~k′δλ,λ′ (1 + N(ωk)) (2.29c)〈

b̂†
~k,λ

b̂~k′,λ′
〉

B
= δ~k,~k′δλ,λ′N(ωk) (2.29d)

where we have defined the Bose-Einstein function

N(ωk) =
1

eβωk − 1
. (2.30)

Thus, defining~rij =~ri −~rj, Eq. (2.27) can be written as

Γij(ω) =
∫ ∞

0
dτ eiωτ ∑

~k,λ

2πωk

V

(
~di ·~e~k,λ

) (
~dj ·~e~k,λ

)
[
ei(~k·~rij−ωkτ) (1 + N(ωk)) + e−i(~k·~rij−ωkτ)N(ωk)

]
. (2.31)

As regards the sum over~k, we take the continuum limit

1
V ∑

~k

→ 1
(2π)3

∫
d~k =

1
(2πc)3

∫
dΩ

∫ ∞

0
dωk ω2

k . (2.32)

Now, if we assume that the dipoles have all the same magnitude µ but different orien-
tation, namely ~dj = µ p̂j, and defining the function

Fij(x) =
1

4π ∑
λ

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)

(
p̂i ·~e~k,λ

) (
p̂j ·~e~k,λ

)
eix cos θ (2.33)

choosing a frame where the z axis has the same direction as~rij, we have

Γij(ω) =
∫ ∞

0
dτ eiωτ

∫ ∞

0
dωk

µ2ω3
k

πc3

[
e−iωkτ Fij(krij) (1 + N(ωk)) + eiωkτ Fij(−krij)N(ωk)

]
.

(2.34)
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Now we perform the integral over τ using the relation∫ ∞

0
dτ eiωτ = πδ(ω) + iP

1
ω

(2.35)

where δ(x) is the Dirac delta and P is the Cauchy principal value. So, we can split the
rates into their real and an imaginary parts,

Γij(ω) =
1
2

γij(ω) + iSij(ω) (2.36)

which are, respectively,

γij(ω) =
∫ ∞

0
dωk

2µ2ω3
k

c3

[
δ(ω−ωk)Fij(krij) (1 + N(ωk)) + δ(ω + ωk)Fij(−krij)N(ωk)

]
(2.37)

Sij(ω) =P
∫ ∞

0
dωk

µ2ω3
k

πc3

[
Fij(krij) (1 + N(ωk))

ω−ωk
+

Fij(−krij)N(ωk)

ω + ωk

]
(2.38)

2.4.1 Real Part

Let us start from the real part (2.37). The two integrals are easily performed, taking into
account that the only possible values of ω are ±ω0. By defining k0 = ω0/c we get

γij(ω) =
2µ2ω3

0
c3

[
δω,ω0 Fij(k0rij) (1 + N(ω0)) + δω,−ω0 Fij(−k0rij)N(ω0)

]
. (2.39)

To have the explicit dependence of γij(ω) on the parameters, let us evaluate Fij(x). First
of all, let us compute the sum over λ in (2.33), writing the three cartesian component of
each vector α, β = 1, 2, 3:

∑
λ

(
p̂i ·~e~k,λ

) (
p̂j ·~e~k,λ

)
= ∑

λ

3

∑
α,β=1

pα
i pβ

j eα
λeβ

λ . (2.40)

Here, since the two polarizations λ = 1, 2 and the propagation unit vector k̂ form an
orthonormal basis,

{
~e1,~e2, k̂

}
, we have

∑
λ=1,2

eα
λeβ

λ = δαβ − kαkβ

k2 (2.41)

so that we obtain

∑
λ

(
p̂i ·~e~k,λ

) (
p̂j ·~e~k,λ

)
= p̂i · p̂j −

(
p̂i · k̂

) (
p̂j · k̂

)
. (2.42)
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Then, we split Fij(x) into two integrals:

Fij(x) =
1

4π
( p̂i · p̂i)

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)eix cos θ

− 1
4π

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)

(
p̂i · k̂

) (
p̂j · k̂

)
eix cos θ . (2.43)

The first integral can be easily performed and it has the value∫ 2π

0
dφ
∫ 1

−1
d(cos θ)eix cos θ = 4π

sin x
x

. (2.44)

As regards the second integral, we have to expand the scalar products. Since we are
working in spherical coordinates, we can expand the unit vector k̂ over the cartesian
components k̂ = cos φ sin θ x̂ + sin φ sin θ ŷ + cos θ ẑ, and this helps us write the scalar
products(

p̂i · k̂
) (

p̂j · k̂
)
= px

i px
j cos2 φ sin2 θ + py

i py
j sin2 φ sin2 θ + pz

i pz
j cos2 θ

+
(

px
i py

j + py
i px

j

)
cos φ sin φ sin2 θ +

(
px

i pz
j + pz

i px
j

)
cos φ sin θ cos θ

+
(

py
i pz

j + pz
i py

j

)
sin φ sin θ cos θ

(2.45)

so that, if we can compute the integral over φ, we have only 2 nonvanishing terms,∫ 2π

0
dφ
(

p̂i · k̂
) (

p̂j · k̂
)
=π

(
px

i px
j + py

i py
j

)
sin2 θ + 2πpz

i pz
j cos2 θ

=π
(

p̂i · p̂j
) (

1− cos2 θ
)
+ π

(
p̂i · r̂ij

) (
p̂j · r̂ij

) (
3 cos2 θ − 1

)
(2.46)

where we used the fact that the unit vector r̂ij is along the z axis. So, we have only 2
integrals over θ to perform:∫ 1

−1
d (cos θ) eix cos θ = 2

sin x
x

(2.47a)∫ 1

−1
d(cos θ) cos2 θ eix cos θ = − ∂2

∂x2

∫ 1

−1
d (cos θ) eix cos θ = −2

∂2

∂x2

(
sin x

x

)
= 2

sin x
x

+ 4
cos x

x2 − 4
sin x

x3 (2.47b)

from which

π
∫ 1

−1
d(cos θ)

(
1− cos2 θ

)
eix cos θ = 4π

(
−cos x

x2 +
sin x

x3

)
(2.48)

π
∫ 1

−1
d(cos θ)

(
3 cos2 θ − 1

)
eix cos θ = 4π

(
sin x

x
+ 3

cos x
x2 − 3

sin x
x3

)
. (2.49)
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Summing up all the similar terms, we finally have

Fij(x) =
[

sin x
x

+
cos x

x2 −
sin x

x3

] (
p̂i · p̂j

)
+

[
−sin x

x
− 3

cos x
x2 + 3

sin x
x3

] (
p̂i · r̂ij

) (
p̂j · r̂ij

)
.

(2.50)

Note that Fij(x) is an even function of x which, in our case, gives the useful equality
Fij(−k0rij) = Fij(k0rij). Moreover, one can see that Fji(x) = Fij(x), which implies that
both the matrices γij(ω) and Sij(ω) are symmetric. As regards the diagonal terms (i = j)
we can analytically extend the function to x = 0 thanks to the limit

lim
x→0

Fii(x) =
2
3

. (2.51)

Let us write the real parts of the rates as

γij(ω) =
3γ

2
Fij(k0rij) [δω,ω0 (1 + N(ω0)) +δω,−ω0 N(ω0)]

where we have defined the diagonal decay rates

γ =
4
3

µ2 ω3
0

c3 . (2.52)

Now let us compute the contribution of the real parts computed above to the master
equation. Since γji(ω) = γij(ω) we have[

dρ̂S(t)
dt

]
real

= ∑
ω=±ω0

∑
i,j

1
2

γij(ω)
[

Âj(ω)ρ̂S(t)Â†
i (ω)− Â†

i (ω)Âj(ω)ρ̂S(t)
]
+ h.c.

= ∑
ω=±ω0

∑
i,j

γij(ω)

[
Âj(ω)ρ̂S(t)Â†

i (ω)− 1
2

{
Â†

i (ω)Âj(ω), ρ̂S(t)
}]

(2.53)

where {·, ·} denotes the anti-commutator and, taking Aj(ω) from (2.10), we have[
dρ̂S(t)

dt

]
real

=∑
i,j

γij (1 + N(ω0))

[
σ̂−j ρ̂S(t)σ̂+

i −
1
2

{
σ̂+

i σ̂−j , ρ̂S(t)
}]

+ ∑
i,j

γijN(ω0)

[
σ̂+

j ρ̂S(t)σ̂−i −
1
2

{
σ̂−i σ̂+

j , ρ̂S(t)
}]

(2.54)

which is clearly written in the Lindblad form [49] and where we have defined the coef-
ficients

γij =
γij(ω0)

1 + N(ω0)
=

γij(−ω0)

N(ω0)
=

3
2

γFij(k0rij) . (2.55)
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2.4.2 Imaginary Part (Lamb Shift)

Let us now focus on the imaginary part contribution to the master equation. Thanks to
the symmetry Sji(ω) = Sij(ω) we have[

dρ̂S(t)
dt

]
imag

=i ∑
ω=±ω0

∑
i,j

Sij(ω)
[

Âj(ω)ρ̂S(t)Â†
i (ω)− Â†

i (ω)Âj(ω)ρ̂S(t)
]
+ h.c.

=− i ∑
ω=±ω0

∑
i,j

Sij(ω)
[

Â†
i (ω)Âj(ω), ρ̂S(t)

]
= −i

[
ĤLS, ρ̂S(t)

]
, (2.56)

where we have defined the Lamb shift Hamiltonian using (2.10)

ĤLS = ∑
ω=±ω0

∑
i,j

Sij(ω)Â†
i (ω)Âj(ω) = ∑

i,j

[
Sij(ω0)σ̂

+
i σ̂−j + Sij(−ω0)σ̂

−
j σ̂+

i

]
. (2.57)

Let us start by separating the diagonal terms of ĤLS from the off-diagonal ones.
Thanks to the Pauli matrices commutation rules

[
σ̂+

i , σ̂−j
]
= δijσ̂z we have

ĤLS =∑
i

[
Sii(ω0)σ̂

+
i σ̂−i + Sii(−ω0)σ̂

−
i σ̂+

i

]
+ ∑

i,j
i 6=j

∆ijσ̂
+
i σ̂−j (2.58)

where we have defined the coupling terms

∆ij = Sij(ω0) + Sij(−ω0) . (2.59)

To make the evaluation of the coupling terms easier, let us first rewrite Sij(ω0) by sep-
arating the terms depending on the black body temperature (N(ωk)) from the ones
which are independent of it. That means

Sij(ω0) =
µ2

πc3 P
∫ ∞

0
dωk

ω3
k

ω0 −ωk
Fij(krij) +

µ2

πc3 P
∫ ∞

0
dωk

2ω0ω3
k N(ωk)

ω2
0 −ω2

k
Fij(krij) . (2.60)

To compute ∆ij we need Sij(−ω0). Now, if we replace ω0 with −ω0 in the previous
expression, by performing the change of variable ωk → (−ωk) in the first integral, we
have

Sij(−ω0) =
µ2

πc3 P
∫ 0

−∞
dωk

ω3
k

ω0 −ωk
Fij(krij)−

µ2

πc3 P
∫ ∞

0
dωk

2ω0ω3
k N(ωk)

ω2
0 −ω2

k
Fij(krij) .

(2.61)

Therefore, if we sum Sij(ω0) + Sij(−ω0), the terms depending on the black body tem-
perature cancel and the first integral is extended through the whole real axis, i.e.

∆ij =
µ2

πc3 P
∫ ∞

−∞
dωk

ω3
k

ω0 −ωk
Fij(krij) . (2.62)
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Before evaluating the above integral, let us change the integration variable to x =
ωkrij/c and define the parameter x0 = ω0rij/c, so that we have

∆ij =
µ2

πr3
ij

P
∫ ∞

−∞
dx

x3

x0 − x
Fij(x) . (2.63)

By expanding Fij(x) using (2.50) we have

∆ij =
µ2

πr3
ij

[
−
(

p̂i · p̂j
)
+ 3

(
p̂i · r̂ij

) (
p̂j · r̂ij

)]
I0+

+
µ2

πr3
ij

[(
p̂i · p̂j

)
− 3

(
p̂i · r̂ij

) (
p̂j · r̂ij

)]
I1+

+
µ2

πr3
ij

[(
p̂i · p̂j

)
−
(

p̂i · r̂ij
) (

p̂j · r̂ij
)]

I2

(2.64)

where the three real integrals I0,I1 and I2 can be all related to one complex integral

I0 = Im (I0) , I1 = Re (I1) , I2 = Im (I2) (2.65)

which is

In = P
∫ ∞

−∞
dx

xn eix

x0 − x
. (2.66)

To compute In let us consider the contour integral

Yn =
∮

C
dz

zn eiz

x0 − z
(2.67)

where C here is the closed curve shown as a solid line in Fig. 2.1.
As one can see from Fig. 2.1, the path C has been chosen so that we can split Yn into

four terms,
Yn = I−n + cε

n + I+n + CR
n . (2.68)

If we take the limit R → ∞, then CR
n → 0 thanks to Jordan’s Lemma. Moreover, Yn can

be computed by means of the residue theorem and has the value

Yn = 2πiRes
[

zn eiz

x0 − z

]
z=x0

= −2πixn
0 eix0 . (2.69)

So, if we take the limit ε→ 0 we have

I−n + I+n = lim
ε→0

[∫ x0−ε

−∞
dx

xn eix

x0 − x
+
∫ ∞

x0+ε
dx

xn eix

x0 − x

]
= P

∫ ∞

−∞
dx

xn eix

x0 − x
= In

= Yn − lim
ε→0

cε
n .

(2.70)
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Im[z]

Re[z]

R

CRn

ε

x0

cεn

I−n I+n

Figure 2.1: Path of the contour integral Yn (2.67) in the complex plane.

We can compute cε
n explicitly by choosing the parametrization z = x0 + εeiθ for θ ∈

[−π, 0], thus having

cε
n =

∫ 0

−π

(
iεeiθ

)
dθ

xn
0 eix0

−εeiθ + o(ε) = −iπxn
0 eix0 + o(ε) . (2.71)

Substituting (2.69) and (2.71) into (2.70) we finally have

In = −iπxn
0 eix0 . (2.72)

Now we can put In into (2.65) to compute the explicit expression of ∆ij, which is

∆ij =−
µ2

r3
ij

[
−
(

p̂i · p̂j
)
+ 3

(
p̂i · r̂ij

) (
p̂j · r̂ij

)]
cos x0

+
µ2

πr3
ij

[(
p̂i · p̂j

)
− 3

(
p̂i · r̂ij

) (
p̂j · r̂ij

)]
x0 sin x0

− µ2

πr3
ij

[(
p̂i · p̂j

)
−
(

p̂i · r̂ij
) (

p̂j · r̂ij
)]

x2
0 cos x0

(2.73)

where we can define xij = x0 = k0rij and rearrange it to

∆ij =
3γ

4

[
−cos xij

k0rij
+

sin xij

x2
ij

+
cos xij

x3
ij

] (
p̂i · p̂j

)
+

3γ

4

[
cos xij

k0rij
− 3

sin xij

x2
ij
− 3

cos xij

x3
ij

] (
p̂i · r̂ij

) (
p̂j · r̂ij

)
.

(2.74)

As regards the diagonal terms (i = j) of ĤLS, they produce a correction to the site
energy (changing it to a “dressed” energy) which is independent of the site itself, but it
diverges. The renormalization of the dressed energy is not treated here, though.
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2.4.3 Final expression

Let us now re-write the master equation that we derived. In the Schrödinger picture
we have

dρ̂S

dt
=− i

[
ĤS + ĤLS, ρ̂S

]
+ ∑

i,j
γij (1 + N(ω0))

[
σ̂−j ρ̂Sσ̂+

i −
1
2

{
σ̂+

i σ̂−j , ρ̂S

}]
+ ∑

i,j
γijN(ω0)

[
σ̂+

j ρ̂Sσ̂−i −
1
2

{
σ̂−i σ̂+

j , ρ̂S

}]
(2.75)

were N(ω0) is the Bose-Einstein function and, defining the parameters xij = ω0rij/c

and γ = 4
3 µ2 ω3

0
c3 we have

γij =
3γ

2

[
sin xij

xij
+

cos xij

x2
ij
− sin xij

x3
ij

] (
p̂i · p̂j

)
+

+
3γ

2

[
−sin xij

xij
− 3

cos xij

x2
ij

+ 3
sin xij

x3
ij

] (
p̂i · r̂ij

) (
p̂j · r̂ij

)
.

(2.76)

As regards the Hamiltonian term, subtracting the terms proportional to the identity, we
have

ĤS + ĤLS =
ω0

2 ∑
i

σ̂z
i + ∑

i,j
i 6=j

∆ijσ̂
+
i σ̂−j (2.77)

where the dressed site energy is obtained from (2.58)

ω0 = ω0 +
4µ2ω0

πc3 P
∫ ∞

0
dωk

ω3
kctanh βωk

2

ω2
0 −ω2

k
(2.78)

and the coupling terms ∆ij are given by (2.74). The dressed energy is divergent, but
equal for all levels and therefore it can be neglected.

2.5 Stationary solution for a single site

As a first simple example, here we present the solution of the master equation (2.75) at
the steady state for a single site. In this trivial case, we have

dρ̂S

dt
=− i

ω0

2
[σ̂z, ρ̂S] + γ (1 + N(ω0))

[
σ̂−ρ̂Sσ̂+ − 1

2
{

σ̂+σ̂−, ρ̂S
}]

+ γN(ω0)

[
σ̂+ρ̂Sσ̂− − 1

2
{

σ̂−σ̂+, ρ̂S
}]

(2.79)



2.6. SUPERRADIANCE FOR TWO COUPLED SITES 37

and, projecting onto the ground state |g〉 and the excited state |e〉 we have

dρ00

dt
= γN(ω0) (ρee − ρ00) + γρee (2.80a)

dρee

dt
= γN(ω0) (ρ00 − ρee)− γρee . (2.80b)

The solution at the steady state then is

ρ00(∞) =
1

1 + e−βω0
(2.81a)

ρee(∞) =
e−βω0

1 + e−βω0
, (2.81b)

showing that the two-level system reaches thermal equilibrium with the black body.

2.6 Superradiance for two coupled sites

Now, let us consider the next nontrivial case of N = 2 sites. It is useful to define the
operators

Ŝ =
1
2
(σ̂z

1 + σ̂z
2) σ̂+

± =
σ̂+

1 ± σ̂+
2√

2
σ̂−± =

σ̂−1 ± σ̂−2√
2

(2.82)

in order to write the master equation (2.75) in a diagonal form,

dρ̂S

dt
=− i

[
ĤS + ĤLS, ρ̂S

]
+ ∑

k=±
γk (1 + N(ω0))

[
σ̂−k ρ̂Sσ̂+

k −
1
2
{

σ̂+
k σ̂−k , ρ̂S

}]
+ ∑

k=±
γkN(ω0)

[
σ̂+

k ρ̂Sσ̂−k −
1
2
{

σ̂−k σ̂+
k , ρ̂S

}]
(2.83)

where we defined γ± = γ± γ12 and the Hamiltonian is

ĤS + ĤLS = ω0 Ŝ + ∆12
(
σ̂+
+ σ̂−+ − σ̂+

− σ̂−−
)

. (2.84)

Each site is a two-level system made of a ground state |g〉 and an excited state |e〉. The
eigenbasis of the many-body Hamiltonian is given by the four states

|0〉 = |g〉 |g〉 (2.85a)

|±〉 = |e〉 |g〉 ± |g〉 |e〉√
2

(2.85b)

|e〉 = |e〉 |e〉 (2.85c)

whose dressed energies are (
ĤS + ĤLS

)
|0〉 = −ω0 |0〉 (2.86a)(

ĤS + ĤLS
)
|±〉 = ±∆12 |±〉 (2.86b)(

ĤS + ĤLS
)
|e〉 = ω0 |e〉 . (2.86c)
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|0〉

|e〉

|+〉

|−〉
σ̂−+

σ̂−−σ̂+−

σ̂++

σ̂−+σ̂++

σ̂−−σ̂+−

Figure 2.2: Pictorial representation of the energy levels (2.85) and how the operators σ̂±k
(with k = ±, see (2.82)) connect those states.

To write the master equation on this basis we need to know how the σ̂±k operators (with
k = ±) act on the states. A pictorial representation of the basis and of the action of the
operators is shown in Fig. 2.2.

Fig. 2.2 should be read this way: whenever I apply an operator to the state at the
origin of the arrow, I get the state at the end of the arrow. So, for example,

σ̂+
+ |0〉 = |+〉 , σ̂+

− |0〉 = |−〉 , σ̂+
+ |+〉 = |e〉 , (2.87)

but, if there is no connection between two states mediated by a specific operator, then
if I apply that operator to the origin state I get 0. For example,

σ̂+
+ |e〉 = 0 , σ̂−+ |0〉 = 0 , σ̂+

+ |−〉 = 0 , σ̂+
− |+〉 = 0 . . . (2.88)

Thanks to the above relations we can project the master equation (2.83) on the ba-
sis states to get the dynamics of the populations of those states. Since the equation
is in a diagonal form, the dynamics of the populations is decoupled from that of the
coherences and we have

dρ00

dt
= N(ω0)γ+ (ρ++ − ρ00) + N(ω0)γ− (ρ−− − ρ00) + γ+ρ++ + γ−ρ−− (2.89a)

dρ±±
dt

= N(ω0)γ± (ρ00 − ρ±±) + N(ω0)γ± (ρee − ρ±±) + γ± (ρee − ρ±±) (2.89b)

dρee

dt
= N(ω0)γ+ (ρ++ − ρee) + N(ω0)γ− (ρ−− − ρee)− (γ+ + γ−) ρee . (2.89c)

Now, let us consider the simple case of two sites having parallel transition dipole
moments and being close to each other, so that their distance is much smaller than the
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wavelength associated to the optical transition of each site (k0r12 � 1). In this case we
have

∆12 ≈
µ2

r3
12

, γ12 ≈ γ , γ+ ≈ 2γ , γ− ≈ 0 (2.90)

and we can simplify (2.89) to

dρ00

dt
≈ 2γN(ω0) (ρ++ − ρ00) + 2γρ++ (2.91a)

dρ++

dt
≈ 2γN(ω0) (ρ00 − ρ++) + 2γN(ω0) (ρee − ρ++) + 2γ (ρee − ρ++) (2.91b)

dρ−−
dt
≈ 0 (2.91c)

dρee

dt
≈ 2γN(ω0) (ρ++ − ρee)− 2γρee . (2.91d)

Finally, let us consider the zero temperature case, N(ω0) = 0, where only sponta-
neous emission is present. In such case we have

dρ00

dt
≈ 2γρ++ (2.92a)

dρ++

dt
≈ 2γ (ρee − ρ++) (2.92b)

dρ−−
dt
≈ 0 (2.92c)

dρee

dt
≈ −2γρee , (2.92d)

whose solution is

ρ00(t) = 1− ρ−−(0)− [ρ++(0) + (1 + 2γt)ρee(0)] e−2γt (2.93a)

ρ++(t) = [ρ++(0) + 2γtρee(0)] e−2γt (2.93b)
ρ−−(t) = ρ−−(0) (2.93c)

ρee(t) = ρee(0) e−2γt . (2.93d)

This solution allows to computed the emitted light power, which is related to the proba-
bility per unit time to lose excitation from the system. The total excitation in the system
at time t is ρ++(t) + ρ−−(t) + 2ρee(t), so that the emitted power by the two sites is

W2(t) = −ω0
d
dt

[ρ++(t) + ρ−−(t) + 2ρee(t)]

= 2γω0 [ρ++(0) + (1 + 2γt)ρee(0)] e−2γt . (2.94)

As a comparison, the emitted power by an isolated site is

W1(t) = γω0e−γt . (2.95)
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Figure 2.3: Time evolution of the power radiated from two emitters initially excited and
cooperatively coupled to the radiation field, see Eq. (2.94). Here, the power emitted by
two independent sites is twice the single-site power, that is W(ind)

2 = 2W1(t), where
W1(t) is given by Eq. (2.95). Figure reproduced from Ref. [27].

2.6.1 Many-excitation superradiance, single-excitation superradiance and
subradiance

Now, let us consider some specific initial conditions. If both sites are initially ex-
cited, meaning that the initial condition is ρ̂(0) = |e〉 〈e|, the emitted power is
W2(t) = 2γω0(1 + 2γt) e−2γt. This solution is compared to the single-site case in
Fig. 2.3, reproduced from Ref. [27]. As one can see, the two-site evolution at short
times, W2(t) ∼ 1− 2γ2t2, has a quadratic decay, that is slower than the single-site case
W1(t) ∼ 1− 2γt. On the other hand, at long times the two-sites power ultimately de-
cays as ∼ e−2γt, with an exponential rate 2γ that is twice faster than the isolated site
(∼ e−γt). These two features characterize the many-excitation superradiance [27]: the radi-
ated power initially decays slower than the single-site case, but a macroscopic coupling
to the field is built up with time and ultimately the emission decays N times faster than
the case of N isolated emitters.

If instead one excitation is initially prepared on the symmetric |+〉 state, the emitted
radiation decays exponentially as W2(t) = 2γω0 e−2γt, that is twice as fast as a single
site. This phenomenon is called single-excitation superradiance, and it has been called
“the super of superradiance” by Marlan Scully [28] since it is a distinguishing feature
of an initial coherently prepared state.

Finally, if the excitation is initially prepared on the antisymmetric state |−〉, the ex-
citation stays there forever and there is no emitted power. Such phenomenon, called
subradiance, stems from a coherent coupling to the light field, where a destructive inter-
ference effect quenches the spontaneous emission.

As we introduced in Chapter 1, all these manifestations of superradiance have been
observed experimentally, on different systems and appropriate experimental set-ups.
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2.7 Single excitation approximation and effective non-
Hermitian Hamiltonian

Let us now go back to a general aggregate of N emitters and consider only a subset of
the full many-body basis: the state |0〉, where all the sites are in the ground state, and
the single-excitation states |j〉 = σ̂+

j |0〉. Here we proceed to write the master equation
neglecting the contribution of the states having more than one excitation, and this is
equivalent to replacing σ̂+

j with |j〉 〈0| and σ̂−j with |0〉 〈j| into (2.75). If now we call
ρ̂ = ρ̂S the density matrix of the aggregate, we have

dρ̂

dt
'− i

[
ĤS + ĤLS, ρ̂

]
+ ∑

i,j
γij (1 + N(ω0))

[
ρji |0〉 〈0| −

1
2
{|i〉 〈j| , ρ̂}

]
+ ∑

i,j
γijN(ω0)

[
ρ00 |j〉 〈i| −

1
2

δij {|0〉 〈0| , ρ̂}
]

(2.96)

with the Hamiltonian

ĤS + ĤLS ' ω0 ∑
i
|i〉 〈i|+ ∑

i,j
i 6=j

∆ij |i〉 〈j| . (2.97)

Now, let us consider the particular case where there exist a common eigenbasis |α〉
for both

(
ĤS + ĤLS

)
and ∑i,j γij |i〉 〈j| such that

〈α| ĤS + ĤLS |β〉 = Eαδαβ (2.98)

〈α|
(

∑
i,j

γij |i〉 〈j|
)
|β〉 = γαδαβ . (2.99)

We can then write (2.96) on such basis and have

dρ̂

dt
'− i ∑

α

Eα [|α〉 〈α| , ρ̂] + ∑
α

γα (1 + N(ω0))

[
ραα |0〉 〈0| −

1
2
{|α〉 〈α| , ρ̂}

]
+ ∑

α

γαN(ω0)

[
ρ00 |α〉 〈α| −

1
2
{|0〉 〈0| , ρ̂}

]
. (2.100)

If we consider the diagonal elements, which describe the dynamics of the populations
of |0〉 and of the eigenstates |α〉, that part of the master equation can be mapped into a
Pauli master equation, which reads

dρ00

dt
= ∑

α

Tα (ραα − ρ00) + ∑
α

γαραα (2.101)

dραα

dt
= Tα (ρ00 − ραα)− γαραα . (2.102)

Therefore, in this regime we can define the absorption and stimulated emission rates
Tα = N(ω0)γα for each eigenstate.
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2.7.1 Radiative non-Hermitian Hamiltonian at zero temperature

At zero temperature, the occupation number of photons is N(ω0) = 0, so that the
single-excitation master equation (2.96) simplifies to

dρ̂

dt
'− i

[
ĤS + ĤLS, ρ̂

]
+ ∑

i,j
γij

[
ρji |0〉 〈0| −

1
2
{|i〉 〈j| , ρ̂}

]
(2.103)

that can be also written as

dρ̂

dt
'− i

(
Ĥρ̂− ρ̂Ĥ†

)
+ ∑

i,j
γijρji |0〉 〈0| (2.104)

where we have defined the effective non-Hermitian Hamiltonian

Ĥ = ĤS + ĤLS −
i
2 ∑

i,j
γij |i〉 〈j|

= ∑
j

(
ω0 −

iγ
2

)
|j〉 〈j|+ ∑

i,j
i 6=j

(
∆ij −

i
2

γij

)
|i〉 〈j| , (2.105)

with the hermitian elements ∆ij given by Eq. (2.74) and the non-hermitian ones, γij, by
Eq. (2.76). Such Hamiltonian is called radiative Hamiltonian since it models the coupling
and the losses induced in the system due to the interaction with the collective emitted
field.

As one can see, the evolution of an initial excitation in Eq. (2.104) is uniquely deter-
mined by Ĥ, since the last term in Eq. (2.104) (sometimes called “quantum jump term”)
simply accounts for the refilling of |0〉 due to the loss of excitation. Therefore, an anal-
ysis of the complex spectrum of Ĥ allows to completely characterize the features of the
system coupled to the decay channels of the vacuum electromagnetic field. Following
this approach, in Chapters 3 and 5 we start our analysis precisely from the radiative
hamiltonian, Ĥ.

For non-vanishing black-body temperatures, we can see from Eq. (2.96) that all the
imaginary terms γij are multiplied by a common factor (1 + N(ω0)), while the real
terms ∆ij are unaffected by temperature. In a sense, the presence of a finite-temperature
black-body induces stimulated emission processes, which is simply added up to the
zero-temperature spontaneous emission process. Therefore, one could define a “finite-
temperature non-Hermitian Hamiltonian” as ∆ij− i

2 γij(1+ N(ω0)). Nevertheless, even
with such definition, the full master equation (2.96) at finite temperature includes the
last term, modeling absorption of photons, and therefore a simple form like Eq. (2.104)
cannot be derived for finite black-body temperature. Therefore, even though a finite-
temperature Hamiltonian can be proposed, it would not completely describe the cou-
pling of the system to the field, because it would only describe stimulated emission not
including absorption.
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2.7.2 Regime of validity for two sites

Here we want to find the regime of validity of the single-excitation approximation for
N = 2 sites. If we solve (2.91) at the steady state we have

ρ00(∞) ≈ 1
1 + x + x2 (2.106a)

ρ++(∞) ≈ x
1 + x + x2 (2.106b)

ρee(∞) ≈ x2

1 + x + x2 (2.106c)

where x = e−βω0 . In the case of BChl molecules (ω0/(2πc) = 12911 cm−1) coupled to a
black body at the Sun temperature (T = 1/(kBβ) = 6000 K) we have x ' 0.05 and thus

ρ00(∞) ≈ 0.95 , ρ++(∞) ≈ 0.048 , ρee(∞) ≈ 0.002 . (2.107)

With these numbers the state |e〉with two excitations can be neglected, in a typical case
of two coupled molecules. On the contrary, when the temperature of the black body is
much higher than ω0/kB, then we have x ≈ 1 and

ρ00(∞) ≈ ρ++(∞) ≈ ρee(∞) ≈ 1
3

. (2.108)

In such case, clearly, we cannot neglect the double-excited state |e〉.

2.8 Including an extra coupling between the sites

In the previous sections we have always started from non-interacting resonant sites. A
dipole-dipole interaction emerged as an effect of the EM field. Here instead we start
from a case where the sites are already coupled, and we discuss how this affects our
master equation derivation. The master equation resulting from this section has been
used in Chapter 4.

The sites hamiltonian (2.2) is conveniently written on its eigenbasis,

ĤS =
N

∑
α=1

ωα

2
σ̂z

α (2.109)

where where ωα are the eigenvalues of the single-excitation part of ĤS. In many molec-
ular and solid-state systems, the range of energy spanned by the eigenvalues covers
the range |maxα(ωα) −minα(ωα)| ≈ 0.1 eV and it is smaller than the average value
ω0 = 〈ωα〉α ≈ 1 eV.

For calculation purposes, we decompose the site-field interaction hamiltonian (2.4)
on ĤS’s eigenbasis. Specifically, the raising/lowering operators contained in (2.5) are
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decomposed as

σ̂+
j =

N

∑
α=1

(cα
j )
∗σ̂+

α (2.110a)

σ̂−j =
N

∑
α=1

cα
j σ̂−α (2.110b)

where cα
j = 〈0| σ̂−j σ̂+

α |0〉 is the amplitude of the α-th eigenstate on the j-th site, and
|0〉 is the ground state of the system, where all the sites are in their ground state. The
interaction hamiltonian is decomposed on eigenoperators of ĤS as

ĤI = ∑
ω∈{±ωα}

∑
j

Âj(ω)⊗ B̂j (2.111a)

= ∑
ω∈{±ωα}

∑
j

Â†
j (ω)⊗ B̂j (2.111b)

where the first sum runs over all the eigenvalues ωα and their opposite values−ωα, the
interaction operators acting on the sites are

Âj(ωα) = cα
j σ̂−α , (2.112a)

Âj(−ωα) = Â†
j (ωα) = (cα

j )
∗σ̂+

j (2.112b)

and the operators acting on the bath are

B̂j =i ∑
~k,λ

√
2πωk

V

(
~dj ·~e~k,λ

) [
ei~k·~rj b̂~k,λ − e−i~k·~rj b̂†

~k,λ

]
. (2.113)

Moving to the interaction picture we have

ĤI(t) = ∑
ω∈{±ωα}

∑
j

e−iωt Âj(ω)⊗ B̂j(t) = ∑
ω∈{±ωα}

∑
j

eiωt Â†
j (ω)⊗ B̂j(t) (2.114)

with B̂j(t) given by (2.11).
As one can see, we mapped the interaction hamiltonian into a form similar to (2.9).

The only difference is that here the sum over ω runs over all the eigenvalues ±ωα (2N
values), while in the previous treatment (identical non-interacting sites) the sum ran
over ±ω0 (2 values).

Thanks to the above mapping, we can recall some of the previous results. Under
the Born-Markov approximations we obtain the Redfield Equation (2.23)

dρ̂S(t)
dt

= ∑
ω,ω′

ei(ω′−ω)t ∑
i,j

Γij(ω)
[

Âj(ω)ρ̂S(t)Â†
i (ω

′)− Â†
i (ω

′)Âj(ω)ρ̂S(t)
]
+ h.c.

(2.115)
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where we have defined the rates Γij(ω) as the half-sided Fourier transformed correla-
tors of the black body

Γij(ω) =
∫ ∞

0
dτ eiωτ

〈
B̂i(τ)B̂j(0)

〉
B . (2.116)

The Redfield Equation in the Schrödinger picture reads

dρ̂S

dt
=− i

[
ĤS , ρ̂S

]
+ ∑

ω,ω′
∑
i,j

Γij(ω)
[

Âj(ω)ρ̂S Â†
i (ω

′)− Â†
i (ω

′)Âj(ω)ρ̂S

]
+ h.c.

(2.117)

where the sums over ω and ω′ both run over the±ωα eigenvalues. One can already ap-
preciate how the rates Γij(ω) depend on the eigenvalues ωα and not on the site energy
ω0.

Now let us perform the secular approximation: we neglect the terms having ω′ 6= ω
in (2.115), which oscillate faster than the relaxation time and, in a coarse-grained time
scale, they average to 0. This approximation is allowed only where the level spacing
|ωα − ωβ|α 6=β is always larger than the inverse relaxation time 1/τR. Typical values
for molecular aggregates are |ωα − ωβ|α 6=β ≈ 100 cm−1 and 1/τR ≈ 5 cm−1, so the
secular approximation is justified. Note that in a disordered system, it is possible that
some levels have a small spacing |ωα − ωβ|α 6=β < 1/τR, and in such cases the secular
approximation could not be applied.

Nevertheless, under the secular approximation we can keep just the terms with
ω = ω′, so that we get a master equation in the Lindblad form in the Schrödinger
picture

dρ̂S

dt
=− i

[
ĤS , ρ̂S

]
+ ∑

ω∈{±ωα}
∑
i,j

Γij(ω)
[

Âj(ω)ρ̂S Â†
i (ω)− Â†

i (ω)Âj(ω)ρ̂S

]
+ h.c.

(2.118)

Also for the Γij(ω) rates, we can recall the previous results. The rates have both a
real and an imaginary part,

Γij(ω) =
1
2

γij(ω) + iSij(ω) . (2.119)

The imaginary parts effectively modify the hamiltonian ĤS and its spectrum. Therefore,
here we assume that their effect is already absorbed into the system hamiltonian ĤS and
we focus only on the real parts. Our previous calculations yield

γij(ω) =


3γ0

2

(
ωα
ω0

)3
Fij

(
ωαrij

c

)
(1 + N(ωα)) for ω = ωα

3γ0
2

(
ωα
ω0

)3
Fij

(
ωαrij

c

)
N(ωα) for ω = −ωα

(2.120)
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where γ0 = 4µ2ω3
0/(3c3) is the single-site radiative rate, ω0 is the single-site transition

frequency, Fij(x) is given by (2.50) and N(ωα) = [eωα/(kBT) − 1]−1 is the Bose-Einstein
occupation of photons at temperature T and frequency ωα.

Neglecting the imaginary part of the rates, the Lindblad master equation reads

dρ̂S

dt
= −i

[
ĤS , ρ̂S

]
+DBB[ρ̂] (2.121)

where the black-body dissipator is

DBB[ρ̂] = ∑
ωα,i,j

γij(ωα)(cα
i )
∗cα

j

[
σ̂−α ρ̂Sσ̂+

α −
1
2
{

σ̂+
α σ̂−α , ρ̂S

}]
+ ∑

ωα,i,j
γij(−ωα)(cα

i )
∗cα

j

[
σ̂+

α ρ̂Sσ̂−α −
1
2
{

σ̂−α σ̂+
α , ρ̂S

}]
. (2.122)

2.8.1 Long-wavelength approximation

If the inter-site distances rij are shorter than the average wavelength λ0 = 2πc/ω0, we
can approximate

Fij

(
ωαrij

c

)
≈ 2

3
p̂i · p̂j . (2.123)

This allows us to approximate the sum over i, j in the black-body dissipator as

∑
i,j

γij(ω)(cα
i )
∗cα

j ≈

γ0|~pα|2
(

ωα
ω0

)3
(1 + N(ωα)) for ω = ωα

γ0|~pα|2
(

ωα
ω0

)3
N(ωα) for ω = −ωα

(2.124)

where we use the eigenstate dipole strength

~pα = ∑
j

cα
j p̂j . (2.125)

Therefore, the master equation has a diagonal expression and we can recall the previ-
ous results obtained in the single-excitation approximation (see section 2.7): each eigen-

state emits with a rate γ0|~pα|2
(

ωα
ω0

)3
(1 + N(ωα)) and has an absorption rate equal to

γ0|~pα|2
(

ωα
ω0

)3
N(ωα). In the typical case where the eigenvalues ωα cover a small range

of energy, compared to the average excitation energy ω0, we can safely approximate
ωα = ω0 and recover the results of section 2.7. On the other hand, for strongly coupled
systems, the derivation presented in this section more accurately describes the depen-
dence of the absorption and emission rates on the eigenstate energy.
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2.9 Comparison with the stochastic model of sunlight

Here we compare the master equation model of thermal light introduced in this chapter
with the stochastic model of sunlight introduced in previous works [50, 51].

Let us consider a dimer pumped by sunlight, as in Ref. [50]. Since sunlight is di-
lute, we consider just the lowest-energy states of the dimer, that is the ground state |0〉
(both molecules in their ground state) and the two single-excitation states |1〉 = σ̂+

1 |0〉
(first molecule excited, second molecule in its ground state) and |2〉 = σ̂+

2 |0〉 (second
molecule excited, first molecule in its ground state). Each molecule can absorb excita-
tion from sunlight and the excitation can be lost from each molecule with a rate k. We
describe the dynamics with the following Lindblad master equation, in units h̄ = c = 1:

dρ̂S

dt
= −i[ĤS, ρ̂S] +Ds[ρ̂S] +Dk[ρ̂S] (2.126)

where the hamiltonian of the dimer is

ĤS = ω1 |1〉 〈1|+ ω2 |2〉 〈2|+ ∆12(|1〉 〈2|+ H.c.) . (2.127)

For the sunlight pumping super-operator we use the last term of Eq. (2.96) in the long-
wavelength approximation (k0r12 � 1), namely

Ds[ρ̂S] =
2

∑
i=1

2

∑
j=1

N(ω0)γ p̂i · p̂j

(
ρ00 |i〉 〈j| −

1
2
|0〉 〈0| ρ̂S −

1
2

ρ̂S |0〉 〈0|
)

(2.128)

where N(ω0) = [eβsω0 − 1]−1 is the Bose occupation of photons at the average site
energy ω0 = (ω1 + ω2)/2, βs = 1/(kBTs) is the Sun inverse temperature (Ts ≈ 6000 K),
γ = 4

3 µ2ω3
0 is the single-molecule spontaneous decay rate, p̂j is the direction of the

transition dipole moment of the jth molecule and ρ00 = 〈0| ρ̂S |0〉 is the population of
the ground state. The decay super-operator is

Dk[ρ̂S] =
2

∑
i=j

k
(

ρjj |0〉 〈0| −
1
2
|j〉 〈j| ρ̂S −

1
2

ρ̂S |j〉 〈j|
)

. (2.129)

The hamiltonian ĤS is diagonalized in the excitonic basis {|+〉 , |−〉 , |0〉} and it
reads ĤS = ω+ |+〉 〈+| + ω− |−〉 〈−|. The transition dipole moments associated to
each eigenstate are

p̂± = p̂1 〈1|±〉+ p̂2 〈2|±〉 . (2.130)

The master equation in such basis reads

dρ++

dt
= N(ω0)γ| p̂+|2ρ00 − kρ++ (2.131a)

dρ−−
dt

= N(ω0)γ| p̂−|2ρ00 − kρ−− (2.131b)

dρ+−
dt

= −i (ω+ −ω−) ρ+− + N(ω0)γ p̂∗+ · p̂−ρ00 − kρ+− . (2.131c)
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We consider the initial condition ρ̂S(t = 0) = |0〉 〈0| and the weak field condition
ρ00 ≈ 1. We also define the energy difference ω = ω+ − ω−. In such condition, the
solution of the master equation is

ρ++(t) =
N(ω0)γ| p̂+|2

k

(
1− e−kt

)
(2.132a)

ρ−−(t) =
N(ω0)γ| p̂−|2

k

(
1− e−kt

)
(2.132b)

ρ+−(t) =
N(ω0)γ p̂∗+ · p̂−

(iω + k)

(
1− e−(iω+k)t

)
, (2.132c)

which is identical to the white-noise solution reported in Ref. [50] [see Eqs. (8a-c)
therein].

Both the white-noise and the Lindblad approach predict dynamical and static co-
herence in the case where ω 6= 0 and p̂∗+ · p̂− 6= 0. That is, sunlight can generate co-
herences between the eigenstates of the system in the case where it is pumping a state
that is not an eigenstate of ĤS. Note that we obtained this result by applying a sunlight
super-operator that has been derived assuming resonant energy sites, and later we ap-
plied such operator to the hamiltonian ĤS where the site energies are non-resonant. If
we had derived the sunlight super-operator starting from ĤS and applying the Born-
Markov and secular approximations, we would have obtained a super-operator in the
form of Eqs. (2.121), (2.122) and (2.124). In such case, instead, we would have obtained
a very different result with no coherence between the eigenstates, because the secular
approximation would have removed this effect. So, our Lindblad approach to sun-
light is able to reproduce some non-secular peculiarities of the white-noise approach
(namely, the coherences between the eigenstates), only if we derive the Lindblad super-
operator assuming degenerate sites with an energy equal to the average site energy, as
done in this section, and applying such Libdblad super-operator a posteriori to the non-
degenerate Hamiltonian. While it is certainly interesting that our phenomenological
approach is able recover some non-secular features into a Lindblad master equation,
we leave a systematic justification of this correspondence for a further investigation.



Chapter 3

Interplay of superradiance and noise
in photosynthetic molecular
nanotubes

In this chapter we analyze the interplay of superradiance and thermal noise in the nanotubular
aggregates present in Green Sulfur Bacteria photosynthetic antenna complexes. Results from
this chapter have been published as: Marco Gullı̀, Alessia Valzelli, Francesco Mattiotti, Mattia
Angeli, Fausto Borgonovi, and G. Luca Celardo, “Macroscopic coherence as an emergent prop-
erty in molecular nanotubes”, New J. Phys. 21, 013019 (2019). I contributed in understanding
the origin of the depressed density of states from the long-range coupling, analyzing the eigen-
states of the nanotubes and the gap between the two lowest eigenstates, as well as training and
tutoring two Bachelor/Master students, Marco Gullı̀ and Alessia Valzelli, who performed the
rest of the numerical simulations.

Nanotubular molecular self-aggregates are characterized by a high degree of sym-
metry and they are fundamental systems for light-harvesting and energy transport.
While coherent effects are thought to be at the basis of their high efficiency, the rela-
tionship between structure, coherence and functionality is still an open problem. We
analyze natural nanotubes present in Green Sulfur Bacteria. We show that they have
the ability to support macroscopic coherent states, i.e. delocalized excitonic states co-
herently spread over many molecules, even at room temperature. Specifically, assum-
ing a canonical thermal state we find, in natural structures, a large thermal coherence
length, of the order of 1000 molecules. By comparing natural structures with other
mathematical models, we show that this macroscopic coherence cannot be explained
either by the magnitude of the nearest-neighbour coupling between the molecules,
which would induce a thermal coherence length of the order of 10 molecules, or by
the presence of long-range interactions between the molecules. Indeed we prove
that the existence of macroscopic coherent states is an emergent property of such
structures due to the interplay between geometry and cooperativity (superradiance
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and super-transfer). In order to prove that, we give evidence that the lowest part of
the spectrum of natural systems is determined by a cooperatively enhanced coupling
(super-transfer) between the eigenstates of modular sub-units of the whole structure.
Due to this enhanced coupling strength, the density of states is lowered close to the
ground state, thus boosting the thermal coherence length. As a striking consequence
of the lower density of states, an energy gap between the excitonic ground state and
the first excited state emerges. Such energy gap increases with the length of the nan-
otube (instead of decreasing as one would expect), up to a critical system size which
is close to the length of the natural complexes considered.

3.1 Introduction

Coherent effects, as fragile as they may seem, might be able to survive in complex
systems even in presence of strong noise induced by the coupling to an external en-
vironment. They are often related to functions in complex chemical and biophysical
systems [52–54]. Understanding under which conditions robust coherent effects can be
sustained even at room temperature is a central issue for designing efficient quantum
devices.

Molecular nanotubes are among the most interesting and most investigated struc-
tures. They are present in several natural photosynthetic complexes, for instance in
the Green Sulphur Bacteria [55–62] or in Phycobilisome Antennas [63–66]. They are
also present in other biomolecular systems, for instance in Microtubules, which are
fundamental biological structures, showing interesting similarities with photosynthetic
Antenna complexes [67, 68]. Also artificial molecular nanotubes are at the centre of re-
search interest [69–72]. Nanotubular molecular aggregates are extremely efficient for
light-harvesting and energy transport and they present a very ordered structure with a
high degree of symmetry [57–59, 73–76]. The high degree of symmetry concerns both
the molecule positions and the orientation of their transition dipoles. Despite all that,
a clear understanding of how structural features in molecular aggregates can sustain
coherent effects and explain their high efficiency is still missing.

Some of the primary coherent effects which are thought to be responsible for the
high efficiency of molecular nanotubes are induced by the delocalization of the excita-
tion over many molecules. Since the sunlight is very dilute, usually only one excitation
is present in such complexes, so that single-excitation delocalized states are usually
investigated. Delocalized excitonic states can lead to cooperative effects, such as super-
radiance [19, 60, 61, 73, 77–79] and super-transfer [3, 7], and they can be useful in both
natural or artificial light-harvesting complexes [1, 19, 25, 26, 41, 45, 70, 80–86]. Specif-
ically, coherently delocalized excitonic states can have a large dipole strength which
strongly couples them to the electromagnetic field. Thus, these states are able to super-
absorb light at a rate much larger than the single-molecule absorbing rate, since the ab-
sorption rate of delocalized excitonic states can increase with the number of molecules
over which the excitation is delocalized [60, 61]. States with a large dipole strength
can also couple between themselves efficiently, inducing a super-transfer coupling be-
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tween distant molecular aggregates [7] or different parts of the same aggregate as we
show here. Delocalized single excitonic states over a large number of molecules are
called macroscopic coherent states and they are studied both for applications and basic
science [30, 37, 39, 87–90].

Molecular nanotubes are composed by a network of self-assembled photo-active
molecules. Each molecule can be treated as a two level system, characterized by both
an excitation energy and a transition dipole moment which determines its coupling
with the electromagnetic field and with the other molecules. The interaction between
the molecules is often assumed to be dipole-dipole [73–76] which decays with the dis-
tance as 1/r3 or, in some approximate scheme, as nearest-neighbour [72] only. While the
results thus obtained are certainly very interesting, care is needed to use such simpli-
fications in large molecular structures. Indeed, dipole-dipole interaction is valid when
the distance between the molecules is sufficiently large and the overall system size L
is considerably smaller than the wavelength λ0 connected with the excitation energy
of the molecules (small volume limit). Since nanotubular aggregates can be large, here
we consider a more accurate Hamiltonian interaction [91] which takes into account the
interaction between oscillating charges in each molecule. Such description reduces to
the usual dipole-dipole interaction in the small volume limit.

Using such radiative Hamiltonian, we have analyzed the existence of macroscopic
coherent states at room temperature in different, natural and artificial, molecular nan-
otubes. Since the molecules in such structures are tightly packed, their interaction en-
ergy can be strong, of the order of several times kBT ≈ 200 cm−1 with T = 300K.
Such strong interaction is thought to be able to support excitonic delocalization even at
room temperature. Nevertheless here we show that the symmetric arrangement of the
molecules is able to induce excitonic delocalization at room temperature well beyond
what one could expect from the magnitude of the nearest-neighbour coupling between
the molecules. Moreover, by comparing natural structures with few mathematical mod-
els of self-aggregated molecular nanotubes we show that the degree of macroscopic co-
herence cannot be explained even by the long-range nature of the coupling between
the molecules. We connect such enhanced delocalization to the super-transfer coupling
present inside such structures, which induces the emergence of a gapped superradiant
state in the low energy region of the spectrum. Thus our main result is that macro-
scopic coherence in natural molecular nanotubes is an emergent property produced by
specific cooperative effects which cannot be reduced either to the range of the interac-
tion or to the magnitude of the coupling between the molecules. The presence of a large
coherence length at room temperature in molecular nanotubes suggests the possibility
that such structures can exploit superabsorption of light and supertransfer of excitation
for efficient light-harvesting and energy transport. Superabsorption, induced by giant
dipoles, can enhance the absorption rate of sun-light [3, 33] while supertransfer can
enhance the diffusion coefficient for energy transfer [7]. Both such effects induced by
excitonic delocalization are thought to play an important role in natural photosynthetic
complexes [3, 7, 33, 55].

Specifically, in this chapter we investigate the Chlorobium Tepidum Antenna com-
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plexes of Green Sulfur bacteria. Green Sulfur bacteria are photosynthetic organisms
which live in deep water where the sunlight flux is very low [56] and they are among
the most efficient photosynthetic systems [57–59]. Similarly to other antenna complexes
present in nature [63–66], they present a high degree of symmetry being arranged in
nontrivial cylindrical structures with an ordered orientation of the molecule dipoles.
We analyze both the wild type (WT) and the triple mutant type (MT), which have been
recently investigated in [92, 93].

Understanding the connection between functionality and structure in such com-
plexes will enhance our comprehension of natural photosynthesis and it could also
inspire efficient bio-mimetic devices for energy transport and light-harvesting.

In Section 3.2 and 3.3 we present the cylindrical models studied. In Section 3.4.1 the
existence of a delocalized superradiant state close to the ground state for the natural
models is shown. In Sections 3.4.2 and 3.4.3 the thermal coherence length is introduced
and analyzed. Natural complexes are shown to be able to support the largest thermal
coherence length with respect to the other models considered. The evidence produced
in these Sections allows to conclude that the large thermal coherence length of natural
aggregates cannot be explained by the magnitude of the coupling or by the range of
the interaction between the molecules. In Section 3.5 we explain that the origin of such
macroscopic coherent states found in natural complexes lies in their specific geome-
try which induces a supertransfer coupling inside the complexes. Such supertransfer
coupling strongly affects the lowest part of the spectrum thus enhancing the thermal
coherence length. In Section 3.6, we analyze structures which are more complex than
single cylindrical surfaces. Specifically, we consider tubular structures made of four
concentric cylindrical surfaces, as they appear in natural antenna complexes of Green
Sulfur bacteria [92–95]. We show that these structures display an enhanced delocaliza-
tion of the excitation with respect to single cylindrical surfaces. Finally in Section 3.7
we give our conclusions and perspectives.

3.2 The models

The natural Antenna complexes present in Green Sulphur bacteria have lengths of 1000
- 2000 Å, widths of 100 - 600 Å and they can contain a number of molecules between
50, 000 and 250, 000, typically arranged into concentric cylindrical surfaces [56, 96].
It is important to remark that, depending on the environment and on the growing
conditions [97], some samples could show an alternation between tubular aggregates
and non-tubular curved lamellae [98, 99]. Nevertheless, in spite of the heterogeneity
of the structures experimentally observed, we will consider here cylindrical surfaces
only with a radius of 6 nm and length up to L = 250 nm composed of about 15, 000
molecules.

Specifically, we analyze five different cylindrical models with fixed radius
(R = 60 Å) and total number of chromophores N. These models differ for the geomet-
rical arrangement of the chromophores along the cylindrical surface. In details they
are:
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(E) RD model

Figure 3.1: Sections of the different models. In all panels we show cylinders with the
same radius R = 60 Å. For the sake of clarity we show only 30 dipoles per ring instead
of 60 as we considered in this chapter. Moreover the distances along the z−axis are
enhanced by a factor of 5 with respect to the distances on the x − y axes. The same
factor and also a reduction of the number of dipoles have been used for WT model. In
all models but the WT, where the dipoles are arranged in a helical structure, the dipoles
are arranged into N1 = 5 rings.

• Chlorobium Tepidum bchQRU triple mutant (MT),

• Chlorobium Tepidum wild type (WT),

• parallel dipoles cylinder (PD),

• tangent dipoles cylinder (TD),

• random dipoles cylinder (RD).

While the first two are representative of natural systems, the others are mathematical
models with a suitable symmetric arrangements of chromophores (TD and PD) while
the last one (RD) is characterized by a random orientation of the dipole moments. The
molecule positions and dipole orientations for the natural models have been taken from
literature [92, 93, 95] and they correspond to the values capable to reproduce experi-
mental results.
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A schematic view of the arrangement of the dipoles on the cylindrical surfaces for
all models is shown in Figure 3.1, while all other technical details can be found in 3.8.1.
Notice that all the models but the WT share the same basic structure: the cylinder is
made by a collection of N1 rings composed of N2 = 60 molecules equally spaced on
each ring. The difference between them lies in the dipole orientation only:

• PD model: all dipoles are oriented parallel to the z axis

• TD model: all dipole are perpendicular to the z direction and tangential to the
cylindrical surface

• MT model: here the dipoles have a fixed z component, but also a component
perpendicular to the z direction, see 3.8.1 for details. Note that the component
perpendicular to the z direction points inward and outward alternatively with
respect to the plane tangent to the cylindrical surface with a small angle α (see
black and red arrows in Figure 3.1(A)).

• RD model: the position of the dipoles is the same of the other three models but
the orientation of the dipoles is fully random on the unit sphere.

On the other hand the WT model, see Figure 3.1(B), is not composed of separated rings
but instead is arranged in a complicated helical structure, see 3.8.1 for details.

3.3 The Hamiltonian and the dipole approximation

Each molecule is represented as a two-level system with an excitation energy e0 and a
transition dipole moment ~µ. The parameters of the aggregates considered here have
been taken from literature [100, 101] to be the ones characterizing the Antenna Com-
plexes in Green Sulfur bacteria. Specifically we set for the excitation energy of all the
molecules e0 = 15390 cm−1 [101], corresponding to λ0 ≈ 650 nm, so that

k0 = 2πe0 × 10−8 = 9.670× 10−4 Å−1.

µ =
√

30 D [100] so that |µ|2 = 151024 Å3 cm−1 (for the conversion, see 1).

1Let us recall that, in Gaussian units, the unit dipole-dipole interaction energy is [E] = [µ]2[d]−3, where
[µ] is the unit dipole and [d] the unit distance. We express the dipoles in D (Debye), the distance in Å and
the energy in cm−1 units (applying the standard conversion [E]/(hc), with h being the Planck constant and
c the speed of light), so that [µ]2/(hc) = cm−1Å3. Now, from the definition 1 D = 10−18 cm5/2 g1/2 s−1 we
have 1 D2 = 10−12 cm2 g s−2 Å3. Recalling the Planck constant h = 6.626 · 10−27 cm2 g s−1 and the speed
of light c = 2.998 · 1010 cm s−1, we have 1 D2/(hc) = 5034 cm−1 Å3. So, a transition dipole µ =

√
30 D

results in |µ|2 = 30× 5034 cm−1 Å3
= 151020 cm−1 Å3. Note that in these calculations we write explicitly

where the energy is divided by hc for clarity, while in the text we always assume implicitly that any energy
is divided by hc.
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γ = 4|µ|2k3
0/3 = 1.821× 10−4 cm−1, corresponding to the radiative lifetime τγ =

29.15 ns (for the conversion, see 2).

Choosing the basis states in the single excitation manifold, where the state |i〉 refers
to a state in which the ith molecule is excited while all the others are in the ground state,
the nanotubes can be described through a Non-Hermitian Hamiltonian which takes
into account the interaction between the molecules mediated by the electromagnetic
field (EMF). The effective Non-Hermitian Hamiltonian (also called radiative Hamilto-
nian), is commonly used to model the interaction with the EMF in different systems,
such as natural light-harvesting complexes [44, 91] and cold atomic clouds [102]. The
radiative Hamiltonian has been derived by many authors, see for instance Ref.s [27, 44],
and it is accurate when the intensity of the electromagnetic field is weak so that the
single excitation approximation is valid. Such approximation is extremely good for
sun-light absorption since sunlight is very diluted. The radiative Hamiltonian reads:

H =
N

∑
i=1

e0|i〉〈i|+ ∑
i 6=j

∆ij|i〉〈j| −
i
2

N

∑
i,j=1

Qij|i〉〈j|. (3.1)

The terms ∆ij and Qij derive from the interaction with the EMF. The real and imaginary
diagonal parts of the intermolecular coupling are given respectively, by

∆nn = 0 , Qnn =
4
3

µ2k3
0 = γ , (3.2)

with µ = |~µ| being the transition dipole, while the off-diagonal (n 6= m) by

∆nm =
3γ

4

[(
−cos(k0rnm)

(k0rnm)
+

sin(k0rnm)

(k0rnm)2 +
cos(k0rnm)

(k0rnm)3

)
µ̂n · µ̂m+

−
(
−cos(k0rnm)

(k0rnm)
+ 3

sin(k0rnm)

(k0rnm)2 + 3
cos(k0rnm)

(k0rnm)3

)
(µ̂n · r̂nm) (µ̂m · r̂nm)

]
, (3.3)

Qnm =
3γ

2

[(
sin(k0rnm)

(k0rnm)
+

cos(k0rnm)

(k0rnm)2 −
sin(k0rnm)

(k0rnm)3

)
µ̂n · µ̂m+

−
(

sin(k0rnm)

(k0rnm)
+ 3

cos(k0rnm)

(k0rnm)2 − 3
sin(k0rnm)

(k0rnm)3

)
(µ̂n · r̂nm) (µ̂m · r̂nm)

]
, (3.4)

where µ̂n := ~µn/µ is the unit dipole moment of the n-th site and r̂nm :=~rnm/rnm is the
unit vector joining the n-th and the m-th sites.

Diagonalizing the Hamiltonian (3.1) we obtain the complex eigenvalues
εn = En − i Γn

2 where Γn is the radiative decay of the nth eigenstate. In general it

2The lifetime related to an energy width γ is defined as τγ = h̄/γ. Note that we implicitly divide
each energy by hc (with h being the Planck constant and c the speed of light), so that [γ]/(hc) = [cm]−1.

Therefore, the unit time is [τγ] =
h

2π[γ]
=
(
2πc[cm]−1)−1, where c = 2.998 · 10−2 cm ps−1. Thus, given

a width in [cm]−1 units, its lifetime is obtained by multiplying the width by 2πc = 0.1884 cm ps−1 and
taking the reciprocal of the result.
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differs from the radiative decay of the single molecule γ. In particular, when the ratio
Γn/γ � 1 we will talk about a “superradiant state” (SRS), otherwise when Γn/γ � 1
the state is called “subradiant”. In other words, a SRS can radiate much faster than a
single molecule, while a subradiant one radiates at a rate much slower than the single
molecule radiative decay.

Within the range of parameters considered here, the imaginary part Qij can be con-
sidered a small perturbation of the real part of the Hamiltonian (3.1), moreover the
system size is small compared to wavelength associated with the optical transition of
the molecules (maximum size considered here is L/λ0 ≈ 0.4 ). In such case, the opti-
cal absorption of an eigenstate of the aggregate can be estimated in terms of its dipole
strength, computed only from the real part of the Hamiltonian (3.1). Denoting the nth

eigenstate of the real part of the Hamiltonian (3.1) with |En〉, we can expand it on the
site basis, so that

|En〉 =
N

∑
i=1

Cni |i〉. (3.5)

Note that the site basis is referred to the molecules and is composed by the states |i〉,
each of them carrying a dipole moment ~µi. If N is the total number of molecules, then
we will express the transition dipole moment ~Dn associated with the nth eigenstate as
follows:

~Dn =
N

∑
i=1

Cni µ̂i. (3.6)

The dipole strength of the nth eigenstate is defined by |~Dn|2 (note that due to normaliza-
tion ∑N

n=1 |~Dn|2 = N). Under the approximation that the imaginary part of the Hamil-
tonian (3.1) can be treated as a perturbation and L/λ0 � 1 we have |~Dn|2 ≈ Γn/γ,
which is valid for states with a large radiative decay rate (see 3.8.2 for a comparison
between dipole strengths and radiative decay widths for all models).

Thus, in the following we will consider only the real part of the Hamiltonian (3.1),

Hr =
N

∑
i=1

e0|i〉〈i|+ ∑
i 6=j

∆ij|i〉〈j|, (3.7)

where ∆i,j is given in equation (3.3).
Finally we note that for small systems, when k0rij � 1, the Hamiltonian (3.1) be-

comes
Qij ' γµ̂iµ̂j,

∆ij '
~µi ·~µj − 3(~µi · r̂ij)(~µj · r̂ij)

r3
ij

.
(3.8)

In this limit, the real term ∆ij represents a dipole-dipole interaction energy with µ = |~µj|
and the radiative decay γ = 4

3 |µ|2k3
0. The dipole approximation is widely used in lit-

erature to model molecular aggregates which are small compared to the wavelength of
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the absorbed light. Nevertheless when the dimension of the aggregate becomes com-
parable with the wavelength λ0 the dipole-dipole approximation fails. For the max-
imal sizes considered here (L/λ0 ≈ 0.4) the dipole approximation can be considered
good, even if there are already non-negligible deviations in some quantities between
the dipole-dipole interaction in equation (3.8) and the Hamiltionian in equation (3.7),
see 3.8.3. For this reason in the following we will use the expression given in equa-
tion (3.7).

3.4 Single Cylindrical structures: Results

In this Section we analyze first the collective dipole strengths of the eigenstates of the
different models, showing the emergence of a superradiant state close to the ground
state in natural complexes, see section 3.4.1. The coherence length is defined in sec-
tion 3.4.2 where also a new model with only nearest-neighbor couplings is introduced.
Finally in section 3.4.3 the results of our analysis about the thermal coherence length
for the different models is shown.

3.4.1 Collective Dipole Strength

As a first goal let us analyze the dipole strengths associated with the eigenstates of the
Hamiltonian models described in the previous section. For the five models introduced
previously we diagonalized the Hamiltonian in equation (3.7), and we analyzed in de-
tail the dipole strengths |Dn|2 of all eigenstates. In Figure 3.2(A-E) we plot |Dn|2 as a
function of the energy En − e0 of the corresponding eigenstate. All models but the ran-
dom one (E) are characterized by the presence of SRS in different positions of the energy
spectrum. For instance for the MT model the state having the largest dipole strength
is the ground state while for the WT model it is very close to it. Note that the position
of the superradiant state is below the excitation energy of a single molecule. Since the
dipole strength of the eigenstates determines the absorption spectrum [60, 61], a su-
perradiant ground state implies a red-shifted absorption spectrum which is a typical
behaviour for molecular J-aggregates [60, 61, 70, 73]. On the other hand for both the TD
and PD models the SRSs are in the middle of the energy spectrum (C,D). Contrary to
this general trend, the absence of ordering characterizing the random model (RD) does
not guarantee the presence of SRS. Indeed it is well known that in the small volume
limit L/λ� 1 symmetry is necessary to preserve super- and sub-radiance [27].

This is a clear indication that natural structures tend to push the SRS to the lowest
energy region. Moreover, as the comparison with the other symmetric structure shows,
this is not a trivial consequence of the symmetric arrangement. Other symmetric ar-
rangements, such as the TD and PD, are still characterized by SRS but “living” in an
energy region far from the ground state.

SRSs are typically characterized by a collective dipole strength which grows with
the length of the cylindrical structure. This is clearly shown in Figure 3.2(F) where the
maximal dipole strength |Dmax|2 is shown as a function of the length L of the cylinder.
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Figure 3.2: (A) - (D) Squared dipole strength |Dn|2 as a function of the energy En − e0.
Superradiance arises in all cylindrical models since they are characterized by a high
degree of geometrical symmetry. However, in the engineered structures made up of
parallel and tangent dipoles (panels (C,D) ) the SRS does not coincide definitely with
the ground state, nor it is close to it. On the other hand, in the MT model (A) the ground
state is superradiant while in the WT model (B) the SRS, even if it does not coincide with
the ground state, it is indeed very close to it. In panels (A,B,C,D) insets are shown with
a magnification of the energy spectrum close to the SRS. In the insets the arrows indi-
cate the position of the ground state. (E) Average squared dipole strength 〈|Dn|2〉 as a
function of the eigenstate index. The average has been computed over 10 disorder re-
alizations. (F) |Dmax|2 as a function of the cylindrical length L. A linear dependence, as
given by the dashed line |Dmax|2 ∝ L, emerges clearly from all structures except the RD
model (brown). Different colours stand for different models : MT (red), WT (orange),
PD (green), TD (blue) and RD (brown). In panels (A-E) we considered cylindrical struc-
tures made of 6000 dipoles. In panel (F) we considered cylindrical structures with a
number of dipoles varying from 60 to 6000.



3.4. SINGLE CYLINDRICAL STRUCTURES: RESULTS 59

As one can see the maximal dipole strength grows ∝ L for all models but the random
one for which it is independent of L.

3.4.2 Delocalized excitonic states at room temperature

Given a quantum state specified by the density matrix ρ̂ it is possible to define its co-
herence length in the single excitation manifold defined by the basis states |i〉 [103, 104]:

Lρ =
1
N

(
∑ij |ρij|

)2

∑ij |ρij|2
. (3.9)

The expression of Lρ in equation (3.9) measures how much a single excitation is spread
coherently over the molecules composing the aggregate. To give an idea of its physical
meaning let us consider three different simple cases:

• a pure localized state, ρ̂ = |i〉〈i|; then it is easy to see that the coherence length
defined in equation (3.9) is given by Lρ = 1/N. This case represents the minimal
value that Lρ can get.

• A completely delocalized mixed state characterized by the density matrix ρ̂ =
(1/N)∑N

i=1 |i〉〈i|. In this case we have Lρ = 1. This state is maximally delocalized
in the basis, but it is completely incoherent.

• Lastly we consider the fully delocalized coherent state: ρ̂ = (1/N)∑N
i,j=1 |i〉〈j|.

In this case we have Lρ = N. Note that any pure state with constant amplitude
1/
√

N over the sites and arbitrary phases would give the same result.

Generally speaking we can see that 1/N ≤ Lρ ≤ N. The closer Lρ is to N, the higher a
coherent delocalization can be assigned to our state. In the same way Lρ < 1 indicates
an incoherent localized state. States characterized by Lρ ∼ 1 have a little ambiguity
(since both localization and coherence are measured on the same length scale).

In what follows we will consider the previous models of cylindrical structures and
we will compare them with an additional model where the positions of the molecule are
the same of the MT model, but their interaction is only nearest-neighbour. In this way
we will be able to address the relevance of the range of the interaction to the thermal
coherence length. For this purpose, let us consider a variant of the MT model, in which
the Hamiltonian matrix elements are defined as follows:

HNN =

 ∑N
i=1 e0|i〉〈i|+ ∑i 6=j ∆ij|i〉〈j| if rij ≤ d̄,

0 if rij > d̄,
(3.10)

where we have introduced the cut-off distance d̄ = 9 Å and ∆i,j is defined in equa-
tion (3.7). In other words any lattice point interacts only with its four nearest neigh-
bours.
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For all the models above we have computed the thermal coherence length at room
temperature (T = 300K), defined for a state at the canonical equilibrium and whose
matrix elements are given by:

ρij = ∑
n

e−βEn

Tr(e−βĤ)
〈i|En〉〈En|j〉, (3.11)

where β = 1/kBT. A very important question to be answered is how much the sym-
metrical arrangements that give rise to SRS are also able to produce a large thermal
coherence length at room temperature. Note that even if we consider the coherence
length at thermal equilibrium, this does not mean that out-of-equilibrium processes are
not important in molecular nanotubes. Indeed in Ref. [105] strong evidence of ultra-fast
transport in natural structures with transfer times less than 100 fs have been discussed.
Nevertheless thermal equilibrium can be considered as a worst case scenario for coher-
ences, see also discussion in the conclusions. For this reason assuming thermal equi-
librium can be considered a good starting point to assess the structural robustness of
quantum coherence to thermal noise.

In that regard we calculate the coherence length Lρ according to equation (3.9),
using a thermal density matrix as in equation (3.11), as a function of the cylindrical
length L for each of the cylindrical models studied so far, including the NN model
described by equation (3.10).

As a final remark for this Section, let us note that for zero temperature Lρ depends
only on how much the ground state is delocalized, while for infinite temperature we
have a fully mixed state with ρ̂ = (1/N)∑N

i=1 |i〉〈i|, so that Lρ = 1 as explained above
even if all eigenstates are fully delocalized. On the other hand at finite temperature
the thermal coherence length is determined by how much the energy eigenstates are
delocalized on the site basis and also on how many eigenstates have an energy approx-
imately within kBT above the ground state (i.e. from the density of states within an
energy kBT from ground state). For this reason, it is important to study the delocaliza-
tion properties of the eigenstates of the nanostructures considered here. This analysis is
shown in 3.8.4, where we show that the eigenstates of all models but the RD one have
fully delocalized eigenstates with a very similar degree of delocalization.

3.4.3 Thermal Coherence Length

It is usually thought that natural photosynthetic structures can support delocalized
states even at room temperature because the nearest-neighbour (NN) coupling between
the molecules is larger than the room temperature energy kBT ≈ 200 cm−1. In Table 3.1
we show the nearest-neighbour coupling for the different models considered here. As
one can see these couplings are larger than kBT, and the maximal value between Ω1,2
are of the same order among the different models.

Let us now consider the thermal coherence length of the structures analyzed here at
room temperature. Figure 3.3(A) shows the dependence of Lρ on the cylinder length L
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Ω1 [cm−1] Ω2 [cm−1]
MT 618 248
WT 115 629
PD 610 528
TD 1218 264

Table 3.1: Nearest-neighbour (NN) coupling for the different models. Ω1: azimuthal
coupling for NN sites in the same ring (or between two adjacent chains for the WT).
Ω2: vertical coupling for NN sites between rings (or in the same chain for the WT).

(with a corresponding number of dipoles N ranging from 120 to 9600).
In all models but the RD, the coherence length Lρ increases quite markedly for small
L until it reaches a plateau for larger L values. Apart from the RD structure, that ex-
hibits a coherence length Lρ ≈ 1, the other structures are characterized by 1 ≤ Lρ ≤ N.
This means that the thermal state at room temperature of these structures has a high de-
gree of excitonic delocalization. Moreover it emerges clearly that the natural complexes
(MT and WT) show the highest values of thermal coherence length if compared with
the other engineered structures. It is interesting to note that the MT complex supports
a coherent delocalization of the excitation over hundreds of molecules even at room
temperature, which is one order of magnitude larger than the delocalization supported
by the NN model despite the fact that in the NN model the molecules have the same
position and the same nearest-neighbour coupling of the MT model. This shows that
the ability of such structures to support large delocalized excitation even at room tem-
perature goes beyond the strength of the NN coupling between their molecules. From
Figure 3.3(A) we can also deduce that the large coherence length of the natural systems
cannot be explained by the presence of long range interactions. Indeed long-range in-
teractions are present also in the PD and TD models, but their thermal coherence length
is one order of magnitude smaller. By comparing the different cylindrical structures,
one may also observe that the further the SRS is from the ground state, the lower is
Lρ. One could argue that natural structures concentrate the most radiative states (states
with the largest dipole strength) close to the ground state in order to maximize their
thermal coherence length. We will discuss the relationship between the presence of the
SRS close to the ground state and a large coherence length in the next Section.

The presence of a large thermal coherence length can be related to the structural
properties of the energy spectrum. To this end we consider the mean energy density
δ(kBT) defined as the number of states contained in a unit of thermal energy kBT, i.e.

δ(kBT) =
1

kBT

∫ E1+kBT

E1

N(E) dE, (3.12)

where E1 is the ground state and N(E) is the density of states (number of states per
unit energy). In particular, we would like to study the dependence of the average
density of states, equation (3.12), on the cylindrical length L. Results are shown in
Figure 3.3(B) and they clearly indicate that not only, in general, the average density in-
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Figure 3.3: (A) Coherence length Lρ as a function of the cylindrical length in the 6
cylindrical models at T = 300 K. The total number of chromophores N varies from 120
to 9600. (B) δ(kBT), as given by equation (3.12), as a function of the cylindrical length
L at a fixed temperature T = 300 K. All models have a total number of dipoles ranging
from 120 to 9600. Note that since energy is measured in [cm]−1, the mean energy density
in the thermal energy width kBT is measured in [cm], see equation (3.12).

creases proportionally to L, but, more importantly, natural structures are characterized
by the smallest average densities (approximately one order of magnitude less than the
other structures). Such a low density of states in the lower part of the spectrum induces,
see Figure 3.3(B), an enhanced thermal coherence length. Indeed, if all the eigenstates
have approximately the same degree of delocalization, as measured by their PR for in-
stance, then for a smaller number of states within an energy kBT from the ground state,
the thermal coherence length is larger, as explained above. In order to explain the origin
of the low density of states, let us observe that: (i) it cannot be due to the intensity of
the NN coupling. Indeed the NN model, which has the same NN coupling as the MT
model, has a much higher density of states and a smaller thermal coherence length; (ii)
it cannot be due to the range of interaction since also the TD and PD model are charac-
terized by the same interaction range but they display a higher density of states and as
a consequence a smaller thermal coherence length. Below we propose an explanation
of the connection between the presence of a SRS close to the ground state and a low
density of states, implying a large thermal coherence length.

3.5 Relationship between structure and macroscopic coherence

In this section we propose an explanation of why such a low density of states is con-
nected to the presence of SRS close to the ground state of the system. As we will show
below, the low energy part of the spectrum for both the MT and WT models arises from
a super-transfer coupling between states with a large (giant) dipole belonging to some
sub-unit of the whole cylinder. In the case of MT we will show that the super-transfer
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coupling arises between giant dipole eigenstates of single rings, while in the case of
WT the super-transfer arises between eigenstates belonging to different sub-units of the
whole cylinder. The presence of super-transfer induces a large coupling energy which
decreases the density of states. As a clear signature of this, we show below that super-
transfer is also able to induce the emergence of an energy gap between the ground state
and the first excited state.

Specifically in section 3.5.1 we analyze cylinders made of a sequence of rings and
we show that the symmetry present in the system implies that each eigenstate of a
ring couples only to a correspondent eigenstate of the other rings. We also show that
the dipole strength of the eigenstates of each ring is concentrated in few superradiant
states. In section 3.5.2 we show that the coupling between superradiant states in each
ring displays a super-transfer effect, while the coupling between the subradiant states
is characterized by a sub-transfer effect. Finally in section 3.5.3 we show how in natural
structures the super-transfer coupling produces a depressed density of states close to
the ground state, thus enhancing the thermal coherence length.

3.5.1 Structure of ring eigenstates coupling

In order to analyze the super-transfer effect, let us consider the properties of the eigen-
states of the single rings composing three different nanotubes: MT, TD and PD. All
the above mentioned models are composed of a sequence of rings, each containing 60
molecules, as explained in Section 3.2. The case of the WT model will be discussed
later since its structure is more complicated. In Figure 3.4 the dipole strength of few
eigenstates (ordered from low to high energy) of a single ring, containing 60 dipoles, is
shown for the different structures. Note that the sum of all the dipole strengths must
be equal to the number of the dipoles in the ring N2 = 60 as explained in the previous
Sections. As one can see in the MT case the whole dipole strength is concentrated in the
lowest three eigenstates, each having a dipole strength approximately equal to N2/3.
Each dipole strength is oriented in a different spatial position with the ground state
having a dipole strength along z corresponding to the direction of the cylinder axis and
the other two states perpendicular to it in the ring plane, see inset in Figure 3.4(A). In
the TD model in Figure 3.4(B), the dipole strengths are concentrated in the first and
second excited state (which are degenerate and having |Dn|2 = N2/2 each) and their
direction lies in the plane perpendicular to the direction of the cylinder axis. Finally for
the PD model in Figure 3.4(C), the whole dipole strength is concentrated in the most
excited state and it is directed along the z axis (cylinder axis).

A common feature of these structures is their invariance under a 2π/N2 rotation
around the cylinder axis. Strictly speaking, in the MT model such symmetry is slightly
broken due to the presence of alternating α angles, see 3.8.1. Nevertheless since α is
very small the change due to the symmetry breaking is negligible. As a consequence
the Hamiltonian for each ring is a circulant matrix, i.e. each row can be obtained by
a cyclic permutation of the previous one. Circulant matrices are diagonalized by the
Fourier basis, so that the components of the eigenstates of each ring |ϕq〉 on the site
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Figure 3.4: Dipole strength of few eigenstates (in the lowest or highest part of the en-
ergy spectrum) vs. the eigenstate index n, for a single ring composing three different
nanotubular structures: MT, TD and PD. Lateral panels indicate the spatial direction
of the giant dipoles of the SRS. Each ring of the three structures considered (A,B,C) is
composed by N2 = 60 dipoles.

basis |j〉 are given by

〈j|ϕq〉 =
1√
N2

ei2π jq/N2 for q = 1, ..., N2. (3.13)

Due to the rotational invariance the coupling matrix between two rings is also circulant.
To make this point explicit, let us work out a specific example of two rings. The

Hamiltonian reads:

Hr =

[
D V
V D

]
(3.14)

where D refers to the Hamiltonian of a single ring (which is diagonal in the Fourier
basis given in equation (3.13)) and V represents the interaction between two rings. The
total Hamiltonian matrix Hr can be made block diagonal by the matrix
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Figure 3.5: (A) Graphical representation of the coupling between the sites of two rings,
each formed by six molecules. Same colours indicate the same couplings. The circulant
coupling matrix V, see equation (3.14), generated by the symmetric coupling is repre-
sented below. (B) Modulus of the Hamiltonian Hr (3.14) matrix elements for the MT
model, for the case sketched in (A) in the Fourier basis. Each ring eigenstate is mainly
coupled only to one corresponding eigenstate in all the other rings.

Ur =

[
U 0
0 U

]
where the elements of U are given by equation (3.13): Uj,q = 〈j|ϕq〉. In other words,
each ring eigenstate is coupled only with one corresponding eigenstate of any other
ring. This is clearly shown in Figure 3.5(B), where the matrix elements of the Hamilto-
nian of a small cylinder composed of two rings of 6 sites each, are represented in the
basis given by the tensor product of the Fourier basis of each ring. As one can see, this
results in a block structure where each block has only diagonal elements.

As a consequence of the symmetric structure of the nanotubes considered above, all
the eigenstates of the whole cylinder can be “generated” by the coupling between the
eigenstates of single rings, see also discussion in [106]. Specifically the SRS of the whole
cylinder is generated by the coupling of the SRS of the single rings. In order to prove
that, we show in Figure 3.6(A, B, C) the most SRS for the different models projected
along the eigenstates of the single rings. In the figure we considered cylinders made
of N1 = 160 rings, with N2 = 60 molecules per ring, for a total number of dipoles of
N = 9600. Let us analyze the single models individually:

1. For the MT model, one can see that the most SRS (having a dipole along the cylin-
der axis) has components only on the ground states of the single rings (indicated



66 CHAPTER 3. SUPERRADIANCE AND NOISE IN MOLECULAR NANOTUBES

by arrows in the inset of Figure 3.6(A)) that are also SRS with a dipole strength
along the z−axis, see Figure 3.4(A).

2. In the PD model, Figure 3.6(B), the most SRS, |E2814〉, projects itself on the most
excited state in the single ring spectrum, which corresponds to the only SRS of
the PD ring, see Figure 3.4(C). Note that |E2814〉 indicates the 2813rd excited state.

3. In the TD model there are two most SRS which are degenerate with a different
polarization: one along the x direction and one along the y direction. In Fig-
ure 3.6(B) we considered only the SRS with a polarization along the y direction,
which corresponds to the state |E1083〉. Such state has non zero projections only
onto the second excited states of the single ring with the same dipole direction of
the SRS of the whole cylinder, see Figure 3.4(B). Correspondingly the other SRS
with a polarization along the x direction will have projection only on the SRS of
the single ring with the same polarization.

These findings allow for a further approximate scheme for the eigenstates of the
cylindrical structures considered above. Indeed, since each eigenstate of any single ring
is coupled only to a corresponding eigenstate of the other rings, we can decompose the
whole cylinder into independent chains where each site of the chain corresponds to a
single ring eigenstate. For a chain having Ns sites and nearest-neighbour interactions
the eigenstates are independent of the coupling and given by:

〈k|ψr〉 =
√

2
Ns + 1

sin
(

πkr
Ns + 1

)
, (3.15)

where k represents the site index and r = 1, .., Ns. Clearly, when the interaction range is
not nearest-neighbour, the above expression for the eigenstates is no longer valid. Nev-
ertheless for the natural structures considered in this chapter the interaction is short-
range, decaying as 1/r3 for the realistic cylinder length considered here, so that in a
first scheme we can consider the nearest-neighbour eigenstates as a good approxima-
tion. Note however that care should be taken to generalize such approximation since
the interaction between the molecules is much more complicated than a simple dipole-
dipole one. For instance the coupling is also affected by the dipole strength of the ring
eigenstates involved as we will see below. Nevertheless we can assume that the chain
of eigenstates is diagonalized by the same eigenstates of a chain with nearest-neighbour
coupling for the parameters and the realistic system sizes considered here. Building the
eigenstates as a tensor product between the Fourier basis for the ring (3.13) and the one
for the chain (3.15)

〈j, s〉Ψq,r =
1√
N2

ei2π jq/N2

√
2

N1 + 1
sin
(

πsr
N1 + 1

)
(3.16)

(with j, q = 1, . . . , N2 and s, r = 1, . . . , N1) we can diagonalize the Hamiltonian of the
whole cylinder in order to obtain an approximation of the actual spectrum of the whole
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Figure 3.6: Left Panels: Projections of the most SRS of the whole cylinder |ESR〉 over
the single ring eigenstates |ϕn〉 as a function of the eigenstate index n. In each case we
selected a total number of dipoles N = 9600 (then n= 1, ..., 9600), which corresponds to
N1 = 160 rings and N2 = 60 molecules in each ring. (A) MT model, (B) PD model, (C)
TD model (in the insets the corresponding blow up of the low energy part of the energy
spectrum). Arrows refer to the SRS of the single rings. Right Panels: energy spectrum of
the three different cylindrical structures: (D) MT model, (E) PD model, (F) TD model.
Coloured symbols represent the exact numerical spectrum, white lines stand for the
spectrum obtained from the analytic approximate eigenstates, see equation (3.16).

structures. The results are shown in Figure 3.6(D, E, F) where the spectrum obtained
from exact numerical diagonalization is compared with the spectrum obtained by diag-
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onalizing the matrix with the eigenbase in equation (3.16). As one can see, the proposed
analytic basis gives an excellent approximation of the spectrum obtained by exact nu-
merical diagonalization.

3.5.2 Super and Sub-Transfer

In the previous section we have shown that each eigenstate of a single ring couples
only with a corresponding eigenstate of the other rings (apart for a small symmetry
breaking factor present in the MT model). Here we will show that the coupling between
the eigenstates with a large dipole strength is enhanced with respect to the coupling
between the single molecules within each ring by a factor proportional to the number
of molecules placed on each ring. Such effect is known in literature as super-transfer [7].
At the same time we will show that the coupling between the eigenstates of the single
rings with a small dipole strength is suppressed with respect to the coupling between
the single molecules, giving rise to another collective sub-transfer effect, which has not
been fully addressed in literature.

In order to prove the previous statements, let us compute the coupling strength be-
tween two eigenstates of two rings, say 1 and 2. Let us indicate the two corresponding
q-th eigenstates of the two rings as

|ψs,q〉 = ∑
k

Cs,q
k |k〉,

where the states |k〉 represent the site basis of a ring and s = 1, 2. The coupling between
two single ring eigenstates belonging to two different rings can be written as:

Vq
12 = 〈ψ1,q|V|ψ2,q〉 = ∑

k,k′
(C1,q

k )∗C2,q
k′ Vk,k′ . (3.17)

Using equation (3.7) we have Vk,k′ = ∆k,k′ = f (rk,k′)~µk ·~µk′ + g(rk,k′)(~µk · r̂k,k′)(~µk′ · r̂k,k′).
When the distance between the two rings is much larger than their diameter we can
approximate rk,k′ ≈ R12 where R12 is the distance between the centres of the two rings.
In this limit, equation (3.17) becomes

Vq
12 = ∑

k,k′
(C1,q

k )∗C2,q
k′
[

f (R12)~µk ·~µk′ + g(R12)(~µk · R̂12)(~µk′ · R̂12)
]

, (3.18)

which can be expressed in terms of the dipole strengths using equation (3.6)

Vq
12 =

[
f (R12)| ~Dq|2 + g(R12)(~Dq · R̂12)(~D∗q · R̂12)

]
. (3.19)

As a result, we obtain Vq
12 ∝ |Dq|2 ∝ N2. In other words the eigenstates with a large

dipole strength will have a coupling enhanced by a factor proportional to the number
of molecules N2 in the ring.

The above expression represents the interaction between the giant dipoles of the
eigenstates of each ring. Therefore states with a large dipole strength will have a super-
transfer coupling (proportional to the dipole strength of the eigenstates), increasing
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Figure 3.7: Coupling between ring eigenstates as a function of their distance h nor-
malized to the wavelength λ0 = 650 nm. Open circles represent the coupling Vq

12 (see
equation (3.17)) between the ground states of two rings for the MT model. Red squares
stand for the maximal coupling between individual molecules in the two rings. Blue
triangles represent the coupling between the most excited eigenstates of the two rings.
Green curve represents the coupling between the giant dipoles of the ground states as
given by equation (3.19). The three lines represent respectively the behaviours 1/r2

(dashed), 1/r3 (dot-dashed), 1/r5 (dotted).

linearly with the number of molecules N2 in each ring. At the same time, the coupling
between two eigenstates with zero dipole strengths will be suppressed, leaving only
higher order multipole terms to contribute to the coupling. This will lead to a sub-
transfer coupling. The super and sub-transfer effects for the MT model are shown in
Figure 3.7 where we compare: (i) the coupling between the superradiant ground states
(which have a large dipole strength) of two rings as a function of their rescaled distance
(open circles); (ii) the maximal coupling between single molecules of each ring as a
function of the distance between the two rings (red squares); (iii) the coupling between
the most excited states (with a very small dipole strength) of each ring as a function of
their distance (blue triangles).

Let us comment this figure in detail. First of all we note that the coupling between
the states with a large dipole is clearly larger (by a factor ∼ N2 = 60) than the maximal
coupling between the single molecules thus showing the super-transfer effect. More-
over, the coupling between the eigenstates with a small dipole strength is much smaller
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than the maximal coupling between single molecules: this shows the sub-transfer ef-
fect.

In the same figure, as a continuous green curve we show the coupling between the
ground states as given by equation (3.19). As one can see, at sufficiently large distance,
the couplings are well approximated by equation (3.19) thus confirming that the cou-
pling is enhanced by a factor proportional to the number of molecules in each ring N2.

Another important observation concerns the dependence of such couplings from
the distance r = h/λ0 and how it is modified by the super and sub-transfer effect. We
can distinguish three different regimes: at small distances, at intermediate distances
and at distances comparable with the wavelength of the optical transition. At large dis-
tances, when h ∼ λ0 an oscillatory behaviour arises due to the presence of oscillatory
terms in the Hamiltonian of the system, see equation (3.7). At intermediate distances
the super-transfer coupling decays with 1/r3 as the coupling between single molecules,
consistently with the dipole-dipole nature of the interaction. On the other hand, the
sub-transfer coupling decays as 1/r5 which is consistent with high order multipole ex-
pansion of the coupling since the dipole interaction is suppressed. At small distances
the behaviour of the coupling with distance is less trivial: while the single molecule
coupling still behaves as 1/r3, the sub-transfer coupling decays much faster and then
it goes as 1/r5 as explained above. On the other hand the super-transfer coupling de-
cays as 1/r2, which is much slower than the dipole coupling. Since all the couplings
start from the same intensity at very small distances and the superradiant one has to
go above the single molecule coupling, it makes sense that its decay is slower than
1/r3, but further analysis is needed to understand the origin of such slow decay of the
interaction between giant dipoles.

3.5.3 Super-Transfer and density of states

From the discussion above we can conclude that all the SRS belonging to each ring will
couple between themselves through a super-transfer coupling. For instance, in the case
of the MT model, also the other two SRS of the single rings corresponding to the first
and second excited states will couple between themselves by super-transfer, see Fig-
ure 3.4(A). While for the PD and the TD model the coupling between the SRS of the
rings gives rise to the SRS of the whole cylinder which lies far away from the ground
state, for the MT model the coupling between the SRS of the single rings determines
completely the lowest part of the spectrum. In order to prove the last sentence we con-
sider the 3N1 eigenvalues generated by the super-transfer coupling of the three SRS
for each ring of the MT model. The spectrum generated by the three SRS is shown in
Figure 3.8(A) together with the exact spectrum of the MT model. As one can see this
simple approximation allows to compute with high accuracy the lowest energy part
of the spectrum. The presence of super-transfer induces a large coupling energy in
the lowest part of the spectrum, which in turn diminishes the density of states. This
is also signaled in Figure 3.8(A) by the change of slope seen in the lower part of the
spectrum. A further evidence of such decreased density of states induced by the super-
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Figure 3.8: (A) The lowest part of the energy spectrum for a MT nanotube with 220
rings (open circles) compared with the spectrum generated by the super-transfer cou-
pling between the the three most SRSs of each ring (crosses). Note the presence of a
consistent energy gap between the ground state and the first excited state. (B) Energy
gap (distance between the ground and the first excited state) for the MT model as a
function of the nanotubular length. As one can see there is a region where the gap in-
creases with the system size. Maximal gaps occurs at L = 1826 Å. The yellow vertical
strip indicates the region where natural complexes operate.

transfer coupling of the SRS of each ring is shown in Figure 3.8(B). Here the energy gap
between the ground state and the first excited state for the MT model is shown as a
function of the length of the nanotube. Contrary to what can be expected for generic
systems, the energy gap increases with the system size instead of decreasing, up to a
critical system size, above which it decreases. The maximal energy gap occurs at a dis-
tance of ∼ 182.6 nm which is compatible with the typical length of such nanostructures
found in nature, ranging between 100 and 200 nm. Note that it would be interesting
to understand the critical system size at which the gap has a maximum. We intend to
study this problem in a future work.

The results obtained so far can be generalized to more complicated structures, such
as the WT model, as the preliminary results shown in 3.8.5 show. Indeed even for
the WT model, where the disposition of dipoles is much more complicated than in the
previous models, one can show that the superradiant state close to the ground state
emerges from the supertransfer coupling between the superradiant states of cylindrical
sub-units of the whole cylinder.

Summarizing, the analysis both for the MT and the WT models show how a precise
ordering of the dipoles in these systems can favour the emergence of super-transfer be-
tween the eigenstates of sub-units of the whole structure, producing an enhancement of
the thermal coherence length. This represents a clear example of the interplay between
structure and functionality. Moreover, let us notice that even if the other models (TD,
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PD) have a super-transfer coupling between the ring eigenstates with the largest dipole
strength, the resulting SRS lies in the middle of the spectrum and its effect on the ther-
mal coherence length is less relevant (since the latter is sensitive to the density of states
only in the lowest part of the energy spectrum). This argument strongly supports the
relationship between the presence of a SRS close to the ground state and the thermal
coherence length discussed above. As a last remark, we would like to mention that in
order to assess the ability of such structures to sustain a large macroscopic coherence
length, also the effect of other sources of noise should be considered. A preliminary
study of the effect of static energetic disorder on the thermal coherence length of the
different models considered here is shown in 3.8.6. The results of our analysis clearly
show that natural structures are able to protect macroscopic coherence up to values
of the static disorder strength much larger than the typical disorder present in natural
systems.

3.6 Natural concentric structures

Natural antenna complexes in Green Sulphur Bacteria are not made by a single cylin-
drical surface. In order to take this into account, in this section we investigate a more
complex configuration of dipoles on four concentric rolls as found in Green Sulfur bac-
teria Chlorobium Tepidum. Such structures have been extensively considered in literature
(see for example [55, 93, 107, 108]). Inspired from these studies we considered here a
model of Chlorobium Tepidum Triple mutant (bchQRU) formed by four concentric cylin-
drical surfaces, as shown in Figure 3.9(A). Our aim is to investigate whether concen-
tric cylindrical aggregates can support delocalized excitonic states at room temperature
more efficiently than single cylindrical structures.

(A) (B)

1 LAYER

1 RING

Figure 3.9: (A) Structure of an aggregate of Bchl molecules on four concentric rolls. The
radius of the innermost roll is 30 Å, while the distance between consecutive layers is
equal to 21 Å. (B) Single layer of the structure formed by four concentric rings. The
whole aggregate has been obtained by overlying 100 layers [56].
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The distribution of the dipoles on each cylindrical surface is the same as the MT
model of the previous section. In Table 3.2 we report all parameters for this model.

Number of surfaces 4
Radius of the innermost roll 30Å

Distance between concentric rolls 21 Å
Radii of the cylinders 30− 51− 72− 93 Å

Number of dipoles on each ring 30− 51− 72− 93
Density (number of dipoles over radius of the ring Å) 1 constant value

Table 3.2: Main parameters used to engineer the structure with four concentric rolls.

The coupling between the EMF and the dipoles of the aggregate has been taken into
account as in the Hamiltonian (3.7). As in the previous sections let us first analyze the
dipole strengths associated with the eigenstates of the Hamiltonian (3.7).

Results are shown in Figure 3.10(A) for a complex made of 80 layers of 4 concentric
rings. As one can see the maximal dipole strength is concentrated in an energy region
close to the ground state (the 43rd eigenstate has the maximal dipole strength, see inset
in Figure 3.10(A)).

Such dipole strength is associated with eigenstates having a high degree of delo-
calization along the cylinders. A further evidence is given in Figure 3.10(B) where we
show that the maximal dipole strength increases proportionally with the length L of the
cylinders. We also note that the maximal dipole strength for concentric cylinders is be-
tween twice and 3 times larger than the maximal dipole strength of a single cylindrical
surface with the same geometry, see Figure 3.10(B) where the same data of Figure 3.2(F)
for the MT model have been reported for comparison. Note that the fact that concentric
cylindrical surface can cooperate to create a larger SRS is not trivial since the interaction
between molecules in different cylinders is very weak, of the order of 16 cm−1 which
is one or two orders of magnitude smaller than the coupling between molecules inside
each cylinder, see Table 3.1.

Finally, we have studied the effect of thermalization by putting the system in a ther-
mal bath at room temperature T = 300 K. As before, we studied the thermal coherence
length Lρ, see equation (3.9).

Results are shown in Figure 3.11(A) and compared with the same results obtained
for the MT model. A fitting with the function

Lρ = L∞

(
1− e−N/Nc

)
, (3.20)

shown in figure as dashed lines, gives for the asymptotic coherence length (measured
in number of layers) L∞ = 532.9 for the 4 cylinders and L∞ = 249.8 for the MT model.
Keeping in mind that the radius of the cylinder for the MT model is an average of
the four radii of the structure composed of 4 concentric cylinders, it is remarkable that
the asymptotic coherence length is more than twice larger than the single cylindrical
structure. This is highly non trivial, since for the concentric cylinders we have many
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Figure 3.10: (A) Dipole strength associated with each eigenstates of the system com-
posed of 80 layers of 4 concentric rings (a total of N = 19680 dipoles) for a total length
of L = 65.57 nm, as a function of the eigenvalues. Inset : the low energy part of the
spectrum. Arrows indicate the Ground State (GS) and the state with maximal dipole
strength (the 43rd one). (B) Maximal dipole strength as a function of the rescaled length
of the aggregate L/λ0 where λ0 ≈ 650 nm. Dashed line represent the linear fits. Max-
imal length considered in this panel is L = 65.57 nm, corresponding to 80 layers of 4
concentric rings, for a total of N = 19680 dipoles.

more states and the density of states is larger than that for the single cylinder having
the same length. For a discussion on this point see 3.8.7.

The results in this Section show that packing symmetrical structures in concentric
cylinders as it is found in natural photosynthetic complexes produces, at room temper-
ature, a larger thermal coherence length than a single cylinder. In the future it would be
important to study the robustness of the thermal coherence length of such aggregate of
concentric cylinder to other sources of noise, such as static disorder, as it has been done
for the single cylinders in 3.8.6. Even if the coupling between molecules belonging to
different cylinders is quite weak, supertransfer coupling between sub-structures of the
different cylinders might help to protect the coherence length of the whole aggregate to
disorder. More analysis is needed to assess this point.

3.7 Conclusions and Perspectives

We have analyzed realistic structures of self-aggregated molecular nanotubes of chloro-
phyll molecules as found in Antenna Complexes of Green Sulfur Bacteria. By taking
into account position and dipole orientation of chlorophyll molecules which agree with
experimental data we have shown that natural structures are able to support macro-
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Figure 3.11: Thermal coherence length as a function of the number of layers in the
cylinder for the system with four concentric cylinders (green circles) and the MT model
with one cylinder only (red squares). Dashed lines are the fit with the expressions (3.20)
whose parameters are L∞ = 249.8 and Nc = 19.9 for the dashed green curve and L∞ =
523.9 and Nc = 25.2 for the dashed red curve.

scopic coherent states even at room temperature. Indeed in natural complexes we
have found delocalized thermal excitonic states with a coherence length extending over
hundreds of molecules. We show that such thermal coherence length is much larger
than that one could expect from the magnitude of the nearest-neighbour coupling and
it cannot be explained even by the long-range nature of the interaction between the
molecules. Instead, the ability of natural structures to support a large coherence length
can be traced back to their specific geometric features.

In order to explain how this is possible, we first considered cylindrical structures
made of a sequence of rings, each containing a fixed number of molecules equally
spaced on the ring itself. Since the disposition of the dipoles is highly symmetric, in
each ring we have few superradiant eigenstates (to which we associate a giant dipole)
where most of the dipole strength of the system is concentrated, and many subradiant
states with zero dipole strength. Moreover, due to the discrete rotational symmetry of
the whole cylinder around its axis, each eigenstate of the ring sub-unit is coupled only
with the correspondent eigenstate in the other rings. The coupling between the super-
radiant eigenstates in each ring gives rise to the super-transfer effect, i.e. a coupling
which is enhanced by a factor proportional to the number of molecules in the ring. At
the same time we have shown that the coupling between the subradiant states in each
ring induces a sub-transfer effect, i.e. a suppressed coupling compared to the single
molecule coupling. We have also demonstrated that in natural complexes the super-
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transfer coupling between the superradiant states in each ring generates the lower part
of the energy spectrum of the whole cylinder. Since the spectral energy width of a
system is proportional to the intensity of the coupling between its parts, the enhanced
super-transfer coupling is able to increase the spectral width close to the ground state.
This creates a depressed density of states in the lower part of the spectrum, allowing for
a larger thermal coherence length. Indeed the latter increases as the number of states
in an interval kBT above the ground state decreases. We also gave evidence that sim-
ilar mechanisms are responsible for the large thermal coherence length that we have
found in other natural structures (WT model) where the disposition of the dipoles is
less simple than the one described above.

From our results we can predict that symmetry in cylindrical molecular nanotubes is
essential to have robust structures, not only to thermal noise, as we have demonstrated
here, but also to other sources of noise such as static disorder, as our preliminary results
have shown. The structural requirement is to create a super-transfer coupling between
the superradiant eigenstates of cylindrical sub-units able to generate the lower part of
the spectrum of the whole structure.

Molecular nanotubes are fundamental structures in biological systems and they are
among the most promising structures to be used in quantum devices. The most impor-
tant message which can be extracted from our analysis is the fact that specific geometric
features, connected to symmetries, allow to control the cooperative effects in molecular
aggregates. Indeed it is due to the presence of such cooperatively enhanced coupling
(super-transfer) inside the molecular aggregates that macroscopic coherent states are al-
lowed to survive at room temperature. This is an emergent property of such structures
which cannot be reduced either to the intensity of the coupling between the molecules,
or to their interaction range.

The relevance of geometry in molecular aggregates and the emergent properties
arising from it are fundamental to understand even more complicated structures. For
instance, structures made of few concentric cylinders as they are found in Green Sul-
phur bacteria. Our preliminary study of such structures has shown that these aggre-
gates have an enhanced thermal coherence length compared to the single cylindric sur-
faces. We would like to mention that recently, excitonic states have been analysed also
in Microtubules [68], which are molecular nanotubes thought to be involved in many
cellular functions. The analysis have confirmed the role of symmetry and geometry
in such structures too. In the future it would be important to understand the gen-
eral structural requirements necessary to induce macroscopic coherent states in generic
molecular networks.

Finally, few clarifications are in order. Experimentally the presence of macroscopic
coherence in molecular nanotubes can be verified by studying the absorption spectrum
at room temperature. Also the role of Super and Sub-transfer can be detected experi-
mentally analyzing the dynamics of exciton transfer. Super and subtransfer could be
detected either controlling the initial state or by studying the long-time dynamics of the
excitation transfer. In particular this study should reveal the presence of two different
time scales (super and sub-transfer) in a similar way as the study of long-time exci-
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tation decay reveals super and sub-radiance, where sub-radiance implies a change of
slope in the decay of the survival probability. For instance a time dependent diffusion
coefficient might be an experimental signature of super and sub-transfer.

Even if we assumed thermal equilibrium in our structural analysis, it is possible
that out-of-equilibrium processes can have an important role in molecular nanotubes.
Indeed cooperative effects can induce time scales in a system which are faster or com-
parable with thermal relaxation time scales. We believe that the assumption of ther-
mal equilibrium made in this chapter is adequate to assess the structural robustness
of molecular nanotubes. Indeed thermal equilibrium represents a worst case scenario
for coherence and out-of-equilibrium processes should be characterized by even larger
excitonic coherence lengths. For instance the initial state after the absorption of light is
characterized by a very large coherence length due to the large wave-length (≈ 700 nm)
of the absorbed light with respect to the size of molecular nanotubes (≈ 200 nm ). Af-
ter absorption the coherence length will decrease due to thermal relaxation, reaching its
minimal value at thermal equilibrium. Thus processes which occurs out-of-equilibrium
will be characterized by a larger coherence length.

The analysis presented in this chapter is structural, and it has been made under the
assumption of thermal equilibrium. The emergence of a macroscopic coherence length
in molecular nanotubes even at room temperature is likely to have important conse-
quences at the functional level. Indeed a large coherence length allows for excitonic
giant dipoles to superabsorb light and to supertransfer excitations, thus enhancing the
exciton diffusion coefficient. These effects have been studied in several realistic sys-
tems and are thought to play an important functional role in natural photosynthetic
complexes. The results presented in this chapter could explain the large efficiency of
some natural photosynthetic complexes and inspire the engineering of efficient molec-
ular aggregates for energy transport and light-harvesting. In perspective we plan to
assess the functional role of macroscopic coherence in molecular aggregates both in
equilibrium and out-of-equilibrium processes.

3.8 Appendix

3.8.1 Geometry of the models

We analyzed five different cylindrical models with fixed radius (R = 60 Å) and total
number of chromophores N, as shown in Figure 3.12(A). These models differ for the
geometrical arrangement of the chromophores (dipoles) along the cylindrical surface.

In order to describe how the dipoles are placed on the cylindrical surface let us
wrap it up on a rectangular plane. In this plane the dipoles are disposed on the vertices
of a lattice. The unit cell of the lattice in all structures is created starting from two
lattice parameters a and b arranged in such a way that the angle between them is γ,
see Figure 3.12(B). Depending on the particular arrangement of the unit cell in the
lattice the dipoles can be arranged into vertical chains or placed onto equal horizontal
and coaxial rings. We assume that, in each of these structures, the shortest distance
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(A) (B)

Figure 3.12: (A) Schematic cylindrical structure of each model. The cylindrical axis
corresponds to the~z axis and the radius is R = 60 Å. (B) Fundamental unit cell of the
analyzed aggregates. One may obtain each of the models varying the three parameters
a, b and γ. In our models we consider only the cases in which a and~z are orthogonal or
parallel.

between two chromophores located on the same ring is r1 = 6.28 Å. In our scheme
all chromophores can be treated as dipoles with a constant squared dipole moment
|µ|2 = 30 D2 [100]. This corresponds to a dipole length Ld = 1.14 Å 3. The ratio
Ld/r1 ' 0.18 is relatively small so that the dipole approximation can be successfully
applied for the nearest-neighbor coupling.

In the following subsections we will analyze in details the geometrical structures
associated with each model.

MT model

The MT model proposed here coincides with the Chlorobium Tepidum bchQRU triple
mutant investigated in other studies ([92, 93, 95]).
In the MT cylindrical structure, the total number N of chromophores is organized into
N1 equal, horizontal and coaxial rings, see Figure 3.1(A). Each ring contains N2 = 60
chromophores and two consecutive rings are separated by a vertical distance h = 8.3 Å.
In the unit cell, shown in Figure 3.13(A), h is parallel while a is perpendicular to the

3In terms of ESU-CGS and Gaussian units one may observe that 1 D = 10−6 cm g1/2 s−1 Å3/2 and the
elementary charge is |e−| = 4.80320425 · 10−10 cm3/2 g1/2 s−1. From the relation Ld = µ/e− we obtain
Ld = 1.14 Å.
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(B)(A)

Figure 3.13: (A) Unit cell for the MT model. Here h = 8.3 Å is the vertical distance
between two consecutive rings. The cylindrical axis~z is represented by the green arrow
on the left and is perpendicular to the a side. Note that the alternation between the
colours of two consecutive dipoles along the a and the b sides is due to the alternation
α = ±4◦.(B) View from above of the single ring of the MT type. ~µxy is the projection of
the dipole ~µ onto the xy plane.

cylindrical axis~z. Any chromophore along the surface will be labelled as the nth
2 dipole

on the nth
1 ring (where n1 = 1, ..., N1 and n2 = 1, ..., N2). Since we keep the radius R

fixed, the density of chromophores along each ring is also fixed: ρs = (2πÅ)−1. The
position of each dipole onto the cylindrical surface is characterized by two cylindrical
coordinates. Nevertheless it is useful to introduce three angles (the latter being depen-
dent on the first and second):

• ϕ = 360◦/N2 = 6◦ is the azimuthal angle between two adjacent dipoles in the
same ring,

• ξ = h tan ε/R ' 4.956◦ is the shift angle between two successive dipoles located
onto neighbour rings,

• θ = n1ξ + n2ϕ is the angle between the position~r of the dipole and the x axis.

In this way we have :

rx = R cos θ

ry = R sin θ (3.21)
rz = hn1

The components of the dipole moment ~µ can be expressed through two angles:
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Figure 3.14: Unit cell for the WT model. Here kn1 refers to the vertical shift of two
dipoles belonging to two nearest-neighbour chains, while d is the distance between
two chains. Two consecutive dipoles on the same chain are separated just by a quantity
equal to a/2. One can notice that this unit cell is the rotation by 90◦ around ~z of the
previous unit cell for the MT model (Figure 3.13), but with different parameters. The
alternation of two colours of two consecutive dipoles along the a and the b direction
represents the typical alternation α = ±4◦.

• α = 4◦, between the projection of the dipole moment onto the plane of the ring
and the plane tangent to the cylindrical surface, see Figure 3.13(B).

• β = 55◦, is the angle created by the single dipole moment with the cylindrical
axis.

Assuming the nth
2 dipole with an angle α = +4◦, the (n2 + 1)th dipole will have α = −4◦,

the (n2 + 2)th dipole α = +4◦ and so on. This alternation is valid along the a direction
and makes consecutive dipoles to point inward (α = +4◦) and outward (α = −4◦)
respectively. Generally, we have that the generic dipole moment ~µ has the following
normalized components expressed in terms of spherical coordinates:

µx = − sin β sin(θ + (−1)n2 · α)
µy = sin β cos(θ + (−1)n2 · α) (3.22)
µz = cos β

WT model

The WT model [92, 93, 95] shows a deep structural difference compared to the other
structures. Indeed it can be thought as organized into N1 vertical chains and each of
them with N2 molecules. So one can talk about the nth

2 chromophore on the nth
1 chain



3.8. APPENDIX 81

with n1 = 1, ..., N1 and n2 = 1, ..., N2. Dipoles moments on adjacent chains do not
have the same height but they are shifted by a quantity kn1 = n1b sin ε to originate a
helical structure, as shown in Figure 3.1(B). The lattice has the following parameters:
a = 12.5 Å, b = 7.4 Å, γ = 122◦ and ε = 32◦. The unit cell of the WT type is similar to
that of the MT, but it is rotated by an angle 90◦ around the ~z direction, so the vertical
distance between two dipoles on the same chain measures h = a/2 = 6.25 Å. Moreover
ϕ = 360◦/N1 = 6◦ will be intended as the azimuthal angle between adjacent chains,
and θ = n2 ϕ as the angle between the position vector~r and the x axis. The position of
the generic dipole on the surface can be expressed in cylindrical coordinates as follows:

rx = R cos θ

ry = R sin θ (3.23)
rz = hn2 + kn1

The components of each dipole moment are given by equation (3.22) with α = 4◦,
β = 35◦. Also in the WT model there is the alternation α = +4◦ and α = −4◦ between
consecutive dipoles.

Figure 3.15: Unit cell for the PD, TD and RD models. Here the parameter b coincides
with the vertical distance h between two consecutive rings. The cylindrical structure is
obtained wrapping this rectangular unit cell around the direction of~z, which is perpen-
dicular to the a side.

PD, TD and RD models

These models, shown in Figure 3.1(C, D, E), do not exist in nature and they have been
introduced only for comparison with the natural systems. They exhibit a different lat-
tice compared to the natural complexes, since the unit cell is a rectangle. As shown in
Figure 3.15 we have γ = 90◦, a = 12.5Å and b = h = 8.3 Å. The cylindrical axis ~z is



82 CHAPTER 3. SUPERRADIANCE AND NOISE IN MOLECULAR NANOTUBES

perpendicular to the a side and one could build each of the three structures wrapping
up the lattice around it. The three cylinders have again the same radius R = 60 Å and
the same number of molecules N. Also, they are arranged into N1 equal, horizontal and
coaxial rings such that each of them carries N2 dipoles. Once again a particular dipole
moment will be indicated as the nth

2 chromophore on the nth
1 ring (n1 = 1, ..., N1 and

n2 = 1, ..., N2). The three models differ for the values of α, β in the following way:

• in the PD structure, β = 0◦ and α = 0◦,

• in the TD structure, β = 90◦ and α = 0◦,

• in the RD structure, the angles are uniformly distributed such that α ∈ [0, 2π] and
β ∈ [0, π].

3.8.2 Comparison between dipole strengths and radiative decay widths

In Figure 3.16 the comparison between the dipole strengths |Dn|2 (obtained using the
Hamiltonian Hr (3.7)) and the rescaled radiative widths Γn/γ (obtained diagonalizing
the Non-Hermitian Hamiltonian H (3.1)) is shown for all the eigenstates of the MT, WT,
TD and PD models for N = 6000 dipoles. As one can see the two quantities can be
considered to be the same (compare symbols with the dashed lines, which represent
the behaviour |Dn|2 = Γn/γ).

3.8.3 Comparison between radiative and dipole approximations

In order to understand the validity of the dipole approximation in the range of sizes of
the natural systems considered, we have compared the dipole Hamiltonian, see equa-
tion (3.8), with the radiative Hamiltonian, see equation (3.7), which we used in this
chapter. For instance comparing the dipole strength and the energy of the superradiant
state we have found that the dipole approximation is good for both quantities, with a
relative error which increases with the system size, but it remains small up to the value
of L/λ0 ≈ 0.3 where the relative error of the dipole strength is 0.1% and the relative
error of the energies is 0.02%. Nevertheless in other quantities, such as the energy gap
between the ground state and the first excited state, the error can be as large as 20%, see
Figure 3.17. Thus, we can say that while the dipole approximation seems to be well jus-
tified for the typical sizes of natural nanotubes, nevertheless non-negligible deviations
can be found in some relevant quantities. For this reason here we used the radiative
Hamiltonian which is more accurate. Moreover, one should not forget that the errors
increase with the system size.

3.8.4 Participation ratio of the eigenstates

As a measure of delocalization of the eigenstates of the different nanotubular structures,
we analyze the participation ratio (PR) of the eigenstates. Let us take into account the
expression in equation (3.5) of the nth energy eigenstate on the site basis: the coefficient
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Figure 3.16: (A) - (D) Squared dipole strength |Dn|2 obtained using the real Hamiltonian
Hr (3.7) as a function of the radiative decay Γn/γ obtained diagonalizing the Non-
Hermitian Hamiltonian H (3.1), for a total number of dipoles N = 6000. The trend is
manifestly linear in each model as it can be noticed from the superposition with the line
|Dn|2 = Γn/γ. This matter of fact confirms that the imaginary part of the Hamiltonian
given in equation (3.1) is perturbative indeed. Using the real Hamiltonian equation (3.7)
would not result in any significant difference.

Cni indicates its component on the ith site. The PR of the nth eigenstate is defined as
follows:

PRn =
1

∑N
i=1 |Cni|4

. (3.24)

Generally speaking, PRn ∼ o(N) stands for a suitable degree of delocalization of the
nth eigenstate, while we have PR = 1 for a state fully localized on a single site. Fig-
ure 3.18 shows how the PR of each eigenstate depends on the eigenstate index in the
six cylindrical models examined so far. All models but the RD (E) exhibit a participation
ratio of the same order, such that PRn ∼ o(N). One may observe indeed a difference of
about one order of magnitude between the RD aggregate and the other structures. The
presence of low degree of delocalization in the RD model is expected since the random
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Figure 3.17: Energy gap between the ground state and the first excited state, computed
for the radiative Hamiltonian (black squares), see equation (3.7), and the dipole Hamil-
tonian (red triangles), see equation (3.8).

coupling matrix elements between molecules can induce Anderson localization [109].
Note that the expression of Lρ in equation (3.9) is not equivalent to the PR even for

the case of a density matrix describing a pure state. Nevertheless both Lρ and the PR
are a measure of delocalization.

3.8.5 Super-Transfer in the WT model

The WT model is more complicated than the other models since the dipoles are not
arranged into rings, but rather into helical structures. Nevertheless a very highly sym-
metrical disposition of the dipoles is also present in this case and one can think that
the super-transfer coupling between the eigenstates of sub-units of the whole cylinder
might influence the lowest part of the spectrum even for this model. To show that we
have split the whole cylinder along the axis direction (the z direction) into smaller cylin-
drical structures. Each smaller cylinder contains a variable number of dipoles NU . The
projection of the SRS of a cylinder of 9600 dipoles on the eigenstates of these sub-units
is shown in Figure 3.19 for different values NU = 240, 480, 960. For a WT cylinder of
9600 dipoles the SRS lies in the lower part of the spectrum and it corresponds to the sec-
ond excited state with a dipole strength directed along the z-axis. As one can see from
Figure 3.19 the SRS of the whole cylinder has components mainly on one eigenstate
for each sub-unit. We checked that such eigenstate corresponds to a superradiant state
SRS of each sub-unit with a dipole strength directed along the z-axis. Since the SRSs of
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Figure 3.18: (A) - (F) PR of the eigenstates as a function of the eigenstate index. Most
structures, both natural and artificial, show a PR of the same order of magnitude of the
total number of dipoles N. An exception to this trend is represented by the RD model
(panel (E)), in which the PR is smaller of about one order of magnitude. Note that in
this case we speak of 〈PR〉, since the PR has been calculated for 10 random realizations.
In all cases we considered N = 6000 dipoles.

each sub-unit have a giant dipole strength they couple by super-transfer. This shows
that also for the WT model the super-transfer coupling inside the cylindrical structure
might be responsible for the low density of states close to the ground state energy, see
Figure 3.3(B). Nevertheless further analysis is needed to confirm this conjecture for the
WT model. Let us note that the fact that the decomposition in sub-units of different
sizes show a similar pattern, is a signature of the self similar behaviour present in such
structures, which has been observed also in other molecular nanotubes [68]. Clearly if
one chooses too small subunits the self-similar behaviour disappears. For instance in
our case if we take a block of 60 molecules the superradiant state of the whole structure
is not concentrated mostly on one eigenstate of the block.

3.8.6 Robustness to Static Disorder

In order to study the robustness of the thermal coherence length as defined in Eqs. (3.9),
(3.11) to other sources of noise, here we consider the effect of static disorder, i.e.
time-independent and space-dependent fluctuations of the excitation energies of the
molecules comprising the molecular nanotube. Specifically, we consider that the exci-
tation energies are uniformly distributed around the initial value e0, between e0 −W/2
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Figure 3.19: Projections of the most SRS of the whole cylinder |ESR〉 for the WT model
composed of 9600 dipoles over the eigenstates |ϕn〉 of smaller cylinders composing the
whole one. The smaller cylinder has been obtained by dividing the whole cylinder in
smaller sub-units along its main axis length. The length of the sub-units has been varied
as follows: NU = 240 (A), NU = 480 (B) and NU = 960 (C). In the case considered in
this figure the SRS corresponds to the second excited state |E3〉. Panels (D,E,F) are
enlargements of (A,B,C) respectively. The vertical dashed lines indicates where each
sub-unit ends.

and e0 + W/2, so that W represents the strength of the static disorder. It is well known
that static disorder induces localization of the system eigenstates, a phenomenon
known as Anderson localization [109]. Due to this effect, for large disorder, the prob-
ability to find the excitation is concentrated on very few sites, eventually on one site
only, for extremely large disorder. Anderson localization usually occurs in presence of
short-range interactions, which is not our case, since interaction results from a compli-
cated power law, see Eq. (3.1). Therefore the results of our analysis are in principle
not obvious. In Fig. (3.20) the thermal coherence length for T = 300K is shown as a
function of the static disorder strength, normalized to kBT with T = 300 K. As one
can see the natural models (MT and WT) retain their larger thermal coherence length
even in presence of static disorder up to W ≈ 10kBT. This energy scale is much larger
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than the static disorder expected in natural systems which is of the order of kBT. Thus,
our preliminary results, even if cylinders with only 6000 dipoles have been considered,
show that such structures are able to sustain a large thermal coherence length even in
presence of static disorder.
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Figure 3.20: Thermal coherence length vs the normalized strength of static disorder
W/kBT, with T = 300K for different models as indicated in the legend. In all models
we considered N = 6000 dipoles. Average over 20 realizations of disorder have been
done for each disordered strength.

3.8.7 Concentric cylinders

Let us emphasize that the fact that the coherence length for the four concentric cylin-
ders is larger than the single cylinder is highly non trivial. Indeed, in the case of four
concentric cylinders we have many more states and the density of states is larger than
that of a single cylinder having the same length. In order to explain better this point,
let us compute the density of states δ(kBT) in a unit of thermal energy kBT for different
numbers of dipoles N, see equation (3.12). This is shown in Figure 3.21 for both the
concentric cylinders model and the MT, see Figure 3.21(A). As one can see the density
of states is exactly the same for the two models as a function of the number of dipoles
N. Nevertheless for the same fixed length, the density of states for the four concentric
cylinders is larger than the density of the single cylinder. Despite all that, a large ther-
mal delocalization length for the concentric cylinder case can be explained by the fact
that the eigenstates for the 4 concentric cylinders are delocalized over a larger number
of molecules as it is shown in Figure 3.21(B).
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Figure 3.21: (A) Density of states (number of states per unit of thermal energy kBT at
room temperature T = 300K, as a function of the total number of dipoles for the MT
model (red squares) and for the four concentric cylinders (green circles). Dashed line
stands for δ(kBT) ∝ N. (B) Participation ratio as a function of the shifted eigenenergy
(red points). Blue curve represents the average. Yellow region indicates the width of
the thermal region kBT. Here we have 100 layers, corresponding to N = 24600 dipoles.



Chapter 4

Applications of superradiance in
photosynthetic molecular aggregates
to sunlight-pumped lasers

In this chapter we propose an application of the cooperative effects present in natural molecu-
lar aggregates. Specifically, we address the technical issues that limit sunlight-pumped lasers,
by proposing a laser medium inspired by well-studied natural photosynthetic Purple Bacte-
ria. Results from this chapter are available as a preprint at: Francesco Mattiotti, William M.
Brown, Nicola Piovella, Stefano Olivares, Erik M. Gauger, and G. Luca Celardo, “Bio-inspired
sunlight-pumped lasers”, arXiv:2007.04314 (2020). I contributed by co-ideating the project,
deriving the laser equations for a large aggregate starting from the full Bloch-Redfield Master
Equation, solving the rate equations at the steady state and discussing the results.

Even though sunlight is by far the most abundant renewable energy source avail-
able to humanity, its dilute and variable nature has kept efficient ways to collect,
store, and distribute this energy tantalisingly out of reach. Turning the incoherent
energy supply provided by the Sun into a coherent laser beam would overcome sev-
eral of the practical limitations inherent in using sunlight as a source of clean en-
ergy: laser beams travel nearly losslessly over large distances, and they are effective
at driving chemical reactions which convert sunlight into chemical energy. Here we
propose a bio-inspired blueprint for a novel type of laser with the aim of upgrad-
ing unconcentrated natural sunlight into a coherent laser beam. Our proposed de-
sign constitutes an improvement of several orders of magnitude over existing com-
parable technologies: state-of-the-art solar pumped lasers operate above 1000 suns
(corresponding to 1000 times the natural sunlight power). In order to achieve las-
ing with the extremely dilute power provided by natural sunlight, we here propose
a laser medium comprised of molecular aggregates inspired by the architecture of
natural photosynthetic complexes. Such complexes, by exploiting a highly symmet-
ric arrangement of molecules organized in a hierarchy of energy scales, exhibit a
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very large internal efficiency in harvesting photons from a power source as dilute as
natural sunlight. Specifically, we consider substituting the reaction center of pho-
tosynthetic complexes in purple bacteria (Rhodobacter Sphaeroides) with a suitably
engineered molecular dimer composed of two strongly coupled chromophores. We
show that if pumped by the surrounding photosynthetic complex, which efficiently
collects and concentrates solar energy, the core dimer structure can reach popula-
tion inversion, and reach the lasing threshold under natural sunlight. The design
principles proposed here will also pave the way for developing other bio-inspired
quantum devices.

4.1 Introduction

One of the most remarkable aspects of many natural molecular aggregates is their abil-
ity to efficiently process extremely weak sources of energy or signals for biological pur-
poses. Examples of this include the ability of avian magneto-receptors to sense the
extremely weak geomagnetic field [110–113], or the ability of aquatic bacterial photo-
synthetic systems to harvest sunlight in deep murky waters, where incident light levels
are much reduced beyond the already dilute level on land [3, 5]. For instance, pur-
ple bacteria have the ability to exploit extremely weak light sources [3, 5] (less than 10
photons per molecule per second) and some species of green sulfur bacteria even per-
form photosynthesis with geothermal radiation from deep-sea hydrothermal vents at
about 400◦C [114]. This incredible ability of bacterial photosynthetic systems to utilise
weak sources of incoherent light stems from highly symmetric molecular aggregates
organized in hierarchical structures which have evolved to harvest light and funnel the
collected energy to specific molecular aggregates [34, 35]. In this chapter, inspired by
the design of the photosynthetic apparatus of purple bacteria [3, 5], we show that bio-
mimetic molecular aggregates hold the promise of significantly lowering the threshold
requirements for sunlight-pumped lasers.

Sunlight is by far the most abundant renewable energy source on Earth (a single
hour of sunlight provides all the energy humanity uses in a whole year). Despite this,
there remain significant limitations in utilising sunlight as it is both dilute and vari-
able. Therefore, efficient storage and distribution of energy harvested from sunlight is
paramount. In this respect, sunlight-pumped lasing is an extremely promising tech-
nology for energy harvesting, distribution and storage of solar energy [8]. Sunlight-
pumped lasers transform natural incoherent sunlight into intense beams of coherent
light, which can be used to efficiently distribute the collected energy and drive chemi-
cal reactions as a way to efficiently store solar energy. Indeed, sunlight-pumped lasers
have been proposed as essential elements in several renewable energy technologies
such as the magnesium cycle [9–11].

Since the power density in natural sunlight is very dilute, typically concentrated
sunlight is needed to cross the lasing threshold. Experimentally, a concentration of
105 ‘suns’ (1 sun = 0.14 W/cm2) is reachable, but clearly the smaller the ‘number
of suns’ required for reaching the lasing threshold the better, since this lowers cost,
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technical demand, and increases efficiency. The first sunlight-pumped laser was real-
ized in 1963 [8] and current state-of-the-art sunlight-pumped lasers operate above 1000
suns [115], however, proposals for sunlight-pumped lasers operational at few hundreds
suns have been developed [115]. Typically, the concentration of sunlight relies on imag-
ing or non-imaging concentrators. One of the most efficient way to concentrate sunlight
is through black-body cavity pumping, where concentrated sunlight collected by a mir-
ror heats a black-body cavity to temperatures which range from 1000 K to 3000 K [8].

Inspired by natural photosynthetic complexes, we propose a bio-mimetic molecular
architecture to achieve efficient sunlight-pumped lasers capable of operating at pump-
ing intensities as low as 1 sun. Photosynthetic antenna complexes [2–5, 44, 52, 53, 85,
86, 116] are comprised of a network of chlorophyll molecules which are typically mod-
elled as two-level systems (2LS) capable of absorbing radiation and transporting the
resulting electronic excitation to the reaction center where charge separation occurs,
a process which precedes and drives all other photosynthetic steps. Each 2LS has an
associated transition dipole moment (TDM) which determines its coupling with both
the electromagnetic field and also with other proximal chlorophyll molecules. Owing to
the low solar photon density, photosynthetic aggregates operate in the single-excitation
regime, meaning at most one excitation is present in the system at any one time. The de-
sign principles which allow natural photosynthetic complexes to be so efficient rely on
several levels of organization. On the lower level, single molecular aggregates feature a
high degree of symmetry which favours the formation of bright (superradiant) or dark
(subradiant) states with, respectively, large or small dipole strength [3, 5, 116, 117]. On
a higher level, photosynthetic systems assemble many of these symmetric aggregates
into hierarchical structures to maximize light-harvesting and energy transport. For in-
stance, in purple bacteria, symmetric rings of chlorophyll molecules (LHI and LHII)
surround the reaction center. These rings are J-aggregates with superradiant bright
states which favor the absorption of light and the transfer of the excitation between
each other [3, 5].

Many molecular aggregates, both naturally occurring as well as artificially synthe-
sized, display bright and dark states in their single-excitation manifold [118–121]: J-
aggregates are characterized by a bright state below the energy of the monomer ab-
sorption peak, while H-aggregates are characterized by a bright state above the energy
of the monomer absorption peak. Cooperative properties, such as those seen in pho-
tosynthetic aggregates, have inspired many proposals for engineering artificial light-
harvesting devices [1, 122–128]. The lasing properties of molecular aggregates, such as
organic crystals (3D molecular aggregates) which display strong cooperative effects in
the form of H- or J-aggregates, have been widely investigated [129–131].

Our proposed bio-inspired molecular architecture has at its core a suitably engi-
neered molecular H-dimer. In an H-dimer the interaction between the excited states
of each molecules create a bright state at high energy and a dark state at low energy.
Under illumination, energy is absorbed mainly by the bright high-energy state and
quickly transferred by thermal relaxation to the lower-energy state, which, being dark,
loses energy by re-emission very slowly. Thus, an H-dimer is an ideal candidate to
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achieve population inversion (which is a main requirement for lasing) and its lower
dark excitonic state can be exploited for the lasing transition. Nevertheless, natural
sunlight is so weak that the required level of darkness of the lower excitonic state to
achieve lasing would be unrealistically high. Indeed, the very long required excitonic
lifetime of the lowest-excited state in the single-excitation manifold might be difficult
to achieve in practice, due to disorder and competing non-radiative decay processes. In
order to increase the pumping on the bright dimer state, so that the requirement on the
darkness of the lower excitonic state can be relaxed, we consider substituting the reac-
tion center of photosynthetic complexes in purple bacteria ”Rhodobacter Sphaeroides”
with a suitably engineered H-dimer [playing a role similar to the special pair in the
reaction center [3, 5]]. Indeed, natural antenna systems are extremely efficient precisely
at collecting and funneling natural sunlight energy to specific locations. We show that
a randomly positioned ensemble of such molecular aggregates inside a double-mirror
cavity can lase under weak black-body radiation pumping (delivered by a surround-
ing black-body cavity that is heated by concentrated sunlight), and even under natural
sunlight illumination.

We proceed by first deriving lasing equations for a generic molecular aggregate. We
then consider lasing from an ensemble of isolated H-dimers. We show that placing the
H-dimer at the center of a purple bacteria LHI ring lowers the lasing threshold and
allows for less restrictive requirements on the darkness of the subradiant state of the
H-dimer, with further advantages when adding additional LHII rings as occurs in the
natural template. While we mainly focus on an aggregate inspired by photosynthetic
apparatus of purple bacteria, we also consider a molecular architecture inspired by the
photosynthetic complex of green sulfur bacteria [93] in the Appendix.

4.2 Lasing equations for molecular aggregates

We begin with the derivation of lasing equations for a generic ensemble of molecular
aggregates, each made of N identical molecules, that are placed in an optical lasing
cavity with suitably chosen frequency. The Hamiltonian of the molecular aggregate is
written with the usual Pauli operators as

ĤS =
N

∑
j=1

h̄ωA

2
σ̂z

j + ∑
i,j

Ωi,j

(
σ̂+

i σ̂−j + σ̂+
j σ̂−i

)
, (4.1)

where Ωi,j = (~µi · ~µj)/r3
ij − 3(~µi ·~rij)(~µj ·~rij)/r5

ij is the dipolar inter-molecular cou-
pling [68, 116, 117] with ~µj being the TDM of the j-th molecule in the aggregate and
~rij the vector between the i-th and the j-th molecule1. Equation (4.1) represents a molec-
ular aggregate where each molecule is approximated as a 2LS with splitting ωA. Under
the relatively weak pumping conditions considered here, rather than retaining the full

1Closely spaced molecules require a modification of the dipole interaction term which is then not solely
determined by the TDM [2, 4].
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Hilbert space of dimension 2N it suffices to limit our analysis to the overall aggregate
ground state |G〉 and the single-excitation manifold comprised of N states |j〉where the
j-th molecule is excited while all the other ones are in their respective ground states.

We capture thermal relaxation by coupling each molecule to an independent bath
of harmonic oscillators, and for simplicity we here neglect vibronic effects [121]. The
interaction of the molecular aggregate with black-body radiation and phonons is then
governed by the master equation

dρ̂(t)
dt

= − i
h̄
[
ĤS, ρ̂(t)

]
+DBB[ρ̂(t)] +DT[ρ̂(t)] , (4.2)

where DBB and DT are the Bloch-Redfield dissipators for the coupling to the black-
body cavity and phonon environments, respectively (see Appendix). In our simulations
phonon bath parameters have been chosen in order to effect thermal relaxation within
few picoseconds, typical of molecular aggregates [3, 5].

Equation (4.2) can be largely simplified under well-motivated assumptions: first,
as we check and validate numerically in the Appendix, we may safely secularise and
reduce our master equation to Lindblad form [49]. Moreover, since thermal relaxation
is typically the fastest time scale for molecular aggregates at room temperature (RT),
we can assume that the populations in the single-excitation manifold are always at
thermal equilibrium. Let us define the total probability for the aggregate to be excited
as Pe = ∑k Pk, where Pk is the probability of the |k〉 single excitation eigenstate to be
excited. Neglecting higher excitation manifolds, we write PG + Pe = 1, where PG is the
probability to be in the ground state. Then, assuming thermal equilibrium, we have

Pk = Pe pk with pk =
e−Ek/kBT

∑n e−En/kBT , (4.3)

where Ek is the energy of the k-th excitonic eigenstate, and we assume henceforth T =
300 K.

The coupling with the black-body photon bath is well-approximated by rate equa-
tions for the populations (see Appendix and Ref. [132] ), with absorption rates between
the |G〉 and the single-excitation states |k〉 given by

Rk = nk
Tγk , with γk =

µ2
kω3

k
3πε0h̄c3

and nk
T =

1
eEk/kBTBB − 1

, (4.4)

where γk is the spontaneous decay rate of the k-th state, ωk and µk its transition fre-
quency and TDM, respectively, and nk

T the photon occupancy at the black-body tem-
perature TBB.

As our laser gain medium, we consider an ensemble of molecular aggregates ran-
domly distributed with density nA inside a lasing cavity of frequency ωc and containing
a classical oscillating field ~E = E0ε̂ cos(ωct). The aggregate’s single-excitation states |k〉
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couple coherently to the cavity mode with Rabi frequencies Ωk = (~µk · ε̂)E0/h̄ that
depend on the cavity polarization ε̂ and field amplitude E0. In molecular aggregates
under weak pumping, the Rabi frequency is typically smaller than the interband ex-
citonic dephasing rate, Γφ � Ωk. Therefore, instead of coherent Rabi oscillations we
obtain incoherent transition rates proportional to Ω2

k , as derived in the Appendix and
Ref. [81]. The field intensity I = ε0|E0|2c/2 can also be written as I = h̄ωcnc/V, where
n is the number of photons in the cavity, V the cavity volume, and c the speed of light.
This allows us to express the cavity-induced transition rate between |G〉 and |k〉 state
in terms of the number of cavity photons n as

nBk = n
1
3
|µk|2ωc

Vh̄ε0

Γφ

Γ2
φ + (∆k/h̄)2

=
Ω2

k
2

Γφ

Γ2
φ + (∆k/h̄)2

, (4.5)

where ∆k = (Ek − h̄ωc) is the energy detuning between the single-excitation state k and
the cavity mode. The factor 1/3 derives from averaging over the random aggregate
orientations.

Under the above assumption we can write lasing rate equations that couple the pop-
ulations of the molecular aggregates with the number of photons in the cavity. For this
purpose, let us define the density of aggregates in the excited states as Ne = nAPe, the
density of aggregates in the ground state as NG = nAPG, and the population difference
per unit volume as D = Ne − NG. This gives the lasing equations

dD
dt

=− D[Rd + Ru + (Btot + 〈B〉)n]+
+ nA[Ru − Rd + n(Btot − 〈B〉)] (4.6a)

dn
dt

= V(Btot + 〈B〉)
nD
2
−V(Btot − 〈B〉)

nnA

2
− κn , (4.6b)

where Ru = ∑k Rk is the total absorption rate and Rd = ∑k(Rk + γk)pk is the spon-
taneous and stimulated emission rate from the single-excitation manifold. Further,
Btot = ∑k Bk and 〈B〉 = ∑k Bk pk are, respectively, the total upwards and downwards
transition rates between |G〉 and the single-excitation manifold which is induced by
the coupling to the cavity mode.

From Eq. (4.6) we obtain the stationary values of the population difference per unit
volume D0 and the stationary number of photons n0 in the cavity

D0 =
2κ

V(Btot + 〈B〉)
+ nAB̄ , (4.7a)

n0 =
V(nADeq − D0)

2κ
(Ru + Rd) , (4.7b)

where B̄ = (Btot − 〈B〉) / (Btot + 〈B〉) and Deq = (Ru − Rd)/(Ru + Rd) is the equilib-
rium population difference in absence of driving from the cavity. Above the lasing
threshold, i.e. having n0 > 0 stationary photons in the cavity, the laser intensity and
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output power will be, respectively,

I =
h̄ωcc

V
n0 , (4.8a)

Pout =
κV
c

I = κh̄ωcn0 . (4.8b)

We turn to the question under which conditions we achieve lasing. Imposing n0 > 0 in
Eq. (4.7) we require nADeq − D0 > 0, which can be written as

nA(Deq − B̄) >
2κ

V(Btot + 〈B〉)
. (4.9)

Using the definitions of Ru and Rd and for nk
T � 1,

Deq ≈ ∑k χknk
T − 〈χ〉

∑k χknk
T + 〈χ〉 , (4.10)

where χk = γk/γ0 indicates the relative brightness of the state |k〉 and 〈χ〉 = ∑ χk pk is
the thermal average of the relative decay rates of all the single-excitation states. More-
over, γ0 = (µ2ω3

A)/(3πε0h̄c3) is the spontaneous decay rate of a single molecule. We
reiterate that Eq. (4.10) is generically valid subject to fast thermal relaxation and with
negligible occupation of states containing more than one excitation. Both assumptions
are realistic for molecular aggregates under black-body radiation pumping.

Equation (4.9) determines the critical density of molecular aggregates to achieve
lasing, implying

Deq > B̄ . (4.11)

Since B̄ ≥ 0 by definition, unsurprisingly we require population inversion, Deq > 0,
to achieve lasing. Considering Eq. (4.11) with Eq. (4.10) and recalling that Ru =

γ0 ∑k χknk
T, implies 〈χ〉 ≤ Ru

γ0

1−B̄
1+B̄ , which can be recast as:

〈χ〉 ≤ Ru

γ0

〈B〉
Btot

. (4.12)

Equation (4.12) clearly shows that given a non-zero (but realistically small) value for
〈χ〉, two conditions need to be met for lasing: (i) the ratio 〈B〉/Btot should be as large
as possible, given 〈B〉 ≤ Btot this is maximized for 〈B〉 ≈ Btot. This condition can be
realised by a lasing state that is well-gapped (w.r.t. kBT at RT) below all other states
in its excitation manifold; (ii) the absorption rate Ru should be as large as possible.
Lasing under very weak pumping requires a highly dark aggregate (i.e. small 〈χ〉),
even if 〈B〉 ≈ Btot. This is not easy to achieve, and the situation is compounded by
non-radiative losses typically present in molecular aggregates. As we shall show in
the following, a bio-inspired molecular architecture can help to mitigate this stringent
demand and make lasing achievable.

Throughout this chapter, when considering black-body optical pumping, we choose
a temperature TBB = 3000 K which is attainable using sunlight concentrated by a mirror
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of a few m2 [8] with an input power into the black-body cavity of few kW. To compute
the laser output power we assume a typical gain medium volume of V = 11.3 cm3

(radius of 6 mm and length of 10 cm). The densities of the laser medium are chosen to
be lower than 1 aggregate/(10 nm)3, corresponding to realistic densities for dye lasers:
n(max)

A = 1018 cm−3 = 1.6 mmol/L [133]. This choice ensures that direct interactions
between the molecular aggregates can be neglected. Moreover, it also keeps the out-
put power below 1 kW, so that thermal balancing with the black-body cavity under
realistic sunlight pumping can be maintained. To remove the need for and complexity
of sunlight concentration we shall also consider the possibility to achieve lasing under
direct natural sunlight illumination. To model natural sunlight we consider pumping
under a black-body at TBB ≈ 5800 K but with rates in Eq. (4.4) reduced by a factor fS
representing the solid angle of the Sun as seen on Earth [134],

fS =
πr2

S

4πR2
ES

= 5.4× 10−6 , (4.13)

with rS being the radius of the Sun and RES the Sun-to-Earth distance. In this case we
limit the output power to 1 W since the incident power on our chosen lasing cavity is
just a few W.

4.3 Lasing with dimers

Let us consider a dimer comprising two identical chromophores. Each molecule (la-
beled j = 1, 2) has one relevant optical transition, so that we may model it as a 2LS
with ground state |gj〉 and excited state |ej〉. Excitation energy h̄ωA and magnitude µ of
the electric TDM are identical between the molecules, while the direction of the optical
dipole ~µj depends on the orientation of its chromophores and may differ.

For this dimer system the Hamiltonian in Eq. (4.1) is diagonalized by a set of four
states (see Fig. 4.1a): |G〉 = |g1〉|g2〉, where both molecules are in their respective
ground state; |L〉 and |H〉 are the lowest and highest single-excitation states, where only
one excitation is present in the system, delocalised over both molecules; these states
span the single-excitation manifold and they correspond to the symmetric and anti-
symmetric states (|g1〉|e2〉 ± |e1〉|g2〉) /

√
2. Finally, |F〉 = |e1〉|e2〉 has both molecules in

their respective excited state. The corresponding energies are shown in Fig. 4.1a.
Optical transitions between the levels are determined by the relative orientation of

the single molecules. We indicate the transition dipoles between the ground state |G〉
and the states |L〉 and |H〉 with ~µL and ~µH, respectively, see Fig. 4.1a. The conservation
of total oscillator strength demands that µ2

L + µ2
H = µ2

1 + µ2
2 = 2µ2 and we have an H-

dimer if µL < µ while if µL > µ we have a J-dimer. The coupling Ω between molecules
can either have a dipolar or a different origin, see Appendix. Typical H-dimers feature
splittings between their bright and dark states of several kBT, and the lower state may
be many hundreds times less bright than the upper state [118–121]. Here, we consider
a dimer with excitation energy in the near-infrared h̄ωA = 1.17 eV (λ ≈ 1060 nm),
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Figure 4.1: (a) Eigenstates of the dimer Hamiltonian ĤS [Eq. (4.1)] and transition rates
between them. Optical rates (green arrows) are proportional to the squared dipole
strengths [see Eq. (4.4)], while the thermal relaxation rate (blue arrow) is τ−1

relax ≈ 1 ps−1.
All these transitions obey detailed balance, i.e. upwards and downwards rates are pro-
portional to the Bose-Einstein occupation number nT(h̄ω) and [1 + nT(h̄ω)], respec-
tively. The thick double arrow represents the resulting effective rates linking the ground
state |G〉 to the single-excitation manifold (grayed area), as utilised in Eq. (4.6a). The
|L〉 − |G〉 transition is further coupled to a resonant lasing cavity. (b) Temporal evolu-
tion of the laser intensity under black-body pumping: Bloch-Redfield model (solid red)
for dimers that are coherently coupled to the lasing cavity (details in the Appendix),
and steady-state solution (dashed blue) of our lasing equations, Eqs. (4.7)-(4.8). Pa-
rameters: µ = 10.157 D, h̄ωA = 1.17 eV, Ω = 2000 cm−1, TBB = 3000 K, Γφ = 1/(10 ps),
κ/(2π) = 50 MHz, 〈χ〉 = 0.005, nA = 5× 10−4 mmol/L, and a lasing cavity volume
V = 11.3 cm3 (cylindrical shape of radius R = 6 mm and length L = 10 cm). (c)-(d)
Laser intensity and output power for the same parameters as (b) except for 〈χ〉 (ther-
mal average of the relative brightness of single-excitation states with respect to a single
molecule) and nA (dimer density in millimol/L) which are varied along the axes. The
black line represents the lasing threshold [Eq. (4.9)]. In (c) optical pumping occurs via a
black body radiation at TBB = 3000 K, whereas in (d) the lasing medium is illuminated
by natural sunlight.
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transition dipole of µ = 10.157 D (as for the bacteriochlorophyll-a molecule) and a
coupling Ω = 2000 cm−1 as in similar H-dimers [135].

Under black-body illumination, primarily the bright state |H〉 undergoes excitation,
followed by rapid thermal relaxation to the lower dark |L〉 state. The large energetic
separation between |H〉 and |L〉 makes this relaxation one-way, preventing environ-
mental re-excitation into |H〉. In the Appendix we show that it is possible to achieve
population inversion provided the absorption rate |G〉 → |H〉 dominates over the spon-
taneous emission rate |L〉 → |G〉. We proceed to couple the |L〉 → |G〉 transition
to a resonant lasing cavity and evaluate the lasing performance of the system using
the equations derived in the previous section. Figure 4.1b shows the resulting laser
intensity: once the stationary regime has been reached, there is perfect agreement be-
tween the intensity predicted by Eq. (4.6) with our numerically obtained results from
a coherent Bloch-Redfield model. The latter, derived in Eqs. (4.50) and (4.56) of the
Appendix, treats both photon and phonon environments in the Bloch-Redfield formal-
ism, includes the doubly excited state, and – as its main assumption – treats the laser
field semi-classically, but nonetheless coherently coupled to the aggregates similarly to
Refs. [136, 137]. In Fig. 4.1c we show the dependence of the laser intensity and power
output on nA and 〈χ〉 based on realistic choices for all other parameters (see caption).
The white area highlights the region below the laser threshold Eq. (4.9) (black contin-
uous line), where the dimer density nA is too low to permit lasing. As one can see, an
intensity of up to 1 kW/cm2 can be reached with a very low dimer concentration.

To assess the possibility of lasing under direct natural sunlight illumination
(i.e. without a black-body cavity heated by concentrated sunlight), we show the lasing
threshold and output power for this scenario in Fig. 4.1d. Clearly, lasing is still theoret-
ically possible but only for very low values of 〈χ〉. In practice, this is challenging due
to the competition of non-radiative decays and other sources of noise in realistic situ-
ations. Nevertheless, as we show in the next section, the critical value of 〈χ〉 increases
by orders of magnitude if the dimer is placed inside a purple bacteria molecular aggre-
gate. Finally, note that for lasing we require a small yet finite value of 〈χ〉. In the case
of a homodimer (where for parallel TDMs the |L〉 dimer state would be fully dark) this
can either arise as a consequence of the relative orientation of the TDMs, or through the
presence of structural or energetic disorder.

4.4 Bio-inspired lasers

Whilst lasing with a gain medium composed of suitable H-dimers is realistic un-
der black-body cavity pumping, achieving the extremely high optical darkness (small
〈χ〉) for direct sunlight-pumped operation is a tall order. According to Eq. (4.12) 〈χ〉
is upper-bounded by the pumping rate in units of γ0 (assuming that we have the
favourable ratio 〈B〉/Btot ≈ 1). Thus increasing the effective pumping rate reduces
the stringency of required darkness. A possible way of increasing pumping is to sur-
round the dimer by a molecular aggregate that is capable of efficiently absorbing pho-
tons and transferring the resulting energy excitations to the |H〉 dimer state. The ag-
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Figure 4.2: (a) Single-excitation eigenstates of the LHII complex (with a distinction be-
tween the B800 and the B850 subunits), LHI complex, and H-dimer. The strongest
optical rates, proportional to the squared dipole strengths, are indicated alongside the
two-headed arrows. As before, the thick double arrow represents the resulting effective
rates linking the ground state |G〉 to the single-excitation manifold (grayed area) and
the |L〉 − |G〉 dimer transition is also coupled to a lasing cavity. The H-dimer param-
eters are: µ = 10.157 D, h̄ωA = 1.17 eV, Ω = 2000 cm−1. Further, Γφ = 1/(10 ps),
κ/(2π) = 50 MHz, and V = 11.3 cm3. (b), (e) Positions of the chromophores (cir-
cles) and transition dipole orientations (arrows) for the bio-mimetic complexes. Exci-
tation energies and nearest-neighbour couplings for bio-mimetic aggregates are taken
from Refs. [2, 4, 34, 138, 139]. (c), (d), (f), (g) Laser intensity and output power for an
LHI ring surrounding an H-dimer (c,d) and with eight additional B800/850 LHII rings
surrounding the LHI ring (f,g). On the axes we vary 〈χ〉 of the H-dimer and nA (the
aggregate density in mmol/L). In all panels the black line represents the lasing thresh-
old [Eq. (4.9)]. In (c,f) we have black-body pumping at temperature TBB = 3000 K,
whereas (d,g) are for natural sunlight illumination. (h) Lasing threshold density under
natural sunlight for a bare dimer, one LHI surrounding the dimer as in (b), and eight
LHIIs around an LHI ring containing the dimer as in (e). The red and green continuous
curves are for a dimer with a re-scaled Ru pumping rate: by a factor of 17 (red curve)
and by a factor of 125 (green curve), corresponding to an enhancement factor N/2 with
N being the number of chromophores in the aggregate. The circles are obtained from
the full set of optical transitions as indicated in (a).
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gregate should absorb at an energy larger than the |H〉 dimer state energy in order
to preserve the gap which separates the dimer lasing state from other states, so that
〈B〉/Btot ≈ 1. Note that under this condition 〈χ〉 of the whole aggregate can remain
very close to 〈χ〉 of the dimer alone. Here we consider a dimer surrounded by the an-
tennae complex of purple bacterial photosynthetic systems that thrive in very low light
intensity [3, 5, 34, 35, 139]. Moreover, in the Appendix a green sulfur bacteria antenna
complex is used to increase the pumping of the dimer |H〉 state even further.

Purple bacteria feature a hierarchical structure of symmetric molecular aggregates
which absorb light and direct the collected energy to the specific molecular aggregate of
the reaction center (RC). The purple bacteria RC contains a bacteriochlorophyll (BChl)
dimer called the special pair, and is surrounded by an LHI (Light-Harvesting system I)
ring comprising 32 BChl molecules. The LHI ring is a J-aggregate with two superradi-
ant states at 875 nm that are polarized in the ring plane and close to the lowest excitonic
state. The LHI ring is surrounded by several LHII rings, each featuring the B850 ring,
a J-aggregate composed of 18 BChl molecules with two superradiant states at 850 nm,
and the B800 ring composed of 9 BChl molecules with main absorption peak at 800 nm.
This hierarchical structure is able to absorb photons at different frequencies and guide
the collected energy down an energetic funnel to the RC through a process dubbed su-
pertransfer, resulting from the coupling between the LHII-LHI superradiant states and
the LHI-RC aggregates [3, 5, 34, 35].

We propose substituting the special pair in the purple bacteria reaction center with
an H-dimer whose |H〉 state is resonant with the superradiant states of LHI. Photons
absorbed by the LHI ring would then contribute to the pumping of the dimer’s |H〉
state, with the strong coupling between |H〉 and the bright state of the LHI complex
ensuring fast transfer. The geometrical arrangement for this envisioned aggregate is
shown in Fig. 4.2b [2, 4, 138, 139] (for full details see the Appendix). Starting from a
realistic model for the antenna system coupled to the dimer (see the Appendix for de-
tails) we obtain the eigenvalues and the TDMs of all the energy states by direct Hamil-
tonian diagonalization, which allows evaluating the lasing equations (4.6) under the
already discussed assumptions of negligible non-radiative losses and fast thermal re-
laxation. The latter is valid in this aggregate owing to supertransfer throughout the
aggregate which entails thermal relaxation on the order of tens of picoseconds [2, 4]:
this is much faster than optical pumping, which range from a few nanoseconds (large
aggregates, high black-body temperature) down to milliseconds (small aggregates, nat-
ural sunlight) and spontaneous decay, which is of the order of a nanosecond for the
brightest states. Moreover, other relevant timescales are the transition rate due to the
coupling to the lasing cavity field which we estimate to be larger than hundreds of pi-
coseconds (for the parameters considered here), and the realistic extraction rate κ from
the cavity of about three nanoseconds which we considered. In summary, thermal re-
laxation is clearly the fastest process, justifying the use of Eq. (4.6) for analyzing the
lasing response of such bio-inspired aggregates. Moreover, in the Appendix, results of
incoherent laser equations Eqs. (4.75) in the Appendix, which do not assume quasi-
instantaneous thermalization, are shown to be in excellent agreement with Eq. (4.6).
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The calculated lasing intensity and output power for a disordered ensemble of such
aggregates (LHI+H-dimer) is shown in Fig. 4.2c for black-body cavity pumping, and
in Fig. 4.2d for natural sunlight illumination. Comparing Fig. 4.1c-d with Fig. 4.2c-d,
the critical aggregate density to cross the lasing threshold is greatly lowered, and more
importantly, the required level of the dimer darkness for the natural sunlight case is
reduced by more than an order of magnitude. We obtain a further improvement when
surrounding our LHI ring with eight LHII rings, see Fig. 4.2e. The B800/850 LHII
aggregate level structure next to that of the LHI and H-dimer is shown in Fig. 4.2a. As
shown in Fig. 4.2f-g this larger aggregate architecture achieves a further lowering of the
lasing threshold, i.e. increase of the critical value of 〈χ〉 for the H-dimer below which
lasing is possible. Interestingly, in Fig. 4.2f, the addition of the rings has increased the
effective pumping of the H-dimer to the extent where the dimer no longer has to feature
a dark state to lase: indeed in this case lasing is possible even for 〈χ〉 = 1.

We have established that surrounding an H-dimer with purple bacteria LHI and
LHII rings not only lowers the necessary threshold density but also enables lasing with
much less dark H-dimers. To better understand and visualise these trends, we map
out the lasing transition as a function of threshold density and average brightness of
the H-dimer for natural sunlight pumping in Fig. 4.2h2. This uses an H-dimer sys-
tem described by Eqs. (4.9) and (4.10) but with effective pumping Ru increased by the
factor N/2, where N is the number of molecules in the bio-inspired aggregate includ-
ing the H-dimer. This is a simplified approach of approximating enhanced pumping
compared to the approach above based on the known TDMs of LHI/LHII states. In-
terestingly, the resulting threshold lines in Fig. 4.2h perfectly reproduce those obtained
in the presence of the whole aggregate (symbols). This confirms that the crucial role of
adding bio-inspired aggregates is to increase the effective pumping rate. Moreover, it
suggests that our proposed architecture is scalable and an even lower lasing threshold
could be achieved with larger J-aggregates surrounding the H-dimer, as we discuss in
the Appendix, where we consider another bio-inspired architecture where the antenna
complex of the green sulfur bacteria pumps the dimer |H〉 state. Nevertheless, caution
is necessary when applying the lasing equations derived here to very large aggregates,
where the assumption of thermalization occurring on the fastest relevant timescale can
become invalid, in which case an incoherent laser equation might be more appropriate
as discussed in the Appendix.

4.5 Conclusions and perspectives

Efficient sunlight-pumped lasers could revolutionize renewable energy technologies,
nevertheless lasing under natural sunlight illumination is still well beyond reach. By
mimicking the architecture of photosynthetic antenna complexes, here we have shown
how lasing with natural sunlight pumping can be achieved.

We first considered an ensemble of molecular H-dimers inside an optical cavity

2The case of a black body pumping at TBB = 3000 K is discussed in the Appendix.
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pumped by black-body cavity radiation. When considering realistic values of the H-
dimer darkness, lasing is possible for high black-body temperatures which can be
achieved by heating up a cavity with concentrated sunlight. Nevertheless, lasing with
H-dimers under natural sunlight would require a very high level of darkness, which
is very difficult to achieve. The main limitation is due to the very weak pumping pro-
duced by natural sunlight. Larger molecular H-aggregates might be able to lower the
lasing threshold by absorbing more light and thus increasing the pumping. On the
other hand, if not properly designed, large aggregates have an increased density of
states which would suppress the thermal population of the lasing state. This effect
would compete with the advantage gained by more absorbed light. In order to increase
the absorbed light without suppressing the population of the lasing state, one possi-
bility is to consider an aggregate which absorbs light on a hierarchy of energy scales
and which is able to efficiently funnel the absorbed energy to a low energy lasing state
which is well-gapped below other excitonic states. In this way, its thermal popula-
tion will not be suppressed. These are precisely the features which characterize many
natural antenna photosynthetic systems. Our proposed bio-inspired molecular aggre-
gate serving as the lasing medium is composed of an H-dimer operating at low energy,
surrounded by LHI and LHII rings of the purple bacteria antenna complex, which ab-
sorb at higher energy and efficiently funnel the absorbed energy to the H-dimer. In
this configuration, we show that lasing should be possible even under natural sunlight
illumination.

The specific bio-inspired parameters we have analysed would implement a short
wavelength infrared laser, which has the advantage of being able to efficiently dis-
tribute converted solar energy due to the low dispersion in this wavelength range [135],
which is also why this spectral regime is used in optical fiber communications. As an
interesting prospect, our bio-mimetic molecular aggregates should be able to lase in
nanocavities with volume of (λ/20)3 [140] and could thus be engineered into sun-light
pumped nanolasers [141].

Our idea can be generalized to other bio-inspired molecular architectures where
molecular (J-)aggregates efficiently pump the bright state of a homo-dimer; this would
allow lasing in other spectral regimes, and utilising other photosynthetic systems,
e.g. the chlorosome of green sulfur bacteria [55] (as discussed in the Appendix) or pho-
tosynthetic membranes such as in Photosystem II [142] to feed excitations into |H〉 and
make them available for the lasing transition.
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4.6 Appendix

4.6.1 A possible geometry for an H-dimer

Here we introduce a possible configuration for an H-dimer with dipolar coupling. This
serves as a simple example for how to achieve the level configuration presented in
Fig. 4.1a.

Let us consider the orientation shown pictorially in Fig. 4.3a: the optical transition
dipoles of two identical molecules lie in the (x, y) plane and they have an opposite incli-
nation angle θ with respect to the x axis. The corresponding transition dipole moment
(TDM) for each molecule can be expressed as

~µ1 = µ sin θx̂− µ cos θŷ , (4.14a)
~µ2 = µ sin θx̂ + µ cos θŷ . (4.14b)

The dipole-dipole coupling between the two molecules at distance r12 is

Ω = − µ2

r3
12

(
1 + cos2 θ

)
, (4.15)

and is negative for any value of θ. Note that the dipole coupling is valid only when the
distance between the molecules is larger than the charge displacement producing the
TDM. For smaller distances, the whole charge distribution should be taken into account
to compute the coupling [143]. For this reason in this chapter the coupling is considered
as an input parameter or a realistic value has been chosen.

Since the two molecules have the same excitation energy h̄ωA and the coupling Ω
is negative, the eigenstates and the corresponding eigenvalues (relative to the dimer
ground state) are

|G〉 := |g1〉 |g2〉 , EG = 0 , (4.16a)

|L〉 :=
|g1〉 |e2〉+ |e1〉 |g2〉√

2
, EL = h̄ωA − |Ω| , (4.16b)

|H〉 :=
|g1〉 |e2〉 − |e1〉 |g2〉√

2
, EH = h̄ωA + |Ω| , (4.16c)

|F〉 := |e1〉 |e2〉 , EF = 2h̄ωA . (4.16d)

Optical transitions between the eigenstates are proportional to the TDM, defined as
the matrix element of the dipole operator

~̂µ =
2

∑
j=1

~µj

(
σ̂+

j + σ̂−j
)

. (4.17)

The only non-vanishing elements of the TDM 〈k| ~̂µ |k′〉 between two generic dimer
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eigenstates |k〉 and |k′〉 are:

~µL := 〈G| ~̂µ |L〉 = 〈L| ~̂µ |F〉 = ~µ2 +~µ1√
2

=
√

2µ sin θ x̂ , (4.18a)

~µH := 〈G| ~̂µ |H〉 = 〈H| ~̂µ |F〉 = ~µ2 −~µ1√
2

=
√

2µ cos θ ŷ . (4.18b)

Note that TDMs obey the conservation law µ2
L + µ2

H = µ2
1 + µ2

2 = 2µ2 .

4.6.2 The Bloch-Redfield master equation

Here we sketch the derivation of the master equation introduced in Eq. (4.2). For conve-
nience we reprint this master equation, which describes the interaction of a molecular
aggregate with a collective photon and individual phonon baths:

dρ̂(t)
dt

= − i
h̄
[
ĤS, ρ̂(t)

]
+DBB[ρ̂(t)] +DT[ρ̂(t)] , (4.19)

where DBB and DT are Bloch-Redfield dissipators for the coupling to photons and
phonons, respectively.

The photon dissipator is based on the assumption that the molecular absorbers are
positioned close together relative to relevant optical wavelengths (∼ 2πc/ωA), so that
all dipoles interact with the same shared optical field via the following collective inter-
action Hamiltonian:

ĤI,opt = ∑
i
~µiσ̂

x
i ⊗∑

k
fk(âk + â†

k) , (4.20)

where fk and â(†)k are, respectively, the coupling strength and annihilation (creation)
operator for the optical mode k. We then couple local phonon baths to each 2LS with
repeated spin-boson interaction Hamiltonians:

ĤI,vib = ∑
i

σ̂z
i ⊗∑

q
gi,q(b̂i,q + b̂†

i,q) , (4.21)

where gi,q and b̂(†)i,q are, respectively, the coupling strength and annihilation (creation)
operator for the vibrational mode q for the bath linked to site i.

The optical and vibrational Bloch-Redfield dissipators both take the form [49]

Dα = ∑
n,m

CnCm

(
Am(ωm)ρS(t)A†

n(ωn)Γnm(ωm) + An(ωn)ρS(t)A†
m(ωm)Γ†

nm(ωm)

− ρS(t)A†
m(ωm)An(ωn)Γ†

nm(ωm)− A†
n(ωn)Am(ωm)ρS(t)Γnm(ωm)

)
, (4.22)

where the n, m summation is taken over all pairwise combinations of elements in each
of the system interaction matrices from Eq. (4.20) and Eq. (4.21), i.e. the set of σ̂x

i and σ̂z
i ,

respectively. The weighting terms, Cn, are determined by the transformation of these
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Figure 4.3: (a) Dimer geometry described in Eq. (4.14a). Each green ellipse represents a
molecule. Orientation of the transition dipole moments (green arrows), vector joining
the dipoles (blue arrow) and directions of the x, y axes (grey arrows) and θ angle are
indicated. (b) Plots of the density matrix component evolution for the populations
of, and coherence between |H〉 and |L〉. The dimer is only connected to independent
phonon baths. The timescale for the relaxation of population in the single excitation
manifold and for dephasing between |H〉 and |L〉 are both on the order of picoseconds.
The dimer parameters are the same from the previous part of the chapter: (h̄ωA =
1.17 eV and optical lifetime, 1/γ0 = 36.8 ns), with θ = 0.07 rad and coupling Ω =
2000 cm−1 (0.25 eV). The initial density matrix is given by Eq. (4.26).
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interaction matrices to the system eigenbasis (for example, the dipole contributions for
transitions between different eigenstates in the optical case) [49]. Only the real part of
the spectral correlation tensor is kept, leading to a solely dissipative contribution to the
dynamics. This means that Lamb shifts and any other Hamiltonian renormalisation
effects are assumed to have already been accounted for when setting up ĤS (Eq. (4.1)).
Further, we assume a flat optical spectral density, yielding optical environment correla-
tion functions

Γnm(ω) =
1
2

κoptω
3(1 + n(ω)

)
, (4.23)

where the prefactor κopt is determined by the lifetime of an isolated 2LS, and n(ω) is
the Bose-Einstein occupancy of modes, given by

n(ω) =
1

eβh̄ω − 1
, (4.24)

with β = 1/kBTBB, where TBB is the photon black-body bath temperature and kB is
Boltzmann’s constant. For photon processes the transition frequencies will be of the
order of single molecule excitation frequency ωA, and the factor ω3 arises from the
density of modes [49].

For simplicity and in the absence of detailed information about the nature of the
vibrational environment we also keep the phonon spectral density flat and equal at
each site, this results in vibrational environment correlation terms of the form

Γnm(ω) =
1
2

κvibω
(
1 + n(ω)

)
, (4.25)

where the prefactor κvib will be fixed by imposing a characteristic phonon spontaneous
emission relaxation timescale of 1 picosecond. For instance for the dimer parameters we
consider in the rest of the chapter, Ω = 2000 cm−1 = 0.25 eV, we set κvib = 1.3× 10−3,
unitless to obtain a relaxation of the order of 1 ps between the |H〉 and |L〉 states of the
dimer. The Bose-Einstein occupation number n(ω) is here taken at room temperature
(300 K). Phonon transition frequencies will be of order of the coupling Ω. In Fig. 4.3b
we show that the timescale of evolution for the populations of, and dephasing between,
states connected by phonons, is indeed picoseconds in a dimer system identical to what
was considered in the rest of the chapter and coupled only to phonon baths with an
initial state given by 

0 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 0

 . (4.26)

4.6.3 From Bloch-Redfield to Lindblad master equation

The coupling to the photon bath is typically much weaker than the level spacing within
the system. This allows the secular approximation to be applied to the Bloch-Redfield
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dissipator DBB, simplifying it to the Lindblad form [49]. In the eigenbasis, with transi-
tions labelled by k, this yields

DBB[ρ̂] =∑
k

γk(ω) (1 + nT(ω))

[
σ̂−k ρ̂σ̂+

k −
1
2
{

σ̂+
k σ̂−k , ρ̂

}]
+ ∑

k
γk(ω)nT(ω)

[
σ̂+

k ρ̂σ̂−k −
1
2
{

σ̂−k σ̂+
k , ρ̂

}]
, (4.27)

where the optical rates are

γk(ω) =
µ2

kω3

3πε0h̄c3 (4.28)

with the transition dipoles µ2
k and universal constants ε0 (vacuum permittivity), h̄ (re-

duced Planck constant), and c (speed of light). We will now focus on a dimer system
with optical transition frequencies ωL = ωA − |Ω|/h̄, ωH = ωA + |Ω|/h̄ and with the
eigenstates |G〉 , |L〉 , |H〉 and |F〉 defined in Eq. (4.16). The thermal population of black-
body photons at frequency ω is defined using Eq. (4.24). The curly brackets in Eq. (4.27)
indicate the anticommutator, and the raising/lowering operators σ̂±k in it act on the
eigenstates as shown in the following scheme

|G〉
σ̂+

L−−−−→
←−−−−

σ̂−L

|L〉
σ̂+

L−−−−→
←−−−−

σ̂−L

|F〉

|G〉
σ̂+

H−−−−→
←−−−−

σ̂−H

|H〉
σ̂+

H−−−−→
←−−−−

σ̂−H

|F〉 . (4.29)

To make Eq. (4.27) more explicit, we first compute the transition rates between the pop-
ulations of each eigenstate. We do that by projecting the black-body dissipator onto
each eigenstate Eq. (4.16), obtaining

〈G| DBB[ρ̂] |G〉 =γL(ωL) [1 + nT(ωL)] ρLL + γH(ωH) [1 + nT(ωH)] ρHH

− γL(ωL)nT(ωL)ρGG − γH(ωH)nT(ωH)ρGG , (4.30a)
〈L| DBB[ρ̂] |L〉 =γL(ωH) [1 + nT(ωH)] ρFF − γL(ωL) [1 + nT(ωL)] ρLL

+ γL(ωL)nT(ωL)ρGG − γL(ωH)nT(ωH)ρLL , (4.30b)
〈H| DBB[ρ̂] |H〉 =γH(ωL) [1 + nT(ωL)] ρFF − γH(ωH) [1 + nT(ωH)] ρHH

+ γH(ωH)nT(ωH)ρGG − γH(ωL)nT(ωL)ρHH , (4.30c)
〈F| DBB[ρ̂] |F〉 =γL(ωH)nT(ωH)ρLL + γH(ωL)nT(ωL)ρHH

− γL(ωH) [1 + nT(ωH)] ρFF − γH(ωL) [1 + nT(ωL)] ρFF . (4.30d)

As one can see, the dynamics of the populations are coupled only to the populations
of the other states (ρkk) and not to the coherences (ρkk′ with k 6= k′). This allows to
write a set of rate equations (i.e. a Pauli master equation) for photon absorption and
spontaneous emission for the populations of the four eigenstates.
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Similarly, the dissipator describing the coupling of the dimer to a phonon bath can
also be approximated in the Lindblad form and it produces dynamics where the pop-
ulations are decoupled from the coherences. Specifically, for a dimer system, we have

〈G| DT[ρ̂] |G〉 = 0 , (4.31a)
〈L| DT[ρ̂] |L〉 = ΓΩ (1 + nΩ) ρHH − ΓΩnΩρLL , (4.31b)
〈H| DT[ρ̂] |H〉 = −ΓΩ (1 + nΩ) ρHH + ΓΩnΩρLL , (4.31c)
〈F| DT[ρ̂] |F〉 = 0 , (4.31d)

where the thermal relaxation rate ΓΩ = 2|Ω|κvib is proportional to the bath spectral
density at the energy 2|Ω| (with Ω being the coupling between the molecules) and
the thermal population is defined with Eq. (4.24), with T = 300 K being the phonon
temperature.

Combining the sunlight and phonon contributions, we have the rate equation for a
dimer system

dρGG

dt
=γL(ωL) [1 + nT(ωL)] ρLL + γH(ωH) [1 + nT(ωH)] ρHH

− γL(ωL)nT(ωL)ρGG − γH(ωH)nT(ωH)ρGG , (4.32a)
dρLL

dt
=γL(ωH) [1 + nT(ωH)] ρFF − γL(ωL) [1 + nT(ωL)] ρLL

+ γL(ωL)nT(ωL)ρGG − γL(ωH)nT(ωH)ρLL

+ ΓΩ [1 + nΩ] ρHH − ΓΩnΩρLL , (4.32b)
dρHH

dt
=γH(ωL) [1 + nT(ωL)] ρFF − γH(ωH) [1 + nT(ωH)] ρHH

+ γH(ωH)nT(ωH)ρGG − γH(ωL)nT(ωL)ρHH

− ΓΩ [1 + nΩ] ρHH + ΓΩnΩρLL , (4.32c)
dρFF

dt
=− γL(ωH) [1 + nT(ωH)] ρFF − γH(ωL) [1 + nT(ωL)] ρFF

+ γL(ωH)nT(ωH)ρLL + γH(ωL)nT(ωL)ρHH , (4.32d)

based on treating the influence of the environments on the dimer dynamics to second
order and the Born-Markov approximation (both inherent in the Bloch-Redfield formal-
ism), and the additional secular simplification of each dissipator to its Lindblad form.

We can compare the Bloch-Redfield approach (Eq. (4.22)) – solved numerically –
against the rate equations arising from the four-level Lindblad dissipators as presented
above. For the parameter ranges we consider, we find the two results are consistent
to machine precision. This is do be expected due to the large energy splitting we con-
sider between the two single-excitation eigenstates (but we would expect the results to
begin diverging when considering near-degenerate terms from much smaller or van-
ishing coupling between 2LSs). Note that the validity of the Lindblad master equation
approximation for the populations of a molecular aggregate is the basis of our laser
equations in this chapter.
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4.6.4 Lasing equations for molecular aggregates

In this section we expand on the derivation the lasing equations that is given in the
main part of the chapter.

For convenience and ease of readability, we here duplicate most of the key equa-
tions, beginning with the Hamiltonian for a generic molecular aggregate N molecules,
written with the usual Pauli operators as

ĤS =
N

∑
j=1

h̄ωA

2
σ̂z

j + ∑
i,j

Ωi,j

(
σ̂+

i σ̂−j + σ̂+
j σ̂−i

)
, (4.33)

where Ωi,j is the inter-molecular coupling, which here we describe through a dipole-
dipole interaction [68, 116, 117] (see also the sections about Bio-inspired aggregates),
apart from very close-by molecules for which the interaction is not determined by the
transition dipole of the molecule alone. Eq. (4.33) represents a molecular aggregate
where each molecule is described as a two-level system. As mentioned in the main
part of the chapter (and for the case of a dimer validated in Fig. 4.4), we can limit our
analysis to the ground state |G〉, which represent a state in which all molecules are
in their ground state, and the single excitation manifold made of N states |j〉 which
represent a state in which the j-th molecule is excited while all the others are in the
ground state. The interaction of the molecular aggregate with black-body radiation
and phonons is then governed by the master equation Eq. (4.19). As established above,
Eq. (4.19) can be safely secularised and simplified to Lindblad form [49]. Thus the
coupling with the phonon bath and the black-body photon bath can be described by
rate equations for the populations.

In order to have lasing, we consider an ensemble of molecular aggregates randomly
distributed inside the cavity volume with density nA. We consider a cavity mode at fre-
quency ωc filled with a classical field. The coupling of the molecular aggregate single
excitation eigenstate |k〉 to the resonant cavity mode is described by incoherent tran-
sition rates for large enough dephasing as discussed in the main part of the chapter.
Below we report the rates induced by the cavity field for convenience,

Bkn = n
|µk|2ωc

3Vh̄εo

Γφ

Γ2
φ + (∆k/h̄)2

, (4.34)

where ∆k = (Ek − h̄ωc) is the energy detuning between the single excitation state k and
the mode of the cavity, µk is the transition dipole moment of the single excitation state
|k〉, Γφ is the dephasing rate and n is the number of photons in the cavity mode. The
factor 3 in the denominator comes from the average over the aggregate orientations.
For a derivation of Eq. (4.34), see Eq. (4.68) and the analysis in the same section.

Let us first focus on the population of the ground state PG. Due to the optical pump-
ing from the black-body radiation there will be a transition rate from the ground state
to the single excitation states given by Rk = nT(ωk)γk(ωk), where γk(ωk) is given by
Eq. (4.28) and is the spontaneous decay rate of the k-th eigenstate. Moreover, the cavity
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mode will drive transitions from the ground state to the states |k〉, given by the rate
Bkn. Thus, for the population of the ground state we can write

dPG

dt
=−∑

k
RkPG + ∑

k
[Rk + γk(ωk)]Pk −∑

k
BknPG + ∑

k
BknPk .

The total population in the single excitation manifold can be written as Pe = ∑k Pk and
since we assume the other manifolds are not populated we can write PG + Pe = 1. As-
suming thermal relaxation in the single excitation manifold to be the fastest time scale,
the populations in the single excitation manifold are always at thermal equilibrium so
that we have

Pk = Pe pk with pk =
e−Ek/kBT

∑j e−Ej/kBT ,

where Ek is the energy of the excitonic state |k〉. We consider a room temperature vibra-
tion environment by fixing T = 300 K. Under these assumptions the population of the
ground state obeys the following equation,

dPG

dt
= −PG ∑

k
Rk + Pe ∑

k
[Rk + γk(ωk)]pk − nPG ∑

k
Bk + nPe ∑

k
Bk pk .

We can now define

Ru = ∑
k

Rk and Rd = ∑
k
[Rk + γk(ωk)]pk ,

and we further introduce:

Btot = ∑
k

Bk and 〈B〉 = ∑
k

Bk pk ,

where pk is the Boltzmann occupation probability at thermal equilibrium of the state
|k〉.

With these definitions, and defining the density of aggregates in the excited states
as Ne = nAPe and the density of aggregates in the ground state as NG = nAPG, the laser
equations coupling the population in the single excitation manifold of the molecular
aggregates and the number of photons in the cavity become

dNe

dt
=− RdNe + RuNG − 〈B〉nNe + BtotnNG , (4.35a)

dn
dt

=V〈B〉nNe −VBtotnNG − nκ , (4.35b)

where VNe and VNG are the total numbers of molecular aggregates in the excited and
ground manifold respectively. Finally by defining the population difference per unit
volume between the population in the single-excitation manifold and the population in
the ground state as D = Ne − N0 we obtain the laser equations reported in Eq. (4.6).
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Figure 4.4: Total population of all four states of the dimer system at the steady-state,
solving with the Bloch-Redfield approach Eq. (4.19). A linear scale on the color bar (left
panels) is used to show population inversion in the lower states, while a logarithmic
scale (right panels) shows the order of magnitude of the population in the higher energy
states. We use the following dimer parameters: the single molecule excitation energy
is h̄ωA = 1.17 eV and the spontaneous optical lifetime for the absorbers was fixed at
1/γ0 = 36.8 ns. Phonon bath at 300 K, and phonon decay rate defined to match a
picosecond spontaneous decay rate for θ = 0.07 rad, where θ determines the relative
orientation of the TDMs of the molecules in the dimer, see Fig. (4.3 a). No cavity is
attached. Comparison of cases with photon bath at 5800 K, 3000 K, and natural ‘1 sun’
(natural sunlight illumination).
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4.6.5 Population inversion for a dimer

Here we analyze the parameter region for obtaining population inversion for a dimer
under black-body pumping using the full Bloch-Redfield master equation. Moreover
we check the validity of the analytical expression given in Eq. (4.10), for the population
difference at the steady-state.

In Fig. 4.4 we plot the populations of the dimer eigenstates at the steady-state, by
solving the Master Equation Eq. (4.19) varying the parameters Ω an µ2

L in three cases.
We remind that µL is the TDM of the |L〉 state of the dimer. We set photon bath tem-
peratures at TBB = 5800 K, TBB = 3000 K, and also consider a ‘1 sun’ case, where
TBB = 5800 K, but all photon thermal population terms are reduced by the factor fS,
see Eq. (4.13), to account for the solid angle of the Sun as observed from Earth. We plot
the populations of all four states using both linear and logarithmic scales. The results
presented here show that population inversion is possible for large enough coupling
Ω in sufficiently dark dimers (as measured by µ2

L/µ2). Moreover, we see that the dou-
bly excited state |F〉 can always be neglected, justifying the approximations used in the
main part of the chapter to limit our considerations to the single excitation manifold.

We now compare the results of the full Bloch-Redfield model Eq. (4.19) against
Eq. (4.10). In Fig. 4.5 we consider the same photon temperatures that were used in
Fig. 4.4 and plot the the population difference between the single excitation manifold
and the ground state. The results of the Bloch-Redfield model (full curves) are com-
pared with the analytical expression given in Eq. (4.10) (dashed curves). Moreover
their differences are shown in the lower panels for the three different black-body tem-
peratures. While there are some discrepancies between the two approaches there is
generally very good agreement. Note that as the temperature of the photon bath is re-
duced, larger couplings, as well as weaker lower state brightness values are required to
achieve population inversion.

4.6.6 Coupling dimer to a cavity: modification of the Hamiltonian

In this section we describe the coupling of the dimer to a cavity mode at frequency
ωc = ωL, where ωL is the transition frequency between the |G〉 and |L〉 states of the
dimer.

To couple a cavity resonant with the energy of |L〉 to the dimer we begin with the
laboratory frame dimer Hamiltonian in the site basis, ĤS [Eq. (4.1)]. In this section
we set h̄ = 1 for simplicity. We describe the interaction between the dimer and the
cavity field by adding the time-dependent matrix elements ~µj · ~E(t) to ĤS. Such matrix
elements describe the interaction energy of each single-molecule TDM (~µj, j = 1, 2)
with the time-dependent cavity electric field ~E(t) = ~E0 cos(ωLt), which has a fixed
polarization (determined by the direction of ~E0 = E0ε̂) and oscillates at frequency ωc =
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Figure 4.5: Comparison between the approximate steady-state solution given by
Eq. (4.10) and the exact solution of Eq. (4.19) for different values of the coupling,
Ω/(kBT) (with T = 300 K), and lower state brightness. Shown below: the differences
between the results of the two methods. Dimer parameters: h̄ωA = 1.17 eV and single-
molecule spontaneous optical lifetime fixed at 1/γ0 = 36.8 ns. Phonon bath at 300 K,
and phonon decay rate defined to match a picosecond thermal relaxation time. No cav-
ity is attached. Comparison of cases with photon bath at 5800 K, 3000 K, and ‘1 sun’.

ωL. The resulting Hamiltonian is:

Ĥ =


2ωA ~µ1 · ~E0 cos(ωLt) ~µ2 · ~E0 cos(ωLt) 0

~µ1 · ~E0 cos(ωLt) ωA Ω ~µ1 · ~E0 cos(ωLt)
~µ2 · ~E0 cos(ωLt) Ω ωA ~µ2 · ~E0 cos(ωLt)

0 ~µ1 · ~E0 cos(ωLt) ~µ2 · ~E0 cos(ωLt) 0

 , (4.36)

written in the site basis{
|e1〉 |e2〉 , |e1〉 |g2〉 , |g1〉 |e2〉 , |g1〉 |g2〉

}
. (4.37)

The ~µ1 · ~E0 and ~µ2 · ~E0 terms account for the alignment of the single-molecule dipole
moments with the orientation of the cavity containing the field, and are, respectively,
now relabelled to E1 and E2. We then choose the unitary transformation matrix

Û =


ei2ωLt 0 0 0

0 eiωLt 0 0
0 0 eiωLt 0
0 0 0 1

 , (4.38)

to move to a frame rotating at the frequency of the lasing transition with the trans-
formed (prime) Hamiltonian given by

Ĥ′ = ÛĤÛ† + iÛ
dÛ†

dt
. (4.39)
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The transformation gives

Ĥ′ =


2ωA − 2ωL

E1
2 (1 + ei2ωLt) E2

2 (1 + ei2ωLt) 0
E1
2 (1 + e−i2ωLt) ωA −ωL Ω E1

2 (1 + ei2ωLt)
E2
2 (1 + e−i2ωLt) Ω ωA −ωL

E2
2 (1 + ei2ωLt)

0 E1
2 (1 + e−i2ωLt) E2

2 (1 + e−i2ωLt) 0

 . (4.40)

We then drop the fast oscillating terms ei2ωLt (oscillating at twice the lasing frequency)
to leave

Ĥ′ ≈


2ωA − 2ωL

E1
2

E2
2 0

E1
2 ωA −ωL Ω E1

2
E2
2 Ω ωA −ωL

E2
2

0 E1
2

E2
2 0

 . (4.41)

The next step is to move to the eigenbasis of the dimer. We temporarily drop the field
terms to have

Ĥ′S =


2ωA − 2ωL 0 0 0

0 ωA −ωL Ω 0
0 Ω ωA −ωL 0
0 0 0 0

 . (4.42)

Using ωL = ωA − |Ω|, we have that Ĥ′S diagonalises (tilde) to

ˆ̃H′S =


2ωA − 2ωL 0 0 0

0 ωA −ωL + |Ω| 0 0
0 0 ωA −ωL − |Ω| 0
0 0 0 0

 =


2|Ω| 0 0 0

0 2|Ω| 0 0
0 0 0 0
0 0 0 0

 .

(4.43)

In the rotating frame, the two lower energy states |L〉, and |G〉 appear degenerate since
they are linked by a transition which is driven by the resonant lasing field in the cavity.

Finally, the interaction matrix elements with the cavity field (in the rotating frame),
0 E1

2
E2
2 0

E1
2 0 0 E1

2
E2
2 0 0 E2

2
0 E1

2
E2
2 0

 , (4.44)

need to be moved to the newfound dimer diagonal basis, becoming

1√
8


0 E1 + E2

Ω
|Ω| (−E1 + E2) 0

E1 + E2 0 0 E1 + E2
Ω
|Ω| (−E1 + E2) 0 0 Ω

|Ω| (−E1 + E2)

0 E1 + E2
Ω
|Ω| (−E1 + E2) 0

 . (4.45)
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In general, we obtain the full field-coupled Hamiltonian by adding Eq. (4.45) to
Eq. (4.43), that can be written as

ĤS−C := ˆ̃H′ =


2|Ω| gHE0 gLE0 0
gHE0 2|Ω| 0 gHE0
gLE0 0 0 gLE0

0 gHE0 gLE0 0

 , (4.46)

where gL,H are coupling constants and E0 = |~E0| is the magnitude of the cavity electric
field. This Hamiltonian will be substituted into Eq. (4.19), to find the evolution of the
dimer and field.

We will be mostly interested in the case where the lasing mode of the cavity is
matched to the frequency of the |L〉 ↔ |G〉 transition and the orientation of the molec-
ular aggregate is random w.r.t the cavity field polarization. In this case we may set
gHE0 = µHE0/(2

√
3) and gLE0 = µLE0/(2

√
3). In the case where the lasing mode of

the cavity is matched to the frequency and polarisation of the |L〉 ↔ |G〉 transition, in
we may set gHE0 = 0 and gLE0 = µLE0/2 through requiring ~µ1 · ~E = −~µ2 · ~E.

4.6.7 Including dephasing and the coupling to the cavity in the Bloch-
Redfield master equation

In Eq. (4.19), dephasing between the ground state and higher excitation manifolds is not
properly included (rather, such a Bloch-Redfield approach only captures vibrationally
driven dephasing within each manifold). Therefore, in the absence of introducing ad-
ditional dephasing Lindblad operators, dephasing between different excitation sub-
spaces only occurs on optical (nanosecond) timescales. However, much faster electronic
dephasing will be present in any realistic situation, typically on a (sub)-picosecond
timescale. For this reason, we supplement our master equation Eq. (4.19) with addi-
tional pure dephasing Lindblad operators as described below. We shall see that this
dephasing plays a crucial role in that it gives rise to effectively incoherent energy ex-
change with the resonantly cavity, provided it is faster than the Rabi frequency.

We illustrate the inclusion of pure dephasing using the example of a dimer system
with the usual eigenbasis {

|F〉 , |H〉 , |L〉 , |G〉
}

. (4.47)

Specifically, we introduce phenomenological dephasing processes between each
pair of eigenstates, apart from the |H〉 − |L〉 pair. Indeed, we do not include a phe-
nomenological operator linking the two single-excitation states as dephasing (as well
as relaxation) between these states is already included by the phonon dissipator, as is
evidenced in the decay of coherence seen in Fig. 4.3b. We constructed a range of de-
phasing Lindblad dissipators

Dφ[ρ̂] =
2
7

Γφ ∑
k

L̂kρ̂L̂†
k −

1
2
{L̂†

k L̂k, ρ̂} (4.48)
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using the following L̂k operators:
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 ,


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 . (4.49)

We plot the evolution of our coherence term of interest, ρG,L(t), for various dephas-
ing rates in Fig. 4.6a, using the Bloch-Redfield equation given in Eq. (4.19) with the
addition of Dφ[ρ̂] and without the coupling with the photon bath. With the inclusion
of these phenomenological dissipators we observe decay in the coherence term at the
anticipated rapid timescales. The factor of 2/7 in Eq. (4.48) ensures that the observed
decoherence of ρG,L(t) decays as e−Γφt.

Finally we can write the Bloch-Redfield master equation which includes both the
dephasing terms and the Hamiltonian of the system-cavity coupling, Eq. (4.46). Adding
the new dissipative terms to Eq. (4.19) we obtain

dρ̂(t)
dt

= − i
h̄
[
ĤS−C, ρ̂(t)

]
+DBB[ρ̂(t)] +DT[ρ̂(t)] +Dφ[ρ̂(t)] . (4.50)

4.6.8 Full 4-level Bloch-Redfield: coherent laser equations

In the following, we write a closed system of laser equations for the dimer coupled
to the cavity field, in the frame of a semi-classical description. As far as the dimer is
concerned, its dynamics is described by the master equation Eq. (4.50). Note that the
electric field magnitude E0 = E0(t) is a time-dependent quantity, because it exchanges
energy with the dimers and loses energy out of the cavity. For this reason Eq. (4.50)
must be extended by an equation determining the evolution of the electric field.

The evolution of the classical field in the cavity derives from Maxwell Equa-
tions [136],

∇2~E(t)− 1
c2

∂2

∂t2
~E(t) = − 1

ε0c2
∂2

∂t2
~P(t) , (4.51)

where ~E(t) = E0(t) ε̂ cos(ωLt) is the oscillating electric field in the cavity with polariza-
tion ε̂ and ~P(t) = P0(t)ε̂ cos(ωLt) is the oscillating polarization per unit volume, where
E0(t) and P0(t) are their slowly-varying envelopes. Since they vary on timescales that
are much slower than ∼ 2π/ωL, we can apply the slowly-varying envelope approxi-
mation (SVEA) [136], so that Eq. (4.51) becomes

dE0

dt
=

iωL

2ε0
P0 . (4.52)
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Figure 4.6: (a) Plots of the decay of the ρG,L(t) coherence term in a dimer connected
to a 3000 K photon bath for solar proccesses and local phonon baths but no cavity.
Phenomenological dephasing operators are added at varying rates and this produces
the expected decay on picosecond timescales. The parameters match those used in
Fig. 4.3b. (b) Dimer levels excluding the double-excitation |F〉 state, with a coherent
coupling (curves) induced by the cavity field. Here h̄ = 1 and the cavity frequency is
ωL = ωA − |Ω|. The Rabi frequencies are ΩL = µLE0/(2

√
3) and ΩH = µHE0/(2

√
3),

where µL,H are the magnitudes of the TDMs,
√

3 comes from an average over the dimer
orientations and E0 is the amplitude of the cavity field.
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We consider an ensemble of dimers with density nA in a volume V, so that the polar-
ization component parallel to the field is P0 = 2nA〈

(
~̂µ · ε̂

)
〉. Here the average TDM

is the expectation value of the dipole operator averaged over the dimer orientations,
〈
(
~̂µ · ε̂

)
〉 = 〈Tr[

(
~̂µ · ε̂

)
ρ̂]〉or, and the TDM operator in the dimer eigenbasis is

~̂µ =


0 ~µH ~µL 0
~µH 0 0 ~µH
~µL 0 0 ~µL
0 ~µH ~µL 0

 . (4.53)

Taking the trace Tr[
(
~̂µ · ε̂

)
ρ̂] we have

P0 = 2nA〈[(~µL · ε̂) (ρLG + ρFL) + (~µH · ε̂) (ρHG + ρFH)]〉or , (4.54)

where the subscript “or” accounts for the average over different dimer orientations.
Replacing Eq. (4.54) into Eq. (4.52) we have

dE0

dt
=

iωLnA

ε0
〈[(~µL · ε̂) (ρLG + ρFL) + (~µH · ε̂) (ρHG + ρFH)]〉or . (4.55)

Now we proceed by performing the orientational averaging. It can be shown [see
Eq. (4.64) in the following section] that the coherence terms are proportional to the
corresponding TDM, for example (ρLG + ρFL) ∝ (~µL · ε̂). For this reason, the average
over dipole orientations is proportional to the squared amplitude of the TDM along
ε̂, namely 〈(~µL · ε̂)(ρLG + ρFL)〉or ∝ 〈(~µL · ε̂)2〉or, and similarly for the (~µH · ε̂) term.
When the dimers are randomly oriented, 〈(~µL · ε̂)2〉or = µ2

L/3. Finally, we add the term
−κE0/2 accounting for the losses from the cavity, so that we have

dE0

dt
= −κE0

2
− iαnA

[
gH(ρF,H + ρH,G) + gL(ρF,L + ρL,G)

]
, (4.56)

where κ is the field loss rate, α = 2ωL/ε0 and gL,H = µL,H/(2
√

3). Note that in the case
of an ordered ensemble of dimers, with ~µL TDMs parallel with the cavity electric field,
it should be gL = µL/2 and gH = 0. Thus the final laser equations are given by the
two coupled equations Eq. (4.50) and Eq. (4.56). Before showing the results of these full
coherent laser equations, we introduce in the following sections further approximations
leading to the working set of rate equations.

4.6.9 Results with 4-level Bloch-Redfield static field model

While the most complete version of our model considers a cavity field that is coupled
dynamically to the molecular aggregates, see Fig. 4.1b, considering the coupling of an
ensemble of molecular aggregates with a non-evolving static field allows us to focus on
a few more subtle behavioural aspects.
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In the main part of the chapter, the laser equations [see Eqs. (4.7) and Eqs. (4.8)],
have been derived under the assumption that the population of the double excited state
|F〉 of the dimer can be neglected and that the dephasing rate between |L〉 and |G〉 is
larger than the Rabi frequency induced by the coupling of the |L〉 ↔ |G〉 transition with
the cavity mode. Nevertheless, when a strong intensity field is present in a cavity, this
could also induce transitions between |L〉 and |F〉, despite the fact that this transition
is detuned from the cavity frequency by 2Ω and hence suppressed. In particular, the
suppression will cease to be effective once the cavity field is sufficiently intense and the
Rabi frequency approaches the detuning.

Moreover, if the polarisation of the cavity lasing mode is not quite parallel with the
dipole moment of the |L〉 ↔ |G〉 transition, it can additionally induce an off-resonant
transition between |G〉 and |H〉 and a resonant transition between |H〉 and |F〉. Nev-
ertheless we do not consider the case of disordered ensemble of molecular aggregates
here.

In order to understand when it is possible to neglect the |F〉 state even in presence
of a cavity field, we consider the coupling of the dimer molecule to an ideally aligned
cavity [i.e. we set gH = 0 and gL = µL/2 in Eq. (4.46)]. To relate the Rabi frequency of
the field to the intensity we use (h̄ = 1)

ΩL = 2
µ√
ε0c

sin θ
√

I(∞) , (4.57)

where (using our assumed default dipole parameters)

µ√
ε0c

= 4.106× 10−9 eV
(W/m2)1/2 . (4.58)

In Fig. 4.7 we show the steady-state populations of the dimer eigenstates as a function
of the dimer angle, θ, and intensity of the cavity field, I. The results show, while the
|H〉 state is always negligible (for the intensity range considered), the fully excited state
|F〉 can mostly be ignored, and only for very large intensities (larger than we use in
our results) do we approach a regime where the transition linking |L〉 to |F〉 becomes
important. We also note that the larger the dephasing is, the larger the needed intensity
in the cavity to excite the dimer becomes.

We also note that there is a minimum intensity level, below which behaviour is
dominated by the phonon and photon dissipators rather than the coupling to the cavity.
Once the cavity coupling takes over population is evenly distributed between the states
coupled by lasing transitions, namely |G〉, |L〉 and occasionally |F〉.

4.6.10 Electric field with strong dephasing: incoherent rates

In the main part of the chapter we derive the lasing equations assuming that dephasing
is much stronger than the coupling to the cavity. Here we show in detail how a master
equation reduces to a rate equation under that assumption.
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Figure 4.7: Parameter scan of steady states using the static field model. Results are dis-
played in linear and logarithmic scales. The intensity of the coupled static field, I, and
the dimer angle θ are varied across the parameter scan. The range of dephasing rates
for phenomenological dephasing dissipators matches those used in other models. We
use parameters from the rest of the chapter: h̄ωA = 1.17 eV and the spontaneous optical
lifetime for the absorbers was fixed at 1/γ0 = 36.8 ns. Photon bath at 3000 K, phonon
bath at 300 K, and phonon decay rate defined to match a picosecond spontaneous decay
rate for θ = 0.07 rad.
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At first we derive an expression for the transition rate between the ground state
and single-excitation manifold states induced by the cavity field. For simplicity, we
neglect the |F〉 state but our results are nonetheless valid more generally. Let us intro-
duce an Hamiltonian coupling induced by the cavity, as given in Eq. (4.46) and shown
pictorially in Fig. 4.6b (h̄ = 1). We relabel the coupling strength (Rabi frequency) as
ΩL,H := gL,HE0. The cavity field is resonant with the |L〉 − |G〉 transition at frequency
ωL = ωA − |Ω|, and it is therefore detuned from the frequency of the |H〉 − |G〉 transi-
tion.

Following the same approach described in the previous sections [see Eq. (4.38) and
following], we write the Hamiltonian in the rotating frame as

ĤS−C =

2|Ω| 0 ΩH
0 0 ΩL

ΩH ΩL 0

 , (4.59)

represented in the basis B = {|H〉 , |L〉 , |G〉}. For the current purpose, we may consider
a simplified master equation without thermal relaxation and coupling to the photon
bath,

dρ̂

dt
= −i

(
ĤS−Cρ̂− ρ̂ĤS−C

)
+Dφ[ρ̂] , (4.60)

where the density matrix and the dephasing operator are, respectively,

ρ̂ =

ρHH ρHL ρHG
ρLH ρLL ρLG
ρGH ρGL ρGG

 , Dφ[ρ̂] =

 0 −ΓHLρHL −ΓGHρHG
−ΓHLρLH 0 −ΓGLρLG
−ΓGHρGH −ΓGLρGL 0

 .

(4.61)
The dephasing rates ΓHL, ΓGH and ΓGL describe the decay of coherence due to energy
fluctuations and interaction with the (vibrational) environment. Eq. (4.60) reads explic-
itly

dρGL

dt
= −iΩL (ρLL − ρGG)− iΩHρHL − ΓGLρGL , (4.62a)

dρHL

dt
= −iΩH (ρGL − ρHG)− 2i|Ω|ρHL − ΓHLρHL , (4.62b)

dρGH

dt
= −iΩH (ρHH − ρGG)− iΩLρLH + 2i|Ω|ρGH − ΓGHρGH , (4.62c)

dρLL

dt
= −iΩL (ρGL − ρLG) , (4.62d)

dρHH

dt
= −iΩH (ρGH − ρHG) , (4.62e)

where ΩL,H = µL,HE0/(2
√

3) with µL,H being the magnitudes of the TDMs, and
√

3
arising from orientational averaging. When decoherence is very fast, namely

min{ΓHL, ΓGH, ΓGL} � max{ΩH, ΩL} , (4.63)
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we can assume that coherences (ρk 6=k′) will adiabatically follow populations ρkk. Thus,
setting the first three derivatives to zero, we have

ρGL ≈ −i
ΩL

ΓGL
(ρLL − ρGG)− i

ΩH

ΓGL
ρHL , (4.64a)

ρHL ≈ −i
ΩH

ΓHL + 2i|Ω| (ρGL − ρHG) , (4.64b)

ρGH ≈ −i
ΩH

ΓGH − 2i|Ω| (ρHH − ρGG)− i
ΩL

ΓGH − 2i|Ω|ρLH . (4.64c)

On the right-hand sides of Eq. (4.64), the terms involving coherences are of the order
|ρk 6=k′ | ∼ ΩH,L/Γkk′ � 1, whereas populations have larger values, ρkk ∼ 1. Therefore,
we can safely drop the coherence terms from those right-hand sides and substitute the
resulting simplified relationship back into the population equations Eq. (4.62). This
yields

dρLL

dt
≈ −2

Ω2
L

ΓGL
(ρLL − ρGG) , (4.65a)

dρHH

dt
≈ −2

Ω2
H

ΓGH

1
1 + (2|Ω|/ΓGH)2 (ρHH − ρGG) . (4.65b)

Consequently, the full master equation for the time evolution of the entire density ma-
trix is very well-approximated by just two rate equations for the populations

dρLL

dt
≈ −TGL (ρLL − ρGG) , (4.66a)

dρHH

dt
≈ −TGH (ρHH − ρGG) , (4.66b)

with the resonant and off-resonant transition rates given by, respectively,

TGL = 2
Ω2

L
ΓGL

, TGH = 2
Ω2

H
ΓGH

1
1 + (2|Ω|/ΓGH)2 . (4.67)

Note that these expressions are more generally valid and applicable between weakly
coupled levels (both resonant and detuned) in the presence of fast dephasing, as is
shown in Ref. [45]. Indeed, in general we can write

Tkk′ = 2
Ω2

kk′

Γkk′

1
1 + (∆kk′/Γkk′)2 , (4.68)

where Tkk′ is the incoherent transition rate between the states |k〉 and |k′〉, Ωkk′ is the
coherent coupling between the states, Γkk′ is the dephasing rate between them and
∆kk′ = ωkk′ − ωc is the detuning between the |k〉 − |k′〉 transition frequency and the
cavity frequency ωc. Here ωkk′ = |Ek − Ek′ |/h̄ and Ek,k′ is the energy of the |k〉 , |k′〉-th
state.

Note that including photon and phonon (Bloch-Redfield) dissipators to the master
equation (which can be done additively within second order perturbation expansions)
only affects the precise values of the dephasing terms Γkk′ and will not alter the form
and validity of Eq. (4.68).
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4.6.11 Electric field with strong dephasing: incoherent laser equation

In the following, we use the incoherent rates of Eq. (4.68) to derive a set of rate equa-
tions for the dimer levels driven by the cavity under strong dephasing, including also
the effect of photons and phonons. We start from the approximate Lindblad master
equation Eq. (4.32) comprising a set of rate equations for photon absorption, sponta-
neous emission and phonon-induced thermal relaxation. We include the effect of the
cavity by adding semi-classical transition rates Eq. (4.68) between the levels |G〉 − |L〉,
|H〉− |F〉 (resonant transitions) and |L〉− |F〉, |G〉− |H〉 (non-resonant transitions, with
a detuning frequency |2Ω|/h̄), assuming for simplicity that the dephasing rate has the
same value Γkk′ = Γφ for all transitions. Moreover, we derive a rate equation for the
intensity of the cavity field I = ε0|E0|2/2: we start from Eq. (4.56) and we replace the
coherence terms with the approximate expressions that we derived in Eq. (4.64) drop-
ping higher-order terms proportional to the coherences, under the assumption of strong
dephasing. The resulting system of coupled equations reads

dρGG

dt
=γL(ωL) [1 + nT(ωL)] ρLL + γH(ωH) [1 + nT(ωH)] ρHH

− γL(ωL)nT(ωL)ρGG − γH(ωH)nT(ωH)ρGG

+ TGL(I) [ρLL − ρGG] + TGH(I) [ρHH − ρGG] , (4.69a)
dρLL

dt
=γL(ωH) [1 + nT(ωH)] ρFF − γL(ωL) [1 + nT(ωL)] ρLL

+ γL(ωL)nT(ωL)ρGG − γL(ωH)nT(ωH)ρLL

+ ΓΩ [1 + nΩ] ρHH − ΓΩnΩρLL + TGL(I) [ρGG − ρLL] + TLF(I) [ρFF − ρLL] ,
(4.69b)

dρHH

dt
=γH(ωL) [1 + nT(ωL)] ρFF − γH(ωH) [1 + nT(ωH)] ρHH

+ γH(ωH)nT(ωH)ρGG − γH(ωL)nT(ωL)ρHH

− ΓΩ [1 + nΩ] ρHH + ΓΩnΩρLL + TGH(I) [ρGG − ρHH ] + THF(I) [ρFF − ρHH ] ,
(4.69c)

dρFF

dt
=− γL(ωH) [1 + nT(ωH)] ρFF − γH(ωL) [1 + nT(ωL)] ρFF

+ γL(ωH)nT(ωH)ρLL + γH(ωL)nT(ωL)ρHH

+ TLF(I) [ρLL − ρFF] + THF(I) [ρHH − ρFF] , (4.69d)

dI
dt

=b(I)
{

µ2
L

µ2

[
ρLL − ρGG +

ρFF − ρLL

1 + (2|Ω|/h̄Γφ)2

]
+

µ2
H

µ2

[
ρFF − ρHH +

ρHH − ρGG

1 + (2|Ω|/h̄Γφ)2

]}
− κ I , (4.69e)
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where we have introduced the transition rates

TGL(I) =
µ2

L I
3h̄2ε0cΓφ

, TLF(I) =
µ2

L I
3h̄2ε0cΓφ[1 + (2Ω/h̄Γφ)2]

, THF(I) =
µ2

H I
3h̄2ε0cΓφ

,

TGH(I) =
µ2

H I
3h̄2ε0cΓφ[1 + (2Ω/h̄Γφ)2]

, b(I) =
nAµ2ωL I
3h̄ε0Γφ

, (4.70)

which all depend on the field intensity I. The approximations leading to Eq. (4.69)
are allowed only if the dephasing rate is much faster than the coherent oscillations
induced by the laser field in the cavity. We now proceed to write the condition of
validity for the rate equations Eq. (4.63) in terms of the field intensity. Approximating
max{ΩH, ΩL} ≈ ΩH ≈ µE0/(

√
6h̄) for µ2

L � µ2, we define the parameter

η =
max{ΩL, ΩH}

Γφ
=

√
I
Ĩ

where Ĩ ≈
3cε0h̄2Γ2

φ

µ2 . (4.71)

According to the condition Eq. (4.63), the rate equation description is valid when
η � 1, that is when I � Ĩ. For the parameters used in the main part of the chap-
ter, µ = 10.157 D and Γφ = 1/(10 ps), we have Ĩ = 80 kW/cm2 which is larger than the
stationary values of the intensities considered in the main part of the chapter.

4.6.12 Comparing coherent and incoherent laser equations

In this section we compare the full Bloch-Redfield coherent laser equations Eq. (4.50)
and Eq. (4.56) with the incoherent laser equation Eq. (4.69). Both will be contrasted
against the (stationary) laser equation presented in Eq. (4.7) and Eq. (4.8). Note that the
incoherent laser equations are the most general (and also most difficult to solve), while
the incoherent laser equations assumed strong dephasing so that energy exchange with
the cavity can be considered incoherent. Finally, the laser equation presented in Eq. (4.7)
and Eq. (4.8) not only assumed strong dephasing as in the incoherent laser equation,
but they also assume fast thermal relaxation which has not been assumed in deriving
Eq. (4.69).

In order to validate the laser equation presented in Eq. (4.7) and Eq. (4.8) we have
computed the evolution of the intensity as a function of time starting with the following
initial conditions for the dimer density matrix

ρ(t = 0) =


0 0 0 0
0 0 0 0
0 0 0.5 0
0 0 0 0.5

 , (4.72)

where only the |G〉 , |L〉 states are initially equally populated and as initial value of the
field in the cavity we set E0(t = 0) = 868 Vm−1. Only the case of disordered dimers is
considered. A first comparison between the fully coherent model and the laser equation



4.6. APPENDIX 125

(a) Γφ = 1/(10 ps), nA = 5× 10−4 mmol/L, Ĩ = 80 kW/cm2
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(b) Γφ = 1/(1 ps), nA = 5× 10−3 mmol/L, Ĩ = 8 MW/cm2
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(c) Γφ = 1/(100 fs), nA = 5× 10−2 mmol/L, Ĩ = 800 MW/cm2
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(d) no dephasing, nA = 5× 10−4 mmol/L, Ĩ = 5.7 mW/cm2
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Figure 4.8: Level populations and laser intensity obtained with the Bloch-Redfield (B-
R) coherent model Eq. (4.50)-Eq. (4.56) and with the laser rate equations Eq. (4.69). The
blue dashed lines represent the steady-state solution of the laser equations Eq. (4.7)-
Eq. (4.8). Ĩ is the maximal intensity for which the rate equations are expected to work,
see Eq. (4.71). In panel (d), for the “laser rate equation” and “Eq. (4.7)-Eq. (4.8)” cases
we set the dephasing rate from the spontaneous emission timescale (Γφ = 1/(36.78 ns)).
Parameters: µ = 10.157 D, h̄ωA = 1.17 eV, Ω = 2000 cm−1, TBB = 3000 K, κ/(2π) =
50 MHz, 〈χ〉 = 0.005.
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is presented in Fig. 4.1b for the case of a black body pumping of T = 3000 K. In the
following, we shall also limit our consideration to the same black-body temperature.

In Fig. 4.8 we plot the populations of all the four levels and the laser intensity against
time. In panel (a) the parameters ensure a stationary laser intensity of 0.5 kW/cm2 at
TBB = 3000 K and Ĩ = 80 kW/cm2, which implies η = 0.08, so that the rate equation ap-
proximation Eq. (4.69) is valid. By comparing the rate equations Eq. (4.69) results (red
dash-dotted lines) with the full Bloch-Redfield coherent laser equations results (black
continuous lines), one can see that they are very similar. Moreover, the stationary in-
tensity reached by both approaches is also equal to Eq. (4.7) and Eq. (4.8), see horizontal
dashed line. The laser equations derived in Eq. (4.7) and Eq. (4.8) remain valid also for
shorter dephasing times, as we show in panels (b,c), where higher dephasing values are
used (1 ps and 0.1 ps), so that Ĩ = 8 MW/cm2 (panel b) and Ĩ = 800 MW/cm2 (panel
c). Note that in panels (b,c) we also use higher densities than panel (a), in order to reach
the lasing threshold. With these parameters we obtain a stationary laser intensity of
5 kW/cm2 (panel b), implying η = 0.03, and intensity of 50 kW/cm2 (panel c), imply-
ing η = 0.008 so that the rate equations (red dash-dotted lines) remain valid in these
two cases. Finally, in panel (d) we consider the case with “no dephasing”, in the sense
that no extra dephasing is included in the system, and the main source of decoherence
is due to the coupling to the photons. Therefore, we compare the full Bloch-Redfield
coherent laser equations results with the rate equations Eq. (4.69), where we choose
Γφ = γ0, that is we assume that the dephasing rate is given only by spontaneous decay.
From panel (d) one can see that the coherent model has a very different dynamics from
the rate equations. The coherent model shows non-damped oscillations (we verified
that there is no damping up to 650 ns), while the rate equations quickly reach their
steady-state values in few nanoseconds. For the parameters in panel (d) we obtain
an average stationary laser intensity of 0.5 kW/cm2 with Ĩ = 5.7 mW/cm2, implying
η = 296, so that the rate equations are not expected to be valid.

The results presented in this section thus confirm the validity of our laser equations,
see Eq. (4.7) and Eq. (4.8), under the assumption of strong dephasing and quick ther-
mal relaxation. Both these assumptions are realistic in molecular aggregates at room
temperature.

Finally we would like to note that the timescale required for reaching the sta-
tionary regime strongly depends on the black-body temperature. For instance, for
TBB = 3000 K equilibrium is reached in ∼ 100 ns, while for natural sunlight timescales
up to 10 ms are needed to reach the equilibrium lasing intensity. As this would require
heavy numerical simulations, we are not showing this case here. In general, the equi-
libration timescale is given by max

{
[(Ru + Rd)(nA/2nth

A )]
−1, 1/κ

}
, with the threshold

density nth
A given implicitly by Eq. (4.9).

Moreover, within the considered range of parameters the double-excitation |F〉 state
never acquires any significant population. Therefore, when η � 1 and the 4-level rate-
equation description is valid, we can also safely ignore the |F〉 state and assume ther-
mal relaxation within the single-excitation manifold, obtaining the main-text theory. In
other words, the η � 1 condition is enough to justify the approximations made in our
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theory in Eq. (4.7) and Eq. (4.8).
Finally we would like to comment on the effect of faster dephasing as considered

here. The main effect of faster dephasing is to lower the incoherent driving of the cavity,
thus inducing a larger critical threshold density for lasing. As for the level of darkness
required to have lasing, Eq. (4.12) establishes an upper bound for the brightness, in
order to have lasing. The only dependence on dephasing in Eq. (4.12) is in the rates
〈B〉, Btot. In any case, when the aggregate has only one transition that is resonant with
the cavity (and all others are well detuned with energy differences larger than h̄Γφ), then
〈B〉 ≈ Btot and the upper bound for the dimer brightness is dephasing-independent. In
all of our calculations we indeed focused to such regime.

On the other hand, the threshold density Eq. (4.9) always depends on Γφ, since the
right-hand side of Eq. (4.9) increases proportionally to Γφ [see Eq. (4.5) neglecting the
contribution of the off-resonant states].

4.6.13 Bio-inspired aggregate: Purple Bacteria

In Fig. 4.2 we apply our lasing theory to a bio-mimetic molecular aggregate inspired
by the antenna complex of purple bacterium Rhodobacter Sphaeroides. Here we describe
in detail the structure and the Hamiltonian of the aggregate. Purple bacteria antenna
complexes are formed by bacteriochlorophyll-a (BChl) molecules, aggregated in differ-
ent kinds of ring-like structures [35, 139]. The most common BChl aggregates are those
called light-harvesting complex II (LHII). These are either 9-fold [35] or 8-fold [3, 5]
structures, formed by two stacked rings. Here we consider the 9-fold structure, which
is subdivided into a lower ring made of 18 BChl molecules and an upper ring made of
nine molecules. The lower ring is called B850 since it has a fluorescence peak at 850 nm,
while the upper ring is called B800 because it emits at 800 nm. The LHII rings are dis-
tributed on bacterial membranes, surrounding the larger light-harvesting I (LHI) com-
plexes. LHI can have a ring structure [139] made of 32 molecules or an S-like shape [35]
made of 56 molecules. Here we consider the ring-like structure for LHI, also called B875
for its emission peak at 875 nm. Around the LHI complex we place 8 equally spaced
LHII aggregates (see Fig. 4.9) mimicking natural antennae. The minimal distance be-
tween neighboring LHII aggregates is 22.4 Å as in Ref. [35], while the minimal distance
between LHII and LHI is 25.3 Å. At the center of the LHI we place a homo-dimer, where
the two molecules are separated by 8 Å (similarly to BChls in the special pair of purple
bacteria reaction centers [3, 5]) and their transition dipoles have an equal component
cos θ on the ring plane and an opposite component ± sin θ out of plane. Controlling θ
and keeping the coupling between the dimer molecules fixed, we can change the dimer
brightness 〈χ〉, so that we go from an H-dimer (θ ≈ 0, 〈χ〉 ≈ 0) to a J-dimer (θ ≈ π/2,
〈χ〉 ≈ 1). We chose the excitation frequency of the molecules in the dimer to be 1.17 eV
corresponding to ≈ 1060 nm, which is in the near infrared wavelength. Since the cou-
pling in the dimer is 2000 cm−1 the dimer |H〉 state has an excitation wavelength of
about 875 nm at resonance with the superradiant states of the LHI aggregate. This
choice will ensure a large supertransfer coupling and fast thermal relaxation between
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the LHI and the dimer. Indeed due to the symmetric arrangement (the dimer is at the
center of the LHI ring) the coupling between the |H〉 state of the dimer and the super-
radiant states of the LHI ring will be enhanced by a factor ≈

√
32 [3].

In Fig. 4.9 we show a top-view of the aggregate, while in Table 4.1 we report the
positions of the molecules and the unit vectors for their transition dipole moment.
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-150

-100
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LHI+dimer
LHII	(B850)
LHII	(B800)

Figure 4.9: Positions (circles) and transition dipole orientations (arrows) for all the
molecules in the aggregate (see also Table 4.1). View from top. The axes are in Å units.

Following Ref. [3, 5], we describe the excitation transfer between the molecules of
the aggregate using the single-excitation Hamiltonian

ĤS = ∑
j

h̄ωj |j〉 〈j|+ ∑
i,j

Ωi,j |i〉 〈j| , (4.73)



4.6. APPENDIX 129

Subunit Site energy [cm−1] Nearest-neighbor coupling [cm−1]

LHII (B850) 12532, 12728 (alternate) 363, 320 (alternate)
LHII (B800) 12555 dipole-dipole

LHI 12911 806, 377 (alternate)
Dimer 9437 2000

Transition dipole 10.157 D

x [Å] y [Å] z [Å] µx/µ µy/µ µz/µ

LHII (B850)

123.289 -5.157 -0.06 0.48 0.865 0.147
124.618 4.179 0.067 -0.33 -0.934 0.136
120.678 12.253 -0.047 -0.182 0.972 0.145
115.707 20.304 0.043 0.34 -0.93 0.143
107.485 23.988 -0.056 -0.76 0.633 0.146
98.534 26.991 0.055 0.862 -0.489 0.135
89.822 24.479 -0.06 -0.989 -0.017 0.147
81.072 20.962 0.067 0.974 0.182 0.136
76.05 13.513 -0.047 -0.751 -0.644 0.145
71.563 5.183 0.043 0.635 0.759 0.143
72.483 -3.78 -0.056 -0.168 -0.975 0.146
74.358 -13.033 0.055 -0.007 0.991 0.135
80.889 -19.322 -0.06 0.509 -0.848 0.147
88.31 -25.141 0.067 -0.644 0.753 0.136
97.272 -25.766 -0.047 0.933 -0.328 0.145
106.73 -25.487 0.043 -0.975 0.171 0.143
114.032 -20.208 -0.056 0.928 0.342 0.146
121.108 -13.958 0.055 -0.855 -0.502 0.135

LHII (B800)

126.628 11.769 16.843 -0.771 0.619 0.149
112.396 27.476 16.751 -0.987 -0.013 0.162
91.382 30.349 16.774 -0.754 -0.643 0.131
73.494 18.908 16.843 -0.151 -0.977 0.149
67.007 -1.271 16.751 0.504 -0.848 0.162
75.026 -20.906 16.774 0.934 -0.332 0.131
93.878 -30.677 16.843 0.922 0.358 0.149
114.597 -26.205 16.751 0.482 0.861 0.162
127.592 -9.443 16.774 -0.18 0.975 0.131

x [Å] y [Å] z [Å] µx /µ µy/µ µz/µ

LHI

44.706 -12.591 -0.099 0.634 0.76 0.147
47.167 -3.677 0.099 -0.452 -0.886 0.098
46.122 5.475 -0.099 0.295 0.944 0.147
44.984 14.653 0.099 -0.079 -0.992 0.098
40.515 22.709 -0.099 -0.089 0.985 0.147
35.952 30.752 0.099 0.307 -0.947 0.098
28.741 36.485 -0.099 -0.459 0.876 0.147
21.448 42.169 0.099 0.646 -0.757 0.098
12.591 44.706 -0.099 -0.76 0.634 0.147
3.677 47.167 0.099 0.886 -0.452 0.098
-5.475 46.122 -0.099 -0.944 0.295 0.147
-14.653 44.984 0.099 0.992 -0.079 0.098
-22.709 40.515 -0.099 -0.985 -0.089 0.147
-30.752 35.952 0.099 0.947 0.307 0.098
-36.485 28.741 -0.099 -0.876 -0.459 0.147
-42.169 21.448 0.099 0.757 0.646 0.098
-44.706 12.591 -0.099 -0.634 -0.76 0.147
-47.167 3.677 0.099 0.452 0.886 0.098
-46.122 -5.475 -0.099 -0.295 -0.944 0.147
-44.984 -14.653 0.099 0.079 0.992 0.098
-40.515 -22.709 -0.099 0.089 -0.985 0.147
-35.952 -30.752 0.099 -0.307 0.947 0.098
-28.741 -36.485 -0.099 0.459 -0.876 0.147
-21.448 -42.169 0.099 -0.646 0.757 0.098
-12.591 -44.706 -0.099 0.76 -0.634 0.147
-3.677 -47.167 0.099 -0.886 0.452 0.098
5.475 -46.122 -0.099 0.944 -0.295 0.147

14.653 -44.984 0.099 -0.992 0.079 0.098
22.709 -40.515 -0.099 0.985 0.089 0.147
30.752 -35.952 0.099 -0.947 -0.307 0.098
36.485 -28.741 -0.099 0.876 0.459 0.147
42.169 -21.448 0.099 -0.757 -0.646 0.098

Dimer

0.0 -4.0 0.0 cos θ 0.0 sin θ
0.0 4.0 0.0 cos θ 0.0 − sin θ

Table 4.1: Parameters for the aggregate Hamiltonian, positions and normalized transi-
tion dipole vectors for the LHI complex, the dimer and one of the eight LHII complexes
forming the aggregate in Fig. 4.9.
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where |j〉 is a state where only the j-th molecule is excited and all the other ones are in
their ground state, and the off-diagonal elements are the inter-molecular couplings. For
pairs of molecules that are sufficiently far apart, we follow Ref. [2] using a dipole-dipole
coupling

Ωi,j =
1

4πε0

[
~µi ·~µj

r3
i,j
− 3

(~µi ·~ri,j)(~µj ·~ri,j)

r5
i,j

]
(4.74)

with the unit vectors ~µi/µ given in Table 4.1 and the distance vectors~ri,j = ~rj −~ri ob-
tained from the positions in Table 4.1. The dipole-dipole coupling is a good approxima-
tion only when the molecules are far apart, though. This excludes the nearest-neighbor
molecules in the LHII B850 ring and the nearest-neighbor pairs in LHI. Therefore, we
replace the B850 nearest-neighbor couplings with the values reported in Ref. [35] and
the LHI couplings with the ones in Ref. [3, 5]. The transition dipole µ for the dipole-
dipole couplings Eq. (4.74) is taken from Ref. [3, 5], while the site energies are set to
match the main fluorescence peaks at 800 nm (B800), 850 nm (B850) and 875 nm (LHI).
All these parameters are reported in Table 4.1.

By diagonalizing the Hamiltonian Eq. (4.73) for the whole bio-inspired aggregate,
we obtain the energies and TDMs for all eigenstates of the system. This information
allows us to use our laser equations (4.6),(4.7) and (4.8), under the assumption of quasi-
instantaneous thermal relaxation and incoherent driving induced by the cavity field.
We would like to stress that, while incoherent driving induced by the cavity field is
well justified, the fast thermal relaxation assumption might fail in very large systems.
Nevertheless here we show that this assumption remains valid for the large aggregates
considered in this section. Indeed, due to the cooperative coupling between the super-
radiant states of the LHII-LHI complex and LHI-dimer system, thermalization is esti-
mated to occur in tens of picoseconds [2]. We now proceed by estimating the remain-
ing relevant timescales: the driving rate induced by the cavity coupling and the optical
rates (spontaneous and stimulated emission) induced by the photon field. Specifically,
from Eq. (4.5) we can estimate the cavity-induced transition rate as n(Btot + 〈B〉). When
the |L〉 state of the dimer is well-gapped below the rest of the single excitation manifold,
its Boltzmann occupation is close to 1 and we have Btot ≈ 〈B〉 ≈ BL. Owing to Eq. (4.5)
we also have n(Btot + 〈B〉) ≈ 2nBL = Ω2

L/Γφ = µ2
L I/(h̄2cε0Γφ). For the parameters

used here (µ = 10.157 D, Γφ = 1/(10 ps)) and the maximal intensity that we consider
(I = 1 kW/cm2), we obtain n(Btot + 〈B〉) ≈ 7.78(µL/µ)2 ns−1. In the extreme case
µL = µ we have n(Btot + 〈B〉) ≈ 1/(126 ps). In most cases µL � µ and the intensity
is less than 1 kW/cm2, so laser-induced transitions occur on a timescale slower than
126 ps. Moreover, as explained before in this chapter, thermal relaxation is certainly
faster than optical pumping and decay rates, which range from a few nanoseconds
(large aggregates, high black-body temperature) down to milliseconds (small aggre-
gates, natural sunlight). Another relevant timescale is the realistic extraction rate κ from
the cavity of about three nanoseconds which we considered. Finally, note that under
natural sunlight pumping (where the maximal laser intensity considered is 10 W/cm2)
these other timescales are considerably longer and thus Eqs. (4.6), (4.7) and (4.8) retain
their validity for larger aggregates.
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These estimates justify the use of the laser equations (4.6), (4.7) and (4.8) for the
bio-inspired aggregate considered here. To further validate this and to show how to
extend our analysis to even larger aggregates, where thermal relaxation might not be
the fastest timescale, here we analyze a set of incoherent laser equations, similar to
Eq. (4.69), where instantaneous thermalization is not assumed.

For this purpose we focus on the LHI-Dimer aggregate, composed of a total of 34
molecules, 32 for the LHI and two for the dimer. In this case we will consider the
eigenstates of the LHI aggregate and the dimer aggregate separately. Let us define
Pk as the population of one of these 34 states: k = 1, . . . , 32 for the LHI eigenstates
and k = 33, 34 for the dimer eigenstates (|L〉 and |H〉). This separation is motivated
from the fact that thermalization on the LHI or dimer aggregate alone will be faster
(few picoseconds) than the thermalization over the whole LHI-Dimer aggregate. This
is because the coupling within the aggregates (of the order of several hundreds of cm−1)
is much stronger than the coupling between the aggregates (few cm−1). Moreover, let
us define PG as the probability to be in the ground state and n the number of photons
in the cavity, so that the incoherent laser equations read

dPG

dt
= −∑

k
RkPG + ∑

k
[Rk + γk(ωk)]Pk −∑

k
BknPG + ∑

k
BknPk , (4.75a)

dPk

dt
= RkPG − [Rk + γk(ωk)]Pk + BknPG − BknPk + ∑

j

(
Tk,jPj − Tj,kPk

)
, (4.75b)

dn
dt

= V ∑
k

BknPk −V ∑
k

BknPG − nκ , (4.75c)

where the definitions of Rk, γk(ωk), Bk and κ can be found in the previous subsections of
the Appendix. The rates Tj,k between the eigenstates of each aggregate are taken from
Eq. (4.25),

Tj,k =
κvibωj,k

1− e−h̄ωj,k/(kBT)
with ωj,k =

Ek − Ej

h̄

where κvib = 1.3 × 10−3 has the same value that we used when studying the dimer
in the previous sections. The coupling between the LHI and the dimer is taken into
account by considering only the coupling of one superradiant state of the LHI with
the |H〉 dimer state. Indeed, these two states are resonant and the coupling between
all other states is either much smaller or largely off-resonant. Starting from [144], the
thermal transfer rate between the LHI ring and the special pair of the RC system has
been estimated to be ≈ 1/(16 ps). The thermal transfer rate between two aggregates
is defined as K = ∑n,m = pnTn,m, where n labels the eigenstates of the first aggregate
and m labels the eigenstates of the second aggregate, pn is the thermal population of
the n-th eigenstate and Tn,m is the transfer rate between the n-th eigenstate of the first
aggregate and the m−th eigenstate of the second aggregate. For the case of the LHI-
dimer complex, only the coupling between one superradiant state of the ring and the
|H〉 dimer state is relevant, so that K = p2T2,34. Given that p2 ≈ 0.212 at room temper-
ature, we consider only the coupling T2,34 = T34,2 = 1/(p2 × 16 ps) [144] and set all the
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other couplings between the eigenstates of LHI and the dimer to zero. The value of the
coupling between the superradiant state of the LHI aggregate and the |H〉 dimer state
has been chosen to be identical to that estimated for natural structures between the LHI
aggregate and the special pair [2]. The laser intensity can now be obtained from the
number of photons n using Eq. (4.8).

In Fig. 4.10 we compare the numerical solutions obtained from Eq. (4.75) with the
theoretical prediction for stationary values obtained from Eqs. (4.6), (4.7) and (4.8). As
one can see, both the stationary population difference (upper panel) and the stationary
laser intensity (lower panel) obtained with Eq. (4.75) are in excellent agreement with
our theoretical predictions obtained assuming instantaneous thermal relaxation over
the whole aggregate. This figure shows the case of black-body pumping at 3000 K. For
natural sunlight irradiation, since the pumping and the coupling to the cavity is much
weaker, we expect that our assumption of fast thermal relaxation will be valid even for
much larger aggregates than the one considered in Fig. 4.10.

Whilst the rate equation model presented above will naturally not capture some
of the more subtle details of the excitation dynamics of an LHI ring, it nonetheless re-
solves the thermalization process dynamically and is thus more realistic than assuming
instant thermalization. Moreover, finer details in the dynamics will not affect the las-
ing predictions and efficiency, provided thermalization does indeed occur sufficiently
quickly, as is captured by the above rate equations.

4.6.14 Threshold density at 3000 K for purple bacteria bio-inspired aggre-
gates

In Fig. 4.2h we compare the threshold density under natural sunlight pumping for
a dimer and two aggregates (LHI + dimer and LHIIs + LHI + dimer). We show
that the threshold density of the aggregates is mapped to the threshold density of a
dimer whose Ru pumping factor is multiplied by N/2, where N is the total number
of molecules in the whole aggregate. Here, we show the same effect under pumping
from a 3000 K black-body source. In Fig. 4.11 the threshold density is plotted for a
dimer and for the two aggregates. The maximal 〈χ〉 required for lasing increases with
the aggregate size, and the threshold density decreases with increasing N. Similarly to
the natural sunlight case (shown in Fig. 4.2), we can reproduce the aggregate threshold
density using a dimer with an enhanced Ru factor. However, differently to the natural
sunlight case, now the scaling factor is smaller than N/2. Specifically, we reproduce the
“LHI + dimer” case using a dimer with 0.85(N/2)Ru and the “LHIIs + LHI + dimer”
case using a dimer with 0.45(N/2)Ru. The scaling here is not as simple as the natu-
ral sunlight case because of energy-dependent terms contained within Ru. Specifically,
Ru = ∑k γk(ωk)nT(ωk) is the sum of the dipole strengths of the eigenstates (contained
in γk) multiplied by the black-body spectrum of the source. In the natural sunlight
case (TBB = 5800 K) the black-body spectrum is basically flat over the energy range of
the aggregate, so that Ru scales as N, the sum of all the dipole strengths in the aggre-
gate. In the TBB = 3000 K case, instead, the black-body spectrum decreases with the
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Figure 4.10: Comparison between theoretical prediction of Eqs. (4.6), (4.7) and (4.8) and
incoherent rate laser equations Eq. (4.75) for the of the LHI-dimer aggregate (Fig. 4.2b).
Initial conditions for both panels: PG(t = 0) = 0.15, P34(t = 0) = 0.85 (initial popu-
lation of the |H〉 dimer state), Pk 6=34(t = 0) = 0 and n(t = 0)/V = 1011 cm−3. Upper
panel: population difference Deq vs. time: the horizontal dashed lines correspond to
Eq. (4.10), whereas the solid lines have been obtained from Eq. (4.75) in absence of the
coupling to the cavity. Lower panel: laser intensity vs time: the horizontal dashed lines
correspond to Eq. (4.8) whereas the solid lines to Eq. (4.75). In both panels we consider
black body pumping at TBB = 3000 K, and an aggregate density of nA = 10−5 mmol/L.
Two different values of the dimer brightness are shown: 〈χ〉 = 9.7× 10−3 (black curves)
and 〈χ〉 = 0.185 (red curves). The other dimer and LHI parameters are discussed in the
main body.
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energy in the aggregate range. So, the additional dipole strength that is provided by
the LHIIs in the aggregate is proportionally less effective and needs to be multiplied by
a correction factor accounting for the reduced spectral intensity. This explains why the
enhancement is smaller than N/2 at this temperature.
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Figure 4.11: Threshold density for dimer, LHI+dimer and LHIIs+LHI+dimer aggre-
gates. The red line is a dimer with Ru rescaled by 0.85(34/2) where 34 is the number
of molecules in the LHI + dimer aggregate. The green line is a dimer with Ru rescaled
by 0.45(250/2), where 250 is the number of molecules in the LHIIs + LHI + dimer
aggregate. The parameters are the same as in Fig. 4.2h, apart from the black-body tem-
perature, here TBB = 3000 K.

4.6.15 Bio-inspired aggregate: Green Sulfur Bacteria

While in the main part of this chapter we considered a bio-inspired aggregate which
mimics the architecture of purple bacterium antennae, here we consider a different bio-
inspired aggregate which mimics the architecture of another natural photosynthetic
complex: the green sulfur bacteria (GSB) antenna complex [93]. We are motivated in
doing so since, as we pointed out in the main part of this chapter, the lasing efficiency
of the bio-inspired aggregate increases with the number of molecules composing the
aggregate; the GSB antenna photosynthetic complex is the largest and most efficient
antenna complex present in nature [93]. Indeed, GSB antenna complexes can con-
tain up to 250,000 BChl molecules. Even if the precise structure of the GSB antenna
complex is not fully known and it can vary a lot in natural samples, one of the most
important molecular structures present in GSB antennae are certainly constituted by
self-aggregated BChl-c nanotubular structures [117]. Typically in GSB an ensemble of
molecular structures (molecular nanotubes and lamellae) absorb sunlight and trans-
fer excitation to a two-dimensional aggregate called “baseplate”, which lies below the
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Figure 4.12: (a) Positions of the chromophores (circles) and transition dipole orien-
tations (arrows) for the bio-mimetic complexes inspired to the GSB antenna complex
considered in this section. Excitation energies, position, TDM orientation for this bio-
mimetic aggregate are taken from Refs. [56, 96, 117]. (b) Lasing threshold density un-
der natural sunlight for a dimer coupled to a green sulfur bacteria nanotube. Sym-
bols have been obtained by diagonalizing the whole aggregate Hamiltonian and using
Eq. (4.9). Continuous curves have been obtained using the lasing equation, Eq. (4.9), for
the dimer only with a modified pumping Ru → NRu/2, where N is the total number of
chromophores in the aggregate composed of a nanotube and a dimer. System sizes up
to N = 250, 000, corresponding to a realistic number of molecules in the whole green
sulfur bacteria chlorosome [56, 96, 117], have been considered. However, as we discuss
in the text, aggregate sizes N ' 4, 000 stretch the validity of the assumptions of our
laser equations, and are thus of indicative rather than literal value.
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nanotubular structures. Attached to the baseplate there are the FMO complexes which
transfer the excitation from the antenna system to the reaction center.

Here we propose to enhance the pumping of the dimer |H〉 state by placing a natu-
ral nanotubular BChl-c aggregate close to the H-dimer as shown in Fig. 4.12a, where the
positions and TDM orientations of the molecules composing the nanotubular structures
and the dimers are shown. The nanotube structure is described in [117] and references
therein. The nanotube is composed by BChl-c molecules which have an excitation en-
ergy of 1.9 eV and a TDM of

√
30 D. The coupling between the BChl molecules in the

nanotube produces a superradiant excitonic state state around 750 nm [117]. As for the
dimer, we place it 3 nm from the wall of the nanotube (the same distance of the base-
plate). The excitation frequency of the molecules composing the dimer (1.4 eV) and
their coupling 2000 cm−1 are chosen so that the dimer |H〉 state is close in energy to the
superradiant state of the nanotube.

As was done for the purple bacteria, we diagonalize the appropriate Hamiltonian,
as reported in Ref. [117], to obtain the eigenvalues and the TDM of the eigenstates of
the whole aggregate and we then use Eq. (4.9) to obtain the threshold density of lasing
as a function of the brightness 〈χ〉 of the dimer under natural sunlight pumping. The
results are shown in Fig. 4.12b, where symbols refer to the threshold density obtained
from Eq. (4.9). The threshold density is shown for different nanotube lengths which
contains different number of molecules N, see figure. The continuous lines represent
the density threshold of a dimer alone whose Ru pumping factor is multiplied by N/2,
where N is the total number of molecules in the whole aggregate (nanotube plus dimer).

As one can see, the effect of this different bio-inspired aggregate is similar to
the Purple Bacteria molecular aggregate, which is to increase the pumping of the
dimer by a factor N/2. The curves corresponding to the largest aggregates sizes
(N = 9600, 250000) have been obtained only using the dimer equations with enhanced
pumping. The results presented are very promising since they indicate the possibility to
achieve lasing under natural sunlight for relatively large dimer brightness 〈χ〉 ∼ 10−1

(which is easy to reach experimentally [118]).
Notwithstanding the promising results in Fig. 4.12b for larger GSB aggregates, a

word of caution is in order: as discussed in the following, applying our lasing equa-
tions to very large aggregates stretches the assumptions we have made in deriving
Eqs. (4.6), (4.7), (4.8) and (4.9) beyond its strict regime of validity. This renders quan-
titative conclusions unreliable, however, we believe the extrapolation can nonetheless
give an indicative picture of the expected qualitative trend.

Specifically, we expect the implicit assumption that thermalization in the overall
system Hamiltonian eigenbasis is the fastest timescale to break for very large aggre-
gates. On the one hand, it could be argued that disorder in large structures will
lead to more localised states and the picture of completely delocalised eigenstates be-
comes questionable. On the other hand – and neglecting disorder for now – collec-
tive enhancements in the radiative rates will at some point change the hierarchy of
timescales. To discuss this issue we now compare the fluorescence and the thermal-
ization timescales: in large aggregates the dipole strength |µSR/µ|2 of the superradiant
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state in the nanotube scales with the number of molecules as |µSR/µ|2 ≈ 0.6N [117].
This means that the decay time of the superradiant state is τf l = τ0/|µSR/µ|2, where
τ0 ≈ 3 × 104 ps is the decay time of a single molecule. The overall thermalization
timescale is given by the thermalization on the nanotube followed by the excitation
transfer time from the nanotube to the dimer. Since the latter can be enhanced by low-
ering the distance between the dimer and the nanotube, we will solely focus on the
nanotube thermalization time in the following. An upper bound for the thermaliza-
tion timescale τth can be obtained from the diffusion coefficient D ≈ 200 nm2/ps as
estimated for the GSB nanotubes in [145], through the relationship τth = L2/D, where
L is the length of the nanotube. For the natural nanotube considered here we have
L ≈ N(0.01 nm). The given estimates of thermalization and fluorescence times suggest
that for a nanotube of N ≈ 4000 molecules we obtain τth ≈ τf l . We would therefore
expect the laser equations derived in Eqs. (4.6), (4.7) and (4.8) to become quantitatively
unreliable for N ' 4000.

Adequately capturing the dynamics of larger aggregates with an explicit model
is beyond the scope of the current work, and would require the derivation of lasing
equations without the assumption of quasi-instantaneous vibrational thermalization,
while keeping the large dephasing assumption inducing incoherent cavity driving.
This means that one should use incoherent laser equations for these larger aggregates
similar to Eq. (4.75), used in the previous Section.

For the above reason, we only show circled data points for nanotubes up to N =
2400 in Fig. 4.12b. Up to this point the required lasing dimer threshold brightness ap-
proaches 10−3, and we note that this value is still almost an order of magnitude better
than the best result shown in Fig. 4.2h using the purple bacteria bio-inspired aggre-
gate. However, we believe the solid extrapolation curves shown in Fig. 4.12b for larger
N will nevertheless capture the trend for longer nanotubes, not least since much larger
photosynthetic aggregates are known to be highly efficient at channelling energy excita-
tions over long distances to the reaction centers. This extrapolation suggests that larger
photosynthetic structures can indeed further significantly lower the lasing threshold
requirements in terms of molecular density and dimer brightness.
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Chapter 5

Superradiance in quantum dot
superlattices

In this chapter we analyze the interplay of superradiance and noise in a solid state system. The
results presented in this chapter have been published at: Francesco Mattiotti, Masaru Kuno,
Fausto Borgonovi, Boldizsár Jankó, and G. Luca Celardo, “Thermal decoherence of superradi-
ance in lead halide perovskite nanocrystal superlattices”, Nano Lett. 20, 7382–7388 (2020). I
contributed by performing all the calculations, both numerical and analytical.

Recent experiments by Rainò et al. [47] have documented cooperative emission
from CsPbBr3 nanocrystal superlattices, exhibiting the hallmarks of low tempera-
ture superradiance. In particular, the optical response is coherent and the radiative
decay rate is increased by a factor of three, relative to that of individual nanocrys-
tals. However, the increase is six orders of magnitude smaller than what is theo-
retically expected from the superradiance of large assemblies, consisting of 106 to
108 interacting nanocrystals. Here we develop a theoretical model of superradiance
for such systems and show that thermal decoherence is largely responsible for the
drastic reduction of the radiative decay rate in nanocrystal superlattices. Our theo-
retical approach explains the experimental results [47] and provides insight into the
design of small nanocrystal superlattices, able to show a four orders of magnitude
enhancement in superradiant response. These quantitative predictions pave the path
towards observing superradiance at higher temperatures.

5.1 Introduction

Spontaneous emission is a basic quantum mechanical effect due to the coupling of an
excited electronic state with the vacuum state of the electromagnetic field. In an ensem-
ble of identical emitters, cooperative radiation emerges. Called superfluorescence [146],
or superradiance (SR) by Dicke, who first proposed the phenomenon in 1954 [15], this
effect arises from the excitation of an ensemble of individual dipole emitters and results
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in an emissive, macroscopic quantum state. SR has been observed in a variety of sys-
tems [17], with some of the most recent examples being cold atomic clouds [18], photo-
synthetic antenna complexes [19], molecular aggregates [20, 21], quantum dots [22, 23]
and nitrogen vacancies in nanodiamonds [24]. This effect is relevant in enhancing ab-
sorption and energy transfer, which has been proposed to improve the efficiency of
light-harvesting systems [1–5]. SR also leads to spectrally ultranarrow laser beams [6].

In an exciting new development, SR-like behavior has recently been observed at
low temperature (T = 6 K) in a solid state superlattice of CsPbBr3 perovskite nanocrys-
tals (NCs) [47]. These superlattices consist of ∼ 106 − 108 individual cubic NCs self-
assembled into ordered cubic arrays with dimensions on the order of microns. Lead
halide perovskite NC superlattices distinguish themselves from analogous semicon-
ductor NC superlattices [147, 148] in that CsPbBr3 NCs have very high emission quan-
tum yields and very short radiative lifetimes [149]. This high sensitivity to incoming
photons makes CsPbBr3 NCs ideal candidates for building photon sensors and quan-
tum devices. For this reason, recent experimental evidence of SR in CsPbBr3 NC super-
lattices [47] represents an exciting development.

Apparent CsPbBr3 NC superlattice SR distinguishes itself from the normal band
edge emission of CsPbBr3 NCs in that it exhibits a 2.7 times faster radiative lifetime.
Most importantly, the emission is coherent as seen through first- and second-order cor-
relation measurements.

Despite these highly suggestive results, there are notable discrepancies in the exper-
imental observations [47] from what is expected of SR behavior. Our primary concern is
the reported 2.7 times radiative rate enhancement. This is because SR radiative rate en-
hancements scale as N, the number of interacting dipoles [17, 27, 146]. Given that there
are approximately N ∼ 106 − 108 NC emitters in the superlattice, the observed factor of
2.7 enhancement easily differs by six orders of magnitude from what is expected at low
temperature (6 K). For instance, at similar temperatures, SR enhancement in molecular
systems is hundreds of times larger [20, 21].

5.2 Model, results and discussion

We have now developed an open quantum model [117], based on the use of well-known
non-Hermitian radiative Hamiltonians [44], to rationalize SR-like emission from NC
superlattices in the weak excitation regime. Our model specifically applies to the low
fluence (500 nJ cm−2) fluorescence measurements of Ref. [47] (see Appendix 5.4.1). This
regime is also relevant for renewable energy applications, involving light harvesting,
and has previously been invoked when modeling the SR of molecular aggregates [44]
and cold atom gases [150, 152].

We model the CsPbBr3 NC band edge electronic structure using a four-level system,
which accounts for the main isotropic s− p transitions of single NCs [149]. In the low
fluence regime, we limit our considerations to the single excitation manifold, spanned
by the states |n, α〉 = â†

n,α |G〉, where one excitation is present on the α = x, y, z state of
the nth NC, while all the other NCs are in their ground states. Here, |G〉 is the ground
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Figure 5.1: a Eigenvalues in the complex plane of the Hamiltonian Ĥ (see Eq. (5.1)) for
a cubic superlattice of N = 303 NCs. Ĥ has dimensions 3N× 3N = 6.561× 109. The SR
rate, ΓSR, corresponding to the maximal decay rate, is circled green. The grayed region
denotes the energy range within kBT of the ground state energy at T = 6 K. b Plot of
ΓSR/γr versus N. The dashed blue line represents the maximal SR rate theoretically
achievable. The violet vertical dash-dotted line indicates where L equals the wave-
length λ of emitted light within the material. Simulation data (circles) have been fit
(dashed red line) to the function ΓSR/γr = CN/(N2/3 + N2/3

cr ) (fit parameters: C = 81.2
and Ncr = 932), that interpolates between the ∼ N behavior (expected for L � λ) and
∼ N1/3 (expected for L & λ) [150, 151]. The green symbol marks the experimental re-
sults of Ref. [47]. Parameters for a,b: single NC radiative lifetime 1/γr = τr = 0.4 ns,
single NC band edge energy h̄ω0 = 2.38 eV, relative dielectric constant at optical fre-
quencies εr = 4.8 and NC edge length, l = 9 nm.
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state of the whole system, where no excitation is present, and â†
n,α is an operator that

creates an excitation on the αth state of the nth NC. The label α = x, y, z denotes the
three angular momentum states of the p orbital. In our simulations, we consider an
ensemble of N NCs, each of edge length l, forming a cubic superlattice of edge length
L � l. The center-to-center distance between neighboring NCs is l

′
= l + b, which

accounts for the presence of surface ligands. In our simulations, b = 1 nm, as commonly
seen in superlattices[153].

The following 3N × 3N non-Hermitian, radiative Hamiltonian

Ĥ =
N

∑
n=1

∑
α=x,y,z

En |n, α〉 〈n, α|

+ ∑
α,β

∑
n 6=m

Jαβ
mn |m, α〉 〈n, β| (5.1a)

accounts for interactions between individual NCs and their common light field [44,
150] where point-dipole couplings have been implicitly assumed (see Appendix 5.4.2).
Furthermore, En = h̄

(
ω0 − i γr

2

)
is the complex self-energy of the nth NC, where h̄ω0 =

2.38 eV is the NC transition energy [47] and γr = µ2ω3
0
√

εr/(3πε0h̄c3) = 2.5 ns−1 is the
radiative decay rate of a single NC [47] (with µ = 23 D being the single NC transition
dipole moment, εr = 4.8 the relative dielectric permittivity at frequency ω0 [149], ε0 the
vacuum permittivity and c the speed of light). Moreover, Jαβ

mn = Ωαβ
mn − i

2 Γαβ
mn with the

real and imaginary parts given by

Ωαβ
mn =

h̄γr

2

{
y0 (k0rmn) êα · êβ (5.1b)

−y2 (k0rmn)

2
[
êα · êβ − 3 (êα · r̂mn)

(
êβ · r̂mn

)]}
,

Γαβ
mn = h̄γr

{
j0 (k0rmn) êα · êβ (5.1c)

− j2 (k0rmn)

2
[
êα · êβ − 3 (êα · r̂mn)

(
êβ · r̂mn

)]}
.

Here, y0 (x), y2 (x), j0 (x), and j2 (x) are spherical Bessel functions, k0 = ω0
√

εr/c is the
transition wavenumber, êα is the unit vector along the α direction, rmn is the distance
between the mth and nth NC and r̂mn is the unit vector joining them. Jαβ

mn describes the
full radiative coupling between different NC transition dipoles in the superlattice.

A similar approach has recently been proposed to model two-dimensional CsPbBr3
NC superlattices. [154] The employed dipolar near-field coupling, however, is not valid
for distances larger than λ, the NC band edge transition wavelength inside the material.
This means that collective radiation cannot be analyzed for typical experimental system
sizes where L ≈ 5λ (see Appendix 5.4.1). Within our approach interference between
different emitters is implicitly accounted for by Jαβ

mn even for distances larger than λ.
Diagonalizing Ĥ, in turn, yields complex eigenenergies Ek = h̄

(
ωk − i Γk

2

)
where the

imaginary part is related to the radiative lifetime τk = Γ−1
k of the kth eigenstate.
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Figure 5.2: a Thermal average of the normalized radiative decay, (ΓT/γr)− 1, (Eq. (5.2))
versus N. Note that we subtract one from the normalized thermal radiative rate to
improve the visibility at small decay rates. The 2.7 enhancement reported in Ref. [47] is
shown in solid green. Symbols are obtained from numerical diagonalization of Eq. (5.1).
Dashed lines are best fits using the function (ΓT/γr)− 1 = ANB/(NB + NB

sat), with fit
parameters A, B, Nsat (values in Appendix 5.4.6). b Comparison of the experimental [47]
NC superlattice SR radiative decay rate to theory, accounting for thermalization and
static disorder (W = 2 meV). Temperature is 6 K. “Coupled NCs” refers to the decay of
coupled NCs in a superlattice, while “Uncoupled NCs” refers to the measured decay
of isolated, non-interacting NCs. Inset: same data on a logarithmic y-scale. In both a,b,
h̄ω0 = 2.38 eV, γr = 2.5 ns−1, εr = 4.8 and l = 9 nm.
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Figure 5.1a shows the typical complex spectrum for a superlattice of
N = 303 = 27, 000 NCs with individual NC edge lengths of l = 9 nm and an as-
sociated center-to-center distance of l

′
= 10 nm. Here both the decay widths

(h̄Γk) and the real energies (h̄ωk) are normalized with the single NC decay width
h̄γr ≈ 1.6 µeV. We identify the SR decay, ΓSR, as the maximal decay rate predicted (cf.
circle in Figure 5.1a), since time evolution from a generic initial state is dominated by
∼ exp(−ΓSRt), assuming T = 0 K (see Appendix 5.4.3). Note that the energy of the
maximal SR state is highly dependent on the superlattice geometry, dimension and on
the ratio L/λ, see Appendix 5.4.4.

Given that the system size we consider, N = 303, is two orders of magnitude smaller
than that used experimentally [47] (N ∼ 106 − 108), we study how ΓSR scales with N
and extrapolate its value to experimentally-relevant superlattice sizes using the well-
established relationship [150, 151]: ΓSR ∝ N for L � λ and ΓSR ∝ N/(L/λ)2 for for
L & λ, which implies ΓSR ∝ N1/3 for a fixed NC superlattice density of N/L3.

By extrapolating ΓSR to large N, our model predicts a SR lifetime of order τSR ∼
0.04 ps for a NC superlattice of similar size to the one studied experimentally [47] (see
Figure 5.1b and Appendix 5.4.3). Thus we predict at least ΓSR/γr ∼ 104 for the exper-
imental NC and superlattice size, which is four orders of magnitude larger than the
enhancement observed in Ref. [47].

At this point, we suggest that what prevents agreement between theory and
experiment is the absence of an explicit consideration of the sensitivity of SR to
thermalization-induced coherence losses and structural disorder. Indeed, thermal noise
suppresses quantum coherence, especially when kBT becomes comparable to the spec-
tral width of the interacting ensemble (typically of the same order as the nearest-
neighbor coupling J). This can lead to highly suppressed SR in the regime experimen-
tally investigated [47], since at 6 K kBT = 0.5 meV, which is ∼ 3 times larger than the
estimated J = 0.14 meV coupling between nearest NC neighbors.

We therefore account for thermalization effects on NC superlattice SR by taking
thermal averages of all superradiant and subradiant eigenstate emission rates [155,
156], namely

ΓT =
1
Z ∑

k
Γke−h̄ωk/(kBT) , (5.2)

where Z = ∑k e−h̄ωk/(kBT) is the partition function. From Equation (5.2), a correspond-
ing emission intensity is I(t) ∝ exp(−ΓTt), with ΓT the thermal decay rate. Thermaliza-
tion therefore suppresses SR so that ΓT ≈ γr (with γr = τ−1

r ) if kBT is comparable to the
spectral width of the coupled system. Note that in using Equation (5.2) we implicitly
assume that thermal relaxation dominates all other relaxation processes in the material
(see details in Appendix 5.4.5).

Figure 5.2a shows that by taking thermal averages for different superlattice sizes
(blue circles), we observe an initial fast increase of ΓT for small N, followed by a slower
increase at large N. Assuming saturation in the limit N → ∞ (see Appendix 5.4.7),
we estimate ΓT/γr ≈ 4.2 for N ∼ 106 − 108. This is in excellent agreement with the
experimental results [47] where ΓEXP/γr ≈ 2.7.
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An even better correspondence is found by taking into account structural disorder
in the superlattice, stemming from NC size heterogeneities [47, 157] as well as inhomo-
geneities in NC positions and orientations. To estimate the impact this structural disor-
der has on SR, we consider excitation energy fluctuations, which we model by adding
an on-site disorder of strength W (see also Appendix 5.4.8). This form of disorder has
previously been used [25] to model the effects of different sources of time-independent
disorder in various systems.

By introducing such disorder and extrapolating the results to experimentally-
relevant superlattice sizes, we find excellent agreement with experiment [47] for W
between 2 meV and 3 meV, see Figure 5.2a where the experimental [47] result is shown
in green. Note these values of W are several times larger than the nearest-neighbor
coupling J = 0.14 meV (W/J ≈ 15).

Figure 5.2b now compares the theoretical decay, ΓT, for W = 2 meV (red line) to
the experimental emission intensity decay reported in Ref. [47] (red triangles). Our
theoretical emission intensity accounts for ∼ 70% of the experimental intensity decay.
A discrepancy between theory and experiment is visible at long times (see also inset).
This likely reflects omissions in the theory, namely not accounting for non-radiative
processes in NCs that lead to non-unity emission quantum yields [158]. This inter-
pretation is confirmed by the non-exponential decay of the emission from an ensem-
ble of uncoupled NCs (blue circles, Figure 5.2b). Modelling such processes is highly
non trivial since they should account for dynamical transitions between radiative and
non-radiative channels, possibly including activation/deactivation processes for non-
radiative channels that induce blinking [159, 160]. At this point, however, our proposed
theoretical framework, which accounts for thermalization and structural disorder, gen-
erally rationalizes the superradiant accelerated PL decay reported in Ref. [47].

In Ref. [47] it was also observed that the emission spectrum of single superlattices
consists of several emission peaks, with the SR emission band being redshifted relative
to the emission of uncoupled NCs by 64± 6 meV (an average across 10 superlattices).
This redshift cannot be explained by dipolar couplings between NCs in our model,
which at best induces a few meV redshift to the SR emission, see Appendix 5.4.9.

While the origin of a redshifted emission from superlattices remains debated [161–
167], (see Appendix 5.4.9), we conjecture here that the SR redshifted emission observed
in Ref. [47] arises from the existence of sub-domains, composed of larger NCs, within
individual superlattices. In fact, this has already been suggested by the authors of
Ref. [47]. Supporting this are CsPbBr3 NC size-dependent band energies that change
by hundreds of meV when NC edge lengths change from l = 3 nm to l = 12.8 nm [157].
Consequently, large NC SR-active sub-domains will show a sizable redshift relative to
uncoupled and smaller NCs present in the same NC superlattice. It is of note that larger
NCs have an inherently higher likelihood of realizing uniform SR-active sub-domains,
due to their smaller relative edge length fluctuations [157], see Appendix 5.4.9.

Indeed, assuming that l varies between 8 nm and 12 nm, which is consistent with
the size fluctuations reported in Ref. [47], a 50 meV redshift is readily realized between
larger NCs and their smaller NC counterparts within a given superlattice’s residual size
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Figure 5.3: Thermal average of the normalized radiative decay (Eq. (5.2)) versus N for
different temperatures (T = 6 K, 77 K, 300 K). In each panel, the temperature is fixed
and each color represents a different NC size (l = 3 nm, 5 nm, 9 nm, see the legend).
Dashed lines are best fits with the function (ΓT/γr)− 1 = ANB/(NB + NB

sat), with fit
parameters A, B, Nsat (values in Appendix 5.4.6). In all panels, the excitation energy is
h̄ω0 = 2.38 eV and the transition dipole moment is µ = 23 D. The relative dielectric
constant of NC superlattice effective medium is εr = 4.8.

distribution (see details in the Appendix 5.4.9). The existence of sub-domains made of
larger NCs within a superlattice thus rationalize large redshifts of the SR emission.

How large are the sub-domains? In considering this, we note that thermal decoher-
ence, which occurs on the several picoseconds timescale in CsPbBr3 NCs [168], cannot
be neglected when considering their radiative decay, a process that occurs on the hun-
dred picosecond timescale. This ultimately implies that the aforementioned SR sub-
domains must be composed of at least N = 104 NCs to attain a superradiant decay
compatible with experiment, see Fig. 5.2a.

The existence of SR-active sub-domains also explains the large SR linewidth seen
in Ref. [47]. Namely, Ref. [47] shows SR to have an inhomogeneous linewidth of tens
of meV. This exceeds the estimated static disorder in our model by at least an order of
magnitude, see Fig. 5.2a. The discrepancy, however, can be rationalized by the presence
of multiple SR-active sub-domains within a given superlattice, which is consistent with
the presence of substructures in the SR emission band, as noted in Ref. [47]. Namely,
provided that these sub-domains are composed of NCs with different average edge
lengths, inhomogeneous broadening of the experimetal SR will be seen. In whole, the
existence SR sub-domains within a given superlattice, where each sub-domain is com-
posed of large NCs, with an average size that differs from sub-domain to sub-domain,
self-consistently rationalizes three observations made in Ref. [47]: (1) large 64± 6 meV
redshifts, (2) large 15± 4 meV SR inhomogeneous linewidths and (3) SR emission spec-
tral substructure. For more details, see the discussion in Appendix 5.4.10.

Finally, our theoretical framework points to ways of enhancing the SR effect in
NC superlattices. Specifically, our model suggests that superlattices made of smaller,
tightly packed NCs will exhibit stronger couplings, implying enhanced SR decays and
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better prospects for realizing high temperature SR.
We demonstrate this by decreasing component NC edge lengths, l, below CsPbBr3’s

exciton Bohr diameter of 7 nm [149, 157]. In what follows, a NC transition dipole mo-
ment of µ = 23 D and a radiative decay rate of γr = 2.5 ns−1 is assumed since both
parameters are weakly size-dependent in the range of NC sizes explored [149, 157, 169].
Near-field dipole coupling strengths, in contrast, increase due to smaller inter-NC sep-
arations. This stems from nearest-NC neighbor couplings scaling as J ≈ µ2/(l

′
)3 (see

Appendix 5.4.2).
We consider NCs as small as l = 3 nm, compatible with the current lower bound

for size-controlled CsPbBr3 NCs [157]. In the case of l = 3 nm, the estimated coupling
between NCs is J ≈ 2.1 meV. This is 15 times larger than that in the l = 9 nm NC
superlattice studied in Ref. [47].

Figure 5.3 shows the dependence of ΓT with NC superlattice size, for superlattices
made of l = 3 nm and l = 5 nm NCs. The l = 9 nm case is included for comparison
purposes. Each panel in Figure 5.3 considers a different temperature (T = 6 K, 77 K,
300 K). It is clear that decreasing l enhances the SR effect at all temperatures. The largest
enhancement occurs at T = 6 K for l = 3 nm.

By assuming enhancement saturation at large N, we estimate ΓT for realistically
large superlattices (N ∼ 108) made of l = 3, 5, 9 nm NCs. At T = 6 K, we predict
ΓT/γr ≈ 4.2 for l = 9 nm, in excellent agreement with experiment [47]. For l = 5 nm
and l = 3 nm, we find ΓT/γr ≈ 50 and ΓT/γr ≈ 7000 respectively at T = 6 K. The
latter l = 3 nm enhancement is three orders of magnitude larger than that reported in
Ref. [47].

The modeling therefore suggests that small NCs can be used to significantly increase
the temperature range where it is possible to observe NC superlattice SR. To illustrate
this, Figure 5.3b shows that the expected SR decay rate enhancement for a l = 3 nm
NC superlattice is ΓT/γr ≈ 2.3 at liquid nitrogen temperature (T = 77 K). This raises
exciting prospects for realizing robust NC superlattice SR at significantly higher tem-
peratures than 6 K in the near future.

Before concluding, it is important to consider the role of static disorder for different
NCs sizes. Indeed, band edge transition energies vary with size, especially at small
l [157]. This, in turn, implies that small NCs will exhibit energy disorder parameters
larger than those of their larger NC counterparts for identical size distributions. Never-
theless, as shown in Appendix 5.4.10, the ratio W/J (where W is the disorder strength
and J is the coupling between neighbor NCs) remains almost constant as NC sizes are
varied between l = 3 nm and l = 9 nm. Consequently, since realistic disorder has a
minor effect for large NC sizes and for W/J ≈ 15, we expect a minor effect for small
NCs so long as W/J remains of the same order.

5.3 Conclusions

In summary, we have developed a theoretical model that explicitly accounts for the
effects of thermal decoherence and structural disorder on NC superlattice SR and which
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rationalizes the SR effect recently observed [47]. Our proposed model also estimates
the effects of NC size and temperature on superlattice SR, revealing that superlattices
made of smaller, tightly packed NCs will exhibit stronger couplings. Indeed, we predict
a SR enhancement of at least three orders of magnitude, using NCs with edge lengths
of l = 3 nm. This points to the possibility of observing NC superlattice SR at liquid
nitrogen temperatures instead of at T = 6 K.

We note that our model is generally applicable to other NC assemblies. The only
input parameters needed are NC band-edge transition energies, lifetimes, and NC po-
sitions within assemblies. Future iterations of the model will account for non-radiative
processes in NCs [158] (i.e. non unity emission quantum yields) as well as higher exci-
tation fluences.
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5.4 Appendix

5.4.1 Non-Hermitian Hamiltonian for NC superlattices

Here we describe in detail the radiative hamiltonian Ĥ (Eq. (5.1)), introduced to ra-
tionalize SR-like emission from NC superlattices focusing on the low fluence regime
(weak excitation).

In order to build a model able to reproduce the system response to electromagnetic
radiation, the features of the NC emitter must be established. The unit element of the
superlattice under study is the cubic CsPbBr3 perovskite NC [149]. Because of its cubic
symmetry, optical transitions in a CsPbBr3 NC involve three degenerate states (labelled
as α = x, y, z), each with a transition dipole moment (TDM) equal in magnitude (µα =
µ) and perpendicular to the others. A similar situation is found in many atomic systems
with isotopic response to electromagnetic excitation [150, 152]. Thus we model each NC
as a four-level system, with a ground state |g〉 and three degenerate excited states |x〉,
|y〉 and |z〉. Corresponding TDM matrix elements are

〈
α
∣∣∣~̂µ∣∣∣ g

〉
= µêα, with α = x, y, z

and the Cartesian unit vectors defined as êα.
Here we consider an ensemble of cubic NCs and, in particular, focus on a regular

cubic superlattice. Since excitons are bound inside each NC, we do not include any
overlap interaction between different NCs and the only interaction between NCs is
mediated by the light field. We thus propose to describe the NC cubic superlattice
using the following 3N× 3N radiative Hamitonian [150, 152], which takes the vectorial
nature of light into account,

Ĥ = h̄
(

ω0 − i
γr

2

)
∑

α∈{x,y,z}

N

∑
n=1
|n, α〉 〈n, α|+ ∑

α,β∈{x,y,z}

N

∑
m,n=1
(m 6=n)

Jαβ
mn |m, α〉 〈n, β| , (5.3)

where h̄ω0 = 2.38 eV is the NC transition energy [47] and γr = µ2ω3
0
√

εr/(3πε0h̄c3) =
2.5 ns−1 is the radiative decay rate of a single NC [47] (with µ = 23 D being the sin-
gle NC TDM, εr = 4.8 the relative dielectric permittivity at frequency ω0 [149], ε0 the
vacuum permittivity and c the speed of light). In Eq. (5.3), |n, α〉 represents a quantum
state where the nth NC is excited in its αth state, while all the other NCs are in their
ground state. Interaction terms are non-Hermitian, namely Jαβ

mn = Ωαβ
mn − i

2 Γαβ
mn with the

real and imaginary parts given, respectively, by

Ωαβ
mn =

h̄γr

2

{
y0 (k0rmn) êα · êβ −

y2 (k0rmn)

2
[
êα · êβ − 3 (êα · r̂mn)

(
êβ · r̂mn

)]}
, (5.4a)

Γαβ
mn = h̄γr

{
j0 (k0rmn) êα · êβ −

j2 (k0rmn)

2
[
êα · êβ − 3 (êα · r̂mn)

(
êβ · r̂mn

)]}
. (5.4b)

In Eq.s (5.4), y0 (x), y2 (x), j0 (x), and j2 (x) are spherical Bessel functions, k0 = ω0
√

εr/c
is the transition wavenumber, εr is the refractive index at the optical frequency ω0, rmn
is the distance between the mth and nth NC and r̂mn is the unit vector joining them.
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Being non-Hermitian, Eq. (5.3) has complex eigenvalues Ek = h̄
(

ωk − i Γk
2

)
that

represent the self-energies of eigenstates. Each eigenstate has a finite lifetime τk = 1/Γk
that is inversely proportional to the imaginary part (−h̄Γk/2) of the eigenvalue.

Our model specifically applies to the weak excitation regime, where the physics
can be described by considering that only one excitation is present in the system. This
regime is relevant for the fluorescence measurements in Ref. [47] at low excitation flu-
ence (500 nJ cm−2). Indeed, multiplying the fluence by the area of a superlattice face
(∼ 1 µm2) and dividing by the photon energy (3 eV, see Ref. [47]), indicates that, for
this fluence value, only ∼ 104 photons are hitting the superlattice. This is a small frac-
tion (∼ 1%) of the number of NCs present in the superlattice, N ∼ 106. The single-
excitation approximation is thus appropriate for describing the experiment. The main
advantage of the single-excitation approximation is that the Hilbert space scales as N in
contrast to the 2N dimension of the full system. This allowed us to numerically study
superlattices containing up to N = 303 NCs, with an Hamiltonian matrix dimension of
3N × 3N = 6.561× 109. In general, by exploiting the translational invariance of super-
lattices, even larger sizes could be studied by employing a Bloch-like eigenbasis for the
superlattice [154, 170]. Nevertheless, we found that the Bloch-like analytical wavefunc-
tions as employed in Ref. [154] for two-dimensional lattices are not the correct choice
in our three-dimensional case, since long-range couplings between NCs do not allow
to neglect boundary effects (see more details in section 5.4.1). Note that the effect of
the long-range 1/r2

mn and 1/rmn terms in the Hamiltonian, Eq. (5.4), is stronger in three
dimensions than in lower dimensions.

Discrepancies with the Bloch basis

We introduced the radiative hamiltonian Ĥ (Eq. (5.1)) describing the collective interac-
tion of a CsPbBr3 NC superlattice with the common radiation field. As we discuss in
the previous sections, a similar approach has been introduced in Ref. [154] to model
two-dimensional NC superlattices. A common problem to model these systems is that
they are made of a very large number of NCs (N & 106), so that it is not possible to deal
numerically with the full Hamiltonian matrix, of order N. In Ref. [154] this “size prob-
lem” is solved in an elegant way by using the periodicity of the superlattice. As one
can see from Eq. (5.4), the matrix elements of Ĥ depend on the positions of the NCs in
the superlattice, which are periodic. Therefore, if one neglects the boundary effects, the
Hamiltonian becomes translation-invariant on the Bravais lattice ~nl

′
= (nxl

′
, nyl

′
, nzl

′
)

(with nx,y,z integers) and the Bloch Theorem could be applied[170], implying that the
eigenfunctions would have the form

〈~n, α|ψ~k,u〉 =
ei~k·~n
√

N
c(α)u (~k) , α ∈ {x, y, z} , u = 1, 2, 3 . (5.5)
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Figure 5.4: Complex eigenvalues of Ĥ in the complex plane (upper panel) and their
real parts (lower panel), computed from numerical diagonalization and as expectation
values 〈ψ~k,u|Ĥ|ψ~k,u〉 of the Bloch wavefunctions, Eq. (5.5). For the analytical wavefunc-
tions, two different boundary conditions have been considered (see text). Parameters:
h̄ω0 = 2.38 eV, γr = 2.5 ns−1, εr = 4.8, N = 1000, l = 9 nm.
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In Eq. (5.5) the vector~k has N possible values, determined by the boundary conditions,
while the c(α)u (~k) coefficients can be found by diagonalizing a 3× 3 matrix for each~k,

hαβ(~k) = 〈ψ~k,α|Ĥ|ψ~k,β〉 = ∑
~m

∑
~n

ei~k·(~m−~n)

N
〈~n, α|Ĥ|~m, β〉 . (5.6)

The coefficients c(α)u (~k) in Eq. (5.5) are the coefficients that allow to diagonalize hαβ(~k),
and they arise from the coupling between Bloch wavefunctions having the same eigen-
mode~k but different polarizations α, β = x, y, z.

Such approach works very well in presence of nearest-neighbor coupling only, for
which boundary effects are negligible, as we verified (data not shown). When bound-
ary effects are negligible, it is convenient to employ periodic boundary conditions to
the Hamiltonian, like it has been done in Ref. [154], where the authors use dipolar cou-
plings on a two-dimensional superlattice, so that the couplings are short-range. On
the other hand, this approach might not work in our case, that is a cubic superlattice
larger than the transition wavelength λ, with long-range radiative couplings scaling as
r−3

nm, r−2
nm and even r−1

nm (see Eq. (5.4)). In such case, the boundary effects can become
important and the choice of the boundary conditions (for example, periodic boundary
conditions vs. Dirichlet boundary conditions) can lead to different results.

In order to show this, in the following we compare results from exact diagonaliza-
tion with those obtained using analytical, translational-invariant eigenstates obtained
imposing different boundary conditions. In Fig. 5.4 we plot the complex spectrum of
Ĥ, that is the real and imaginary parts of the complex eigenvalues Ek = h̄

(
ωk − i Γk

2

)
.

We use a cubic superlattice of N = 1000 NCs with size l = 9 nm. We compare the nu-
merical results obtained from the diagonalization of Ĥ (black circles) to the expectation
values 〈ψ~k,u|Ĥ|ψ~k,u〉 of the Bloch wavefunctions, using two different boundary condi-

tions (b.c.): periodic b.c. (ei~k·~n = ei2π~mk ·~n/ 3√N , with ~mk vector of integers) and Dirichlet

b.c. (
1√
N

ei~k·~n →
(

2
1 + 3
√

N

)3/2

sin
(

πmx
k nx

1 + 3
√

N

)
sin

(
πmy

k ny

1 + 3
√

N

)
sin
(

πmz
knz

1 + 3
√

N

)
, with

mx,y,z
k = 1, . . . , 3

√
N, integers). As one can see from the upper panel of Fig. 5.4, the es-

timation of the eigenvalues with the Bloch wavefunctions (“analytical”) are different
from the numerical results. Specifically, there are large differences for the few eigen-
values that have the lowest real part Re[Ek]. These last eigenvalues are particularly
important because, once the system reaches thermal equilibrium, most of the popula-
tion is concentrated at low energy. This discrepancy is also shown in the lower panel of
Fig. 5.4, where the real part of the eigenvalues is plotted against the state index, order-
ing the eigenvalues according to their real parts. There is a clear discrepancy of about
0.2 meV (that is 40% of kBT with T = 6 K) for the first 10 to 20 eigenvalues (see also the
blow-up).

If the discrepancy originates from long-range couplings, then it will increases with
N. To check this point, in Fig. 5.5 we plot the main figure of merit of SR in this work, that
is the thermal average of the decay rates (defined in Eq. (5.2)), as a function of the sys-
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Figure 5.5: Thermal average of the decay rates (see Eq. (5.2)) as a function of the number
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tem size N for different temperatures (T = 6 K, 77 K) and different NC sizes (l = 3 nm,
9 nm). As one can see, the results obtained using the analytical Bloch wavefunctions
differ from the numerical results and the discrepancy increases with N, indeed. These
results suggest that the Bloch basis is not suitable to describe the system at thermal
equilibrium.

5.4.2 Point dipole validity

The radiative Hamiltonian introduced in section 5.4.1 describes the couplings between
the TDMs of the NCs treating them as point dipoles. Here we justify such approxima-
tion.

In general, the coupling between two excited states localized on different NCs can
be described in terms of the Coulomb interaction between the excited state wavefunc-
tions [143]. In most practical cases, the Coulomb coupling between two extended wave-
functions can be mapped to the so-called “extended dipole coupling” [143], that is the
Coulomb interaction between four effective charges (two for each wavefunction, with
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opposite sign). The extended dipole coupling has the form

Vmn =
Q2

4πε0εr

(
1

r++
+

1
r−−
− 1

r+−
− 1

r−+

)
(5.7)

where r++ = |~rm+−~rn+|, r−− = |~rm−−~rn−|, r+− = |~rm+−~rn−| and r−+ = |~rm−−~rn+|.
The position of the “±” charge in the nth dipole is~rn± = ~rn ± (δ/2)ên, where ên is the
unit vector of the nth dipole, δ is the effective charge displacement in the dipole and
Q is the partial charge, that is an effective point charge used to describe the coupling.
These parameters must satisfy the constraint µ = Qδ, where µ is the magnitude of the
TDM.

If the charge displacement is small with respect to the distance between the dipoles,
i.e. δ � |~rm −~rn|, the extended dipole coupling is approximated by the near-field
point-dipole coupling, that is

Vmn ≈
µ2 [êm · ên − 3 (êm · r̂mn) (ên · r̂mn)]

4πε0εr|~rm −~rn|3
(5.8)

where r̂mn = (~rm −~rn)/|~rm −~rn|.
In the case of NCs, the excitons are bound inside the NC volume due to quantum

confinement [171]. Therefore, the charge displacement is bounded by l, that is the edge
length of the NC, and by the exciton Bohr diameter 2aB (where aB is the exciton Bohr
radius).

In Fig. 5.6 we plot the extended dipole coupling, see Eq. (5.7), for a pair of TDMs
against their center-to-center distance r, comparing it to the point dipole coupling,
Eq. (5.8). We employ the typical parameters of CsPbBr3 NCs, that is the magnitude
µ = 23 D and dielectric constant εr = 4.8, and we consider a pair of TDMs oriented
perpendicularly to the joining vector (see the pictorial representation in the box inside
Fig. 5.6), but a similar result can be obtained with different orientations. For the charge
displacement δ we consider two typical situations: δ = 2aB = 7 nm, that is the maximal
charge displacement for large NCs, and δ = 3 nm, corresponding to the maximal charge
displacement for the smallest NC side length that we considered in Fig. 5.3. As one can
see from Fig. 5.6, the extended dipole coupling is well approximated by the point dipole
if r is larger than some value, proportional to δ. For a fixed value of r, the agreement
with the point dipole approximation is better for smaller charge displacement δ. In par-
ticular, we checked the difference in the couplings between nearest neighbour NCs in
two cases: (a) δ = 7 nm and r = 10 nm, that is NCs with l = 9 nm (red arrow), and (b)
δ = 3 nm and r = 4 nm, corresponding to NCs with l = 3 nm (green arrow). In both
cases the point dipole coupling overestimates the extended dipole coupling by ∼ 30%.

We conclude that the point dipole coupling captures correctly the order of magni-
tude of the nearest neighbor couplings, assuming the maximal charge displacement in
typical cases. The accuracy of the point dipole approximation improves on decreasing
the charge displacement, and since we obtain a discrepancy of∼ 30% for the maximal δ,
the actual charge displacement in these NCs is likely smaller than what we considered,
implying a better accuracy.
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5.4.3 Time-resolved fluorescence at T = 0 K without disorder

Here we proceed to use the Hamiltonian Ĥ, see Eq. (5.1), to compute the time evolution
of an excitation initially absorbed by the superlattice.

At T = 0 K, the dynamics of the system are governed by the time-dependent
Schrödinger equation

ih̄
d
dt
|ψ (t)〉 = Ĥ |ψ (t)〉 . (5.9)

The non-Hermiticity of Ĥ results in a non-unitary time evolution of the excitation in
the superlattice[44]. As an example, if the initial state is an eigenstate |ψ (0)〉 = |k〉 of
Ĥ satisfying

Ĥ |k〉 = h̄
(

ωk −
i
2

Γk

)
|k〉 , (5.10)

then the total excitation of the system at time t, as quantified by the squared norm of
the time-evolved state |ψ(t)〉, decays exponentially,

〈ψ (t)|ψ (t)〉 = e−Γkt . (5.11)

The decay time τk = 1/Γk is inversely proportional to the imaginary part (−h̄Γk/2) of
the eigenvalue.

Here we show the signature of SR in the dynamics, studying the time dependence of
the emitted intensity using a master equation approach. As an initial state, we consider
an incoherent statistical average of all NC levels. This corresponds to an excited state
created by the absorption of an off-resonant photon[172, 173]. The state is described by
the density operator

ρ̂ (0) =
1

3N ∑
α∈{x,y,z}

N

∑
n=1
|n, α〉 〈n, α| , (5.12)

which evolves under the generalized Liouville-Von Neumann master equation

ih̄
d
dt

ρ̂ (t) = Ĥρ̂ (t)− ρ̂ (t) Ĥ† . (5.13)

Eq. (5.13) is formally equivalent to the Schrödinger equation (Eq. (5.9)). Its formal solu-
tion is

ρ̂ (t) = e−iĤt/h̄ρ̂ (0) eiĤ†t/h̄ =
1

3N ∑
α∈{x,y,z}

N

∑
n=1

e−iĤt/h̄ |n, α〉 〈n, α| eiĤ†t/h̄ (5.14)

from which we obtain the emitted intensity by taking the product of the excitation
energy by the negative derivative of the excitation’s survival probability

I (t) = −h̄ω0
d
dt

tr [ρ̂ (t)] = − h̄ω0

3N
d
dt ∑

α,β∈{x,y,z}

N

∑
m,n=1

∣∣∣〈m, β| e−iĤt/h̄ |n, α〉
∣∣∣2

= − h̄ω0

3N
d
dt ∑

α∈{x,y,z}

N

∑
n=1

Pn,α (t) . (5.15)
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In Eq. (5.15) tr [ρ̂ (t)] is the trace of the density operator and we have defined the proba-
bility to find the excitation in the superlattice at time t starting from the NC state |n, α〉
as

Pn,α (t) = ∑
β∈{x,y,z}

N

∑
m=1

∣∣∣〈m, β| e−iĤt/h̄ |n, α〉
∣∣∣2 . (5.16)

As a point of comparison, note that the survival probability of a single NC’s excited
state is P0(t) = e−γrt which, in turn, yields an exponential decay of the emission inten-
sity I0 (t) = h̄ω0γre−γrt.

The result from Eq. (5.15) allows us to numerically compute the emitted intensity
versus time by knowing the spectrum of Ĥ. For the NCs considered here, λ = λ0

nr
=

238 nm where λ0 = 521 nm is the band-edge transition wavelength in vacuum and nr =√
εr = 2.19 is the refractive index of bulk CsPbBr3 at the optical frequency ω0 [149].

The other model parameters are a NC side length of 9 nm and a NC radiative lifetime
of 1/γr = 400 ps. Note that the radiative lifetime we chose in our model for the single
NC is in good agreement with the experimental results for the intensity emission from
single NC, compare blue line and blue symbols in Fig. 5.7. The blue circles are the
experimental (6 K) excited state emission decay of an ensemble of non-interacting NCs,
characterized by a short timescale, near exponential decay followed by a longer-lived
component. The former is attributed to radiative decay while the latter is thought to
stem from delayed trap-related emission.

Using this approach, we compute the intensity versus time by applying Eq. (5.15)
to a 10× 10× 10 NC superlattice. Fig. 5.7 shows the results of our simulations for the
time evolution of the emitted intensity (solid red line), compared with the experimen-
tal intensity decays in time from Ref. [47] (red triangles). Of note is the faster initial
decay observed experimentally for the case of coupled NCs (red triangles), which is
approximately three times faster than the decay for the uncoupled NC measurements
(blue circles). While our results for T = 0 K and N = 103 NCs in the superlattice
(red curve) qualitatively reproduce the increased recombination rate seen experimen-
tally, they overestimate the initial, short time experimental rate by nearly four orders
of magnitude, according with what is observed in Fig. (5.1)b. As we discussed above,
a number of possible reasons exists for this discrepancy. They center on the absence
of thermalization and structural disorder in our model. In section 5.4.8, we refine the
model in a way that incorporates static disorder.

5.4.4 Geometry dependence of the SR states position

In Fig. 5.1a the complex spectrum of the radiative Hamiltonian Ĥ (see Eq. (5.2)) is
shown for a cubic superlattice. In this case the most SR state (circled in green in Fig. 1a)
lies in the middle of the energy spectrum. In general, the exact energy of the most SR
state in a system is exquisitely sensitive to the exact geometrical arrangement of emit-
ting dipoles.

When the dipole is perpendicular to the joining vector between the emitters, the
position of the most SR state is blueshifted with respect to the single emitter, as is typical
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Figure 5.7: Theoretical emission intensity (see Eq. (5.15)) vs. time for a single NC (blue
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γr = 2.5 ns−1, εr = 4.8, l = 9 nm. Experimental time-resolved photoluminescence
(TR-PL) decays from Ref. [47] shown by open symbols of the same color. Time=0 in PL
experiments is determined as when the excitation pulse turns off.
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Figure 5.8: Complex eigenvalues of Ĥ in the complex plane for a superlattice of
N ≈ 1000 NCs. Each panel correspond to a different arrangement of the NCs in the su-
perlattice: a perfect cube (upper panel), a two-dimensional square ‘slab’ (middle panel)
and a chain (lower panel). Parameters: h̄ω0 = 2.38 eV, γr = 2.5 ns−1, εr = 4.8, l = 9 nm.

of H-aggregates [121]. On the other side, when the dipoles are parallel to the joining
vector, one has a redshifted SR state, as is typical of J-aggregates [121]. The isotropic
nature of the NCs considered here implies that, for each NC, three dipole directions
have to be considered, each coupled to all the other NC dipole directions. Thus, there
are both dipoles parallel to the joining vector between the NCs (i.e. |êα · r̂mn| = 1 in
Eq. (5.1)), giving a redshift contribution, and also dipoles perpendicular to the joining
vector (i.e. |êα · r̂mn| = 0), giving a blueshift contribution. Due to this mixture of redshift
and blueshift contributions, it is not surprising that the most SR state is close to the
middle of the spectrum.

The position of the most SR states is highly dependent on geometry. Indeed our
preliminar results for a 1D and 2D superlattice (see Fig. 5.8) show that the most SR
states are concentrated at the spectrum edges. This peculiar dependence on geometry is
strongly determined by the presence of three degenerate TDMs for each NC, which im-
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plies a complicated mixture of redshift and blueshift contributions as explained above.
Finally, we note that identifying the energy of the highest SR state with respect to

the thermal energy kBT in an isotropic three-dimensional lattice is not trivial, as the
energy of the highest SR state depends on different parameters. These include lattice
geometry [117] and the coupling between distant NCs, which depends on the ratio of
the superlattice edge length (L) to the emission wavelength (λ) in the superlattice, i.e.
L/λ (see discussions in section 5.4.1 and section 5.4.7).

5.4.5 Time-resolved fluorescence with non-zero temperature

In order to estimate the effect of thermal decoherence on the decay rate of the NC super-
lattice, one can use the following common theoretical argument [156]. Let us consider
the time evolution of an excitation initially present in the system, which is coupled to a
thermal bath. Let us write a Pauli master equation [49] for the population Pk(t) of each
kth eigenstate,

dPk(t)
dt

= −ΓkPk (t) +
3N

∑
j=1

[
RkjPj(t)− RjkPk(t)

]
, (5.17)

where Rkj are the thermalization rates between the eigenstates obeying the detailed
balance relation Rkj = Rjke−h̄(ωk−ωj)/(kBT), while Γk is the radiative decay rate of the
k−th eigenstate. In typical situations, the radiative decay rates Γk are much smaller
than the thermalization rates, namely Γk � Rkj. Since thermalization time is smaller
than fluorescence time, one can describe time-resolved fluorescence assuming that the
system is always at thermal equilibrium, i.e. the populations of the eigenstates follow
Pk(t) ≈ P(t)e−h̄ωk/kBT/Z at all times, where P(t) = ∑k Pk(t) is the excitation survival
probability in the system and Z = ∑k e−h̄ωk/(kBT) is the partition function. Under this
ansatz, the second term in the right hand side of Eq. (5.17) is zero. Moreover, summing
both sides of Eq. (5.17) over k, we have

dP (t)
dt

= −ΓTP (t) , (5.18)

where we have defined the thermal rate

ΓT =
1
Z

3N

∑
k=1

Γke−h̄ωk/(kBT) . (5.19)

Eq. (5.18) has solution P (t) = exp (−ΓTt). The emitted intensity at time t is re-
lated to the survival probability by I (t) = −h̄ω0

dP(t)
dt , so that we obtain I (t) =

h̄ω0ΓT exp (−ΓTt). When kBT is much larger than the spectral width spanned by the
real components h̄ωk, thermal mixing of eigenstates suppresses coherence in the sys-
tem, the thermal average is approximately the arithmetic average ΓT ' γr and the SR
is effectively destroyed. This can be easily proven by letting kBT tend to infinity in
Eq. (5.19) and using the decay rate sum rule ∑3N

k=1 Γk = 3Nγr, which stems from the
conservation of total oscillator strength[174]. In the superlattice under consideration,
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Temperature NC sidelength (disorder) A B Nsat
T = 6 K l = 9 nm (W = 0) 3.22 0.58 21978

l = 9 nm (W = 2 meV) 2.28 0.47 36954
l = 9 nm (W = 3 meV) 0.96 0.53 5061
l = 9 nm (W = 10 meV) 0.33 0.56 1424
l = 5 nm 50 1.99 13075
l = 3 nm 6977 4.58 24440

T = 77 K l = 9 nm 0.0745 0.51 1816
l = 5 nm 0.508 0.51 23290
l = 3 nm 1.31 0.89 19280

T = 300 K l = 9 nm 0.0176 0.52 1384
l = 5 nm 0.084 0.53 6194
l = 3 nm 0.188 0.79 5014

Table 5.1: Fit parameters for the data in Fig. 5.2a and Fig. 5.3, using Eq. (5.20).

the thermal energy at 6 K (kBT = 0.5 meV, grayed area in Fig. 5.1a) is smaller but com-
parable to the spectral width.

In deriving Eq. (5.19) we implicitly assume that thermal relaxation, which is typi-
cally on the picosecond timescale [168], dominates all other relaxation processes in the
material. Since at realistic sizes the maximal superradiant decay Γ−1

SR ≈ τr/104 ≈ 40 fs
could be faster than other disorder-induced relaxation processes, this implies that our
thermal decay rate constitutes a lower bound for the SR decay. Indeed, decay rates
faster than thermal relaxation would result in an even faster initial SR decay.

5.4.6 Fitting parameters for the saturation function

In Fig. 5.2a and Fig. 5.3 we introduce the fitting function

ΓT

γr
− 1 =

ANB

NB + NB
sat

, (5.20)

where A, B, Nsat are fitting parameters. Here, in Table 5.1, we report the values of the fit
parameters for all the data sets shown in Fig. 5.2a and Fig. 5.3.

5.4.7 The saturation assumption

In this chapter we assume that the thermal SR rate ΓT saturates to a N-independent
value, when the NC density N/L3 is kept fixed. To justify this assumption, let us ana-
lyze the thermal decay rate ΓT (see Eq. (5.2)) considering, for the moment, the following
crude approximation for the Boltzmann occupation numbers,

e−h̄ωk/(kBT)

Z
≈
{

1/NT for h̄(ωk −ω1) ≤ kBT
0 elsewhere

, (5.21)
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where NT is the number of superlattice eigenstates having energy h̄(ωk − ω1) ≤ kBT,
with h̄ω1 being the minimal energy in the spectrum. Under the approximation in
Eq. (5.21), we can approximate Eq. (5.2) as

ΓT

γr
≈ 1

NT
∑

h̄(ωk−ω1)≤kBT

Γk

γr
. (5.22)

Moreover, as one can see from Fig. 5.1a, the sum of the Γk/γr for the states at low
energy (h̄(ωk − ω1) ≤ kBT) results in a large fraction of the total of the radiative decay
rates in the system (which is ∑k Γk/γr = 3N). Since the total of the Γk grows as the
number N of NCs, we assume that also the sum in Eq. (5.22) grows as ∼ N. We can
estimate the number of states NT at low energy assuming a constant density of states
in the spectrum. This rough approximation is justified since kBT is comparable to the
spectral width h̄∆ω. Therefore, NT ≈ 3N kBT

h̄∆ω , that is the total number 3N of eigenstates
multiplied by the fraction of kBT over the spectral width. Under these approximations,
we predict that ΓT/γr scales as

ΓT

γr
∼ h̄∆ω

kBT
. (5.23)

Therefore, we proceed to estimate how ∆ω scales with the superlattice parameters N
and L. This will also allow us to estimate how ΓT/γr scales with those parameters,
thanks to Eq. (5.23).

Let us consider two limiting cases: (a) L/λ � 1 and (b) L/λ � 1. In case (a)
it is known [117] that the coupling is dominated by dipole-dipole near-field terms.
Since the dipole-dipole coupling decays as 1/r3

mn, the interaction is short-range. In
such case, the spectral width scales proportionally to the nearest-neighbor coupling,
namely h̄∆ω ∼ µ2/(l

′
)3 ∼ N/L3, since the center-to-center distance is l

′
= L/N1/3.

Thus, thanks to Eq. (5.23), we estimate ΓT/γr ∼ N/L3 for L/λ � 1. This estimate is
valid in the case of CsPbBr3 for realistic superlattice edge length, even if L ≈ 5λ. In
fact (see Fig. 5.9) [(ΓT/γr)− 1] is proportional to the density N/L3 in a broad range of
parameters and, specifically, in the experimental case where l = 9 nm (see vertical line
in Fig. 5.9). Therefore, [(ΓT/γr)− 1] depends only on the density and it must saturate
to a N-independent value when N is increased keeping the density fixed.

Nevertheless, this scaling is not true in general. For comparison, let us consider the
opposite case (b), where the 1/r2

mn and 1/rmn terms in the hamiltonian (Eq. (5.4)) are
much more relevant and one can expect a different scaling of the spectral width. The
case of L > λ has been studied in literature [150], for densities N/(L/λ)3 < 200, much
smaller tnan the superlattices analyzed in this work where N/(L/λ)3 > 104. It has been
found that the spectral widths in the complex plane (that is, the maximal imaginary
part ΓSR and the energy width h̄∆ω) scale proportionally to N/(L/λ)2. Even if the
atomic clouds in Ref. [150] are completely disordered, while superlattices are ordered,
the conclusions of Ref. [150] are valid also for regular superlattices having the same low
densities used for atomic clouds. Specifically, in Fig. 5.10a-b we find that both ΓSR and
∆ω scale proportionally to N/(L/λ)2 for large volumes and small densities. Therefore,
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Figure 5.10: a Maximal decay rate for the superlattice eigenstates, b energy range
spanned by the eigenvalues and c thermal decay rate (T = 60 mK) for superlattices (see
Eq. (5.2)) at low density of NCs (see legend in panel (a)). Parameters: h̄ω0 = 2.38 eV,
γr = 2.5 ns−1, εr = 4.8.

using Eq. (5.23), we predict ΓT/γr ∼ N/(L/λ)2 in this regime. Then, we proceed
to check such prediction for ΓT/γr using the correct definition from Eq. (5.2), and for
T = 60 mK, so that (kBT)/(h̄∆ω) ≈ 1/3 like in the superlattice considered in this
work. The results are shown in in Fig. 5.10c where we plot ΓT/γr − 1 for the same data
shown in Fig. 5.10a-b. Optimizing the linear correlation, we find (see Fig. 5.10c) that
the optimal scaling is established between ΓT/γr − 1 and N/(L/λ)2.33. Note that 2.33
is close to our rough prediction (2) and smaller than 3 (obtained above for the realistic,
high-density case).

5.4.8 Time-resolved fluorescence at T = 0 K with static disorder

To further refine our model, we account for energetic heterogeneities as static disorder,
parametrized by additional site-energy fluctuations in the Hamiltonian

Ĥ → Ĥ + ∑
α∈{x,y,z}

N

∑
n=1

δn,α |n, α〉 〈n, α| (5.24)

uniformly distributed within the range −W
2 ≤ δn,α ≤ W

2 . Static disorder is known to
destroy SR [25]. Since our simulations in absence of disorder clearly overestimate SR
(see Fig. 5.7), we may expect that the addition of static disorder would quench SR and
therefore improve the accuracy of our model.

In Fig. 5.11 we plot the decay of the emitted intensity from a superlattice. The ex-
periment has been conducted for N ∼ 106, while we use N = 1000 in the simulations
(continuous lines). The black line is the same as the model results from Fig. 5.7 in ab-
sence of disorder, while the blue and green lines have been obtained using different
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Figure 5.11: Decay of the emitted intensity in time. Experimental data taken from
Ref. [47]. Model at T = 0 K computed using Eq. (5.15) with the Hamiltonian Ĥ (see
Eq. (5.1)) corrected as in Eq. (5.24). Model at T = 6 K computed as discussed above.
Parameters: h̄ω0 = 2.38 eV, γr = 2.5 ns−1, εr = 4.8, N = 1000, l = 9 nm.
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eigenvalues of Ĥ for a 3D cubic superlattice vs. the amplitude W of the static disorder
(see Eq. (5.24)), measured in units of h̄γr. Different values of the number N of nanocrys-
tals are considered (see legend). The yellow region corresponds to a realistic range of
disorder. Parameters: h̄ω0 = 2.38 eV, γr = 2.5 ns−1, εr = 4.8 and l = 9 nm.

values of static disorder. Since the nearest-neighbor coupling is J = 0.14 meV, we con-
sider a disorder value comparable to the coupling (W = 0.1 meV) and another much
larger than J (W = 1 meV). In both cases, the agreement between the model and the
experiment is not better than the case at W = 0: the initial decay is always much faster
than the experiments and also the long-time behaviour is not captured.

As a comparison, we also plot (dashed line) the theoretical thermal decay that we
derived, see Eq. (5.2), by considering thermal decoherence together with static disor-
der: as one can see, our predicted decay due to thermal decoherence and static dis-
order agrees with the experiment much better than modelling the emission intensity
neglecting thermal decoherence and considering only static disorder.

At this point, one may wonder whether the agreement at T = 0 K with finite dis-
order may improve by increasing the system size. Since the initial, fast decay in the
model is determined by ΓSR = max{Γk}, we analyzed how ΓSR depends on the size for
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different values of disorder. The results of such analysis are shown in Fig. 5.12, where
ΓSR is plotted against disorder for different values of N. From Fig. 5.12 one can see that
ΓSR tends to γr for large W, i.e. SR is quenched by disorder. In the yellow region we
mark the range of disorder between 1 meV and 10 meV, that is a realistic estimate of the
effective disorder (as discussed in section 5.4.10). In such region, we can see that ΓSR in-
creases with N. Therefore, since ΓSR determines the initial decay in Fig. 5.11, increasing
N from 1000 (simulations in Fig. 5.11) up to N = 106 would not improve the agreement
between the model and the experiments. On the contrary, an extrapolation of the model
for large N would increase the overestimation of the initial decay with respect to the
experiments. Therefore, we conclude that static disorder alone is not able to explain the
quenched SR observed by Rainò et al. [47], and the effect of thermalization needs to be
taken into account as explained in section 5.4.5.

5.4.9 Emission redshift

In Fig. 5.1a we show that the radiative coupling between NCs results in 3N superra-
diant and subradiant states, whose frequency ωk is shifted with respect to the single
NC emission frequency ω0. Specifically, the largest redshift in Fig. 1a for N = 303 is
∼ 700γr ≈ 1 meV. Here we extrapolate the coupling-induced redshift to natural sizes
(up to N ∼ 108) and we compare our predictions with the experimental results.

In Fig. 5.13 we plot the predicted redshift (symbols) defined as maxk[h̄(ω0 − ωk)]
for parameters compatible with Ref. [47]. We observe that the redshift predicted by the
simulations (symbols) increases slowly with N, following a power law trend ∼ N0.2

for large N. Once we extrapolate the results to N = 108, corresponding to the largest
superlattices reported in Ref. [47], our model predicts a redshift of at most 7 meV at
N = 108, that is an order of magnitude smaller than the average redshift of 64 meV
measured experimentally in Ref. [47] averaging over 10 superlattices, see green line for
comparison. Consequently there must be another origin to the large redshift observed
in Ref. [47].

To begin with, we note that the PL spectrum (at temperature T = 6 K) of a single
superlattice shown in Fig. 3a of Ref. [47] is composed of two main peaks: one at high
energy, with a broad linewidth, assigned to an ‘uncoupled’ ensemble of NCs, and a sec-
ond one, narrower and peaked at low energy, that is assigned to a ‘coupled’ ensemble
of NCs. The low-energy ‘coupled’ peak produces the SR emission. The fact that at least
two peaks are visible within the same superlattice can be attributed to the existence of
different sub-domains within a single superlattice, as also suggested by Rainò et al. [47]
Indeed the existence of several sub-domains, not only two, within a single superlattice
is explicitly suggested in Ref. [47] to explain the observation of substructures in the red-
shifted emission band. In Ref. [47] it is also stressed that superlattices are made of NCs
that are not identical in size, but have a certain size distribution. Another important fact
to consider is that CsPbBr3 NCs exhibit strong size-dependent emission [157]. Specifi-
cally, in Ref. [157] the emission energy measured at room temperature of CsPbBr3 NCs
(reproduced here in Fig. 5.14a) covers a range of about 300 meV when the side length
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5.4. APPENDIX 169

of the NCs is varied from l = 3 nm to l = 12.8 nm. The larger NCs possess the lowest,
most redshifted emission energy.

Interestingly, from the data reported in Ref. [157], the side length fluctuations are
independent of the NCs size, implying that the relative size fluctuations decreases as
the NC size increases.

Therefore, we conjecture that the observed large redshifts in Ref. [47] are due to sub-
domains made of larger than average NCs, which are more likely to form due to their
smaller relative size fluctuations.

The NC size variation reported in Ref. [47] over 100 NCs in Extended Data Fig.1
ranges between 8.5 nm and 10.5 nm, which would cover an excitation energy range
of 27 meV according to the data shown in Ref. [157]. This contribution, together with
the coupling contribution of few meV, is only a factor of 2 different from the average
observed redshift 64± 6 meV. Moreover the size distribution could be larger when the
actual number of NCs (106-108) composing the superlattices is considered. For instance,
a size distribution between 8 nm and 12 nm would cover an excitation energy range of
about 50 meV, not too far from the observed 64± 6 meV redshift.

We stress, however, that the redshift seen in CsPbBr3 NC superlattice emission re-
mains debated with no consensus reached in literature [161–167]. Proposed explana-
tions for such redshifts, which range from 10 meV to 96 meV, include variations in the
dielectric constant [162, 166], photon recycling (i.e. reabsorption) [163], electronic cou-
pling between NCs [164] and even bulk CsPbBr3 “impurities” [161].

5.4.10 Static disorder and inhomogeneous linewidth

The emission spectra of SR superlattices reported in Ref. [47] are composed of at least
two peaks: a SR redshifted, with an average inhomogeneous linewidth of 15± 4 meV,
and an additional broader peak, corresponding to an ensemble of uncoupled NCs, with
an average inhomogeneous linewidth of 49± 21 meV. On the other side, from our theo-
retical framework (see details in section 5.4.9), we predicted that the amount of disorder
present in the SR sub-domain should be of the order of few meV, see Fig. 5.2a. This dis-
order strength cannot explain the inhomogeneous linewidths of the SR peak, that is on
average 15± 4 meV. In order to explain this large linewidth we note that the existence of
several sub-domains, not only two, is explicitly mentioned in Ref. [47]: “In most super-
lattices, we observe a substructure in this red-shifted emission band, which we attribute
to the presence of several slightly different independent domains within the same in-
dividual superlattice”. Thus, we explicitly considered the possibility of having several
redshifted sub-domains each composed of NCs of different average sizes. In this way,
one could easily explain the inhomogeneous linewidth of few tens of meV as due to
different excitation energies corresponding to the different sizes in each sub-domain.
Indeed, CsPbBr3 NC emission energies are strongly size-dependent (see Ref.[157]) and
the presence of multiple sub-domains within a single superlattice can readily yield an
observed 15± 4 meV linewidth due to sub-domain induced inhomogeneous broaden-
ing.
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Figure 5.14: a Emission peak for CsPbBr3 NCs of different side length l measured at
room temperature (data taken from Ref. [157]). The dashed line is the best fit with
the function in Eq. (5.25). b Estimated energy disorder (see Eq. (5.27)) against the NC
side length using data from Ref. [157] (symbols) and setting a fixed side distribution
δl = 0.84 nm (green dash-dotted line). For comparison, the dipole coupling J between
nearest-neighbour NCs is also shown (squares), calculated with two different methods
for l ≤ 9 nm and l ≥ 9 nm, see text.
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To corroborate this point, following common theoretical predictions [149], we fit the
measured emission energy obtained from Ref. [157] and reported in Fig. 5.14a with the
function

E(l) =
a
l2 +

b
l
+ c , (5.25)

obtaining the fit parameters a = 2.07 eV nm2, b = 0.763 eV nm and c = 2.33 eV. Note
that, assuming an SR emission band composed of several NCs sub-domains with mean
edge length within 11 nm < l < 13 nm, this would induce an inhomogeneous linewidth
of 15 meV, in agreement with the observed inhomogenous linewidth.

Then, from Eq. (5.25) we estimate the corresponding energy disorder W for general
values of the NC sizes distributed within (l ± δl), where δl is the standard deviation of
the side length. Since δl � l, we have

δE = |E(l + δl)− E(l)| ≈
∣∣∣∣dE(l)

dl

∣∣∣∣ δl =
∣∣∣∣2a

l3 +
b
l2

∣∣∣∣ δl , (5.26)

where δE represents the standard deviation of the energy fluctuations. Finally, we
match the estimated δE parameter (standard deviation) to the model for energy dis-
order used in this chapter (see section 5.4.8), that entails random energies uniformly
distributed within (h̄ω0±W/2). Since the standard deviation in our model is W/

√
12,

we obtain

W ≈
√

12
∣∣∣∣2a

l3 +
b
l2

∣∣∣∣ δl . (5.27)

In Fig. 5.14b the estimated energy disorder (see Eq. (5.27)) is plotted against the NC side
length using values of (l, δl) reported in Ref. [157] (symbols). As one can see, the esti-
mated energy disorder W ranges between ∼ 20 meV and ∼ 700 meV, with the smallest
energy disorder corresponding to the largest NCs. Also, the NC size fluctuations from
Ref. [157] are independent of l, so that we evaluate Eq. (5.27) using the average size
fluctuations δl = 0.84 nm from Ref. [157] (red dashed line in Fig. 5.14b) and we capture
well the dependence between W and l. Note that the measurements in Ref. [157] were
done at room temperature, while disorder is likely smaller at lower temperatures.

The conjecture of multiple redshifted sub-domains necessitates that in each sub-
domain with SR emission, W cannot be larger than few meV to allow for SR emission
to be observed, see Fig. 5.2a. This implies that sub-domains with SR emission should be
characterized by a highly uniform size distribution which would favor the formation
of a coherent sub-domain and it would allow to observe coherent emission.

Note that, since thermal decoherence occurs on few picoseconds timescales [168],
while emission occurs on few hundreds of picoseconds, thermal decoherence cannot
be neglected. Taking thermal decoherence into account implies that each sub-domain
should be composed of at least ∼ 104 NCs, see Fig. 5.2a.

In whole, the existence of SR sub-domains, where each sub-domain is composed
of large NCs, with an average size differing from sub-domain to sub-domain, self-
consistently rationalizes three observations made in Ref. [47]: (1) unexpected ≈ 64±
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6 meV redshifts, (2) large≈ 15± 4 meV SR inhomogeneous linewidths and (3) SR emis-
sion spectral substructure.

We also note that the predicted energy disorder increases as l is decreased (with δl
independent of l). This may induce to think that small-l superlattices would be more
sensitive to disorder, compared to their large-l counterparts. However, also the dipole
coupling between nearest-neighbour NCs within a superlattice increases for small l
(see black symbols in Fig. 5.14b). Here, following Ref. [149], we compute the nearest-
neighbour coupling J ≈ µ2/(l

′
)3 accounting for the dependence of the TDM µ on the

NC size. In the strong confinement regime (l � 2aB, where aB is the exciton Bohr ra-
dius) the TDM is independent from the NC side length, therefore here we use a constant
TDM µ = 23 D for l ≤ 9 nm (open black squares in Fig. 5.14b). In the opposite regime
(weak confinement, l � 2aB) the calculated TDM scales as µ2 ∼ l3, implying that J is
independent of the NC size for very large l. Finally, in the intermediate confinement
regime (that we identify as 9 nm ≤ l . 16 nm) we extract µ for the different NC sizes
from Ref. [149]. Then we use µ to compute J ≈ µ2/(l

′
)3 and we multiply the coupling

obtained this way by a factor 1.3 to match the data at l = 9 nm reported in Ref. [47], see
filled black squares in Fig. 5.14b.

Since both W and J scale as 1/l3 for small l (see Eq. (5.27)) and µ is constant in such
regime (as explained above), the ratio W/J is constant for l ≤ 9 nm. Given that the
effect of disorder is determined by the ratio W/J, we conclude that the effect of disor-
der on SR is independent of the NC size, for l . 9 nm. Note that the disorder values
in Fig. 5.14b are much larger than the disorder estimated in Fig. 5.2a, i.e. W/J ≈ 15.
One possible reason for such discrepancy is that in Fig. 5.14b we use data measured
at room temperature [157], while in Fig. 5.2a we compare to experiments at T = 6 K,
where a smaller disorder is expected. Moreover, as we conjecture in section 5.4.9, the
SR emission likely comes from very ordered, homogeneous sub-domains within the
superlattice. The size distribution within such sub-domains is likely much smaller than
0.84 nm, rationalizing the smaller disorder W/J ≈ 15 in Fig. 2a. Therefore, since disor-
der has a minor effect for NC sizes of l = 9 nm with W/J ≈ 15 (as shown in Fig. 5.2a),
the same minor effect could be expected for smaller NC sizes, provided that the size
fluctuations can be controlled in order to keep the same ratio W/J.

On the other hand, if the size fluctuations could not be controlled for small NCs,
disorder could be so large to completely quench SR. In such case, an alternative way
to observe SR is to use large NCs (l & 9 nm). In such regime the coupling J tends to
a constant value, as discussed above (see black filled squares in Fig. 5.14b), while W
always decreases with the NC size. Therefore the ratio W/J decreases for large NC
sizes as shown in Fig. 5.14b, where W/J is nearly halved varying l from 9 nm to 16 nm.
An even smaller reduction of W/J is expected for larger NCs, for example for l = 25
nm, J is expected to saturate above l = 16 nm, see Fig. 5.14b), and we would obtain a
value of W/J, 5 times smaller than the its value for l ≤ 9 nm. However, note that large
NCs have couplings J weaker than small NCs (compare empty and filled black squares
in Fig. 5.14b), so that smaller NCs are always more robust to thermal decoherence.
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5.4.11 A remark on the role of the imaginary coupling in the robustness to
disorder

At the beginning of this project we were considering a different model for perovskites
superlattices, where all the dipoles were aligned along one direction. Moreover we did
not consider the effect of the dielectric constant εr, so in our simulations λ = 521 nm in-
stead of λ = 238 nm as in the previous chapters. In order to assess the relevance of the
non-Hermitian coupling to induce robustness to disorder to the system, we analyzed
the maximal decay width ΓSR/γr (or the maximal dipole strength if only the Hermi-
tian part was considered) as a function of static disorder for different system sizes.
Three cases were considered: i) only Hermitian dipole-dipole interactions; ii) Hermi-
tian radiative interactions; iii) full complex radiative interaction, including Hermitian
and non-Hermitian terms. As one can see from Fig. 5.15 the robustness to disorder de-
creases with the systems size, unless the full non-hermitian interaction is considered.
In the latter case, the robustness increases with the system size. This intriguing results
shows the importance to consider the full non-Hermitian interactions in such systems.
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Figure 5.15: Maximal dipole strength (upper panels) and maximal decay width ΓSR/γr
(lower panel) against static disorder for a superlattice accounting only for one dipole
per each NC, directed along the z axis. The dipole-dipole Hamiltonian is Eq. (5.8), while
the Radiative hamiltonian is Eq. (5.1) in the case α = β = z. Parameters: h̄ω0 = 2.38 eV,
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Chapter 6

Real and imaginary energy gaps: a
comparison between single
excitation Superradiance and
Superconductivity

In this chapter the superradiance transition is interpreted as a transition to a gapped regime,
following the general framework introduced in Chapter 1. The results in this chapter have
been published as: Nahum C. Chávez, Francesco Mattiotti, J. A. Méndez-Bermúdez, Fausto
Borgonovi, and G. Luca Celardo, “Real and imaginary energy gaps: a comparison between
single excitation superradiance and superconductivity and robustness to disorder”, Eur. Phys.
J. B 92, 144 (2019). I contributed to all the analytical calculations and to the simulations about
the robustness to disorder.

A comparison between the single particle spectrum of the discrete Bardeen-
Cooper-Schrieffer (BCS) model, used for small superconducting grains, and the spec-
trum of a paradigmatic model of Single Excitation Superradiance (SES) is presented.
They are both characterized by an equally spaced energy spectrum (Picket Fence)
where all the levels are coupled between each other by a constant coupling which is
real for the BCS model and purely imaginary for the SES model. While the former
corresponds to the discrete BCS-model describing the coupling of Cooper pairs in
momentum space and it induces a Superconductive regime, the latter describes the
coupling of single particle energy levels to a common decay channel and it induces
a Superradiant transition. We show that the transition to a Superradiant regime can
be connected to the emergence of an imaginary energy gap, similarly to the transi-
tion to a Superconductive regime where a real energy gap emerges. Despite their
different physical origin, it is possible to show that both the Superradiant and the
Superconducting gaps have the same magnitude in the large gap limit. Nevertheless,
some differences appear: while the critical coupling at which the Superradiant gap

175
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appears is independent of the system size N, for the Superconductivity gap it scales
as (ln N)−1, which is the expected BCS result. The presence of a gap in the imagi-
nary energy axis between the Superradiant and the Subradiant states shares many
similarities with the “standard” gap on the real energy axis: the superradiant state
is protected against disorder from the imaginary gap as well as the superconducting
ground state is protected by the real energy gap. Moreover we connect the origin
of the gapped phase to the long-range nature of the coupling between the energy
levels.

6.1 Introduction

Cooperative effects, which are at the basis of emergent properties [175], are at the center
of research investigations in a vast variety of fields: emergent properties in highly cor-
related materials [176], cooperative emission in superconducting qubits [177], Superra-
diance in cold atomic clouds [102], cooperative shielding in long range interacting sys-
tems [178], collective excitations in semiconductors [179], plasmonic Dicke effect [180],
biophysical systems [3, 85] and proposal of quantum devices which exploits coopera-
tive effects [1]. Despite the great importance of emergent properties, a general unifying
framework and a full understanding of cooperative effects has not been found yet. One
of the most interesting properties of cooperative effects is their robustness to the noise
induced by external environments. A well known example is Superconductivity, but
other quantum emergent effects, such as Single Excitation Superradiance (SES), have
also been shown to be robust to noise [25, 26, 83, 181]. This suggests that emergent
properties could play an essential role in the successful development of scalable quan-
tum devices able to operate at room temperature. Since cooperative effects represent
a common mechanism to all these emergent phenomena, we believe that finding links
between different cooperative effects will be fundamental to progress our understand-
ing of emergence. As was suggested by U. Fano [12] a common mechanism underlies
several collective phenomena, such as Superconductivity, plasmon excitation and giant
resonances in nuclei. In particular a possible connection between Superradiance and
Superconductivity has been discussed by M. Scully [182, 183].

Here we perform a comparison between Superconductivity, i.e. the discrete
Bardeen-Cooper-Schrieffer (BCS) model, and Single Excitation Superradiance (SES
model). We show that in both cases we have the emergence of a “gap” in the energy
spectrum. Superradiance is usually referred to the case of many excitations in an en-
semble of N two level systems and to the existence of states which emit energy with
an intensity proportional to N2. On the other hand, SES refers to the possibility that a
single excitation coherently shared by N two level systems can decay with a rate pro-
portional to N, an effect defined as the Super of Superradiance in Ref. [28] due to the
fact that SES involves a fully entangled state. Note that SES has been found experimen-
tally in interacting two level system, such as cold atomic clouds [29] or in molecular
aggregates [19].

Specifically, we analyze a paradigmatic model of SES, which has been studied
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Figure 6.1: (Left upper panel) Paradigmatic model of SES: the coupling of equally
spaced single particle energy levels to a common channel in the continuum induces a
non-Hermitian all to all interaction between the energy levels described by the Hamil-
tonian in Eq. (6.1) with V0 = iγ/(2N). (Right upper panel) The discrete BCS model
of Superconductivity where Cooper pair states are coupled by an all to all hermitian
interaction, see arrows between levels, described by the Hamiltonian in Eq. (6.1) with
V0 = γ/(2N). (Lower left panel) Complex eigenvalues En − iΓn/2 for the SES model
and the imaginary energy gap are shown. (Lower right panel) The eigenvalues En and
the real energy gap are shown for the BCS model. Parameters are: N = 100, W = 1,
γ = 10γH,NH

cr , where γH,NH
cr is the critical coupling for the BCS/SES transition.

in [184], see Fig. 6.1. In such model, the single excitation energy levels are assumed
equally spaced and connected to a single decay channel in the continuum. Due to the
fact that the system is open and the excitation can be lost in the common decay channel,
the eigenvalues of the system are complex. When the resonances overlap, a Superra-
diance transition occurs: a Superradiant state acquires most of the decay width of the
system, while the other N− 1 subradiant states decrease their own widths on increasing
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the coupling strength with the common decay channel. In the limit of large coupling
to the continuum only the Superradiant state can decay. Here we show that the Su-
perradiance transition is connected with the emergence of an imaginary energy gap
between the complex eigenvalues of the system. Our aim is to investigate and compare
the energy gaps arising in such paradigmatic model of Superradiance [184–186] with
the well-known energy gap present in a model of Superconductivity (the discrete BCS
model [187–193]), paying main attention to the robustness to disorder induced by the
presence of a gap and to the kind of interaction which originates the gap.

The discrete BCS model is widely used to analyze Superconductivity in small metal-
lic grains [187–191]. Moreover, the single particle (single Cooper pair) sector of the dis-
crete BCS model had been studied in several papers [192, 193]. In this case, the model
is very similar to the model proposed by L. Cooper in his seminal paper [194] and its
Hamiltonian reads:

H = H0 + V = ∑
k

E0
k |k〉 〈k| −V0 ∑

k,k′
|k〉 〈k′| , (6.1)

where |k〉 is the Cooper pair state, E0
k is the unperturbed energy, usually taken as equally

spaced (picket fence (PF) spectrum), and V0 is the coupling between the Cooper pair
states. The coupling is the same for all the states, similarly to what happens in models
with an infinite range coupling in space, with the difference that here the coupling is
in momentum space. The same model, see Fig. 6.1, is used to describe the Superradi-
ance transition in a system where many levels are coupled to the same channel in the
external environment [184]. The only but important difference is that for the case of Su-
perradiance V0 is a pure imaginary number. In this case |k〉 represents a single energy
level or an atomic or molecular excitonic state in a specific point of the real space. For
the case of Superradiance, the non-Hermitian Hamiltonian, originating from the imagi-
nary coupling, takes into account the fact that the system can decay into the continuum
but it also represents the coupling between the energy levels which modifies the spec-
tral features of the system [195–199]. The limit of validity and the effectiveness of the
effective non-Hermitian Hamiltonian description of the system has been investigated
in Ref. [41, 46]. In such systems a transition to Superradiance occurs above a critical
coupling strength. In the Superradiant regime, when one Superradiant state acquire
most of the decay width of the system, a gap opens in the complex energy plane of the
non-Hermitian Hamiltonian, see Fig. 6.1 lower left panel.

Note that the model presented in Eq. (6.1), apart from being relevant in studying
cooperative effects, it is also relevant in describing realistic systems. For instance, for
the hermitian case, this model can be reproduced in ion trap experiments with a tunable
interaction range, including all-to-all coupling [178, 200–202]. On the other side, for the
non-Hermitian case, this model is relevant in nuclear physics [195–199] and it could be
also deviced in molecular systems [85].

In Sec. 6.2 we compare the imaginary gap present in the SES model with the real
gap emerging in the discrete BCS model. We show that the Superradiance transition
coincides with the opening of a gap in the complex energy plane. In the limit of large
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gap, the magnitude of the Superconducting gap is the same as the Superradiance gap.
Nevertheless, our analytical results show that the critical coupling which determines
the Superradiance transition scales with the system size differently from the critical
coupling associated to the Superconductivity transition. In Sec. 6.3 we present a few
numerical results showing the validity of our analytical equations. Then, in Sec. 6.4 we
apply the perturbation theory (up to second order) to non-Hermitian systems and we
show, also through numerical simulations, how the imaginary energy gap can protect
the states from perturbations, such as static disorder, in the same way as a real energy
gap does. This result is consistent with several results found in literature [25, 26, 83,
178, 181, 202] about the robustness of Superradiance to disorder. Finally, in Sec. 6.5 we
analyze the role of the range of the interaction, showing that an energy gap emerges
in the Hermitian system when the interaction is long-ranged. In the Conclusions the
relevance of our analysis to realistic systems is discussed.

6.2 Analytical Results for N levels

Let us consider N equally spaced levels in an energy range W, coupled between each
other with a constant coupling V0, which can be real or imaginary. The Hamiltonian
can thus be written as in Eq. (6.1), where for the energy we assume a PF distribution,
namely

E0
k = kδ = k

W
N

, k = −N
2

, . . . ,
N
2

, (6.2)

where δ = W/N is the level spacing. First, for the sake of clarity, we present the
derivation of the Gap Equation [16, 184, 194, 203], both for the Hermitian and non-
Hermitian cases, which is equivalent to the Schrödinger Equation and it makes the
computation of some eigenvalues much easier. For the derivation of the Gap Equation
we follow [16, 203], which presents a simplified version of the famous derivation by L.
Cooper in his seminal paper [194].

We want to solve the Schrödinger Equation

H |Ψ〉 = E |Ψ〉 , (6.3)

where |Ψ〉 is an eigenstate of the full Hamiltonian H and it can be expanded as

|Ψ〉 = ∑
k

ak |k〉 , (6.4)

where |k〉 are eigenstates of H0, satisfying

H0 |k〉 = E0
k |k〉 . (6.5)

Eq. (6.3) can be rewritten as

(H − H0) |Ψ〉 = V |Ψ〉 . (6.6)
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Then, using the expansion (6.4), we get

(H − H0)∑
k′

ak′ |k′〉 = V ∑
k′

ak′ |k′〉 = ∑
k′

ak′V |k′〉 . (6.7)

Now let us project Eq. (6.7) on the state 〈k|. Defining Vkk′ = 〈k|V|k′〉 we have

〈k|∑
k′
(E− E0

k′)ak′ |k′〉 = ∑
k′

ak′Vkk′ . (6.8)

Now, since 〈k|k′〉 = δk,k′ and Vkk′ = −V0 ∀k, k′ we get

∑
k′
(E− E0

k′)ak′ 〈k|k′〉 = (E− E0
k)ak = −V0 ∑

k
ak . (6.9)

Defining C ≡ ∑k ak we have

ak = −
V0C

E− E0
k

(6.10)

so that
C = ∑

k
ak = −V0 ∑

k

C
E− E0

k
. (6.11)

Dividing by C we finally obtain the Gap Equation

1 = −V0 ∑
k

1
E− E0

k
. (6.12)

Eq. (6.12) has been obtained by simple linear manipulations of the Schrödinger equa-
tion, and so they are equivalent. Given the unperturbed eigenvalues E0

k , there are N
possible values of E which satisfy Eq. (6.12), which are the eigenvalues of H.

The term Gap Equation comes from the fact that it is commonly used to compute
the gap between the ground state and the excited states. In the next sections we will
compute the gap for the case V0 = γ/(2N) real (for Superconductivity) and for V0 =
iγ/(2N) complex (for Superradiance). Note that in both cases we rescale the coupling
by N as it is found in the discrete BCS model [187–193]). The non rescaled case can be
easily deduced by substituting γ with Nγ in the following results.

6.2.1 Hermitian case

Following Refs. [16, 192–194, 203], let us review the main results about the gap equation
for the Hermitian case. Note that with respect to the BCS model, 1/δ is the Density of
States at the Fermi level, W in the Debye energy and V0 the effective phonon mediated
interaction. Let us now consider the Hermitian case, with V0 = γ/(2N). Recalling that
the unperturbed spectrum is given by (6.2), we multiply both sides of (6.12) by 2W/γ
to have

2W
γ

=
N/2

∑
k=−N/2

1
k− E/δ

. (6.13)
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Figure 6.2: Graphical solution of Gap Equation (6.13) in the Hermitian case. The all-to-
all coupling here is V0 = γ/(2N). We set N = 5.

A graphical solution of Eq. (6.13) is shown in Fig. 6.2 for N = 5. The r.h.s. of Eq. (6.13),
shown as a continuous black line, is an unbounded function of E/δ having N asymp-
totes, corresponding to E/δ = −N/2, . . . , N/2 and shown as vertical black lines. The
l.h.s., shown as dashed lines, is independent of E/δ. The solutions are given by the
values of E where the r.h.s. intersects the l.h.s. and they are shown by full circles in
Fig. 6.2.

From Fig. 6.2 one can see that there are N = 5 solutions to Eq. (6.13). Those solutions
represent the eigenvalues E of the full Hamiltonian (6.1), divided by the level spacing
δ = W/N of the unperturbed levels. Moreover, one can observe that, by increasing the
ratio γ/(2W) (so to increase the all-to-all coupling), the energy gap between the ground
state and the first excited state increases, too. We are here interested in computing
that gap in the limit N → ∞ and keeping W = const., so that the spacing δ of the
unperturbed levels tends to 0. First of all, from Fig. 6.2 we can see that the energy of the
excited states are all in the range [−W/2, W/2] and, in particular, the first excited state
lies in the interval −W/2 + δ < E2 < −W/2 + 2δ. This implies that only the ground
state energy E1 can be less than −W/2 and that the energy of the first excited state E2
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tends to −W/2 when δ→ 0. Now, let us focus on the energy of the ground state.
If N � 1, we can take the continuum limit for the Gap Equation (6.12)

1 = − γ

2N

∫ W/2

−W/2

N(x)dx
E− x

, (6.14)

where N(x) = N/W is the density of states and it is constant for a PF level distribution.
Then we can analytically solve the integral

1 = − γ

2W

∫ W/2

−W/2

dx
E− x

=
γ

2W
ln

2E−W
2E + W

, (6.15)

noting that the above solution is valid only for E < −W/2. For what we stated before,
the only state which satisfies this requirement is the ground state E1. Then we have

E1 =
W
2

1 + e2W/γ

1− e2W/γ
. (6.16)

Now, let us recall that E2 → −W/2 when N → ∞ and W does not depend on
N (see [16, 203] and the previous considerations on Fig. 6.2). We can then define the
Hermitian Gap between the ground state and the first excited state as

∆H = E2 − E1 = −W
2
− E1 =

W
e2W/γ − 1

. (6.17)

Note that the expression of the gap obtained is the same as the one obtained by
L. Cooper [194], but it is slightly different from the BCS gap [187–193]1, In the limit
W � γ/2 Eq. (6.17) is approximated as

∆H ≈
γ

2
. (6.18)

On the other hand, when W � γ/2, Eq. (6.17) becomes

∆H ≈W e−2W/γ (6.19)

On increasing γ, the gap ∆H increases as well and, for some γ = γH
cr it becomes

equal to the unperturbed level spacing δ = W/N. By setting ∆H = δ, it is easy to find
that for N � 1,

γH
cr =

2W
ln(N + 1)

≈ 2W
ln N

, (6.20)

which defines the critical coupling at which a gap opens in the BCS model.

1In the BCS theory [16, 203] and in Ref.s [178, 187–191, 202] the following expression for the gap is
reported: ∆BCS = W/ sinh(2W/γ), which gives different results from Eq. (6.17) in some parameter range.
In particular, when W � γ/2, Eq. (6.17) and ∆BCS differ by a factor of 2, namely ∆H ≈ W e−2W/γ and
∆BCS ≈ 2W e−2W/γ. On the other hand, in the opposite limit W � γ/2, both (6.17) and ∆BCS have the
same approximated expression ∆H ≈ ∆BCS ≈ γ/2. Nevertheless, both expressions predict that the gap
closes in the limit γ/W → 0.



6.2. ANALYTICAL RESULTS FOR N LEVELS 183

6.2.2 Non-Hermitian case

Superradiant state (Gap Equation) Now, let us consider the non-Hermitian case V0 =
iγ/(2N). Starting from Eq. (6.12) we obtain a gap equation

1 = − iγ
2N ∑

k

1
E − E0

k
, (6.21)

where the eigenvalues are now complex,

E = E− i
Γ
2

. (6.22)

This complex equation splits into two real equations
∑

k

E− E0
k

(E− E0
k)

2 + Γ2/4
= 0

∑
k

Γ/2
(E− E0

k)
2 + Γ2/4

=
2N
γ

(6.23)

which have N solutions that depend on N and γ. In Fig. 6.3 we plot the eigenval-
ues (6.22) in the plane (E/δ, Γ/γ) for N = 6 (upper panel) and N = 7 (lower panel), as
a function of γ. In particular, we plot the trajectories of the eigenvalues starting from
γ = (2W/π)/10 (open circles) up to γ = 10(2W/π) (full circles). The value γ = 2W/π
marks the Superradiance transition, as we will show here below. When γ is small (open
circles in Fig. 6.3), the real parts of the eigenvalues are given by (6.2), while the imag-
inary part is Γn ≈ γ/N for all eigenvalues. On increasing γ, the spacing between the
real parts of the eigenvalues decreases (a phenomenon called “pole attraction”) up to a
critical point γSR, where we see a different behaviour between N = 6 and N = 7.
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Figure 6.3: Complex eigenvalues (6.22) varying γ from γ = (2W/π)/10 (open circles)
to γ = 10(2W/π) (full circles). γ increases following the arrows. The dashed line
marks the value Γn = γ/N. Parameters: N = 6 (left panel) and N = 7 (right panel).
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For N = 6 (left panel of Fig. 6.3), the two eigenvalues whose real part is closer to
0 collapse to the imaginary energy axis (so that En = 0 for both of them) when γ >
γSR. The widths of those two eigenvalues, however, have a different behaviour because
one increases with γ (and we call the respective state Superradiant) while the other one
decreases with γ. For γ � γSR the total decay width of the system is concentrated in
the superradiant state, while the other N − 1 states have a negligible decay width, and
thus they are called subradiant.

For N = 7 (right panel of Fig. 6.3) the behaviour is similar to that of N = 6 in that,
on increasing γ, the real parts of the eigenvalues are attracted to each other and for
γ� γSR the total decay width of the system is concentrated into one superradiant state.
The difference here (with respect to N = 6) is that for γ > γSR only the Superradiant
state has ESR = 0, while En 6= 0 for the subradiant states.

The same behaviour seen for N = 6 has been observed for all even values of N,
while the behaviour observed for N = 7 has been seen for all odd values of N. In
the following calculations we look for an analytical expression for the width ΓSR of the
superradiant state and for the critical coupling γSR and, based on the above discussion,
we can set E = 0 in Eq. (6.23).

Moreover, in the limit N � 1 we approximate the PF spectrum (6.2) with a continu-
ous energy distribution constant in the interval [−W/2, W/2], so that we can solve the
second equation in (6.23)

2N
γ

=
N
W

∫ W/2

−W/2
dx

Γ/2
x2 + Γ2/4

=
2N
W

arctan
W
Γ

, (6.24)

from which we get the width of the superradiant state

ΓSR =
W

tan W
γ

. (6.25)

This term is crucial to determine the gap in the complex plane between the superra-
diant and the closest subradiant state. Note that ΓSR has to be positive, and this gives
the condition of validity of Eq. (6.24), which is γ ≥ 2W

π . Therefore the superradiant
state exists only above a critical coupling strength which coincides with the so-called
Superradiance transition (at γ = γSR), as we will show below.

Superradiant transition. In Ref. [184] the critical coupling at which a Superradiance
transition occurs has been computed analytically by studying the dependence of the
widths of the subradiant states on γ. Indeed below the Superradiance transition the
widths of the subradiant states increase with γ, while above it, they decrease with γ.
From Ref. [184] we have:

γSR =
2W
π

. (6.26)

Which is the same critical value of γ computed in the previous section.
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Adapting the analytical results of Ref. [184] to our case (see Appendix 6.7.1 for de-
tails) the decay widths of all the eigenstates below the Superradiance transition are

Γ =
W
Nπ

ln
(

1 + γ/γSR

1− γ/γSR

)
for γ < γSR , (6.27)

while all the widths of the subradiant states above the Superradiance transition are

Γsub =
W
Nπ

ln
(

γ/γSR + 1
γ/γSR − 1

)
for γ > γSR . (6.28)

Note that the critical coupling parameter γSR is the point where the widths (6.27)-(6.28)
are non-analytical.

Imaginary energy gap. The gap in the complex energy plane can be defined as

∆NH = max
i

{
min
j 6=i

[
dist

(
Ei, Ej

)]}
, (6.29)

where the distance in the complex plane between two eigenvalues is

dist
(
Ei, Ej

)
=

√(
Ei − Ej

)2
+

1
4
(
Γi − Γj

)2 . (6.30)

We can use the previous analytical results given in Eqs. (6.27,6.28) to estimate such
complex gap. For γ < γSR, the widths of all the states are the same and the distance
in real energy is constant and equal to δ, where δ is the level spacing in the PF model,
see Eq. (6.2), so that we have ∆NH = δ and no gap is present. On the other side in
the superradiant regime γ > γSR, we can estimate ∆NH as the distance in the complex
plane between the superradiant eigenstate ESR and the closest subradiant state Esub, see
Appendix 6.7.1 for details, namely

∆NH =

√
(ESR − Esub)

2 +
1
4
(ΓSR − Γsub)

2 . (6.31)

When N → ∞ we have (ESR − Esub) ≈ δ → 0 and Γsub → 0 (see (6.28)), so that the gap
∆NH is determined only by the decay width of the superradiant state (6.25),

lim
N→∞

∆NH =
ΓSR

2
=

W
2 tan W

γ

. (6.32)

Now, we can define the critical value γNH
cr as the value of γ at which the gap opens, i.e.

by imposing ∆NH = δ. From Eq. (6.32), we then have

γNH
cr =

W
arctan N

2

. (6.33)
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Note that this value is finite in the N → ∞ limit,

lim
N→∞

γNH
cr =

2W
π

, (6.34)

and it has the same value as γSR (see Eq. (6.26)). Our results demonstrate that the Su-
perradiant transition, previously analyzed in Ref. [184], is equivalent to the emergence
of a gap in the imaginary energy axis.

Moreover, we can approximate the gap for large γ, close to the transition and below
the critical point, respectively, as

∆NH ≈
γ

2
for γ� γSR (6.35a)

∆NH ≈
πW

4

(
γ

γNH
cr
− 1
)

for γ & γSR (6.35b)

∆NH = 0 for γ ≤ γSR . (6.35c)

Note that for γ� γSR the complex energy gap of the superradiant model is identical to
the real energy gap of the superconductivity model, see Eq. (6.18). On the other side, in
the limit of large system sizes, the critical coupling for the emergence of a gapped state
goes to zero for the BCS model, while for the SES model it remains finite.

6.3 Numerical Results

Here we validate our previous analytical predictions with few numerical results.
In Fig. 6.4 the gap is shown, both for the Hermitian and non-Hermitian cases, as

a function of γ for different system sizes N. For the non-Hermitian case we define
the gap using the distance in the complex plane, see Eqs. (6.29,6.30). Similarly, for the
Hermitian case we define the gap as

∆H = max
i

{
min
j 6=i

[
dist

(
Ei, Ej

)]}
, (6.36)

where dist
(
Ei, Ej

)
= |Ei − Ej| is the distance in the real axis (consistently with the

non-Hermitian definition (6.30)). With this definition, the presence of a finite and N
independent ∆H,NH in some region of γ signals the existence of an energy gap in the
spectrum. In contrast, we have no energy gap in the spectrum in the region of parame-
ters where ∆H,NH goes to zero as N increases.

The continuous blue curve in Fig. 6.4 indicates the analytical estimate of the gap
∆H,NH for both cases: Eq. (6.17) for the Hermitian case and Eq. (6.32) for the non-
Hermitian one. The critical couplings γH,NH

cr can be identified graphically as the values
of γ above which the numerical data for ∆H,NH (symbols) coincide with the analytical
estimates (continuous blue curves). In the figure our predictions of the critical cou-
plings given in Eq. (6.34) (vertical dashed line in panel (a)) and Eq. (6.20) (arrows in
panel (b)) are also shown.
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Figure 6.4: a) Gap ∆NH vs. the coupling parameter γ. Symbols are given by (6.29)-
(6.30), while the continuous blue curve shows the analytical estimate (6.32). The dashed
vertical line marks the critical coupling γNH

cr from Eq. (6.34). b) Gap ∆H vs. the coupling
parameter γ. Symbols are given by (6.36) while the continuous blue curve shows the
analytical estimate (6.17). The arrows indicate the critical coupling γH

cr from Eq. (6.20).
Here, W = 1 and N = {100, 1000, 10000}.

Our analytical estimate for the gap works well above the critical γ for both Hermi-
tian and non-Hermitian coupling, for all the values of N shown. Interestingly we find
that the critical γ is independent of N for large N in the non-Hermitian case, as we
predicted in Eq. (6.34), while it decreases with N in the Hermitian case, according to
our prediction (6.20). Moreover from Fig. 6.4 one can see that the transition to a gapped
phase in the non-Hermitian case is much sharper than the transition in the Hermitian
case. Note that for γ < γH,NH

cr our estimate predicts that ∆H,NH → 0 for γ → 0, while
the numerical simulations show that ∆H,NH → δ = W/N. This is clearly a finite size
effect and it is not relevant since δ goes to zero when N → ∞.

6.4 Imaginary Energy gap and robustness to perturbations

We have shown the emergence of both Hermitian and non-Hermitian gaps in the spec-
trum of a Picket-Fence model. While, in the Hermitian case, it is well known that a gap
between the ground state and the excited states makes the first more robust to pertur-
bations, it is not trivial that an imaginary gap has the same effect on the gapped state.
Thus, here we will apply perturbation theory to non-Hermitian systems and we will
show how the distance in the complex plane is related to the robustness to perturba-
tions. Then we will show numerically how the non-Hermitian gap makes the system
robust to static disorder.
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6.4.1 Non-Hermitian perturbative approach

Let us consider a perturbation D to the non-Hermitian Hamiltonian H, so that the total
Hamiltonian of the system can be written as:

HD = H + D , (6.37)

where H is a generic non-Hermitian symmetric Hamiltonian.
Since H is non-Hermitian, its eigenfunctions are not orthogonal. First of all, let us

define a “non-Hermitian bra”, being the transpose of a ket

〈〈ψ| := (|ψ〉)t . (6.38)

Since the Hamiltonian is symmetric, the left eigenfunctions 〈〈ψi| are the “bra” of the
right eigenfunctions |ψi〉, that is

H |ψi〉 = Ei |ψi〉 and 〈〈ψi|H = Ei〈〈ψi| . (6.39)

From here, the biorthogonality condition arises as

〈〈ψi|ψj〉 = δij . (6.40)

When the perturbation D is sufficiently small, a perturbative correction of the com-
plex eigenvalues up to second order can be derived [25, 26], and it has the expression

En ≈ En + 〈〈ψn|D|ψn〉+ ∑
m 6=n

〈〈ψn|D|ψm〉2
En − Em

. (6.41)

From Eq. (6.41) it is clear that the strength of the perturbation is determined by the
ratio of two complex numbers z1 = 〈〈ψn|D|ψm〉2, z2 = En − Em. This proves that a
state separated by a gap in the complex plane from the rest of the spectrum is robust to
perturbations as long as the gap is large compared to the modulus of the perturbations.

As a simple example of the above general calculations, let us consider a system
made of two resonant sites, separated by a pure imaginary gap iγ, and perturbed with
a coupling D. Note that this simple model has been used to describe experimental
evidence of Dynamical “Quantum Phase Transition” in spin systems [204–207].

The corresponding non-Hermitian Hamiltonian is

H + D =

(
E0 0
0 E0 − iγ

)
+

(
0 d
d 0

)
and the eigenenergies E± of H + D can be analytically obtained as

E± = E0 −
iγ
2
± iγ

2

√
1− 4d2

γ2 . (6.42)
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Now, let us consider the case when 2d� γ, i.e. the complex gap γ is much larger than
the coupling d between the sites. Under this assumption we can expand the eigenener-
gies (6.42) to obtain

E+ ≈ E0 −
id2

γ
, (6.43)

E− ≈ E0 − iγ +
id2

γ
. (6.44)

The same result can be obtained by applying the perturbative expansion (6.41) and it
shows that two unperturbed complex eigenenergies having the same real part but being
distant in the imaginary axis can be robust to a perturbation, as long as the distance in
the complex plane is much larger than the perturbation.

6.4.2 Robustness of superradiance to static diagonal disorder

In order to check that the previous results are valid in the model considered here be-
yond the perturbative regime, let us add to the the SES Hamiltonian

H = ∑
k

Ek |k〉 〈k| − i
γ

2N ∑
k,k′
|k〉 〈k′| , (6.45)

the static disorder

D = ∑
k

εk |k〉 〈k| , (6.46)

where εk are random numbers uniformly distributed such that εk ∈ [−ξ/2, ξ/2]. Here
the parameter ξ is proportional to the standard deviation of the energy fluctuations
introduced by D and it represents the disorder strength. In particular, our aim is to
study the robustness of the superradiant state of the non-Hermitian case to such static
disorder. In Fig. 6.5 (upper panel) the width of the superradiant state ΓSR divided by
the average width 〈γ〉 = γ/N is shown vs. the disorder strength ξ for different values
of γ larger than the critical γNH

cr . As one can see, the width of the superradiant state is
larger than 〈γ〉 for small disorder ξ. Then, beyond some critical value of ξ, the width
start to decrease with ξ, ultimately reaching ΓSR = 〈γ〉 = γ/N for ξ → ∞. In order
to quantify phenomenologically such critical disorder strength, let us define a critical
value ξcr as the value of ξ beyond which the width of the superradiant state is less
than 95% of its value without disorder. In this sense, ξcr is proportional to the disorder
strength needed to destroy superradiance. In the lower panel of Fig. 6.5 ξcr is plotted vs.
the ratio γ/γNH

cr . In the same panel, the gap (6.32) is plotted as a comparison. As one
can see, apart from small deviations where γ ' γNH

cr , the critical disorder ξcr increases
with γ and it is approximately proportional to the non-Hermitian gap. This shows that
the non-Hermitian gap makes superradiance robust to static disorder.
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Figure 6.5: Upper panel: width of the superradiant state divided by the average width
〈γ〉 = γ/N vs. the disorder strength ξ as introduced in the Hamiltonian (6.37)-(6.45)-
(6.46). Lower panel: the critical value ξcr (see text) is plotted vs. γ/γNH

cr as circles. The
red line is the gap, as defined in Eq. (6.32). Parameters in both panels are N = 100,
W = 1 and an average over 100 realizations of static disorder is performed.



6.5. GAPPED REGIME AND THE INTERACTION RANGE 191

6.5 Relation between the gapped regime and the interaction
range

In this section we want to extend our analysis to different ranges of interaction. In
particular, we want to know if the emergence of the gap is a general outcome of long-
range interactions in a PF model. Differently from the rest of the chapter, here we
focus only on the Hermitian case. Note that the Hermitian model is relevant in many
realistic situations, such as ion traps [178, 200–202], where one-dimensional systems
with tunable interaction range can be emulated.

We model an interaction of range α by the Hamiltonian term

V = − γ

2vN,α
∑
k,k′

k 6=k′

|k〉 〈k′|
|k− k′|α , (6.47)

where vN,α is a normalization constant and, since we are dealing with a one-
dimensional system, we speak about “long-range interaction” for 0 ≤ α < 1 and about
“short-range interaction” for α > 1. Note that in ion trap experiments [200, 201] the
exponent α can be tuned from 0 to 3. The case α = 1 is critical because α equals the
dimension of the system and thus we will analyze it separately. The normalization con-
stant vN,α has been added in order to have an extensive Hamiltonian energy and to fix
the spectrum of V as large as γ/2. For the case α = 0, for example, we have vN,0 = N,
which is exactly the Hermitian case studied in the previous sections. For α 6= 0, vN,α is
determined by numerically diagonalizing V, and it has the following scaling with the
system size (see Appendix 6.7.2 for details):

vN,α ∼


N1−α for α < 1
ln N for α = 1
const. for α > 1

. (6.48)

In order to understand how the presence of a gap is connected to the range of the
interaction, here we study numerically the presence of the gap ∆H defined in Eq. (6.36).
Let us remind that the presence of a finite and N-independent ∆H in some region of γ
signals the existence of an energy gap in the spectrum.

In Fig. 6.6 we plot ∆H, defined as in Eq. (6.36), as a function of γ for α = {1/3, 1, 5}.
The case α = 1/3 shown in panel (a) corresponds to a long-range interaction and one
can see that, similarly to the case α = 0 (see Fig. 6.4(b)), the gap is independent of the
system size N for large γ. On the other hand, for short-range α = 5 (panel (c)) ∆H
decreases with the system size for any value of γ and thus there is no gap for these two
cases in the limit N → ∞. For the critical range α = 1 (panel (b)) the results are less
clear and more analysis is needed to establish the non-existence of a gapped regime (as
the data shown in the Figure seem to indicate).

From Fig. 6.6 one can see that γ = 100 represents a “strong-coupling” regime for the
three values of α shown. Then, in Fig. 6.7 we plot ∆H (symbols) vs. α for γ = 100 setting
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Figure 6.6: Gap ∆H, as defined in (6.36), vs. the coupling parameter γ with the interac-
tion (6.47). Here W = 1 and N = {100, 1000, 10000}.

the same parameters and the same values of N as in Fig. 6.6. In Fig. 6.7 one can see
two different regimes: (i) for α < 1 (long range)) ∆H is independent of N, representing
a gap in the N → ∞ limit; (ii) for α & 1 (short range) ∆H decreases with N, meaning
that there is no gap in the thermodynamic limit. Note that we checked that in the long
range regime (α < 1) the gap arises between the ground state and the first excited state,
i.e. ∆H = E2 − E1.

As a final remark we note that in this section we have analyzed the role of the in-
teraction range just in the Hermitian case, because adding a variable range of the in-
teraction in the non-Hermitian case is more difficult. The generalization to different
ranges that we used for the Hermitian case, in fact, cannot be performed as it is for
the non-Hermitian case without loss of consistency. Indeed, an imaginary interaction
Vk,k′ = −iγ|k− k′|−α would lead to both positive and negative decay widths, while the
decay widths of a non-Hermitian Hamiltonian are required to be all positive. Never-
theless let us note that in realistic molecular system the non-Hermitian interaction can
have a complicated power law decay with the distance [117].
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Figure 6.7: Gap ∆H vs. the range of interaction α for N={100,1000,10000}, where the
symbols are given by Eq. (6.36). Here, W = 1 and γ = 100.

6.6 Conclusions and Perspectives

We have compared two paradigmatic models for Superconductivity and Superradi-
ance, focusing on the emergence of an energy gap in the real and complex plane, respec-
tively. We show that a gap arises also in the Superradiance model in the complex plane,
and we give an analytical estimate of that gap which agrees very well with our numer-
ical simulations. We show that the usual Superradiance transition can be interpreted
as a transition to a gapped regime. Moreover in the large coupling limit the Superradi-
ance and the Superconductivity gaps are mathematically the same, while they differ at
the criticality. Indeed, while the critical value for the emergence of Superconductivity
depends on the system size, the critical value for the emergence of Superradiance is
independent of the system size. Finally we have also shown that a gap in the complex
plane can induce robustness to perturbations in the system, similarly to a gap in the
real axis. This result allows to interpret the robustness of Superradiance to disorder
reported in several previous publications in literature as a consequence of the pres-
ence of an imaginary energy gap. In perspective, the relevance of these energy gaps to
transport and other system properties will be analyzed. From a mathematical point of
view, we have shown that the emergence of such gapped states can be connected with
the long range nature of the interaction. Indeed both the discrete BCS model and the
SES model share a distance independent coupling (all-to-all coupling). The connection
of a gapped state with the long range of the interaction has been also pointed out in
Ref. [178, 202].

Even if here we have analyzed very simple models amenable of analytic treat-
ment, our results can be relevant for a variety of realistic systems, such as molecular
chains [208, 209], ion traps [200, 201] and photosynthetic systems [117]. For instance
the range of interaction can be controlled in ion trap experiments [200, 201] where the
Hermitian Hamiltonian discussed here can be experimentally realized. Moreover a lin-
ear molecular chain interacting with an electromagnetic field can be modelled by non-
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Hermitian Hamiltonians [117] very similar to the ones considered here. In perspectives
we plan to analyze realistic models for quantum transport in presence of non-Hermitian
and Hermitian interactions and to study the relevance of the gapped regime to the effi-
ciency of transport. We expect that the existence of gapped extended states can act as a
support for efficient energy transport.

6.7 Appendix

6.7.1 Non-Hermitian coupling: widths of the subradiant states

In the main text, discussing the case of a non-Hermitian coupling, we report the analytic
expression of the widths of all the eigenstates for γ < γSR (6.27) and of the widths of
the subradiant states for γ > γSR (6.28). Here we derive those expressions, as well as
the critical coupling γSR, following [184].

Let us consider the case of odd N, so that we can write N = 2M + 1 with M an
integer. Note that the limit N → ∞ corresponds to M → ∞ and in that limit there is
no distinction between even or odd values of N. The Hamiltonian (6.1), with Ek given
by (6.2) and V0 = iγ/(2N), can be mapped to

H = δH = δ

(
M

∑
k=−M

k |k〉 〈k| − iα
M

∑
k=−M

M

∑
k′=−M

|k〉 〈k′|
)

, (6.49)

where the center of the unperturbed spectrum is assumed to be at E0 = 0, without loss
of generality, and the coupling parameter is

α =
γ

2Nδ
=

γ

2W
. (6.50)

We now proceed to compute the eigenvalues λ of H, which are related to the eigen-
values λ of H by λ = δλ. Thus, let us consider the matrix 〈k|H |k′〉. By construction,
all column and row vectors, respectively, of the non-Hermitian part of that matrix are
linearly dependent. Summing iα times the central row (k = 0) to all the other rows
(k 6= 0), one gets the following expression for the characteristic polynomial:

PM(λ) =
M

∏
k=−M

(k− λ)− iα
M

∑
k=−M

M

∏
j=−M

j 6=k

(j− λ) = 0 . (6.51)

According to Eq. (6.51), PM(λ) is the sum of two polynomials,

PM(λ) = QM(λ)− iαRM(λ) (6.52)

which are related in a simple manner,

RM = − d
dλ

QM .
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Taking the limit M → ∞ and using the infinite product expansion of the sine function
we have

P∞(λ) = sin[πλ] + iαπ cos[πλ] = 0 (6.53)

with λ = E− i
2 Γ. Then, we can substitute this expression of λ to get

P∞(λ) = sin
[

π

(
E− i

2
Γ
)]

+ iαπ cos
[

π

(
E− i

2
Γ
)]

= 0 . (6.54)

Separating real and imaginary parts one hassin[πE]
[
eπΓ(1− απ) + (1 + απ)

]
= 0

cos[πE]
[
eπΓ(1− απ)− (1 + απ)

]
= 0

. (6.55)

So there are two solutions:
i) sin[πE] = 0, E = n ∈ Z

eπΓ =
1 + απ

1− απ
, (6.56)

from which

Γ =
1
π

ln
(

1 + απ

1− απ

)
(6.57)

under the conditions eπΓ > 0, α < 1
π . This result represents the widths of all the

eigenstates below the Superradiance transition.
ii) cos[πE] = 0, E = n + 1

2 , n ∈ Z

eπΓ =
απ + 1
απ − 1

, (6.58)

which gives

Γsub =
1
π

ln
(

απ + 1
απ − 1

)
(6.59)

under the conditions eπΓ > 0, α > 1
π . This result represents instead the widths of

the subradiant states above the Superradiance transition. From these results a critical
coupling parameter αSR = 1/π emerges, which marks the Superradiance transition.

Now, let us map our expression for λ to λ = E− i
2 Γ. Multiplying by δ we have

En = nδ (n ∈ Z) (6.60a)

Γ =
δ

π
ln
(

1 + α/αSR

1− α/αSR

)
for α < αSR (6.60b)

and

En =

(
n +

1
2

)
δ (n ∈ Z) (6.61a)

Γsub =
δ

π
ln
(

α/αSR + 1
α/αSR − 1

)
for α > αSR , (6.61b)
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where we can use (6.50) to express the ratio between α and αSR as

α

αSR
=

γπ

2W
. (6.62)

Thus, equations (6.60b) and (6.61b) can be rewritten in terms of the parameters of H as

Γ =
W
Nπ

ln
(

1 + γ/γSR

1− γ/γSR

)
for γ < γSR (6.63)

and

Γsub =
W
Nπ

ln
(

γ/γSR + 1
γ/γSR − 1

)
for γ > γSR , (6.64)

by defining the critical coupling

γSR =
2W
π

. (6.65)

6.7.2 Long and short-range interaction

In the text, we reported how the gap ∆H changes with the range of the interaction
for α = {1/3, 1, 5}. Here, in Fig. 6.8, we show the dependence of ∆H on γ for some
additional values of the range of interaction, namely for α = {1/10, 1/2, 3/2, 2}. We
would like to point out also that the definition (6.36) is equal to E2 − E1 in the range of
γ that we plotted in this figure and in the main text (Fig. 6.6).

As we reported in the Sec. 6.5, in order to obtain the gap ∆H for different range of
interaction α, the interaction (6.47) is normalized by the constant vN,α defined as the
difference between the maximum eigenenergy and minimal eigenenergy of the matrix
V given in Eq. (6.47) without the prefactor (γ/(2vN,α)), i.e. vN,α = Vmax − Vmin. In
Fig. 6.9 we plot vN,α vs. N for different values of α and we show that the exact results
obtained from the diagonalization of V (symbols) fit well the scaling (6.48) for all the
values of α shown here.
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Figure 6.8: a) Gap ∆H, as given by Eq. (6.36), vs. the coupling γ with the interac-
tion (6.47) for different values of the interaction range α. Here we set W = 1.
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Chapter 7

Interplay of long-range interactions
and disorder in energy transport

In this chapter we study the effect of long-range interactions on the transport properties of a
paradigmatic system. The results in this chapter have been accepted for publication on Phys.
Rev. Lett. (2021) as Editors’ Suggestion and they are available as a preprint at: Nahum C.
Chávez, Francesco Mattiotti, J. A. Méndez-Bermúdez, Fausto Borgonovi, and G. Luca Celardo,
“Disorder-enhanced and disorder-independent transport with long-range hopping: application
to molecular chains in optical cavities”, arXiv:2010.08060 (2020). I contributed to this work
by setting up the master equation simulations, mapping the master equation approach to the
rate equation method, obtaining the average transfer time expression in terms of eigenvalues
and eigenvectors of the non-Hermitian Hamiltonian, developing the perturbative approach in
the gapped regime and discussing all the results.

Overcoming the detrimental effect of disorder at the nanoscale is very hard since
disorder induces localization and an exponential suppression of transport efficiency.
Here we unveil novel and robust quantum transport regimes achievable in nanosys-
tems by exploiting long-range hopping. We demonstrate that in a 1D disordered
nanostructure in presence of long-range hopping, transport efficiency, after decreas-
ing exponentially with disorder at first, is then enhanced by disorder (Disorder-
Enhanced Transport, DET regime) until, counter-intuitively, it reaches a Disorder-
Independent Transport (DIT) regime, persisting over several orders of disorder mag-
nitude in realistic systems. To enlighten the relevance of our results, we demonstrate
that an ensemble of emitters in a cavity can be described by an effective long-range
Hamiltonian. The specific case of a disordered molecular wire placed in an opti-
cal cavity is discussed, showing that the DIT and DET regimes can be reached with
state-of-the-art experimental set-ups.

199
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(a)

(b)

Figure 7.1: (a,b) Two different set-ups for a disordered chain with excitation pumping
γp at one edge of the chain and draining γd at the opposite edge. Here, Ω is the hopping
between nearest-neighbor sites. The arrows indicate the hopping paths available for an
excitation (grey circle) present at the center of the chain. The energy of the sites is
disordered. (a) A long-range coupling −γ/2 is present between each pair of sites. (b)
The chain is placed inside an optical cavity, where g is the coupling of each site to the
cavity mode.

7.1 Introduction

Achieving high efficiency for energy/charge transport in quantum wires is fundamen-
tal for quantum technologies related to quantum computation and basic energy sci-
ence [208–218]. One of the main challenges is to control the detrimental effects of noise
and disorder which naturally occur in realistic situations. It is well known that disorder
induces localization [109, 219] and exponential suppression of transport in typical 1D
nanostructures. One of the most ambitious goals in quantum transport is to achieve
dissipationless quantum wires, able to transport energy/charge without suffering the
detrimental effects of disorder and/or noise.

Here, to overcome disorder suppression of transport, we propose to exploit long-
range interactions. Long-range interactions can arise due to microscopic interactions or
by engineering the coupling to external degrees of freedom. They have been recently
emulated in ion-traps [200] and are relevant in several realistic systems such as cold
atomic clouds [151] and excitonic transport in molecular aggregates [3, 91, 117]. Long-
range interactions present many contradictory features [178, 202, 220]. Specifically, the
interplay of localization and long-range interactions is widely debated in literature [178,
202, 221–227]. Indeed, contrary to the common lore that long-range should destroy
Anderson localization [228, 229], strong signatures of localization have been reported
recently in long-range interacting systems [202, 221, 222], thus questioning their utility
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in achieving efficient transport. Here we demonstrate that localized states in long-range
interacting systems have a hybrid character, with an exponentially localized peak and
extended tail, which allows these states to support robust quantum transport.

Among the most important features of long-range systems, there is the emergence
of a gapped ground state [42, 202]. In the gapped regime, while the ground state is
extended and robust to disorder, the excited states present a hybrid nature with an
exponentially localized peak superimposed to an extended tail [83, 181, 202]. While
being very relevant to transport, since they constitute the vast majority of the states,
due to their hybrid nature it is not clear what kind of transport they will be able to
support. By using different standard figures of merit of transport efficiency, we unveil
several regimes directly determined by the hybrid nature of the excited states. Indeed
we demonstrate, in presence of long-range hopping, the emergence of extremely robust
transport regimes arising as the disorder strength is increased: a Disorder-Enhanced-
Transport (DET) regime and, at larger disorder strength, a Disorder-Independent-
Transport (DIT) regime, where transport efficiency is independent of disorder over sev-
eral orders of magnitude of disorder strength. The latter regime persists until disorder
is so large to close the energy gap. We can explain the origin of this interesting be-
haviour by considering that in presence of an energy gap, disorder will mix the excited
states, while leaving the ground state fully extended. The presence of an extended
ground state imposes an orthogonality condition on the excited states which prevents
their full single-site localization and generates an extended tail able to support robust
transport over the whole energy spectrum.

In order to highlight the relevance of our findings, we analyze realistic set-ups
consisting of an ensemble of emitters inside a cavity, focusing on the case of molec-
ular chains in optical cavities. Recently these systems have been studied experimen-
tally [216] and analyzed theoretically [208, 209, 230]. Here we show that, in the strong
coupling regime [36, 40], the cavity induces an effective long-range hopping between
the emitters, allowing to test our findings of both DET and DIT regimes in state-of-the-
art experimental sets-ups.

7.2 The Model

As a paradigmatic model of a disordered chain in presence of long-range hopping, we
analyze the 1D Anderson model [109] with all-to-all hopping [202], see Fig. 7.1(a),

H = H0 + V with V = −γ

2 ∑
i 6=j
|i〉〈j| , (7.1)

where |j〉 is the site basis and γ is the strength of the distance-independent long-range
hopping. H0 describes the Anderson model where a particle hops between neighbor
sites of a linear chain in the presence of onsite disorder,

H0 =
N

∑
j=1

εj |j〉 〈j|+ Ω
N−1

∑
j=1

(|j〉 〈j + 1|+ |j + 1〉 〈j|) , (7.2)
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Figure 7.2: (a) Normalized typical current h̄Ityp/Ω vs. the normalized static disorder
W/Ω. (b) Average variance 〈σ2〉 vs. the normalized static disorder W/Ω for the ground
state (triangles) and the excited states (all other sets). The blue curves show the case γ =
0, the orange squares the perturbative approach (details are given in the Appendix).
Dashed vertical lines indicate the different critical disorders given by Eqs. (7.3), (7.10)
and (7.11). (c,d) Average shape of the eigenfunctions (details concerning the process of
averaging are given in Appendix), 〈|Ψ|2〉 vs. the site basis k. Different disorder regimes
are shown: (c) (DET) W1 ≤ W ≤ W2, W/Ω = 1 (black) and W/Ω = 44.02 (red); (d)
(DIT) W2 < W < WGAP, W/Ω = 102 (black) and W/Ω = 103 (red). Here, N = 104,
γp = γd = γ = Ω and Nr = 100 disorder configurations. In (c,d) symbols are compared
with blue curves indicating the case γ = 0.

where εi are random energies uniformly distributed in [−W/2, W/2], W is the disorder
strength and Ω is the tunneling transition amplitude between nearest neighbor sites.

The eigenstates of the Anderson Model (γ = 0) are localized exponentially, ψn ∼
exp(−|n− n0|/ξ), where ξ ≈ 105.2

(Ω
W

)2
is the localization length in the middle of the

energy band. This implies that the transmission always decays exponentially with the
disorder strength as ≈ exp(−N/ξ) [231, 232].

In presence of long-range hopping (γ 6= 0), and in absence of disorder (W = 0), the
emergence of an energy gap ∆ = Nγ/2 has been found in Refs. [42, 202]. Indeed, the
long-range hopping induces the fully symmetric ground state to be gapped from the
other excited states. Disorder will destroy the energy gap above the disorder thresh-
old [42] (for details see the Appendix),

WGAP =
γ

2
N ln N . (7.3)

In order to understand how transport properties are affected by long-range hopping,
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we analyze several figures of merit of transport efficiency, focusing on the stationary
current widely used in literature [208, 209, 230]. Pumping and draining are introduced
at the chain edges, see Fig. 7.1(a) and the dynamics is described by the Lindblad master
equation [49]

dρ

dt
= − i

h̄
[H, ρ] + ∑

η=p,d
Lη [ρ] , (7.4)

where Lη [ρ] = −{L†
η Lη , ρ}+ 2LηρL†

η are two dissipators inducing pumping on the first

site (Lp =
√

γp/(2h̄) |1〉 〈0|) and draining from the last site (Ld =
√

γd/(2h̄) |0〉 〈N|),
respectively (|0〉 is the vacuum state). From the steady-state solution of Eq. (7.4) one
can find the stationary current

I =
γd

h̄
〈N| ρSS |N〉 , (7.5)

where ρSS is the steady-state density operator. Since the master equation approach is
numerically very expensive, we use a definition of current based on a non-Hermitian
Schrödinger equation, computationally less expensive. The results obtained with this
approach are identical to the master equation method, as we prove analytically in sec-
tion 7.6.5 of the Appendix. To define the current, we compute the average time needed
to leave the 1D chain if the excitation is initially on the first site |1〉 and a drain is present
on the last site |N〉. The average transfer time is defined as [233–236]

τ =
γd

h̄

∫ ∞

0
dt t |ΨN(t)|2 , (7.6)

where ΨN(t) is the probability amplitude on the drain site at time t, evolved under the
effective Hamiltonian Heff [81, 85]

(Heff)k,l = (H)k,l − i
γd

2
δk,Nδl,N . (7.7)

with H given in Eq. (7.1) and the non-Hermitian term representing the drain. A rate
equation can be derived, by assigning a drain frequency 1/τ and a pumping frequency
γp/h̄, connecting the chain population Pe to the vacuum state |0〉 with population P0,

dP0

dt
= −γp

h̄
P0 +

1
τ

Pe ,

P0 + Pe = 1 . (7.8)

From the steady-state populations PSS
e = γp/(γp +

h̄
τ ) we obtain the current I = PSS

e /τ
and its typical value,

Ityp = e〈ln I〉 with 〈ln I〉 ≡
〈

ln

(
1
τ

γp

γp +
h̄
τ

)〉
, (7.9)

where 〈...〉 represents the average over disorder configurations.
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Another important figure of merit for the transport is the average variance 〈σ2〉 of

the excited states |α〉, defined as σ2 =
1

N − 1

N−1

∑
α=1

σ2
α where σ2

α ≡ 〈α|x2|α〉 − 〈α|x|α〉2.

This can be related to the stationary variance obtained from the dynamical spreading
of a wave packet initially localized at the center of the chain, see Appendix. Moreover,
in the Appendix, we also considered another figure of merit for transport, i.e. the in-
tegrated transmission. Transport properties revealed by the three different figures of
merit are qualitatively the same.

7.3 Results for long-range systems

In Fig. 7.2(a,b) h̄Ityp/Ω, see Eq. (7.9), and 〈σ2〉 are shown as a function of the normal-
ized disorder strength W/Ω for a chain with N = 104 sites. For small disorder both
quantities decrease with W exponentially, similarly to the Anderson model (γ = 0,
blue curves). Counter-intuitively, by increasing W, the transport efficiency at first in-
creases (DET regime), until it reaches a plateau, where the dependence on the disorder
strength is extremely weak for several orders of magnitude of W (DIT regime). The
latter persists approximately up to WGAP.

Since the variance 〈σ2〉 of the excited eigenstates, Fig. 7.2(b), closely follows the be-
haviour of the typical current Ityp, Fig. 7.2(a), we can try to understand the different
transport regimes analyzing the average shape of the eigenfunctions 〈|Ψ|2〉 of the ex-
cited states as a function of the site basis k for different disorder strengths W.

Specifically, in presence of long-range hopping [83, 181, 202], in the gapped regime,
the excited states have a hybrid nature, with an exponentially localized peak, identical
to the Anderson model peak, and extended flat tails, see Fig. 7.2(c,d), where the aver-
age shape of the eigenfunctions 〈|Ψ|2〉 in the DET and DIT regimes are shown. Note
that, while in the DET regime the tails increase with the disorder strength W, they are
independent of it in the DIT regime. Hybrid shapes of the eigenfunctions have been
reported in other long-range interacting systems [83, 237].

An analytical expression for the disorder thresholds, separating the different trans-
port regimes, can be found as follows. When the probability of the exponentially local-
ized peak at the chain edges, ≈ exp(−N/2ξ), becomes equal to the average probability
in the tails (which scales as 1/N, see Appendix), we have exp

(
− N

2ξ

)
≈ 1

N . Recalling

that ξ ≈ 105.2
(Ω

W

)2
, we get the disorder threshold W1,

W1 ≈
√

210.4 ln N
N

Ω . (7.10)

For W > W1, the amplitude of the extended tails increases with the disorder strength
W, see Fig. 7.2(c), until the eigenfunction tails become independent of W, see Fig. 7.2(d).
The disorder threshold W2 above which this happens can be obtained by imposing that
the probability on the closest sites to the peak is equal to the probability in the tails,
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Figure 7.3: (a) Typical current Ityp, Eq. (7.9), vs. the static disorder W. The results for
a linear chain in an optical cavity Eq. (7.12) (crosses) are compared with a long-range
hopping model Eq. (7.1) (circles). Parameters for the linear chain in an optical cavity
are: N = 104, Ω = 0.0124 eV, h̄ωc = 2 eV, µ ≈ 36 D, gc = 3.188 eV, γp = γd = 0.0124 eV.
The long-range hopping model has been obtained using the same Ω value and setting
γ = 2gc/N in Eq. (7.1). The number of disorder configurations Nr is such that Nr×N =
106. (b) Normalized typical current ItypN2 vs. the static disorder W for a linear chain in
an optical cavity for different N values, as indicated in the legend. Vertical dashed lines
represent the values of W1 for different system sizes. Other parameters are the same of
panel (a).

exp(−1/2ξ) = 1/N, so that,

W2 ≈
√

210.4 ln N Ω . (7.11)

The validity of the predicted scaling of the different transport regimes with N, γ is
discussed here below and also in the Appendix.

One might think that these interesting transport regimes originate from the cou-
pling induced by disorder between the unperturbed excited states and the extended
unperturbed ground state. Even if this coupling exists, it is not the main reason for the
DET and DIT regimes. Indeed, a semi-analytical perturbative expression for the eigen-
states in the gapped regime allows to compute all the relevant observables, see orange
dots in Fig. 7.2(a,b), completely neglecting the coupling mediated by disorder between
the unperturbed excited states and the extended unperturbed ground state, see details
in Appendix. This indicates that the DET and DIT regimes have their origin in the ex-
istence of an extended ground state which, by imposing an orthogonality condition on
all the excited states, generates their extended tails.
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7.4 Applications to molecular chains in optical cavities

Here we show that a chain of emitters in a cavity [208, 209, 230] can be described in
terms of an effective long-range hopping model arising from the coupling of the emit-
ters with the cavity mode. This implies that our results are relevant for a vast variety of
other systems such as Rydberg atoms, polar molecules and molecular chains [208].

In the following we focus on the case in which the emitters are molecules. This is
particularly interesting due to the large coupling (comparable with kBT with T = 300 K)
between the molecules. Nevertheless the same discussion can be applied to any other
kind of emitters. For a molecular chain, at resonance with a cavity mode [208, 230] the
Hamiltonian is given by

Hcav = H0 + g
N

∑
j=1

(|j〉 〈c|+ |c〉 〈j|) , (7.12)

where H0 is defined in Eq. (7.2) and |c〉 represents a single excitation in the cavity mode
(with no excitation in the chain). The coupling g of the emitters with the resonant
optical mode is given by [136]

g =

√
2πµ2h̄ωc

Vc
, (7.13)

where µ is the molecular transition dipole, ωc is the cavity mode frequency and Vc is
the cavity mode volume.

Since the coupling to the cavity mode is the same for all molecules, it is possible
to show [208, 209] that only the fully symmetric state |d〉 in the chain is coupled to the
cavity mode with a collective coupling strength gc =

√
Ng. This coupling induces two

polaritonic states |p±〉 = 1/
√

2 (|d〉 ± |c〉) with an energy splitting of 2gc, while the
other N− 1 states with a bandwidth 4Ω, in absence of disorder, are decoupled from the
cavity mode. In the strong coupling regime, gc � Ω, one of the polaritonic states will
become the ground state of the system and it will be gapped from the excited states by
an energy ≈ gc. By imposing

Nγeff/2 = gc, (7.14)

we determine the effective long-range coupling γeff which would produce the same en-
ergy gap in absence of disorder, see Appendix 7.6.8 for details on the validity of the
correspondence between the cavity Hamiltonian (7.12) and the long-range Hamilto-
nian (7.1).

Since the coupling g is inversely proportional to Vc, see Eq. (7.13), which typically
scales like N, in the following we consider a fixed collective coupling gc =

√
Ng ≈

3.2 eV [38, 40], which corresponds to a cavity mode volume Vc = 104 nm3 [238] for a
molecular chain of N = 104 with µ ≈ 36 D [216].

In Fig. 7.3(a) we plot the typical current Ityp vs. the disorder strength W for a chain
of 104 molecules in an optical cavity (crosses). Interestingly, this current is reproduced
extremely well by the current obtained with the effective long-range coupling Eq. (7.14)
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(circles) for W < WGAP. For W > WGAP both polaritonic states mix with all the other
states and the differences between the long-range model and the chain in the cavity
model emerge. In Fig. 7.3(b) the typical (normalized) current ItypN2 for the cavity
model, Eq. (7.12), is shown for different chain sizes N. Note that Ityp ∝ 1/N2 for
W > W1, instead of decreasing exponentially with N, as for the localized regime in
absence of long-range hopping.

7.5 Conclusions

Controlling the detrimental effects of disorder at the nanoscale is one of the main chal-
lenges in achieving efficient energy transport. Here we have shown that long-range
hopping can lead to a disorder-enhanced and a disorder-independent transport (DET
and DIT) regimes, extending over several orders of magnitude of disorder strength.
Our results could be tested in several systems where long-range hopping is present,
such as molecular aggregates [85], ion traps [200] and cold atomic clouds [151]. Re-
markably, we have also shown that a system of emitters coupled to a cavity mode can
be mapped to a long-range hopping system. This makes our results applicable to a vast
variety of other physical systems, such as molecular chains in optical cavities, Rydberg
atoms and polar molecules [208], see Appendix for realistic parameters. Typically, for
molecular chains in optical cavities Ω ≈ 0.03 eV, N ≈ 105 and gc ≈ 1 eV [208] so that
W1 ≈ 5× 10−3 eV, W2 ≈ 1.5 eV and WGAP ≈ gc ln N ≈ 11.5 eV. Since natural disorder
typically ranges from 1− 10 Ω we can easily reach the DET regime, with currents in
the measurable range of tens of nA [216]. In other experimental set-ups, such as ion
traps, the spreading of an initially localized excitation in the middle of the chain would
provide the best way to access both the DET and DIT regime. Indeed, the stationary
variance of the excitation, obtained from the spreading of a localized wave packet, is
well described by the average variance of the eigenstates shown in Fig. 7.2(b), see the
Appendix for details. In perspective it would be interesting to analyze the effect of
thermal noise on transport in long-range systems.
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7.6 Appendix

7.6.1 Realistic Parameters for different systems

In the previous sections of this chapters we have shown that long-range hopping can
lead to a disorder-enhanced and a disorder-independent transport (DET and DIT)
regimes, extending over several orders of magnitude of disorder strength W. We have
also shown that a realistic system consisting of a linear chain of emitters in an optical
cavity can be mapped to a long-range hopping system. This makes our results appli-
cable to a vast number of physical systems, such as molecular chains, Rydberg atoms,
polar molecules and ion traps, to mention a few. Below we give some realistic parame-
ters for the Hamiltionian in Eq. (7.12), with respect to different physical systems. Typi-
cally for molecular chains in optical cavities Ω ≈ 0.03 eV, N ≈ 105 and gc ≈ 1 eV [208]
so that W1 ≈ 5× 10−3 eV, W2 ≈ 1.5 eV and WGAP ≈ gc ln N ≈ 11.5 eV. Since natural
disorder typically ranges from 1− 10 Ω we can easily reach the DET regime. Moreover
several other systems consisting of emitters in a cavity could display the same trans-
port properties predicted in this chapter, such as Rydberg atoms [208] for which we
have Ω ≈ 80 kHz and γeff ≈ 3 kHz, polar molecules where Ω ≈ 50 Hz and g � Ω or
ion traps [200] where Ω = 0 and γ ≈ 400 Hz.

7.6.2 Energy Gap and Long Range Interaction

In the main text of this chapter we have shown that adding long-range hopping to one-
dimensional (1D) disordered quantum wires leads to a finite energy gap ∆ between the
ground state and the excited states which protects the system from disorder [42].

In Fig. 7.4 we plot the energy gap ∆ divided by the nearest-neighbor coupling Ω as
a function of the coupling strength γ (multiplied by N/Ω) for two values of wire size N
and two disorders strengths: W/Ω = 100, Fig. 7.4(a), and W/Ω = 1, Fig. 7.4(b). Here,
we compute ∆ as [42]

∆ = max
i

{
min
j 6=i

[
dist

(
Ei, Ej

)]}
, (7.15)

where {Ei} are the eigenvalues of the Hamiltonian

H =
N

∑
j=1

εj |j〉 〈j|+ Ω
N−1

∑
j=1

(|j〉 〈j + 1|+ |j + 1〉 〈j|)− γ

2 ∑
i 6=j
|i〉〈j| , (7.16)

see Eqs. (7.1)-(7.2), and dist
(
Ei, Ej

)
= |Ei − Ej|.

Note that in Fig. 7.4 we report the average value of ∆ over disorder configurations.
From Fig. 7.4 we observe that below a critical coupling strength γGAP, ∆ remains con-
stant as a function of Nγ but decreases for increasing N, while above γGAP, ∆ is an
increasing function of Nγ but it is independent of N. A good approximation for γGAP
can be obtained from the expression for the disorder threshold derived in Ref. [42]

WGAP =
γ

2
N ln N (7.17)
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Figure 7.4: Energy gap ∆ divided by the nearest-neighbor coupling Ω as a function
of Nγ/Ω for the disorder strengths (a) W/Ω = 100 and (b) W/Ω = 1. Symbols are
given by Eq. (7.15), while the continuous blue curves show the analytical estimate of
Eq. (7.19). The dashed vertical lines indicate the critical coupling strength γGAP from
Eq. (7.18). Here, N = {100, 1000} and Nr = 100 disorder configurations were used.

as

γGAP =
2W

N ln N
. (7.18)

It is relevant to stress that Eq. (7.18) was obtained in Ref. [42] for the Picket-Fence model
with all-to-all coupling. The fact that Eq. (7.18) works very well in estimating γGAP at
large disorder strengths W, see the vertical dashed lines in Fig. 7.4(a), allows us to
anticipate that the expression

∆ =
W

e2W/Nγ − 1
, (7.19)

also obtained in Ref. [42], may describe well ∆ above γGAP for the 1D Anderson
model subject to long-range hopping. Indeed, the good correspondence between
Eq. (7.19) (blue-full curve) and the numerically obtained ∆ (symbols) is clearly shown
in Fig. 7.4(a).

Finally, it is important to add that even if Eq. (7.18) does not provide good predic-
tions for γGAP for small disorder strengths W/Ω, see Fig. 7.4(b), the analytical expres-
sion of Eq. (7.19) still describes well ∆ for large Nγ.

7.6.3 Transmission

In the main text of this chapter we analyze two figures of merit to characterize the trans-
port efficiency of 1D disordered quantum wires in presence of long-range hopping: the
typical current Ityp and the average variance 〈σ2〉 of the excited eigenstates. Here we
report a third figure of merit: the transmission T, which is widely used in transport
studies of low-dimensional disordered quantum systems. We note that according to
the experimental set-up either the current as computed in the main text of this chapter
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Figure 7.5: Pictorial representation of the scattering setup. The black lines represent
the Anderson model spectrum with a random level spacing W while the yellow cir-
cle is an excitation which can hop to all the other states with an amplitude γ (green
dashed lines). The excitation can then be collected by the leads at the edge sites with an
amplitude ν.

or the transmission as discussed here are the relevant figures of merit for transport. In-
deed, the integrated transmission Tint considered here is relevant in charge transport in
presence of a large bias, or when dealing with transmission of an energy broad-band
incoming beam.

The transmission through the 1D chain can be studied by turning the setup of
Fig. 7.1(a) into a scattering setup. To this end we couple the first and the last sites of
the chain (i.e. sites 1 and N) to two different perfect leads with coupling strength ν, so
that the components of the effective Hamiltonian (i.e. the Hamiltonian of the scattering
setup) read [80]

(Heff)k,l = (H)k,l −
i
2

ν(δk,1δl,1 + δk,Nδl,N) , (7.20)

where H is given in Eq. (7.16). A pictorial representation of the scattering setup is
shown in Fig. 7.5, where an excitation which can hop among the chain sites is shown as
the yellow circle.

In general, the transmission Ta,b(E) from channel a to channel b can be determined
by [80]

Ta,b(E) = |Za,b(E)|2 , (7.21)

where

Za,b(E) =
N

∑
i,j=1

Aa
i

(
1

E− Heff

)
i,j

Ab
j (7.22)

is the transmission amplitude, Heff is the effective non-Hermitian Hamiltonian in
Eq. (7.20) and Aa

i are the decay amplitudes from the discrete internal states i to the
external states a. Alternatively, we can also write Ta,b(E) by diagonalizing the Hamil-
tonian Heff. The eigenfunctions of Heff, |r〉 and 〈r̃|, form a bi-orthogonal complete set,

Heff |r〉 = Er |r〉 , 〈r̃|Heff = 〈r̃| Er, (7.23)

and its eigenenergies are complex numbers with the form

Er = Er −
i
2

Γr , (7.24)
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corresponding to resonances centered at the energy Er with decay widths Γr. The decay
amplitudes Aa

i are thus transformed according to

Aa
r = ∑

i
Aa

i 〈i|r〉 , Ãb
r = ∑

j
〈r̃|j〉 Ab

j , (7.25)

and the transmission amplitude Za,b(E) is then given by

Za,b(E) =
N

∑
r=1
Aa

r
1

E− Er
Ãb

r . (7.26)

Note that the complex eigenvalues E of Heff coincide with the poles of the transition
amplitude Z(E).

Since the excitation is collected by the leads at the edges of the chain, the ampli-
tudes in Eq. (7.25) are Aa

r =
√

νΨ1
r and Ãb

r =
√

νΨN∗
r , where Ψ1,N

r = 〈1, N|r〉 is the
amplitude of the eigenfunction |r〉 of the effective Hamiltonian on sites 1, N. Moreover,
the transmission amplitude Za,b(E) in Eq. (7.26) becomes

Za,b(E) = ν
N

∑
r=1

Ψ1
r ΨN∗

r
E− Er

. (7.27)

Since the conjugate of the transmission amplitude Za,b(E) is

Za,b(E)∗ = ν
N

∑
k=1

Ψ1∗
k ΨN

k
E− E∗k

, (7.28)

the transmission Ta,b(E) = |Za,b(E)|2 = Za,b(E)Za,b(E)∗ is written as

Ta,b(E) = ν2
N

∑
r=1

N

∑
k=1

Ψ1
r Ψ1∗

k ΨN
k ΨN∗

r

(E− Er)(E− E∗k )
. (7.29)

Now, let us integrate Eq. (7.29) over all the energies, i.e. Tint =
∫ ∞
−∞ dE Ta,b(E), so

we get the expression

Tint = ν2
N

∑
r=1

N

∑
k=1

Ψ1
r Ψ1∗

k ΨN
k ΨN∗

r

∫ ∞

−∞

dE
(E− Er)(E− E∗k )

= 2πν2
N

∑
r=1

N

∑
k=1

Ψ1
r Ψ1∗

k ΨN
k ΨN∗

r

(Γr + Γk)/2− i(Ek − Er)
. (7.30)

Let us note that Eq. (7.30) is exact and it depends only on the amplitudes of the eigen-
functions at the edges of the chain Ψ1,N

r and the complex eigenvalues Er of Heff. The
integrated transmission Tint represents the overall transmission over a wide spectral en-
ergy band and, for instance, is relevant for analyzing the transport under a large applied
voltage: the shape of the current-voltage characteristic can sometimes be significantly
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Figure 7.6: (a) Rescaled average integrated transmission 〈Tint〉N/Ω and (b) rescaled
average variance 〈σ2〉 /N2 as a function of the rescaled disorder strength W/Ω for dif-
ferent system sizes N as indicated in the legend. Here, we choose the coupling strength
to the leads (a) ν = Ω and (b) ν = 0, γ = Ω and the disorder configurations Nr are
such that Nr×N = 105. Arrows mark the critical disorder WGAP for each system size N
according to Eq. (7.17). The dashed (green, red and black) curves show the cases γ = 0.

different depending on the potential profile or the voltage drop. This is important in
determining the maximum current of a transistor [239].

In Fig. 7.6(a) we present the average integrated transmission 〈Tint〉, multiplied by
N/Ω, as a function of the normalized static disorder W/Ω for the coupling strength
to the leads ν = Ω; three wire lengths are reported, i.e. N = {100, 1000, 10000}. As a
reference, we also present the case of the 1D Anderson model without the long-range
hopping, i.e. the γ = 0 case, see the dashed (green, red and black) curves. Interestingly
the integrated transmission Tint in the DIT regime decays as 1/N in contrast to the
Anderson model case where it decays exponentially with the system size N. Moreover,
by comparing Fig. 7.6(a) with Fig. 7.2, it becomes clear that all the features reported
there for the typical current Ityp and the average variance 〈σ2〉 as a function of W are
also present in the average integrated transmission 〈Tint〉. Moreover, in Figs. 7.7(a)
and 7.7(c) we plot the curves of 〈Tint〉N/Ω of Fig. 7.6(a) but now as a function of the
static disorder W normalized by W1 and W2, respectively, see Eqs. (7.10)-(7.11). With
this we verify that the estimations for the critical disorders W1 and W2 (derived also in
the following Section), as given in Eqs. (7.33) and (7.35), respectively, work well for the
average integrated transmission 〈Tint〉.

In addition, for comparison purposes, in Figs. 7.6(b), 7.7(b) and 7.7(d) we present
〈σ2〉 /N2 for the same parameter values used in Figs. 7.6(a), 7.7(a) and 7.7(c), respec-
tively. 〈σ2〉 /N2 represents the normalized average variance of the excited eigenstates,
defined as

σ2 =
1

N − 1

N−1

∑
α=1

σ2
α where σ2

α ≡ 〈x2
α〉 − 〈xα〉2 and

〈x2
α〉 = ∑

i
i2 | 〈i|α〉 |2, 〈xα〉 = ∑

i
i | 〈i|α〉 |2.
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Figure 7.7: (a) Rescaled average integrated transmission 〈Tint〉N/Ω and (b) rescaled
average variance 〈σ2〉 /N2 as a function of the normalized static disorder W/W1. (c)
Rescaled average integrated transmission 〈Tint〉N/Ω and (d) rescaled average variance
〈σ2〉 /N2 as a function of the normalized static disorder W/W2. Vertical dashed lines in-
dicate the critical disorders (a,b) W1 and (c,d) W2, which are computed from Eqs. (7.33)
and (7.35), respectively. Same parameters of Fig. 7.6 were used.

A good correspondence in the behavior of the curves for the average integrated trans-
mission 〈Tint〉 and the average variance 〈σ2〉, as a function of W, is clearly observed.

In order to make the two different regimes more explicit, we rescale the disorder
strength in the following way: for the DET regime we put on the x-axis the variable

W ′ = (W −W1)/(W2 −W1)

so that W ′(W1) = 0 and W ′(W2) = 1. In this way all data sets with different N in the
DET regime have 0 < W ′ < 1. As one can see in Fig. 7.8(left panel), in the DET region
all the points with different N lie approximately on the same curve. To guide the eye
we perform a logarithmic fit, see dashed line in the same panel.

In order to show that the transmission in the DIT regime is approximately constant
we perform a similar change of variable, i.e.

W
′′
= (W −W2)/(WGAP −W2),

in such a way that in the DIT regime 0 < W
′′
< 1 for all different N. As one can see in

Fig. 7.8(right panel), all data sets for different N show that in this regime the transmis-
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Figure 7.8: Left panel (DET): Rescaled average integrated transmission 〈Tint〉N/Ω vs.
the rescaled disorder strength (W −W1)/(W2 −W1). The dashed line is a logarithmic
fit of all the symbols drawn in order to show the increase of transmission. Right panel
(DIT): Rescaled average integrated transmission 〈Tint〉N/Ω vs. the rescaled disorder
strength (W −W2)/(WGAP −W2). The dashed line is a linear fit of all the symbols
drawn in order to show that the transmission is approximately constant. The parame-
ters are the same as in Fig. 7.7. The error bars indicate one standard deviation.

sion is approximately constant. To guide the eye we added a linear fit performed on all
the points in this regime (see dashed line).

7.6.4 Shape of Eigenfunctions

Relationship between the shape of eigenfunctions and transport properties

The analysis of the shape of the eigenfunctions is essential to understand the transport
properties of the system. Moreover, this analysis will allow us to explain the differ-
ent transport regimes discussed above and to analytically estimate the different critical
disorders discussed in the previous section.

The dependence of the shape of the eigenfunctions on the disorder strength W in
our model is much richer than what we have in the Anderson model in absence of
long-range hopping. Indeed in the 1D Anderson model, the eigenfunctions are always
exponentially localized.

The situation is very different in presence of long-range hopping. For instance, the
shape of eigenfunctions in 1D and 3D Anderson models with the addition of all-to-all
non-Hermitian couplings have been already analyzed by some of the authors of this
manuscript in Ref. [83] and the main results obtained about the shape of eigenfuctions
are valid also for our case where the long-range coupling is Hermitian.
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Here we analyze the shape of the eigenfunctions in the site basis for different disor-
der strengths W, fixed γ and N, and no coupling to the leads, i.e. ν = 0. In our numer-
ical experiments, the average shape of the eigenfunctions 〈|Ψ|2〉 has been obtained for
each disorder configuration as follows:

1. We diagonalize the Hamiltonian given in Eq. (7.1) and reproduced in Eq. (7.16).

2. We consider those eigenfunctions peaked within the 20% of sites around the mid-
dle of the chain.

3. We shift the position of the selected eigenfunctions so that all maxima coincide.

4. We determine the average shape of the eigenfunctions 〈|Ψ|2〉 by averaging their
probability distributions.

In Fig. 7.9 we show the average shape of the eigenfunctions 〈|Ψ|2〉 in the site basis k
for the coupling strength γ = Ω, system size N = 104 and different disorder strengths
W as indicated in the legends. For all disorder strengths W, in each panel, we also
show the average shape of the eigenfunctions 〈|Ψ|2〉 for the corresponding Anderson
model, i.e. with γ = 0. By analyzing the average shape of the eigenfunctions 〈|Ψ|2〉
we can identify the different disorder regimes which are relevant to understand the
transport properties of the system, reported in the previous section:

1. (W < W1) For very small disorder strength W, the localization length ξ of the
eigenfunctions is larger than the systems size N, so that the eigenfunctions are
delocalized. The shape of the eigenfunctions 〈|Ψ|2〉 is similar to that of the An-
derson model in the absence of long-range coupling, see Fig. 7.9(a). As disorder
increases, an exponential peak becomes visible, see Fig. 7.9(b). In this regime the
shape of the eigenfunctions 〈|Ψ|2〉 is similar to the shape of the eigenfunctions
〈|Ψ|2〉 of the 1D Anderson model, up to the threshold strength W1, as discussed
in this chapter. We can define this disorder threshold W1 taking into considera-
tion that the eigenfuctions of the excited states have a hybrid character as discov-
ered in Ref. [83]. Indeed they present an exponentially localized peak with the
same localization length of the 1D Anderson model, and an extended tail which
decreases with the system size as 1/N. Thus, we can estimate the threshold disor-
der strength for which the eigenfunctions of the Anderson model with long-range
hopping will differ from the eigenfuctions of the 1D Anderson model, by finding
the disorder strength W for which the probability of the exponentially localized
peak at the chain edges becomes comparable to probability in the extended tails.
Considering that the extended tails in the gapped regime decrease as 1/N and
considering that the exponential peak at the chain edges is given by exp(−N/2ξ),
we can determine W1 by the following equation,

exp
(
− N

2ξ

)
≈ 1

N
⇒ − N

2ξ
≈ − ln N, (7.31)
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Figure 7.9: Average shape of the eigenfunctions 〈|Ψ|2〉 in the site basis k. Different
disorder regimes are shown in each panel: (a) W ≤ 0.102 Ω, (b) 0.102 Ω < W ≤ W1, (c)
W1 < W ≤ W2, (d) W2 < W < WGAP and (e) W ≥ WGAP. Here, N = 104 and γ = Ω.
The averages are taken over Nr = 100 disorder configurations. The continuous lines
indicate the corresponding average shape of eigenfunctions 〈|Ψ|2〉 for the case γ = 0.
Black arrows indicate increasing W.

where the localization length ξ for E = 0 [232] is

ξ(E = 0) = 105.2
(

Ω
W

)2

, (7.32)

so that Eq. (7.31) becomes

− N
210.4

(
W1

Ω

)2

≈ − ln N ,

⇒W1 ≈
√

210.4 ln N
N

Ω . (7.33)

2. (W1 ≤W < W2) Above the disorder threshold W1, the probability of the extended
tails increases as the disorder strength W increases, see black arrow in Fig. 7.9(c),
and the eigenfunctions change their shape: the probability in the extended tail
increases and the peak becomes more localized as the disorder strength W in-
creases. The disorder threshold W2 can be obtained by imposing the probability
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of the closest site to the peak to be equal to the probability in the extended tails.
Considering that the tails in the gapped regime decrease as 1/N, which is inde-
pendent of the disorder strength W, and that the exponential peak on the closest
site is given by exp(−1/2ξ), we can determine W2 by the following equation,

exp
(
− 1

2ξ

)
≈ 1

N
⇒ − 1

2ξ
≈ − ln N, (7.34)

so that Eq. (7.34) becomes

− 1
210.4

(
W2

Ω

)2

≈ − ln N ,

⇒W2 ≈
√

210.4 ln N Ω . (7.35)

3. (W2 ≤ W < WGAP) Above the disorder threshold W2, the eigenfunctions of the
excited states are fully localized and the amplitude of the extended tails is inde-
pendent of the disorder strength W, see Fig. 7.9(d).

4. (W ≥ WGAP) Above the critical disorder WGAP, the eigenfunctions of the ex-
cited states are fully localized on one site with extended tails whose amplitude
decreases as the disorder strength W increases, see the vertical black arrow in
Fig. 7.9(e).

The analysis of the average shape of the eigenfunctions 〈|Ψ|2〉 indicates a strong
correlation with the transport properties of the system. Specifically, we observe that the
typical current Ityp, the integrated transmission Tint and the variance σ2 are indepen-
dent of the disorder strength W in the same disorder range where the extended tails of
the average shape of the eigenfunctions 〈|Ψ|2〉 are independent, too. Thus, we can claim
that the extended tails in the probability distribution of the eigenfunctions support the
robustness of transport properties in the gapped regime.

We stress that the analysis of the average shape of the eigenfunctions 〈|Ψ|2〉 above
also allowed us to determine the disorder thresholds as a function of the model param-
eters, which define the different transport regimes.

It is relevant to notice that the panorama observed through the three figures of merit
we used to characterize the transport efficiency of 1D disordered quantum wires in the
presence of long-range hopping (i.e. the typical current Ityp, the average variance 〈σ2〉
of the corresponding eigenstates and the integrated transmission Tint) can be effectively
reproduced from the average eigenfunction amplitude of the hybrid states on the ex-
tended tails, 〈|Ψtail|2〉. This is shown in Fig. 7.10, where we plot 〈|Ψtail|2〉 as a function
of the disorder strength W for hybrid states at the coupling strength γ = Ω. 〈|Ψtail|2〉 is
computed from a triple average: over the components of the hybrid eigenfunction ex-
cluding the exponentially localized peak, over all hybrid eigenfunctions of a disorder
wire and over an ensemble of disorder configurations. Indeed, the curve 〈|Ψtail|2〉 vs. W
of Fig. 7.10 clearly displays all the characteristics of the transport properties, including
the disorder-independent regime W2 ≤W < WGAP.
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We also want to remark that the hybrid states plateau has nontrivial statistical prop-
erties: the average value of the probability in the plateau goes like 1/N, while the typ-
ical probability value goes like 1/N2. By typical probability we mean exp 〈ln |Ψtail|2〉.
These two scalings are shown in Fig. 7.21 from the stationary probability distribution
obtained by evolving a wave packet initially localized at the center of a linear chain in
the DIT regime.

Perturbative approach to the shape of eigenfuctions

Since we demonstrated that the shape of the eigenfunctions allows to understand the
transport properties of the system, here we intend to derive a perturbative expression
for the shape of the excited eigenfunctions in the gapped regime. For this purpose, we
rewrite Eq. (7.16) in its matricial form as follows

H = H0 −
γ

2
Q +

γ

2
I , (7.36)

where Q is a full matrix with components 1 and I is the identity matrix. The Q matrix
can be easily diagonalized. It has only two different eigenvalues. The first eigenvalue,
−γN/2, corresponding to the lowest energy state, is a fully non degenerated extended
state,

|d〉 = 1√
N

N

∑
j=1
|j〉 , (7.37)

where |j〉 is the site basis (one excitation on the jth molecule). All the other eigenvalues
are zero, corresponding to a (N − 1)-degenerate subspace spanned by all the states
orthogonal to the lowest energy extended state.
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Following [240], we can rewrite the Hamiltonian H in Eq. (7.36) in the basis of these
eigenstates, using the transformation matrix U, which has as columns the eigenstates
of the matrix Q,

H = UT H0U − γ

2
UTQU +

γ

2
I =

(
−γ

2
(N − 1) + ζ ~hT

~h H̃

)
. (7.38)

Let us note that the component (1, 1) of Eq. (7.38) includes the term ζ = ∑n εn|〈n|d〉|2,
where εn and |n〉 are, respectively, eigenvalues and eigenvectors of H0. Here, the matrix
elements of the (N − 1)× (N − 1) submatrix H̃ on the basis of the excited states of the
matrix Q are

H̃µν = 〈µ|H0 −
γ

2
Q +

γ

2
I|ν〉

= 〈µ|H0|ν〉 − 〈µ|
γ

2
Q|ν〉+ γ

2
δµν ;

here the second term vanishes since the eigenvalues of the degenerate excited states of
Q are 0. If we rewrite the Hamiltonian H0 in its eigenbasis |n〉, we get

H̃µν = 〈µ|
(

∑
n

εn |n〉 〈n|
)
|ν〉+ γ

2
δµν

= ∑
n

εn 〈µ|n〉 〈n|ν〉+
γ

2
δµν . (7.39)

The components of the vector~h, with dimension N − 1, in the basis of the eigenstates
of the matrix Q are

hµ = ∑
n

εn 〈d|n〉 〈n|µ〉 . (7.40)

The |µ〉 eigenstates of H̃ are also eigenstates of Q since they belong to the (N − 1)-
degenerate subspace of the Q matrix. Thus, we diagonalize the submatrix H̃ and we
call |µ〉 its eigenstates with eigenvalues ε̃µ, i.e.

H̃µν = ε̃µδµν. (7.41)

If we multiply Eq. (7.39) by the components 〈m|µ′〉, where |µ′〉 is an eigenstate of
the submatrix H̃ and |m〉 is an eigenstate of H0, and we sum over all the states µ′, we
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obtain

∑
µ′

H̃µ′µ 〈m|µ′〉 = ∑
µ′

∑
n

εn 〈µ′|n〉 〈n|µ〉 〈m|µ′〉+
γ

2 ∑
µ′

δµ′µ 〈m|µ′〉

= ∑
n

εn 〈n|µ〉 〈m|
(

∑
µ′
|µ′〉 〈µ′|

)
|n〉+ γ

2
〈m|µ〉

= ∑
n

εn 〈n|µ〉 〈m| (I − |d〉 〈d|) |n〉+ γ

2
〈m|µ〉

= ∑
n

εn 〈n|µ〉 (δmn − 〈m|d〉 〈d|n〉) +
γ

2
〈m|µ〉

= (εm +
γ

2
) 〈m|µ〉 −∑

n
εn 〈d|n〉 〈n|µ〉 〈m|d〉

= (εm +
γ

2
) 〈m|µ〉 − hµ 〈m|d〉 . (7.42)

On the other hand, from Eq. (7.41) we have

∑
µ′

H̃µ′µ 〈m|µ′〉 = ∑
µ′

ε̃µ′δµ′µ 〈m|µ′〉 = ε̃µ 〈m|µ〉 . (7.43)

By comparing Eqs. (7.42) and (7.43), we obtain

ε̃µ 〈m|µ〉 = (εm +
γ

2
) 〈m|µ〉 − hµ 〈m|d〉 , (7.44)

i.e.,

|µ〉 = hµ

H0 + γ/2− ε̃µ
|d〉 . (7.45)

Equation (7.45) can be rewritten in the Anderson basis as follows

|µ〉 = hµ ∑
n

〈n|d〉
εn + γ/2− ε̃µ

|n〉 = hµ√
N

∑
n

∑j 〈n|j〉
εn + γ/2− ε̃µ

|n〉 , (7.46)

where |j〉 is the site basis and the normalization coefficients hµ are given by

hµ =

(
∑
n

〈d|n〉 〈n|d〉
(εn + γ/2− ε̃µ)2

)−1/2

. (7.47)

In the gapped regime and for sufficiently large disorder W2 < W < WGAP, where the
eigenstates have a hybrid nature, we can assume that the Anderson eigenstates coincide
with the site basis, see Fig. 7.9(d). So, Eq. (7.46) with the normalization coefficients hµ

in Eq. (7.47) becomes

|µ〉 ≈
(

1
N ∑

i

1
(εi + γ/2− ε̃µ)2

)−1/2
1√
N

∑
i

1
εi + γ/2− ε̃µ

|i〉

≈

∑
i

1(
εi−ε̃µ

W + γ
2W

)2


−1/2

∑
i

1
εi−ε̃µ

W + γ
2W

|i〉 . (7.48)
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Figure 7.11: Eigenfunction probability |Ψ|2 in the site basis k for the first ex-
cited state (of a single disorder configuration) with disorder strengths W/Ω =
{10−1, 1, 10, 102, 104, 106}. Here, N = 100 and γ = 103Ω. The black symbols represent
the exact eigenfunctions of the total Hamiltonian H of Eq. (7.16) and the red symbols
are the |µ〉 states obtained from Eq. (7.46).
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Our perturbative expression allows to explain many features of the average shape
of the eigenfunctions 〈|Ψ|2〉 discussed above, mainly the existence of a disorder-
independent plateau in the disorder range W2 < W < WGAP. From Eq. (7.48) we
can see that both the normalization coefficients and the weights on the site basis are in-
dependent of disorder for W � γ since both εi and ε̃µ are proportional to the disorder
strength W for large disorder. This is an important result since our perturbative ap-
proach is able to explain the independence of the plateau from disorder in the disorder
regime W2 < W < WGAP. That is, since the disorder strength W is uncorrelated from
the site basis, the eigenfunction tail becomes a plateau that extends over the entire basis.
Moreover, since the term (εi−ε̃µ)

W decreases as 1/N, this also explains the dependence of
the probability of the extended tails on the system size for W � γ.

Finally, to validate the perturbative derivation of the |µ〉 states above, in Fig. 7.11
we present the eigenfunction probability |Ψ|2, in the site basis k, for the first excited
state at several disorder strengths W. In each panel we show the exact eigenfunction of
the total Hamiltonian H of Eq. (7.16) (black symbols) and the |µ〉 state obtained from
Eq. (7.46) (red symbols). In all panels from (a) to (e) we see an excellent correspondence
between the exact and the |µ〉 state. Note that since WGAP ≈ 230258 for the parameter
chosen in Fig. 7.11, we cannot expect agreement in panel (f).

Using the perturbative expressions of the eigenstates obtained in Eqs. (7.37) and
(7.46) we can compute both the current through Eq. (7.52) and the variance. The results
are shown in Fig. 7.2(a,b), see orange squares.

7.6.5 Master Equation vs. Schrödinger equation approach to compute the
current

In the main text of this chapter we report the transport properties of two models: the
1D Anderson model subject to long-range hopping and a disordered molecular wire
placed in an optical cavity. For both systems we report the stationary current as the
main figure of merit to characterize transport. However, the standard master equation
approach (see Eqs. (7.4)-(7.5)) is numerically very expensive to compute the stationary
current through long wires. For this reason, we use a different definition of current
that is based on a non-Hermitian Schrödinger Equation (see Eqs. (7.6)-(7.9)) which is
computationally less expensive. Here we add some details about the non-Hermitian
Schrödinger Equation approach and we analytically prove the identity between the
two definitions of the current.

Non-Hermitian Schrödinger equation approach

The non-Hermitian Schrödinger Equation approach described above in the chapter (see
Eqs.(7.6)-(7.9)) is based on the calculation of the average escape time from the chain,
when the excitation is initialized on the site |1〉 and in presence of a drain at site |N〉.
Such drain is described by the effective Hamiltonian (see Eq. (7.7))

(Heff)k,l = (H)k,l − i
γd

2
δk,Nδl,N , (7.49)
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where H is the Hamiltonian from Eq. (7.16) and δk,N is the Kronecker delta.
The average transfer time τ is defined as (see Eq. (7.6))

τ =
γd

h̄

∫ ∞

0
dt t |ΨN(t)|2, (7.50)

with ΨN(t) = 〈N| e−iHefft/h̄ |1〉 being the probability amplitude on the drain site of a
time-evolved wave function at time t, under the effective Hamiltonian Heff of Eq. (7.49).
The integral in Eq. (7.50) can be evaluated analytically by expanding e−iHefft/h̄ on the
eigenbasis of Heff which, being non-Hermitian, has right and left eigenvectors,

Heff |rk〉 = εk |rk〉 and 〈r̃k|Heff = 〈r̃k| εk . (7.51)

The average transfer time τ is therefore

τ = h̄γd ∑
k,k′

〈N|rk〉 〈r̃k|1〉 〈N|rk′〉∗ 〈r̃k′ |1〉∗
−(εk − ε∗k′)

2 , (7.52)

it depends only on the eigenvalues and eigenvectors of Heff and it is used in Eqs. (7.8)-
(7.9) to compute the steady-state current.

Exact mapping between master equation and Schrödinger equation approaches

Here we consider the master equation, Eq. (7.4), and we prove that the steady-state
current, defined in Eq. (7.5), is identical to the Schrödinger equation result, see Eq. (7.9).
The master equation, Eq. (7.4), is written explicitly as

dρ

dt
=− i

h̄
(Hρ− ρH)− γd

2h̄
(|N〉 〈N| ρ + ρ |N〉 〈N|) + γd

h̄
ρNN |0〉 〈0|

− γp

2h̄
(|0〉 〈0| ρ + ρ |0〉 〈0|) + γp

h̄
ρ00 |1〉 〈1| , (7.53)

where H is a generic hermitian Hamiltonian acting on the single-excitation subspace,
γd/h̄ is the drain rate from the site |N〉, ρNN = 〈N|ρ|N〉 is the population of the site
|N〉, |0〉 is the vacuum state, γp/h̄ is the pumping rate on the site |1〉 and ρ00 = 〈0|ρ|0〉
is the population of the vacuum state. First, we note that Eq. (7.53) can be written in
terms of the effective Hamiltonian, Eq. (7.49), and it reads

dρ

dt
= − i

h̄

(
Heffρ− ρH†

eff

)
+

γd

h̄
ρNN |0〉 〈0| −

γp

2h̄
(|0〉 〈0| ρ + ρ |0〉 〈0|) + γp

h̄
ρ00 |1〉 〈1| .

(7.54)
We want to compute the steady-state current, which is defined in Eq. (7.5) as

I =
γd

h̄
〈N|ρ(ss)|N〉 , (7.55)

where ρ(ss) is the steady-state density matrix, that we obtain by setting dρ
dt = 0 in

Eq. (7.54). First, we set the derivative of the vacuum state population to zero, i.e.

d
dt
〈0|ρ(ss)|0〉 = γd

h̄
ρ
(ss)
NN −

γp

h̄
ρ
(ss)
00 = 0 , (7.56)
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where we used the fact that Heff acts only on the single-excitation subspace, i.e.
Heff |0〉 = 0. From Eq. (7.56) we have γdρ

(ss)
NN = γpρ

(ss)
00 , so that the steady-state cur-

rent, Eq. (7.55) can be expressed as

I =
γd

h̄
ρ
(ss)
NN =

γp

h̄
ρ
(ss)
00 . (7.57)

Now we proceed to compute ρ
(ss)
00 , and we use the fact that the total trace of the density

matrix must be unity, i.e.

Tr[ρ(ss)] = ρ
(ss)
00 + ∑

j
〈j|ρ(ss)|j〉 = 1 , (7.58)

where the states |j〉 form a generic orthonormal basis on the single-excitation subspace.
Now, we recall that the eigenstates of the effective Hamiltonian Heff, see Eq. (7.51), form
a biorthogonal basis, i.e. 〈r̃k|rk′〉 = δk,k′ . This allows to decompose the identity (on the
single-excitation subspace) as

Ids.e.s. = ∑
k
|rk〉 〈r̃k| = ∑

k
|r̃k〉 〈rk| . (7.59)

Using the above decompositions, we can express the sum over j in Eq. (7.58) as

∑
j
〈j|ρ(ss)|j〉 = ∑

j
∑

k
∑
k′
〈j|rk〉 〈r̃k|ρ(ss)|r̃k′〉 〈rk′ |j〉 = ∑

k
∑
k′
〈rk′ |rk〉 〈r̃k|ρ(ss)|r̃k′〉 . (7.60)

Here above we also used the fact that |j〉 is an orthonormal basis on the single-
excitation subspace, so that it is possible to decompose the scalar product 〈rk|rk′〉 =
∑j 〈rk′ |j〉 〈j|rk〉. Note that the eigenstates |rk〉 are not orthonormal, so that 〈rk|rk′〉 6= 0
for k 6= k′. Specifically, we can compute 〈rk|rk′〉 as follows. From the non-Hermitian
Hamiltonian, see Eq. (7.49), we have the identity

Heff − H†
eff = −iγd |N〉 〈N| . (7.61)

If we take the expectation value of both sides of the above equation between 〈rk′ | . . . |rk〉,
using Eq. (7.49), we obtain

(εk − ε∗k′) 〈rk′ |rk〉 = −iγd 〈rk′ |N〉 〈N|rk〉 (7.62)

from which we have

〈rk′ |rk〉 =
γd 〈rk′ |N〉 〈N|rk〉

i
(
εk − ε∗k′

) . (7.63)

Now, to evaluate Eq. (7.60), we proceed to compute 〈r̃k|ρ(ss)|r̃k′〉 by setting dρ
dt = 0.

Specifically, from Eq. (7.54), using Eq. (7.49), we obtain

d
dt
〈r̃k|ρ(ss)|r̃k′〉 = −

i
h̄
(εk − ε∗k′) 〈r̃k|ρ(ss)|r̃k′〉+

γp

h̄
ρ
(ss)
00 〈r̃k|1〉 〈1|r̃k′〉 = 0 , (7.64)
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from which we have

〈r̃k|ρ(ss)|r̃k′〉 = γpρ
(ss)
00
〈r̃k|1〉 〈1|r̃k′〉
i
(
εk − ε∗k′

) . (7.65)

Now, we substitute Eq. (7.63) and Eq. (7.65) into Eq. (7.60) and obtain

∑
j
〈j|ρ(ss)|j〉 = γpρ

(ss)
00

h̄

[
h̄γd ∑

k,k′

〈rk′ |N〉 〈N|rk〉 〈r̃k|1〉 〈1|r̃k′〉
−
(
εk − ε∗k′

)2

]
. (7.66)

Note that the term inside square brackets is equal to the average transfer time τ, see
Eq. (7.52), i.e.

∑
j
〈j|ρ(ss)|j〉 = γpτρ

(ss)
00

h̄
. (7.67)

Therefore, by substituting Eq. (7.67) into Eq. (7.58) we obtain

ρ
(ss)
00 +

γpτ

h̄
ρ
(ss)
00 = 1 , (7.68)

from which we obtain the steady-state value of the population of the vacuum state,

ρ
(ss)
00 =

1
1 + γpτ

h̄

. (7.69)

Finally, we substitute Eq. (7.69) into Eq. (7.57) and we have

I =
γp

γpτ + h̄
, (7.70)

which is exactly the value of the steady-state current that we obtained with the non-
Hermitian Schrödinger equation approach, see Eq. (7.9). Note that in our calculations
we did not specify the nature of the hermitian Hamiltonian H, so our results work for a
general open quantum system in the single-excitation approximation, with incoherent
pumping of excitation on one state of the system (state |1〉) and incoherent draining of
excitation from another state (state |N〉).

In the following, we compare analytical with numerical results, and we show that
the master equation approach gives a steady-state current identical to that obtained via
the Schrödinger equation.

In Fig. 7.12 we plot the current multiplied by h̄/Ω as a function of the normal-
ized static disorder W/Ω for the long-range Hamiltonian, on a chain of N = 40 sites,
from both approaches: the master equation approach (black symbols) and the non-
Hermitian Schrödinger equation approach (red symbols). We are limited to consider
a short chain of N = 40 sites because the master equation approach is numerically
very expensive. Moreover, we set an unusually large value of the long-range coupling
(γ = 10 Ω), to ensure that the disorder threshold WGAP (see Eq. (7.17)) is larger than
the disorder threshold W1 (see Eq. (7.33)) even for such a small system size. Specifi-
cally, in the panels of Fig. 7.12 we report: the average 〈I〉, Fig. 7.12(a); the typical Ityp,
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Fig. 7.12(b); the maximal Imax, Fig. 7.12(c) and the minimal Imin currents, Fig. 7.12(d);
all of them are multiplied by h̄/Ω. In all cases, we observe a perfect match between the
two approaches, thus validating the use of the non-Hermitian Schrödinger equation ap-
proach in this chapter. Note that the large error bar for the average current, Fig. 7.12(a),
present for W > 105Ω can be explained by an anomalously large value of the current in
one of the 100 disorder realizations used to produce the figure, as we verified. Probably,
a larger number of realizations would fix this problem, but we are not interested in that
since our main results are about the typical current, which is self-averaging and does
not present this problem, see Fig. 7.12(b).

Moreover, in Fig. 7.13 we report the normalized average current h̄ 〈I〉 /Ω from the
master equation approach (black symbols) and the non-Hermitian Schrödinger equa-
tion approach (red symbols) as a function of the normalized pumping rate γp/Ω (for
fixed γd), see Fig. 7.13(a), and of the normalized draining rate γd/Ω (for fixed γp), see
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Figure 7.12: (a) Average 〈I〉, (b) typical Ityp, (c) maximal Imax and (d) minimal Imin
currents, multiplied by h̄/Ω, as a function of the normalized static disorder W/Ω
for the long-range Hamiltonian, Eq. (7.16). The stationary current is computed with
the master equation approach (open circles), see Eqs. (7.4)-(7.5), and with the non-
Hermitian Schrödinger equation equation approach (red crosses), see Eqs. (7.6)-(7.9).
Here, N = 40, γd = γp = Ω, γ = 10 Ω. The averages are taken over Nr = 100 disorder
configurations. The dashed curves indicate the case γ = 0. Vertical blue lines indicate
the critical disorder W1 given by Eq. (7.33).
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Figure 7.13: (a) Normalized average current h̄ 〈I〉 /Ω vs. the normalized coupling
strength γp/Ω for γd = Ω and (b) normalized average current h̄ 〈I〉 /Ω vs. the nor-
malized coupling strength γd/Ω for γp = Ω. The stationary current is computed
with the master equation approach (open circles), see Eqs. (7.4)-(7.5), and with the non-
Hermitian Schrödinger equation equation approach (red crosses), see Eqs. (7.6)-(7.9).
Here, W = 100 Ω, while the other parameters are the same as in Fig. 7.12.

Fig. 7.13(b), for a fixed value of disorder (W = 100Ω). Similarly to Fig. 7.12, also here
we observe a perfect correspondence between the two approaches.

7.6.6 Current and typical current

In Fig. 7.14 the probability distribution functions (PDF) of the stationary current h̄I/Ω
and of the variable J = ln(h̄I/Ω) are shown for a case in the disorder-independent
transport (DIT) regime. As one can see, while the distribution of the current is strongly
peaked at the origin and develops a slow-decaying tail, the distribution of J has a bell
shape.

Therefore it is important to check which of the two quantities has the self-averaging
property, namely, a ratio between the standard deviation Irms and the mean 〈I〉 de-
creasing with N for large N values. Results for the variables I and J are shown in
Figs. 7.15(a,c). As one can see, while in the first case Irms/〈I〉 grows with N, Jrms/|〈J〉|
decreases with N. For this reason we decided to consider the variable J, and from that
the typical current h̄Ityp/Ω = exp(〈J〉), in most of our numerical calculations in this
chapter.

For completeness in Fig. 7.15(b) we show the average current 〈I〉 and its standard
deviation Irms as a function of the wire size N. Figure 7.15(d) is equivalent to Fig. 7.15(b)
but for the variable J. Moreover, in Fig. 7.16 we compare the behavior of the average
〈I〉, typical Ityp and maximal Imax currents, in the disordered-independent regime, as
a function of the system size N. We observe that all currents reported in Fig. 7.16 are
proportional to 1/N2, see the dashed line; this size dependence was already reported
in Fig. 7.15(b) for the average current 〈I〉.
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Figure 7.14: Probability distributions of (a,b) the normalized current h̄I/Ω and (c,d) the
logarithm of the normalized current ln(h̄I/Ω), for two wire sizes (a,c) N = 100 and
(b,d) N = 6400. We considered the 1D Anderson model with long-range hopping, see
Eq. (7.16), with γ = Ω and W = 100 Ω. The number of random disorder configurations
is (a,c) Nr = 104 and (b,d) Nr = 350.

7.6.7 Scaling of the transport regimes with the long-range coupling strength

In Fig. 7.17 we present the average 〈I〉, typical Ityp, maximal Imax and minimal Imin
currents, multiplied by h̄/Ω, as a function of the normalized static disorder W/Ω for
disordered wires with long-range hopping with different coupling strengths γ, as indi-
cated in panel (b). For comparison purposes in Fig. 7.17(b) we also report the average
variance 〈σ2〉 of the excited eigenstates. As a reference, in panels (a-c) the case of γ = 0
is also shown, see the orange curves. In all panels the values of W1 and W2 are indicated
with vertical dashed lines.

From Fig. 7.17 there are some points that deserve to be highlighted: (i) Since we
use a fixed wire size, N = 103, all curves fall one on the top of the other for W <
WGAP; recall that neither W1 nor W2 depend on the coupling strength γ, see Eqs. (7.33)
and (7.35), respectively. (ii) Since WGAP ∝ γ, see Eq. (7.17), the larger the value of the
coupling strength γ the wider the disorder independent regime W2 < W < WGAP. It
is interesting to note that transport properties do not depend on the value of the long
range coupling γ in the gapped regime.
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Figure 7.15: (a) The ratio Irms/〈I〉, (b) 〈I〉 and Irms in units of the hopping rate (Ω/h̄), (c)
the ratio Jrms/|〈J〉|, and (d) 〈J〉 and Jrms as a function of the wire size N. We considered
the 1D Anderson model with long-range hopping, see Eq. (7.16), with γ = Ω and
W = 100 Ω. The full-red and back-dashed lines in panel (b) are power-law fittings to the
data with exponents α, β as given in the legend. The number of disorder configurations
Nr is such that N × Nr = 106.

7.6.8 Mapping between a molecular chain in an optical cavity and a system
with long-range hopping

Here we consider a molecular chain in an optical cavity, with an optical mode at res-
onance with the molecule excitation energy. We show that the common coupling to
the cavity mode effectively induces a long-range hopping between the molecules. This
mapping, see Fig. 7.3(a), is very accurate even in presence of disorder until W ≈WGAP.

The molecular chain in the cavity is described by the Hamiltonian in Eq. (7.12). First
we proceed to prove that in absence of disorder there is an energy gap ∆ between the
polaritonic ground state and the lowest energy excited state. Indeed, in absence of
disorder (W = 0), only the fully symmetric state |d〉, see Eq. (7.37), with energy −2Ω
in the molecular chain couples with strength

√
Ng with the cavity mode which is at

energy zero (resonant with the molecule excitation energy). Thus, we can compute the
polaritonic energies and the energy gap ∆ by solving the 2× 2 coupling matrix for |d〉
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Figure 7.17: (a) Average 〈I〉, (c) typical Ityp, (d) maximal Imax and (e) minimal Imin
currents in units of the hopping rate Ω/h̄, and (b) average variance 〈σ2〉 as a function
of the static disorder W for different coupling strengths γ as indicated in the legend.
Here, N = 103 and γp = γd = Ω. We used Nr = 103 disorder configurations. The
orange curves show the case γ = 0 while the vertical dashed lines indicate the critical
disorder W1 (black) and W2 (red).
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and the cavity mode |c〉,(〈d|Hcav |d〉 〈d|Hcav |c〉
〈c|Hcav |d〉 〈c|Hcav |c〉

)
=

(−2Ω
√

Ng√
Ng 0

)
,

with Hcav from Eq. (7.12). Considering that for large N also the first excited state has
energy −2Ω, we have

∆ =
√

Ng2 + Ω2 −Ω ≈
√

Ng for
√

Ng� Ω . (7.71)

On the other hand, a molecular chain in presence of long-range hopping of coupling
strength γ has an energy gap ∆, in absence of disorder, equal to Nγ/2. By imposing
γeff = 2g/

√
N we determine the effective long-range coupling which would produce

the same energy gap ∆ in absence of disorder and for large N. With this choice of γeff,
if we exclude the polaritonic states in the cavity model and the ground state in the
long range model, all other eigenstates and eigenvalues between the two models are
identical for W = 0. This does not prove that they will be equivalent when disorder is
added. In order to discuss this point, in the following, we consider the role of disorder
using perturbation theory.

By considering the Anderson model,

H0 = ∑
n

εn |n〉 〈n|

(see also Eq. (7.2)) as a perturbation in the regime
√

Ng� (Ω, W) or γeff � (Ω, W) and
following the same approach developed in previous Sections, we can apply a perturba-
tive approach to both the long-range and the cavity model.

Let us start to consider the long-range Hamiltonian. We can write the Hamilto-
nian H in Eq. (7.1) in the basis which diagonalizes the long-range interaction matrix
V = −γ/2 ∑i 6=j |i〉 〈j|. This basis is formed by the fully symmetric state |d〉, with eigen-
value −γ(N − 1)/2, and by the N − 1 degenerate states |µ〉, orthogonal to |d〉, with
eigenvalues γ/2. In this basis we have

H =

(
−γ

2
(N − 1) + ζ ~hT

~h H̃

)
, (7.72)

where~h is the interaction vector between the excited states and the ground state (7.47)
of the long-range interaction matrix V with components

hµ = ∑
n

εn〈d|n〉〈n|µ〉 . (7.73)

Moreover,
ζ = ∑

n
εn|〈n|d〉|2 (7.74)
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and H̃ represents the matrix elements of the N− 1 excited states written in the degener-
ate basis of the long-range hopping interaction matrix. The matrix elements of H̃ with
respect to the N − 1 degenerate eigenstates of V, |µ〉 , |ν〉, can be written as

〈ν|H̃|µ〉 = ∑
n

εn〈ν|n〉〈n|µ〉+
γ

2
δνµ . (7.75)

For the molecular chain in the cavity we can use as a basis the eigenstates of the
interaction matrix between the N uncoupled molecules and the cavity mode. In this
interaction matrix all the molecules are coupled with strength g with the cavity mode
which acts as an additional external site, see Eq. (7.12). This form of the coupling im-
plies that only the state |d〉 in the molecular chain couples with the cavity mode, form-
ing two polaritonic states |p±〉 with energies ±

√
Ng. On the other hand all the other

N− 1 degenerate eigenstates |µ〉with energy zero are decoupled from the cavity mode.
Note that the |µ〉 states defined here are identical to the |µ〉 states defined above for the
long-range model. Therefore, in the basis {|p±〉 , |µ〉} we can write the Hamiltonian of
Eq. (7.12) as:

H =

 −
√

Ng + ζ/2 ζ/2 ~hT/2
ζ/2

√
Ng + ζ/2 ~hT/2

~h/2 ~h/2 H̃

 , (7.76)

where the matrix elements~h and H̃ are given above, see Eqs. (7.73,7.74,7.75).
In particular, we note that the zero order matrix H̃ is the same in both cases: the

long-range (see Eq. (7.39)) and cavity systems (see Eq. (7.75)). Note also that the |µ〉
states are the same for both cases, and they are given by Eq. (7.46). Moreover, also the
mixing~h between the excited states and the ground state/polaritonic states is the same
apart from a factor of 2 (compare Eq. (7.72) to Eq. (7.76)). Therefore our mapping is
exact if the dynamics starts from the subspace orthogonal to the extended state |d〉 in
absence of disorder, and it is approximate in presence of disorder, where the discrep-
ancies are proportional to the perturbative parameter W/(

√
Ng). Thus, we can expect

that by imposing γeff = 2g/
√

N, the excited states of the long-range model and the
non-polaritonic states in the molecular chain in the cavity will be very similar until the
disorder threshold W ≈ WGAP, above which disorder will strongly mix the subspaces.
This hypothesis is verified in Fig. 7.18, where the average shape of the eigenfunctions
〈|Ψ|2〉 for both the excited states in the long-range case and the non-polaritonic states
for the cavity case are compared and shown to be very similar for all the values of
disorder considered in the gapped regime.

7.6.9 Dynamics: wave packet spreading and stationary state

In this Section we analyze the dynamics of a linear chain in presence of long-range
hopping and disorder, see Eq. (7.1). We consider a wave packet initially localized on
one single site at the center of the chain. We let the initial state evolve in presence
of disorder and we compute the variance of the wave packet in time, averaging the
probability distribution on the chain sites over the disorder realizations, at each time.
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Figure 7.18: Average shape of the eigenfunctions 〈|Ψ|2〉 in the site basis k comparing
the cavity model (red dots) and the long-range all-to-all coupling γeff (black circles). In
each panel different disorder regimes are shown: (a) W < W1, (b) W1 < W < W2 and (c)
W2 < W < WGAP. Here, N = 103, Ω = 0.0124 eV, h̄ωc = 2 eV, µ ≈ 36 D, g = 0.1008 eV,
gc = 3.188 eV, γeff = 2g/

√
N and the number of disorder configurations Nr = 103. The

blue-dashed lines, shown as a reference, indicate the case g = 0.

The variance at different times σ2(t) has been computed as follows,

σ2(t) ≡ 〈ψ(t)|x2
α|ψ(t)〉 − 〈ψ(t)|xα|ψ(t)〉2,

where the over-line stands for the disorder average. The results are shown in
Fig. 7.19(lower panel). Once the variance reaches a stationary value, we computed
the time average of the the stationary variance (red crosses) and we plot it for different
disorder strengths W in Fig. 7.19(upper panel), where the average variance of the ex-
cited eigenstates is also shown (black circles), see also Fig. 7.2(b). Interestingly the two
variances, one obtained by analyzing the eigenstates and the other obtained from the
dynamics, are very similar. This shows that the average eigenstate variance analyzed in
the main text of this chapter can indeed be considered as a figure of merit for transport.

For some of the red crosses shown in Fig. 7.19(upper panel) we also show the time
evolution of the variance σ2(t) in Fig. 7.19(lower panel). At small times, one can observe
periodic fluctuations independent of the disorder strength W with frequency Nγ/2
corresponding to the energy gap ∆ between the ground state and the excited states. At
larger times the variance reaches the stationary value in a ballistic-like way σ2(t) ∝ t2
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Figure 7.19: Upper Panel: Average eigenstate variance 〈σ2〉 vs. the disorder strength
W of the excited eigenstates (black circles) is compared with the stationary variance
(red crosses) obtained by evolving a wave packet initially localized in the middle of the
linear chain. The stationary variance has been obtained by averaging over 100 disorder
realizations and averaging over time from 500 < t < 104. Lower Panel: Variance
obtained by evolving a wave packet initially localized in the middle of the liner chain
is shown vs. the time t for different disorder strengths W, see legend. At each time the
variance has been obtained by averaging over 100 disorder realizations. The ballistic
behaviour σ2 ∝ t2 is shown as a dashed black line, while the diffusive behaviour σ2 ∝
t is shown as a dot-dashed red line. In both panels a linear chain with long-range
hopping has been considered, see Eq. (7.16). Parameters are: N = 1001, γ = Ω, Ω = 1
with W1 ≈ 1.205, W2 ≈ 38.126 and WGAP ≈ 3457.831. In both panels, the time is
measured in units of the hopping time h̄/Ω.
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for small disorder, see the dashed black line in Fig. 7.19(lower panel), and in a diffusive-
like way σ2(t) ∝ t for larger disorder, see the dot-dashed red line in Fig. 7.19(lower
panel). Note that in the disorder-independent transport regime (DIT) W2 < W < WGAP,
the variance stationary value is independent of the disorder strength W. For even larger
disorder, when W > WGAP, the spreading is almost immediately diffusive-like until it
saturates.
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Figure 7.20: Probability distributions are shown at different times t and different dis-
order strengths W, see legend. The probability distributions have been obtained by
evolving an initially localized wave packet at the center of a liner chain. Each prob-
ability distribution has been obtained by averaging over 100 disorder realizations. In
all panels a linear chain with long-range hopping has been considered, see Eq. (7.1).
Parameters are: N = 1001, γ = Ω, Ω = 1. In all panels, the time is measured in units of
the hopping time h̄/Ω.

While the behaviour of σ2(t) suggests a transition from ballistic to diffusive-like
spreading as the disorder strength W increases, a closer look at the probability distribu-
tion at different times and for different disorders, Fig. 7.20, shows that both the ballistic
and diffusive characterization of the wave packet spreading in presence of long-range
hopping are not fully correct. Specifically, for large W, the increase of the variance is
not due to an increase of the width of the initial wave packet but it is mainly due to the
growth of the flat tails of the probability distribution, see lower panels in Fig. 7.20.

Finally, by analyzing the stationary probability distribution obtained from the dy-
namics we analyzed the tails of the distribution in the disorder-independent transport
(DIT) regime. Since in this regime the distribution has only one peak at the center
of the chain corresponding to the initial state, in order to analyze the statistical prop-
erties of the probability distribution in the tails we averaged the probabilities and
their logarithm over all the sites but the central one. As one can see from Fig. 7.21
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Figure 7.21: Average probability in the tails of the stationary distribution is shown for
different number of sites N in a linear chain. The average probability in the tails of the
stationary distribution has been obtained by evolving a wave packet initially localized
at the center of a linear chain. Here a linear chain with long-range hopping has been
considered, see Eq. (7.1). Parameters are: γ = Ω, Ω = 1 and W = {200, 400}, see
legend. Two different methods to obtain the average probability have been considered:
the average probability 〈|ψ|2〉 (black symbols) and the typical probability exp 〈ln |ψ|2〉
(red symbols) of the tails of the stationary probability distribution (we averaged over
all sites but the central one). An additional average over 100 disorder realizations is
considered. The black dashed line shows a linear (1/N) behaviour while the red dot-
dashed line shows a quadratic (1/N2) behaviour.

the average probability in the tails decreases as ≈ 1/N, while the typical probability
e〈ln |ψ|

2〉 ≈ 1/N2, showing that the distribution in the tails is very broad and highly
non trivial. Moreover, two different values of the disorder strength W (both in the DIT
regime) have been considered, showing that the tails are independent of disorder in
this regime, as discussed above.



Chapter 8

Conclusions and perspectives

In this thesis different cooperative effects have been studied, with a particular focus
on superradiance. The interplay of cooperativity and disorder/noise has been ana-
lyzed both for realistic systems and for paradigmatic models of excitation transport,
studying also some possible applications. In Chapter 2 a full derivation of a master
equation formalism for cooperative light-matter interaction is obtained, that is valid for
an aggregate of identical emitters all having different positions and (possibly) differ-
ent orientations. The obtained formalism is valid both when the aggregate is smaller
than λ, the transition wavelength of the emitters, but also for aggregates much larger
than λ. At zero temperature, and under the single-excitation approximation, we were
able to relate the master equation approach to the well known radiative non-Hermitian
Hamiltonian approach. We are therefore able to describe the collective coupling to the
electromagnetic field (EMF) both in the weak- and in the strong-coupling regimes, that
is both whether the imaginary parts of the complex energies (including the coupling to
the EMF) are smaller or larger than the mean level spacing in the single-excitation man-
ifold. Therefore, superradiance can be accurately described. The presented formalism
also includes the coupling to a black body at a finite temperature, and it self-consistently
describes the absorption and stimulated emission processes induced by the incoming
black-body photons interacting with the aggregate. Then, in perspective, it would be
interesting to analyze how finite temperature photon baths, or even engineered fields,
would affect the interaction between the emitters. Our proposed formalism models
sunlight as a black-body at temperature T ≈ 6000 K, but the problem of modelling
sunlight carefully is essential to understand how natural systems harness solar energy.
In view of this, there have been several attempts for modelling natural sunlight, for
instance as an ensemble of broad-band wavepackets [241] or as a white-noise uncor-
related bath [50, 51]. In particular, the white-noise approach presented in Ref. [50],
which is computationally less expensive than our master equation approach for large
N, is also equivalent to our approach, for the specific case of a degenerate molecular
aggregate under weak excitation. However, the two approaches differ when the site
energies are non-degenerate, since the white-noise approach is non-secular, differently
from the Lindblad master equation. Nevertheless, even in the case of non-degenerate
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site energies, if we derive the Lindblad super-operator assuming degenerate sites with
an energy equal to the average site energy and applying such Libdblad super-operator a
posteriori to the non-degenerate Hamiltonian, we obtain dynamical and static coherence
between the eigenstates, as we have shown in Chapter 2. These coherences are a non-
secular peculiarity of the stochastic white-noise approach and, interestingly, they can
be reproduced with such phenomenological Lindblad approach. We leave a systematic
justification of this correspondence to a further investigation.

We have used the techniques introduced in Chapter 2 to analyze different realis-
tic systems, whose coupling strength is categorized as weak, strong or ultra-strong, as
discussed in section 1.5. As regards weakly-coupled systems, where the collective cou-
pling to the EMF (as measured by the superradiant radiative width h̄ΓSR) is smaller
than the mean level spacing, in Chapter 3 we have analyzed realistic structures of self-
aggregated molecular nanotubes of chlorophyll molecules as found in antenna com-
plexes of Green Sulfur Bacteria. By taking into account position and dipole orientation
of chlorophyll molecules which agree with experimental data we have shown that nat-
ural structures are able to support macroscopic coherent states even at room tempera-
ture. Indeed in natural complexes we have found delocalized thermal excitonic states
with a coherence length extending over hundreds of molecules. We have shown show
that such thermal coherence length is much larger than that one could expect from the
magnitude of the nearest-neighbour coupling and it cannot be explained even by the
long-range nature of the interaction between the molecules. Instead, the ability of natu-
ral structures to support a large coherence length has been traced back to their specific
geometric features. Specifically, our structural analysis of the symmetric arrangement
of the molecules in the nanotubes revealed that the spectrum is generated by the su-
perposition of the eigenstates of small sub-units. In each sub-unit, few eigenstates are
superradiant, meaning that they have a large dipole strength, and the superposition of
the few superradiant eigenstates of each sub-unit generates the lowest-energy part of
the spectrum. As we have shown, the coupling between the superradiant states of the
sub-units is enhanced by a cooperative super-transfer effect, due to their large dipole
strength, and such large couplings determine a large level spacing and, therefore, a
lower density of states at low energy. Interestingly, even if the non-hermitian interac-
tion in this system lies in the weak-coupling regime and the hermitian dipole-dipole
coupling is short-range, strong cooperative effects like supertransfer can be induced.
In perspective, this opens the question on finding a more general way to quantify co-
operativity, accounting for both the hermitian and the non-hermitian interactions, and
for those cooperative effects that emerge even in absence of long-range interactions.
From our results we can predict that symmetry in cylindrical molecular nanotubes is
essential (although not enough) to have robust structures, not only to thermal noise,
as we have demonstrated here, but also to other sources of noise such as static disor-
der, as our preliminary results have shown. Nevertheless, the role of static disorder
should be analyzed in the future, in a more systematic way. The structural requirement
to have robustness to thermal noise is to create a super-transfer coupling between the
superradiant eigenstates of cylindrical sub-units able to generate the lower part of the
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spectrum of the whole structure. In the future it would be important to understand
the general structural requirements necessary to induce macroscopic coherent states in
generic molecular networks. Moreover, it would be interesting to investigate how the
suppressed density of states at low energy affects excitation transport in presence of
finite-temperature dephasing. Our results could indicate design principles for efficient
nanotubular quantum wires.

In Chapter 4 we considered a different class of natural photosynthetic systems in the
weak-coupling regime, i.e. those present in Purple Bacteria, and we propose to use them
as building blocks for a bio-inspired sunlight-pumped laser. Specifically, we propose a
laser medium composed of molecular aggregates, inspired to the design of photosyn-
thetic antenna complexes, which have at their core a molecular dimer composed of two
strongly coupled chromophores. The dimer is characterized by a bright state at higher
energy and a dark state as its lowest excited state. Even though this so-called H-dimer
configuration, which can be easily synthesized in laboratory, seems ideal for achieving
population inversion and lasing, we show that natural sunlight is so weak that an unre-
alistically high level of darkness would be required to reach the lasing threshold. One
of the most remarkable aspects of photosynthetic antenna complexes is their ability to
efficiently harvest natural sunlight and to transport the collected energy to specific lo-
cations with almost unit efficiency. We show that exploiting this property significantly
lowers the lasing threshold. Indeed, if pumped by the surrounding photosynthetic
complex, the core dimer structure can indeed feature population inversion and reach
the lasing threshold under natural sunlight for realistic dimer parameters. Turning the
incoherent energy supply provided by the Sun into a coherent laser beam would over-
come several of the practical limitations inherent in using sunlight as a source of clean
energy. For example, laser beams are highly effective at driving chemical reactions
which convert sunlight into chemical energy. Indeed, sunlight-pumped lasers are the
basis of one of the most promising renewable energy proposals: the Magnesium Injec-
tion Cycle (MAGIC). Further, since bacterial photosynthetic complexes tend to oper-
ate in the near-infrared spectral region, our proposal naturally lends itself for realising
short-wavelength infrared lasers which would allow their beams to travel nearly loss-
lessly over large distances, thus efficiently distributing the collected sunlight energy.

In Chapter 5 the interplay of superradiance and thermal noise is studied for a novel
solid state material, namely perovskite CsPbBr3 quantum-dot superlattices, which can
be classified in the strong-coupling regime. Recent observations have revealed super-
radiant emission from this material at low temperature (6 K), although the estimated
degree of cooperativity is surprisingly low. Our results show that superradiance in
such material is largely suppressed by thermal noise, even at such low temperature,
due to the weak radiative couplings between the quantum dots. Our results also pre-
dict that the robustness to noise would improve, therefore enhancing superradiance by
up to three orders of magnitude, by lowering the size of the quantum dots, making it
possibly observable at higher temperatures. On the other hand, the use of larger quan-
tum dots would make the system more robust to inhomogeneities and static disorder,
indicating different possible interesting directions to further investigate. New experi-
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ments, aimed at verifying our predictions, are already being developed by the group
of Ken Kuno (University of Notre Dame, USA) and by the group of Thilo Stöferle (IBM
Zurich, Switzerland1). Even if strong superradiance has already been seen in other sys-
tems, such as molecular aggregates, achieving controllable cooperative effects in lead
halide perovskite quantum dot superlattices would have many advantages, because of
the stability of solid state systems, over molecules. Specifically, lead halide perovskite
quantum dots are particularly interesting because they possess a very sharp and tun-
able emission band, whose peak can span the entire visible spectrum just by varying
the size of the quantum dots and changing the halide in the compounds. The nar-
row linewidth reflects that these quantum dots can be easily synthesized with a very
low degree of disorder. Moreover, these quantum dots are nearly unique since they
have a unity (or near-unity) emission quantum yield, indicating that non-radiative de-
cay processes are nearly absent. Also, their ultrafast radiative lifetime (hundreds of
picoseconds) indicates an incredibly strong coupling to the EMF, and their long coher-
ence time reflects slow dephasing processes. All these features make these systems
good candidates for efficient photon sensors, and controlling cooperative effects could
possibly boost their photon detection efficiency.

In Chapter 6 a comparison between different cooperative effects, single-excitation
superradiance and superconductivity, is made with a focus on the spectral signatures
in different coupling regimes. Our calculations show that the superradiance transi-
tion, governed by the strength of the collective coupling to the EMF, can be seen as a
transition to a gapped regime, in clear analogy to superconductivity. The superradi-
ant gap is purely imaginary, as opposed to the superconducting gap, nevertheless we
show that both gaps make the system robust to static disorder in the same way. In
this context, it would be interesting to further study the comparison between super-
radiance and superconductivity, focusing on the many-body spectrum. Specifically, in
the case of superconductivity a full many-body coherent ground state is formed by the
Cooper pairs. On the other hand, in the case of many emitters, excitons are known
to undergo Bose-Einstein condensation under some conditions [242, 243]. It would
be interesting to study the exciton condensation phenomenon in a superradiant sys-
tem, comparing its features to the BCS theory of superconductivity, on the line of re-
cent works [244]. Specifically, exciton condensation in the ultra-strong coupling regime
seems like a promising direction to pursue.

The analysis in Chapter 6 also proves that the presence of a gap in the spectrum
is a general property of long-range interactions, thus opening the question on what
is the role of long-range interactions in the transport of excitation through disordered
systems. Motivated by that, in Chapter 7 we analyze precisely the effect of long-range
interactions in the ultra-strong coupling regime on the transport properties of a disor-
dered system. We analyze a paradigmatic model of a disordered chain with long-range
interaction, and we find that the interplay of disorder and long-range interactions pro-
duces counter-intuitive transport regimes, where the transport efficiency is enhanced

1See the video of Stöferle’s presentation at the following webpage: https://youtu.be/ge_C_yRSxMo
(in particular, our work is mentioned at the time 22:25).

https://youtu.be/ge_C_yRSxMo
https://youtu.be/ge_C_yRSxMo
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by disorder or even independent of it, and we characterize these regimes in detail. Our
findings also answer a long-standing problem, highly debated in the literature, about
the mutual effects between long-range hopping and disorder. Indeed, even if long-
range is typically thought to destroy the disorder-induced localization, thus allowing
efficient transport, strong signatures of localization have been found in long-range in-
teracting systems in recent years. Here we demonstrate that since localized states in
long-range interacting systems have a hybrid character, with an exponentially localized
peak and an extended tail, they can support robust quantum transport. Our results are
relevant in several experimental systems where long-range hopping is present, such
as cold atomic clouds, molecular aggregates and ion traps. Among other results, but
not of minor relevance, we also demonstrate that an ensemble of emitters in a cavity
can be mapped into an effective long-range hopping system, thus making our findings
applicable to an even larger variety of systems; to quote but a few, molecular chains in
optical cavities (on which we explicitly focus in Chapter 7), Rydberg atoms and polar
molecules. Realistic parameters for these physical systems are presented in Chapter 7,
showing that the regimes we predict are easily reachable in nowadays experiments.
Therefore, it could be very interesting to have our predictions checked experimentally.
Our detailed description of the different and novel transport regimes, characterized
by extremely robust transport, can also inspire novel design principles for quantum
devices. Finally, it is worth mentioning that the interesting novel transport regimes
obtained in Chapter 7 are obtained in absence of noise and at zero temperature. One
could argue that the presence of a large gap could reasonably make the system robust to
dephasing, and a finite temperature noise could produce even more interesting results,
precisely because of the gap between the ground state and the rest of the spectrum.
We just started to pursue an analysis of these issues and we aim to further expand
our understanding of the interplay of long-range interactions, static disorder and noise
in energy transport. We are considering the effect of dephasing modeled as a white
noise, and we aim to analyze the consequences on transport at the steady state and
analyzing the diffusive spreading of an excitation initially localized on one site. Diffu-
sion has been extensively studied in a disordered nearest-neighbor chain in presence of
noise [245] and in nanotubes [72]. We aim to analyze the effect of long-range hopping
on the excitation spread in presence of white noise, also considering finite-temperature
environments.
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[2] Hu, X., Ritz, T., Damjanović, A. & Schulten, K. Pigment organization and transfer
of electronic excitation in the photosynthetic unit of purple bacteria. J. Phys. Chem.
B 101, 3854–3871 (1997).
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tosynthetic light-harvesting system: A combined molecular dynamics, quantum
chemistry, and polaron model study. Phys. Rev. E 65, 031919 (2002).

[105] Dostál, J. et al. Two-dimensional electronic spectroscopy reveals ultrafast energy
diffusion in chlorosomes. J. Am. Chem. Soc. 134, 11611–11617 (2012).

[106] Didraga, C. & Knoester, J. Chiral exciton wave functions in cylindrical j aggre-
gates. J. Chem. Phys. 121, 946–959 (2004).

[107] Saikin, S. K. et al. Corrigendum: Chromatic acclimation and population dynamics
of green sulfur bacteria grown with spectrally tailored light. Sci. Rep. 5, 9786
(2015).

[108] Linnanto, J. M. & Korppi-Tommola, J. E. Investigation on chlorosomal antenna
geometries: tube, lamella and spiral-type self-aggregates. Photosynth. Res. 96, 227
(2008).

[109] Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109,
1492–1505 (1958).

[110] Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetore-
ception in birds. Biophys. J. 78, 707–718 (2000).

[111] Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair
mechanism. Proc. Natl. Acad. Sci. U.S.A. 106, 353–360 (2009).



BIBLIOGRAPHY 251

[112] Gauger, E. M., Rieper, E., Morton, J. J., Benjamin, S. C. & Vedral, V. Sustained
quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106,
040503 (2011).

[113] Hiscock, H. G. et al. The quantum needle of the avian magnetic compass. Proc.
Natl. Acad. Sci. U.S.A. 113, 4634–4639 (2016).

[114] Beatty, J. T. et al. An obligately photosynthetic bacterial anaerobe from a deep-sea
hydrothermal vent. Proc. Natl. Acad. Sci. U.S.A. 102, 9306–9310 (2005).

[115] Reusswig, P. D. et al. A path to practical solar pumped lasers via radiative energy
transfer. Sci. Rep. 5, 14758 (2015).

[116] Spano, F. C. & Mukamel, S. Superradiance in molecular aggregates. J. Chem. Phys.
91, 683–700 (1989).

[117] Gullı̀, M. et al. Macroscopic coherence as an emergent property in molecular
nanotubes. New J. Phys. 21, 013019 (2019).

[118] Patlolla, P. R., Mahapatra, A. D., Mallajosyula, S. S. & Datta, B. Template-free
h-dimer and h-aggregate formation by dimeric carbocyanine dyes. New J. Chem.
42, 6727–6734 (2018).

[119] Caselli, M., Latterini, L. & Ponterini, G. Consequences of h-dimerization on the
photophysics and photochemistry of oxacarbocyanines. Phys. Chem. Chem. Phys.
6, 3857–3863 (2004).

[120] Gavrilenko, V. & Noginov, M. Ab initio study of optical properties of rhodamine
6g molecular dimers. J. Chem. Phys. 124, 044301 (2006).

[121] Hestand, N. J. & Spano, F. C. Expanded theory of h-and j-molecular aggregates:
the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev.
118, 7069–7163 (2018).

[122] Scully, M. O. Quantum photocell: Using quantum coherence to reduce radiative
recombination and increase efficiency. Phys. Rev. Lett. 104, 207701 (2010).

[123] Dorfman, K. E., Voronine, D. V., Mukamel, S. & Scully, M. O. Photosynthetic
reaction center as a quantum heat engine. Proc. Natl. Acad. Sci. U.S.A. 110, 2746–
2751 (2013).

[124] Scully, M. O., Chapin, K. R., Dorfman, K. E., Kim, M. B. & Svidzinsky, A. Quan-
tum heat engine power can be increased by noise-induced coherence. Proc. Natl.
Acad. Sci. U.S.A. 108, 15097–15100 (2011).

[125] Creatore, C., Parker, M. A., Emmott, S. & Chin, A. W. Efficient biologically in-
spired photocell enhanced by delocalized quantum states. Phys. Rev. Lett. 111,
253601 (2013).



252 BIBLIOGRAPHY

[126] Fruchtman, A., Gómez-Bombarelli, R., Lovett, B. W. & Gauger, E. M. Photocell
optimization using dark state protection. Phys. Rev. Lett. 117, 203603 (2016).

[127] Zhang, Y., Oh, S., Alharbi, F. H., Engel, G. S. & Kais, S. Delocalized quantum
states enhance photocell efficiency. Phys. Chem. Chem. Phys. 17, 5743–5750 (2015).

[128] Brown, W. M. & Gauger, E. M. Light harvesting with guide-slide superabsorbing
condensed-matter nanostructures. J. Phys. Chem. Lett. 10, 4323–4329 (2019).

[129] Gierschner, J., Varghese, S. & Park, S. Y. Organic single crystal lasers: A materials
view. Adv. Opt. Mater. 4, 348–364 (2016).
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intermittency in nanoscale systems: Experiment and theory. Nano Lett. 13, 402–
408 (2013).

[161] Baranov, D., Toso, S., Imran, M. & Manna, L. Investigation into the photolumines-
cence red shift in cesium lead bromide nanocrystal superlattices. J. Phys. Chem.
Lett. 10, 655–660 (2019).

[162] van der Burgt, J. S. et al. Cuboidal supraparticles self-assembled from cubic
cspbbr3 perovskite nanocrystals. J. Phys. Chem. C 122, 15706–15712 (2018).

[163] Nagaoka, Y. et al. Nanocube superlattices of cesium lead bromide perovskites
and pressure-induced phase transformations at atomic and mesoscale levels. Adv.
Mater. 29, 1606666 (2017).

[164] Tong, Y. et al. Spontaneous self-assembly of perovskite nanocrystals into elec-
tronically coupled supercrystals: Toward filling the green gap. Adv. Mater. 30,
1801117 (2018).

[165] Imran, M. et al. Shape-pure, nearly monodispersed cspbbr3 nanocubes prepared
using secondary aliphatic amines. Nano Lett. 18, 7822–7831 (2018).

[166] Kovalenko, M. V. & Bodnarchuk, M. I. Lead halide perovskite nanocrystals: From
discovery to self-assembly and applications. CHIMIA International Journal for
Chemistry 71, 461–470 (2017).

[167] Wang, K.-H., Yang, J.-N., Ni, Q.-K., Yao, H.-B. & Yu, S.-H. Metal halide perovskite
supercrystals: Gold–bromide complex triggered assembly of cspbbr3 nanocubes.
Langmuir 34, 595–602 (2018).

[168] Brennan, M. C. et al. Universal size-dependent stokes shifts in lead halide per-
ovskite nanocrystals. J. Phys. Chem. Lett. 11, 4937–4944 (2020).



BIBLIOGRAPHY 255

[169] Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semi-
conductor microcrystals with spherical shape. Phys. Rev. B 38, 9797–9805 (1988).

[170] Ashcroft, N. W. & Mermin, N. D. Solid state physics (Holt, Rinehart and Winston,
1976).

[171] Brus, L. E. Electron–electron and electron-hole interactions in small semiconduc-
tor crystallites: The size dependence of the lowest excited electronic state. J. Chem.
Phys. 80, 4403–4409 (1984).

[172] Meiser, D. & Holland, M. J. Steady-state superradiance with alkaline-earth-metal
atoms. Phys. Rev. A 81, 033847 (2010).

[173] Zhu, B. et al. Synchronization of interacting quantum dipoles. New J. Phys. 17,
083063 (2015).

[174] Sakurai, J. J. Modern quantum mechanics, revised edition (Addison-Wesley Publish-
ing Company, 1995).

[175] Anderson, P. W. More is different. Science 177, 393–396 (1972).

[176] Dagotto, E. Complexity in strongly correlated electronic systems. Science 309,
257–262 (2005).

[177] van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms.
Science 342, 1494–1496 (2013).

[178] Santos, L. F., Borgonovi, F. & Celardo, G. L. Cooperative shielding in many-body
systems with long-range interaction. Phys. Rev. Lett. 116, 250402 (2016).

[179] Laurent, T. et al. Superradiant emission from a collective excitation in a semicon-
ductor. Phys. Rev. Lett. 115, 187402 (2015).

[180] Pustovit, V. N. & Shahbazyan, T. V. Cooperative emission of light by an ensemble
of dipoles near a metal nanoparticle: The plasmonic dicke effect. Phys. Rev. Lett.
102, 077401 (2009).

[181] Biella, A., Borgonovi, F., Kaiser, R. & Celardo, G. L. Subradiant hybrid states in
the open 3d anderson-dicke model. EPL 103, 57009 (2013).

[182] Arecchi, F., Bonifacio, R. & Scully, M. Coherence in Spectroscopy and Modern Physics
(Springer, 1977).

[183] DiRienzo, A. et al. Superconductivity and quantum optics. In Coherence in Spec-
troscopy and Modern Physics, 231–259 (Springer, 1978).

[184] Jung, C., Müller, M. & Rotter, I. Phase transitions in open quantum systems. Phys.
Rev. E 60, 114–131 (1999).



256 BIBLIOGRAPHY

[185] Sokolov, V. & Zelevinsky, V. On a statistical theory of overlapping resonances.
Phys. Lett. B 202, 10 – 14 (1988).

[186] Rotter, I. A continuum shell model for the open quantum mechanical nuclear
system. Rep. Prog. Phys. 54, 635–682 (1991).

[187] von Delft, J. Superconductivity in ultrasmall metallic grains. Ann. Phys. 10, 219–
276 (2001).

[188] Faribault, A., Calabrese, P. & Caux, J.-S. Exact mesoscopic correlation functions
of the richardson pairing model. Phys. Rev. B 77, 064503 (2008).

[189] Smith, R. A. & Ambegaokar, V. Effect of level statistics on superconductivity in
ultrasmall metallic grains. Phys. Rev. Lett. 77, 4962–4965 (1996).

[190] Schechter, M., von Delft, J., Imry, Y. & Levinson, Y. Two pairing parameters in
superconducting grains. Phys. Rev. B 67, 064506 (2003).

[191] Yuzbashyan, E. A., Baytin, A. A. & Altshuler, B. L. Finite-size corrections for the
pairing hamiltonian. Phys. Rev. B 71, 094505 (2005).

[192] Owusu, H. K., Wagh, K. & Yuzbashyan, E. A. The link between integrability,
level crossings and exact solution in quantum models. J. Phys. A: Math. Theor. 42,
035206 (2008).

[193] Yuzbashyan, E. A. & Shastry, B. S. Quantum integrability in systems with finite
number of levels. J. Stat. Phys. 150, 704–721 (2013).

[194] Cooper, L. N. Bound electron pairs in a degenerate fermi gas. Phys. Rev. 104,
1189–1190 (1956).

[195] Celardo, G. L., Izrailev, F. M., Zelevinsky, V. G. & Berman, G. P. Open system
of interacting fermions: Statistical properties of cross sections and fluctuations.
Phys. Rev. E 76, 031119 (2007).

[196] Celardo, G. L., Auerbach, N., Izrailev, F. M. & Zelevinsky, V. G. Distribution
of resonance widths and dynamics of continuum coupling. Phys. Rev. Lett. 106,
042501 (2011).

[197] Sorathia, S., Izrailev, F. M., Celardo, G. L., Zelevinsky, V. G. & Berman, G. P. Inter-
nal chaos in an open quantum system: From ericson to conductance fluctuations.
EPL 88, 27003 (2009).

[198] Celardo, G., Izrailev, F., Zelevinsky, V. & Berman, G. Transition from isolated to
overlapping resonances in the open system of interacting fermions. Phys. Lett. B
659, 170 – 175 (2008).

[199] Biella, A., Borgonovi, F., Kaiser, R. & Celardo, G. L. Subradiant hybrid states in
the open 3d anderson-dicke model. EPL 103, 57009 (2013).



BIBLIOGRAPHY 257

[200] Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a
quantum many-body system. Nature 511, 202–205 (2014).

[201] Richerme, P. et al. Non-local propagation of correlations in quantum systems with
long-range interactions. Nature 511, 198–201 (2014).

[202] Celardo, G. L., Kaiser, R. & Borgonovi, F. Shielding and localization in the pres-
ence of long-range hopping. Phys. Rev. B 94, 144206 (2016).

[203] De Gennes, P.-G. Superconductivity of metals and alloys (Addison-Wesley Publish-
ing Company, 1966).
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