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Abstract 

Vaccination is considered one of the greatest public health achievements of the 20th 

century. A high vaccination rate is required to reduce the prevalence and incidence of vaccine-

preventable diseases. However, in the last two decades, there has been a significant and 

increasing number of people who refuse or delay getting vaccinated and who prohibit their 

children from receiving vaccinations. Importantly, under-vaccination is associated with 

infectious disease outbreaks. A good understanding of public perceptions regarding vaccinations 

is important if we are to develop effective vaccination promotion strategies. Traditional methods 

of research, such as surveys, suffer limitations that impede our understanding of public 

perceptions, including resources cost, delays in data collection and analysis, especially in large 

samples. The popularity of social media (e.g. Twitter), combined with advances in artificial 

intelligence algorithms (e.g. natural language processing, deep learning), open up new avenues 

for accessing large scale data on public perceptions related to vaccinations. 

This dissertation reports on an original and systematic effort to develop artificial 

intelligence algorithms that will increase our ability to use Twitter discussions to understand 

vaccine-related perceptions and intentions. The research is framed within the perspectives 

offered by grounded behavior change theories. Tweets concerning the human papillomavirus 

(HPV) vaccine were used to accomplish three major aims: 1) Develop a deep learning-based 

system to better understand public perceptions of the HPV vaccine, using Twitter data and 

behavior change theories; 2) Develop a deep learning-based system to infer Twitter users’ 

demographic characteristics (e.g. gender and home location) and investigate demographic 
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differences in public perceptions of the HPV vaccine; 3) Develop a web-based interactive 

visualization system to monitor real-time Twitter discussions of the HPV vaccine. 

For Aim 1, the bi-directional long short-term memory (LSTM) network with attention 

mechanism outperformed traditional machine learning and competitive deep learning algorithms 

in mapping Twitter discussions to the theoretical constructs of behavior change theories. 

Domain-specific embedding trained on HPV vaccine-related Twitter corpus by fastText 

algorithms further improved performance on some tasks. Time series analyses revealed evolving 

trends of public perceptions regarding the HPV vaccine. For Aim 2, the character-based 

convolutional neural network model achieved favorable state-of-the-art performance in Twitter 

gender inference on a Public Author Profiling challenge. The trained models then were applied 

to the Twitter corpus and they identified gender differences in public perceptions of the HPV 

vaccine. The findings on gender differences were largely consistent with previous survey-based 

studies. For the Twitter users’ home location inference, geo-tagging was framed as text 

classification tasks that resulted in a character-based recurrent neural network model. The model 

outperformed machine learning and deep learning baselines on home location tagging. Interstate 

variations in public perceptions of the HPV vaccine also were identified. For Aim 3, a prototype 

web-based interactive dashboard, VaxInsight, was built to synthesize HPV vaccine-related 

Twitter discussions in a comprehendible format. The usability test of VaxInsight showed high 

usability of the system. 

Notably, this maybe the first study to use deep learning algorithms to understand Twitter 

discussions of the HPV vaccine within the perspective of grounded behavior change theories. 

VaxInsight is also the first system that allows users to explore public health beliefs of vaccine-
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related topics from Twitter. Thus, the present research makes original and systematical 

contributions to medical informatics by combining cutting-edge artificial intelligence algorithms 

and grounded behavior change theories. This work also builds a foundation for the next 

generation of real-time public health surveillance and research. 
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Chapter 1: Introduction and Literature Review 

1.1. Vaccine Refusal and Hesitancy 
A vaccine is a biological preparation that is made from very small amounts of weak or 

dead germs to provide active acquired immunity for a particular disease. Vaccines are among the 

most effective tools available for preventing infectious diseases. As vaccines are given to healthy 

people, they are held to very high safety standards.[1,2] Overwhelming scientific evidence  also 

verifies the safety of vaccines.[3] Every licensed and recommended vaccine goes through years 

of rigorous safety testing and is monitored continuously for safety signals after being released to 

the public.[4] Vaccination is the administration of vaccines. Due to the widespread deployment 

of vaccination programs, dramatic declines in mortality and morbidity are found for various 

vaccine-preventable diseases (VPD), such as polio and smallpox.[5] Vaccination is considered 

one of the greatest public health achievements of the 20th century.[6] 

High vaccination rates are required in order to significantly reduce the prevalence and 

incidence of VPD.[7] However, in the last two decades, there is a significant and increasing 

number of people who refuse or delay vaccinations for themselves and for their children.[8–10] 

A recent report from the American Academy of Pediatrics (AAP) shows that “within a 12-month 

period, 74% of the pediatricians report encountering a parent who refused or delayed one or 

more vaccines.”.[11] According to a nationwide survey, one in ten parents don’t follow the 

recommended vaccination schedules for their children as developed by the U.S. Centers for 

Disease Control and Prevention (CDC). Even for parents who adhere to the schedule, one in four 

say that they feel it may not be the best or safest way to immunize youngsters.[12,13]  
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State-level rates of nonmedical exemptions, considered as the primary measure of 

vaccination refusal in the United States, also are continuing to increase.[9,14] Unvaccinated 

individuals not only put themselves at risk for infectious diseases but also pose a public health 

threat to communities.[15] Under-vaccination is associated with infectious disease 

outbreaks.[16] For example, the United States declared the elimination of measles in 2000. 

However, in recent years, there has been a resurgence in measles outbreaks in both the U.S. and 

elsewhere in the world.[17–19] Besides the outbreak of VPD, vaccination refusal is also 

associated with higher inpatient admission and emergency department utilization rates, increased 

morbidity, and death.[20] As a result, there is growing concern over the success of immunization 

promotion.[7,21] 

There is great diversity in motivations for vaccination refusal or delay, including fear of 

adverse reactions, concerns over efficacy, distrust of government and pharmaceutical companies, 

and doubts about the reliability of sources of information for decision making.[15,22–24] Dubé 

et al summarize the major determinants of vaccination acceptance or rejection as: contextual, 

organizational, and individual (see Table 1 [7]). These determinants can vary based on type of 

vaccine, and their impact on vaccination behaviors change over time.  

An increase in anti-vaccination campaigns, which rely mostly on rhetorical arguments, 

incites more fear and distrust within the population. [7,25] For instance, with the emergence of  

Web 2.0 and the popularity of social media, anti-vaccination campaigns disseminate 

misinformation both rapidly and over an unprecedentedly large population.[7,26] Such 

dissemination may be associated with a decline in the willingness to get vaccinated .[27] This 
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was the case following the now discredited study by Andrew Wakefield that claimed a link 

between autism and the MMR vaccine.[28–30]  

Table 1. Main determinants of parents' vaccination decisions 

Determinants type Determinants example 
Contextual • Historical, political and sociocultural influences 

• Communication and media environment 

Individual • Sociodemographic characteristics 

• Knowledge and attitudes 

• Past experiences with health and vaccination services 

• Trust in health system and healthcare providers 

Organizational • Availability and quality of vaccination services 

• Health staff motivation and attitudes 

• Vaccine-specific issues 

 

1.2. Use of Social Media for Understanding Public Perceptions  
A good understanding of both the causes and contexts leading to vaccination hesitancy 

and refusal is a first and important step in developing effective vaccination promotion 

strategies.[31–34] Traditional survey methods [35–37] are effective approaches with which to 

gather data on vaccination hesitancy and refusal. However, surveys also suffer from significant 

limitations: 1) most survey-based methods are expensive and labor consuming, which makes 

them difficult to administer to large populations;[38,39] 2) they are often unable to reach 

vulnerable populations such as minorities, the poor, and young adults;[24] 3) surveys require 

substantial amounts of time in order to collect and analyze data, creating delays in uncovering 

current opinions;[40] 4) survey-based methods, which often measure public opinions at a 

specific point in time, have difficulties in tracking changes in the reasons behind vaccination 
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refusal and hesitancy;[15,41] 5) survey-based methods also suffer from social desirability bias, 

which refers to the tendency to give responses that generally are considered appropriate instead 

of choosing answers that accurately reflect feelings.[24,38,42,43] Therefore, in order to prevent 

crises from under-vaccination and in order to stop potential VPD outbreaks, new, innovative, and 

well-designed methods need to be developed. Such methods need to facilitate an understanding 

of public perceptions of vaccines across different communities in real time, in order to provide 

instant feedback and alerts to health professionals. 

One method that can be useful is one that relies on social media. Social media is defined 

as “a group of Internet based applications that build on the ideological and technological 

foundations of Web 2.0, and that allow the creation and exchange of user generated 

contents”.[44] Social media is a convenient way for users to generate, share, receive, and 

comment on social content.[45] The popularity of mobile devices (e.g. smartphones and tablets) 

accelerates the penetration of social media into all aspects of life. According to Global Digital 

Report 2019,[46]  3.48 billion out of 7.68 billion people, worldwide, are active social media 

users. In the U.S., 72% of adults used at least one social media platform in 2019, compared with 

only 8% in 2008. Social media is most popular among young adults, with more than 90% of 

individuals between the ages of 18 and 29 using one or more platforms. However, the use of 

social media among other age groups also is growing. Therefore, the population of social media 

users is becoming more representative of the broader population.[47] 

The potential of social media to improve public health is great, especially as more and 

more people, including the general public and health professionals, use it to share and discuss 

health-related information.[45] As can be seen in Figure 1, social media-related publications in 



5 

 

PubMed grew dramatically over the last two decades. This increase  demonstrates great value for 

many health-related issues, including disease management and patient communication,[48–50] 

the monitoring of adverse drug reactions (ADRs), [51–54] the facilitation of medical 

education,[55] the promotion of  behavior change,[56,57] public health surveillance,[58–60] and 

the detection of mental illness and suicide.[61–63] 

 
Figure 1. Social media related PubMed publications 

Social media are not only sources of information about general health-related issues. 

They also serve as important sources for assessing public perceptions of vaccines. And, prior 

research documents that exposure to information on social media can impact attitudes and 

behavior.[64] This is observed in the use of social media by anti-vaccination movements that 

employ these platforms as primary communication tools.[24] Furthermore, several studies show 
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that individuals’ vaccination refusal and hesitancy is associated with vaccine-related information 

on the internet and social media.[7,65,66]. Thus, it is increasingly necessary to understand and 

monitor the information that is shared on social media platforms if health professionals aim to 

promote vaccination and reduce vaccine preventable diseases. This is beginning to occur around 

vaccines for HPV,[67–70], influenza,[58,71–75] Zika,[76–78] hepatitis,[79,80] polio,[81] 

measles,[82] as well as in terms of general vaccine topics.[41,83–86] 

1.3. Existing Challenges 
Although much effort has been devoted to analyzing health-related social media 

discussions, major challenges still exist for fully leveraging data to understand public perceptions 

of vaccination. Many previous studies focus on developing semi-automatic methods to 

understand social media discussions of vaccines, including manual coding and hashtag or 

keywords analysis.[69,73,88–91,74,76,79,80,82,84,85,87] However, these semi-automatic 

methods are limited by the lack of scalability and accuracy. In recent years, scalable automatic 

approaches based on machine learning (ML) have been developed to understand the contents of 

social media posts, including unsupervised ML methods [92,93], supervised ML 

methods,[43,67,75,94–96] and mixed approaches.[41,58,83] However, most of these efforts have 

yet to address the characterization of content at the level of granularity conducive to 

understanding public perceptions that provide actionable insights. These approaches also miss 

important data, including demographic information. This is unfortunate as such information is 

associated with the willingness to get vaccinated.[7,97] 

Previous studies also find marked differences in vaccination coverage and health beliefs 

among different subgroups within the population.[97–102]  For example, one study shows that 
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women are more likely than men to believe a parent who claims that their child was injured by a 

vaccine.[102]  Location is also associated with vaccination endorsement. Under-immunization 

and vaccination refusal are found to cluster geographically.[8] However, these demographic 

attributes, which are often collected by survey methods, are commonly missing in some social 

media platforms (e.g. Twitter). The lack of such information makes it challenging to investigate 

demographic differences in public perceptions across different subpopulations, and prevents 

comparisons with findings from traditional surveys. 

Tracking public perceptions of vaccines in real time can assist public health professionals 

in examining health policies and in delivering timely responses. However, available systems use 

data collected by traditional survey methods and don’t provide real-time information regarding 

vaccination attitudes and health beliefs.[103] Some pioneering work like Vaccine 

Sentimeter[104] and VaccineWatch[104] provide real-time surveillance regarding vaccines from 

internet data. However, their analyses are limited by the reliance on count data or sentiment 

scores. To generate actionable insights, more granular information needs to be provided, 

especially about health beliefs. 

1.4. Summary 
This chapter provides a discussion of vaccination refusal and hesitancy as well as their 

determinants and consequences. The use of social media to understand public perceptions was 

reviewed and both significance and challenges were discussed. To date, little is known about 

social media contents on a granular level (e.g. user health belief, user demographics). As a result, 

current research is unable to trigger actionable insights for health professionals. Additionally, it 

is still not clear how well these cutting-edge methods can facilitate the needed analyses, despite 
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recent advances in machine learning and deep learning, especially in natural language processing 

(NLP). The present study addresses these challenges through the following specific aims: 

Aim 1: Develop a deep learning-based system to automatically understand public 

perceptions of the HPV vaccine from the perspective of grounded behavior changes 

theories and by using Twitter data. 

The present study will use Twitter data and focus on the human papillomavirus (HPV) 

vaccine as a use case. A deep learning-based framework will be developed to automatically align 

Twitter discussion feeds to primary constructs from the health belief model and the theory of 

planned behavior. Trends and changes in HPV vaccine perceptions using time series analyses 

will be identified. Relevant work on this Aim is reported in Chapter 2. 

Aim 2: Develop deep learning-based systems to infer users’ demographic attributes and 

investigate demographic differences in public perceptions of the HPV vaccine using Twitter 

data. 

Deep learning-based frameworks will be developed to automatically infer demographic 

information from Twitter users. Specifically, the present study will focus on gender and location 

(i.e. map Twitter users to U.S. state levels) inference. Demographic differences in public 

perceptions (predicted from Aim 1) of HPV vaccines among sub-populations will be investigated 

using Chi-square. Relevant work on this Aim is reported in Chapter 3 (on gender inference) and 

in Chapter 4 (on location inference). 

Aim 3: Develop a web-based interactive visualization system to monitor real-time Twitter 

discussions of HPV vaccines. 
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The deep learning-based frameworks developed in Aims 1and 2 will be combined in 

order to build a web-based online surveillance system to real-time track public perceptions of the 

HPV vaccine by using Twitter data. This system will allow users to track and identify changes in 

public perceptions of HPV vaccines within a particular population. Users can also use the system 

to visually compare differences in public perceptions among different subpopulations. In 

addition, users can verify machine generated predictions and provide feedback on the predictions 

in order to further improve the accuracy of deep learning algorithms. The usability of the system 

will be evaluated by graduate students and faculty in public health and medical informatics 

through the System Usability Scale. Relevant work on this Aim is reported in Chapter 5. 
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Chapter 2: Deep Learning and Behavioral Theory: An Improved Analytic Method to 

Understand HPV Vaccination Intentions from Twitter Discussions 

2.1. Introduction 
The human papillomavirus (HPV) is the most common sexually transmitted infection in 

the U.S., with 14 million new HPV infections each year.[105] HPV infections cause about 

33,700 cases of cancer every year in the U.S., including cervical, vaginal, vulvar, penile, and 

anal cancer.[106,107] The HPV vaccine has been available since 2006 to protect against HPV-

associated cancers and is recommended for all girls and boys who are 11 to 12 years old. 

Unfortunately, compared to other recommended vaccines, the HPV vaccination rate remains 

suboptimal, with about half (51 percent) of adolescents failing to remain up to date.[108] This 

may be due, in part, to the negative attitudes towards HPV vaccination that are held commonly 

by parents of adolescents.[109] Nonetheless, unvaccinated individuals are more vulnerable to the 

virus and pose a public health threat to communities. 

Historically, vaccination-promotion strategies have been informed by knowledge-deficit 

models that attribute public skepticism or ambivalence to a lack of information and 

understanding.[110,111] There is still a significant proportion of the public, however, that opposes 

the vaccine, regardless of the evidence.[111] The factors associated with HPV vaccination 

hesitancy are multi-dimensional and vary by individual.[109,112–115] Incorporating behavior 

change theories into research can facilitate an understanding of these factors and aid in the 

development of strategies to influence specific health-related behaviors.[118] For instance, 

associations are found between theoretical constructs within the health belief Model (HBM),[116–

119] and the theory of planned behavior (TPB),[120–122] as they relate to HPV vaccination 
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intention and uptake. HBM and TPB have demonstrated efficacy in providing a description of the 

antecedents to vaccination behavior, including predicting the likelihood of behavioral 

initiation.[118,120,123] 

Social media offer opportunities to reach large populations, while mitigating the 

limitations of traditional surveys, including resource costs, inability to track changes in real time, 

and delays between data collection and availability.[15,40,41] Millions of users generate, share, 

receive, and comment on various topics, including those in health-related domains.[124] Social 

media offer an unprecedented level of reach to improve public health.[45] Initial semi-automatic 

methods to understand social media discussions on vaccines have included manual coding and 

hashtag or keywords analysis,[80,82,86,90] but these are limited, respectively, by their lack of 

scalability and inaccuracies. Machine-learning methods have emerged to address these 

limitations and to improve the precision with which public perception of vaccines can be 

understood.[94,96] This is particularly true of the HPV vaccine.[67,92,93,95,125,126] Recent 

studies apply deep-learning methods to analyze social media (e.g., Twitter) messaging data 

[127–129] and demonstrate the superiority of deep learning in comparison with traditional 

machine-learning efforts.[130,131] Deep learning is a set of advanced machine-learning 

algorithms that achieve state-of-the-art performance in many natural language processing (NLP) 

tasks.[132–134] It does so while dramatically reducing the overhead of feature engineering that 

is required for most traditional machine-learning-based approaches. Prior work also 

demonstrates the superiority of deep-learning-based methods.[131] 

The purpose of the present study is to leverage deep-learning and machine-learning 

algorithms to automatically align Twitter discussion feeds to HBM and TPB constructs. This 
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study is significant in its (1) description of a deep learning-based framework to map Twitter 

discussions to the constructs of multiple behavior change theories; (2) comprehensive evaluation 

of deep-learning and machine-learning algorithms for this purpose; and (3) identification of 

trends and changes in HPV vaccine perceptions using time series analyses. The study’s 

innovative way in which to categorize messages is informed by theory-based constructs. As a 

result, attitudes can be differentiated and future resource messaging can be fine-tuned.  

2.2. Materials and Methods 
2.2.1. Study overview 

Twitter is one of the most popular social media platforms in the world, with 326 million 

active users, monthly.[135] Twitter is recognized as one of the major and most credible sources 

for accessing public opinions on various topics, from politics [136] to public health.[137] 

However, an accurate understanding of Twitter discussions is considered challenging in light of 

the unique characteristics of Twitter text (e.g., short text, cyber slang, emoticons).[138] The 

current study provides (1) a comprehensive evaluation of deep-learning and machine-learning 

methods on Twitter text classification for theoretical constructs informed by HBM and TPB; (2) 

a prediction of the constructs from the un-label Twitter dataset, using pre-trained deep-learning 

models; and (3) a description of trends in these theoretical constructs over time, using time series 

analyses. An overview of the study design can be seen in Figure 2. 

This study received expedited review and IRB approval from the Committee for the 

Protection of Human Subjects at The University of Texas Health Science Center at Houston. 

Waiver of informed consent was granted by the IRB due to the retrospective design of the study. 

The approved IRB protocol number is HSC-SBMI-16–0291. 
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Figure 2. Overview of the study design 

2.2.2. Operationalization of theoretical constructs 

The principal HBM constructs used in this study are perceived susceptibility (e.g., 

likelihood of contracting HPV), perceived severity (e.g., degree of negative health effects of 

HPV), perceived benefits (e.g., positive outcomes of getting the HPV vaccine), and perceived 

barriers (e.g., negative aspects of HPV vaccination). HBM constructs, definitions, and examples 

are provided in (Appendix A). TPB constructs are represented by the attitudes construct that is 

comprised of fact-based statements, inclusive of reference to norms and/or behavioral controls 

but defined by positive, negative, and neutral valence. There are several other constructs in TPB 

that also could influence HPV vaccination behavior, such as subject norm and perceived 

behavior control. However, the low prevalence of these constructs in Twitter discussions, 

precludes their inclusion in this present study. Therefore, this study covers only the major 

constructs noted above (Figure 3). 



14 

 

 

Figure 3. Key constructs of HBM and TPB in this study 

2.2.3. Twitter corpus collection and annotation 

A set of keywords (i.e., HPV, human papillomavirus, Gardasil, and Cervarix) was used to 

collect English-language tweets by using Twitter streaming API (~1% of the entire stream 

volume) from January 1, 2014, to October 26, 2018. A total of 1,431,463 English-language 

tweets were collected. The gold-standard corpus (tweets with the annotation) was acquired from 

a previous study.[131] Specifically, for HBM, the focus was on the four primary constructs: 

perceived susceptibility, perceived severity, perceived benefits, and perceived barriers (Appendix 

A). Three reviewers (two graduate-level research assistants and one postdoctoral fellow in health 

informatics) were trained. They then categorized a subset of 6,000 tweets based on the relevance 

of these tweets to the HBM constructs. Each tweet was assigned to none (not related to HBM), 

one, or multiple HBM constructs. The inter-annotator agreement for each construct ranged from 

0.727 to 0.834. For TPB, the focus was on an amalgamated construct of attitude. Gold standard 

data were acquired from a previously published study.[139] Three reviewers (two graduate-level 

research assistants in public health and one graduate-level research assistant in health 
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informatics) categorized the same 6,000 tweets based on attitudes toward the HPV vaccine as 

expressed within the tweets. The reviewer first decided whether the tweet was related to the 

construct of attitude toward the HPV vaccine. If it was related, the reviewer further decided 

whether it was positive, negative, or neutral. The overall inter-annotator agreement was 0.851. 

2.2.4. Deep learning-based framework 

The understanding of Twitter content within the perspective of behavior change theories 

was framed to text-classification tasks. Deep-learning classifiers for HBM and TPB were built. 

For the four primary HBM constructs, the tweet was categorized first based on whether it was 

relevant to any of the HBM constructs and then relevant tweets were categorized into the four 

primary HBM constructs, using binary classification (one classifier for one construct). A similar 

process was followed for TPB constructs. A tweet was categorized first in terms of its relevance 

to the construct of attitude toward the HPV vaccine; and then the relevant tweet was categorized 

according to one of three attitudes: positive, negative, and neutral. 

Twitter word embedding 

Many machine-learning and almost all deep-learning algorithms are incapable of 

processing strings and text in their raw form. Pre-trained word embedding, which provides 

distributed representations of words in a vector space, can help learning algorithms achieve 

better performance in natural language processing tasks.[140] Various word embedding models 

have been proposed in recent years, including word2vec,[140] GloVe,[141] and fastText.[142] 

Word2vec is one of the most popular techniques to learn word embedding There are two 

main training algorithms for word2vec: continuous bag of words (CBOW) and skip-gram. 

CBOW uses the context of the word to predict a target word while skip-gram uses a word to 
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predict a target context. For the present study, skip-gram was chosen as the algorithm as it works 

better for infrequent words.[143] 

GloVe stands for global vectors for word representation. GloVe was proposed by 

Pennington et al as a count-based method to learn word vectors. Different from word2vec, which 

leverages the predictive model (i.e. neural network) to learn word vectors, GloVe learns word 

vectors from aggregated global word-word co-occurrence. 

fastText is a more recent method of word embedding, which is based on a skip-gram 

model. However, contrary to word2vec, where the morphology of words is ignored, each word is 

represented as a bag of character n-grams in fastText. A word vector representation is associated 

with each character n-grams.  

Twitter word embedding was trained by applying the above three models to the un-

labeled HPV-related Twitter corpus (which were termed W2V HPV, GloVe HPV, and FT HPV). 

For all three models, window size was set at 5, maximum iteration at 20, and dimension size at 

200. The use of these Twitter word embeddings was evaluated on a recurrent neural network 

(RNN) with attention mechanism.[131] For comparison purposes, the use of pre-trained 200-

dimension GloVe Twitter embedding (trained 2 billion tweets from the general domain, which 

we term GloVe General) and the use of random embedding were also evaluated. 

Deep learning-based classifiers 

Twitter text classification tasks often are considered more challenging due to the many 

unique characteristics of Twitter text, such as very short text, frequent occurrence of incorrect 

spellings, cyber slang, and emoticons.[138,144,145] Deep learning based approaches 

significantly improve performance in text classification tasks.[146–150] Thus, three competitive 
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deep learning-based algorithms were evaluated in the current study: Att-RNN, Att-ELMo and 

BERT. 

Att-RNN is an RNN with attention mechanism.[131] Att-RNN consists of several layers, 

including: 1) a word embedding layer to map Twitter text token into high dimensional vectors; 2) 

a bidirectional long short-term memory (Bi-LSTM) layer [151] to capture both forward and 

backward information of the corresponding Twitter text; 3) an attention layer to add on top of the 

Bi-LSTM layer to further augment the sequence model by capturing the salient portions and 

context; 4) a Softmax layer as the output layer for classification. The architecture of Att-RNN can 

be seen in Figure 4. 

Att-ELMo is an attentive sequence model based on the Embeddings from Language 

Models (ELMo).[152] Traditional word embedding methods assign a static high dimensional 

vector to a word, regardless of its context. However, a word could have multiple context-

dependent meanings. ELMo is a deep contextualized word embedding method that can look at 

the entire context before assigning each word its embedding vector. Att-ELMo first adopts the 

pre-trained ELMo (which was loaded from https://tfhub.dev/google/elmo/2) to map each word in 

the tweet to high-dimensional vectors. Then, similar to Att-RNN, word vectors are then fed to a 

bidirectional RNN, followed by the attention mechanism. A Softmax layer serves as the output 

layer for classification. 
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Figure 4. The architecture of the attentive recurrent neural network (RNN) for Twitter text 

classification 

BERT stands for Bidirectional Encoder Representations from Transformers. BERT is a 

new language representation model based on Transformer architecture.[153] Transformer relies 

entirely on self-attention to compute representations of its input and output without using 

sequence-aligned RNNs (e.g. LSTM).[154] Contrary to recurrent models, Transformer allows for 

significantly more parallelization. BERT achieved state-of-the-art performance in 11 natural 

language processing tasks.[153] A pre-trained BERT model can be fined tuned with just one 

additional layer to other tasks. The pre-trained BERT model (BERT-Large, Uncased) was loaded 

and fine-tuned in the present study’s Twitter text classification dataset. 

2.2.5. Evaluation 

Machine learning-based classifiers 
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Several classic machine-learning algorithms (e.g., support vector machines, logistic 

regression, random forest) were tested and extremely randomized trees were chosen (ERT)[155] 

as the baseline algorithm due to its better performance on most of the tasks. Two types of 

features were evaluated: (1) mean-embedding - all of the tokens were mapped to high-

dimensional vectors using pre-trained word embedding and took the averaged word vectors for 

all words in each tweet as the feature (which was termed mean-emb) and (2) term frequency-

inverse document frequency (TF-IDF) - TF-IDF is a numerical statistic that is intended to reflect 

how important a word is to a document in a corpus.[156] 

Experiment setting 

Machine-learning and deep-learning algorithms on HBM and TPB were evaluated. These 

are both two-step classifications: (1) the content of a tweet was first classified as to whether it 

was related to HBM or TPB. In this step, all gold-standard tweets (6,000 in total) were divided 

into training, validation, and testing sets with a proportion of 7:1:2; (2) then, for HBM-related 

(3,264 in total) and TPB-related (3,984 in total) tweets, the tweets were classified into each 

specific construct. The HBM and TPB-related tweets were divided into training, validation, and 

testing sets with a proportion of 7:1:2, respectively. For each task, the models were trained on the 

training set; hyper-parameter tuning was performed on the validation set; performance was 

evaluated on the testing set. Random sampling of the tweets was repeated 10 times (with 

replacement) with the same proportion and the average metrics for each model were calculated. 

Evaluation metrics 

For all of the binary classifiers (e.g., to classify the tweet as HBM-related or TPB related 

or to each HBM construct), sensitivity, specificity, accuracy, precision, recall, and F-1 score 
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were calculated. For the multi-class classifier (i.e., to classify the tweet into one of three 

attitudes), overall accuracy, as well as precision, recall, and F-1 score for each attitude (i.e., 

positive, negative, or neutral) were computed. 

2.2.6. Time series analyses of trends for theoretical constructs 

Prediction 

The best-performing model (i.e., Att-RNN with FT HPV embedding) was selected for 

predicting un-labeled data in the tweets collection. Random sampling of the tweets was repeated 

and trained on the Att-RNN model 10 times (the same strategy described in the Experiment 

setting) in order to reduce variance in the deep-learning models.[157] The final prediction of the 

all the un-labeled tweets was based on majority voting of the predictions from 10 models. 

Time series analysis 

The prevalence of each construct was defined by calculating the ratio of the count of 

tweets that were classified to that construct to the total count of tweets that were classified to the 

corresponding theory. The prevalence of each construct was calculated for each week. Time 

series analyses were conducted on the weekly prevalence data in order to extract the trend of the 

constructs. Specifically, prevalence was decomposed into seasonal, trend, and random noise 

components using locally estimated scatterplot smoothing (LOESS).[158] The decomposition 

was done by the R function “stl”.[159] 
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2.3. Results 

2.3.1. The impact of word embedding 

The performance of the different word-embedding techniques can be seen in Appendix B, 

Appendix C, and Appendix D. The use of pre-trained Twitter word embedding boosted overall 

performance compared with the use of randomly initialized embedding. The present study 

trained domain-specific embedding on a relatively small corpus (i.e., HPV vaccine-related 

Twitter corpus). It provided comparable performance with the general Twitter embedding 

(GloVe Twitter), trained on billions of tweets on the tasks. In particular, the use of FT HPV 

embedding led to the best performance in the majority of the tasks. 

2.3.2. The comparison of classification algorithms 

The comparison of different classification algorithms can be seen in Appendix E, 

Appendix F, and Appendix G. Machine learning with the TFIDF feature achieved higher 

accuracy and F-1 score than did the same learning algorithm with the mean-emb feature. In 

general, deep-learning algorithms (e.g., Att-RNN, Att-ELMo, BERT) demonstrated superiority 

over machine-learning algorithms on most of the tasks. The Att-RNN model achieved the best 

accuracy on almost all tasks (except for the TPB-related task, for which it ranked second) and the 

best micro-average F-score on TPB-attitude classification. The BERT model achieved the highest 

accuracy on the TPB-related task, as well as the highest F-1 score on HBM-barriers, HBM-

benefits and TPB-related tasks. 
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2.3.3. Trends for theoretical constructs 

There were dramatic fluctuations in the prevalence of each construct (Figure 5 and 

Figure 6). In addition, there were increasing trends in the total count of theory-related tweets 

(i.e., HBM-related, and TPB-related) over the years of the study. These fluctuations 

demonstrated increasing interest in discussing the HPV vaccine on Twitter. Time-series analyses 

further extracted smooth trends for each construct (Figure 7). As can be observed among the 

HBM-related constructs, there was a decreasing trend in the prevalence of barriers and an 

increasing trend in the prevalence of severity; the prevalence of benefits decreased from early in 

2015 to the middle of 2016 and remained stable thereafter; susceptibility showed an opposite 

trend, as prevalence started increasing from early in 2015 and remained relatively stable after the 

middle of 2016. Among attitudes toward the HPV vaccine, neutral attitude stayed stable over the 

years; from the middle of 2017, positive attitude toward the HPV vaccine showed an increasing 

trend, while negative attitude showed a decreasing trend. 
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Figure 5. Prevalence of constructs from health belief model (HBM). The green shadowed area 

represents the total count of HBM-related tweets for each week, and the colored lines represent 

the prevalence of each construct 
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Figure 6. Prevalence of attitude from theory of planned behavior (TPB). The blue shadowed area 

represents the total count of TPB-related tweets for each week, and the colored lines represent 

the prevalence of each attitude 

 

Figure 7. Trends of theoretical constructs after removing seasonal effect and random noise 
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2.4. Discussion 
One major goal of the present study is to evaluate computational algorithms for the 

classification of HPV vaccine Twitter discussions, as they relate to the constructs of behavior 

change theories. One finding is that pre-trained word embedding can improve the performance of 

deep-learning models. Word embedding is particularly important for deep learning-based NLP 

models, for which it can provide a dense representation of the semantic information for the 

words. Although GloVe Twitter embedding has been widely adopted in Twitter-related NLP 

systems,[130,131,160,161] it is valuable to see that the domain-specific embedding trained on 

only ~1.4 million tweets can provide comparable or even better performance on the majority of 

tasks. Although domain-specific embedding might not be able to capture all of the necessary 

semantics, it can be more representative of specific domain-related tasks.[162] 

Another finding is that machine-learning algorithms with the TFIDF feature provide 

relatively strong baseline performance on most of the tasks. Although deep-learning algorithms 

achieve better performance, the improvement over machine-learning algorithms on most of the 

tasks is not dramatic. Machine-learning algorithms can still be a good option for some tasks 

especially in light of the higher computation cost of deep-learning algorithms. BERT, a recent 

breakthrough in NLP, has advanced state-of-the-art performance in multiple general domain 

NLP tasks.[153] A few studies in the Twitter domain also show the superiority of BERT over 

other machine-learning and deep-learning algorithms.[163,164] The present study also shows 

that the default BERT can achieve performance comparable to the best algorithm (i.e., Att-RNN). 

Recent studies indicate that the transfer learning of BERT in the biomedicine domain can 
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advance existing state-of-the-art performance.[165] It can be expected that the transfer learning 

of BERT to the Twitter domain can further advance performance on Twitter-related tasks. 

The retrospective analysis of theoretical constructs, including health beliefs and attitudes 

toward the HPV vaccine, provide a better understanding of public perceptions and their evolving 

trends in terms of multiple dimensions. Trends in public perceptions could be one of the 

measures of health policy efficacy and a signal for public vaccination acceptance. The present 

study demonstrates that, in recent years, positive attitude toward the HPV vaccine is increasing in 

Twitter space, which could benefit from the significant efforts of public health professionals on 

HPV vaccination promotion. The increase in perceived severity could have resulted from the 

shift in promotion strategy. This shift placed more emphasis on the importance of the HPV 

vaccine for cancer prevention than for genital warts. The Centers for Disease Control and 

Prevention’s (CDC) initiative to use a cancer-oriented message may have pushed providers to be 

proactive and presumptive in recommendations. The CDC also bundled the HPV vaccine with 

the larger group of mandated vaccines, which, in turn, may be having an effect on trends in 

public perceptions. Importantly, the approach used in the current study permits an automatic 

understanding of an individual’s health beliefs and attitudes toward the HPV vaccine, which 

could facilitate further innovative and customized vaccination promotion strategies. 

A limitation of the present study is that the treatment of predicted labels as true labels for 

the time-series analyses could have led to information bias due to misclassification 

rates.[166,167] A further limitation was that the gold-standard corpus was limited to 6,000 

tweets. This may not be representative of the un-labeled tweets collection (~1.5 million tweets), 

and the shift in data distribution between labeled and un-labeled data could have brought 
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additional bias to the prediction. To mitigate this, it is recommended that future studies add more 

representative tweets to the gold-standard corpus. In addition, other novel computational 

frameworks (e.g., domain-adversarial training[168]) may overcome the shift in data distribution. 

Future evaluation of these frameworks is indicated. 

2.5. Conclusion 
The present study evaluated various machine-learning and deep-learning algorithms in 

order to map HPV vaccine-related Twitter discussions to the constructs of grounded behavior 

change theories. Deep-learning algorithms outperformed machine-learning algorithms on the 

tasks. Pre-trained word embeddings were effective in improving the performance of deep-

learning algorithms. Domain-specific embedding led to comparable or higher performance 

compared with pre-trained embedding from the general domain. Time-series analyses on the 

predicted constructs revealed evolving trends in public perceptions of the HPV vaccine. This 

study could benefit vaccination promotion programs by providing an automatic understanding of 

the population- and individual-level health beliefs and attitudes toward the HPV vaccine. A 

similar strategy can be applied to an understanding of public perceptions on other health-related 

topics, such as measles outbreaks, influenza vaccines, and so forth. 
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Chapter 3: Gender Differences in Public Perceptions of the HPV Vaccination  

3.1. Introduction and Related Work 
Gender plays an important role in shaping awareness, perceptions, and intentions as they 

relate to vaccinations.  In one study, women students in Pakistan show significantly greater 

awareness of vaccines for hepatitis than do men.[175] Perceptions of the risks associated with 

vaccinations also differ by gender, with women expressing more concern over efficacy and 

safety.[97, 174] And, men and women are dissimilar in their intentions to get vaccinated, despite 

the fact that neither the disease nor the vaccine, itself, is specific to any one gender. Research in 

France, Greece, and the Netherlands suggests that men are more willing to get vaccinated.[97] 

In addition, although HPV vaccination rates are rising, there are marked gender 

differences, with 65% of girls and only 56% of boys receiving a first dose.[169] Survey research 

also demonstrates gender disparities in health beliefs and knowledge about  HPV and HPV 

vaccines.[100,101,170–172] These patterns may be due, in part, to the feminization of HPV in 

which concerns over sexuality and the transmission of disease tend to be greater for girls than 

they are for boys [176]. Such gendered perspectives may have led, as well, to the fact that the 

vaccine was first approved for girls, only.  

Research on public perceptions of the HPV vaccine is critical. However, reliance on 

social media platforms, such as Twitter, in order to obtain data, is problematic.  While survey-

based methods tend to gather gender and other demographic data, such data are often missing or 

hard to discern on social media. The lack of demographic information makes it challenging to 

investigate differences in public perceptions across different subpopulations and to validate and 

compare findings from studies using traditional survey-based methods. Nonetheless, there are 
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some recent efforts aimed at understanding public perceptions of vaccinations that apply 

machine or deep learning approaches to Twitter posts [94,131]. But, they are unable to address 

gender differences due to the lack of reliable gender information provided in tweets. In an 

attempt to overcome this limitation, Huang et al leveraged the Demographer [173] to infer 

gender attributes from Twitter users [75] and studied how vaccine tweet counts varied by gender. 

However, Demographer and other name-based inferring tools [174,175] are insufficient as the 

name of specific Twitter users is sometimes not available, is inaccurate, or is gender neutral. 

Other approaches using traditional machine learning-based approaches have been tried. 

These studies framed gender prediction as binary classification tasks and proposed machine 

learning-based approaches (e.g. support vector machines) with extensive feature engineering for 

gender prediction. Typically, word and character-level n-grams based-features were used 

[176,177]. Additional elements, including emojis, part-of-speech (POS) tags, latent semantic 

analysis(LSA), and lexicon features also were adopted in some machine learning-based systems 

[178,179]. Demographic attributes, such as gender, were found to be associated with linguistic 

features of user-generated posts [180,181]. Overall, traditional machine learning-based 

approaches with extensive feature engineering achieved high performance in Twitter gender 

inference challenges. 

The use of deep learning-based methods has advantages over traditional approaches in 

feature engineering and can achieve state-of-the-art performance in many natural language 

processing (NLP) tasks.[134] This was attempted with Twitter, specifically with regard to gender 

inference. However, the performance of deep learning-based methods using Twitter textual data 

were found to be suboptimal compared with traditional machine learning-based approaches that 
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had thorough feature engineering. For example, in a 6th Author Profiling Task at PAN 

2018,[182] the top three systems in gender prediction (using English Twitter textual data only) 

all adopted non-deep learning-based approaches. Sierra et al leveraged a feed-forward neural 

network with fastText embedding and ranked 4th in the English Twitter text category;[183] 

Takahashi et al designed a recurrent neural network for text and ranked 7th in that category.[184] 

In a 5th Author Profiling Task at PAN 2017,[185] Miura et al proposed a neural attention 

network to integrate both word and character information;[186] however, this study only ranked 

6th in English gender inference. 

In the current work, a novel deep learning-based approach was employed to infer the 

gender of Twitter users by utilizing English Twitter textual data as the input. As a use case, the 

model also was leveraged to investigate gender differences in public perceptions of the HPV 

vaccine on Twitter space. . The present study contributes to the field in three main ways: 

1)  The character-based convolutional neural network model with embedding fusion for 

gender inference using English Twitter textual data as the input compared favorably with 

the state-of-the-art performance in a recent Twitter Author Profiling (i.e. gender 

inference) Challenge Task. 

2) Multiple competitive machine learning-based and deep learning-based algorithms related 

to gender inference were compared. 

3) An evaluation of the HPV vaccine-related Twitter corpus (described in Chapter 2) 

identified gender differences in public perceptions of the HPV vaccine. The findings 

were largely consistent with previous survey-based studies. 
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3.2. Method 
There were two major steps in the present study: 1) to evaluate a convolutional neural 

network-based deep learning model for English Twitter gender inference and then to use the 

model in a recent open challenge task: 6th Author Profiling Task at PAN 2018;[182] 2) to 

leverage the trained model for gender inference on Twitter users who discussed the HPV vaccine 

and then to uncover any gender differences in public perceptions regarding the vaccine. 

3.2.1. Datasets 

Author Profiling dataset 

Author Profiling Tasks at PAN are a series of international challenges which aim to 

classify texts into classes based on the stylistic choices of their authors. In the current study, 

models were evaluated on the Author Profiling Tasks at PAN 2018, which is focused on gender 

identification in Twitter. In this challenge and for each Twitter user, a total of 100 tweets and 10 

images were provided. Three datasets in different languages, including English, Arabic and 

Spanish were provided. The current study then focused only on English tweets and only on text 

data (image data were excluded). This process provided a balanced corpus with regard to gender. 

It resulted in 3,000 Twitter users for training and 1,900 Twitter users for testing.[182] The 

training dataset was used to develop a gender identification model that evaluated the model’s 

performance on the testing dataset. 

Twitter HPV vaccine-related dataset 

A set of HPV vaccine-related keywords were employed to collect 1,431,463 English 

tweets by using Twitter streaming API between the dates of Jan. 1, 2014, to Oct. 26, 2018. A 

subset of 6,000 tweets was annotated based on its relevance to four health belief model (HBM) 
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constructs (i.e. perceived susceptibility, perceived severity, perceived benefits, and perceived 

barriers) and one theory of planned behavior (TPB) construct (i.e. positive, negative, and neutral 

attitudes). Gold standard data were used to train and evaluate an attentive recurrent neural 

network. Random sampling of the tweets was repeated in the gold standard corpus and training 

10 times for each construct. The final prediction of all the un-labeled tweets was based on a 

community ensemble (i.e. majority voting) of 10 models. A detailed description of the Twitter 

data and of the models is provided in Chapter 2’s Method section. 

Up to 100 tweets were then collected from each unique Twitter user in our corpus from 

December 2018 to January 2019 by using Tweepy.[187] There were 486,116 unique Twitter user 

IDs derived from 1,431,463 tweets. From these tweets, 275,753 of these IDs were still active 

during the collection period. Tweets from those Twitter accounts that were not valid during the 

entire collection period were removed from the Twitter corpus. After excluding inactive users’ 

tweets, 1,052,770 tweets (73.54%) were included in the final analysis. Of those tweets that were 

included in the analysis, 740,910 were classified as related to HBM. Additionally, 75,376, 

164,793, 202,566 and 317,863 tweets were classified, respectively, as perceived susceptibility, 

perceived severity, perceived benefits, and perceived barriers. Furthermore, 761,449 tweets were 

classified as related to the TPB attitude, among which 275,203, 280,532 and 205,714 tweets 

were classified as positive, negative, and neutral, respectively. Among active Twitter users, 

266,316 (96.58%) had at least 100 tweets during the December 2018 to January 2019 time frame. 

The average number of collected tweets for each user was 98.05. Other basic statistics from these 

datasets for training, testing, and prediction are summarized in Table 2. 
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Table 2. Descriptors and basic statistics for three Twitter gender datasets 

Dataset Number 
of 
Twitter 
users 

Number of tweets per user Number of tokens per user 

Mean Min Max SD Mean Min Max SD 

Training 3,000 100 100 100 0 1,681 412 3,338 306.94 

Testing 1,900 100 100 100 0 1,679 754 2,765 297.30 

Prediction 275,753 98.05 1 100 11.66 1,916 2 7,995 551.78 

3.2.2. Convolutional neural network with embedding fusion 

The convolutional neural networks (CNN) model is commonly used in various computer 

vision tasks [188] and  demonstrates excellent performance in the NLP field, including text 

classification tasks.[127,146,189,190] CNN utilizes layers with convolving filters to extract local 

features. It can be trained in parallel in order to reduce training time as compared to the recurrent 

neural networks (RNN) model, which needs to be processed sequentially. Kim proposed a simple 

CNN with one layer of convolution on top of word embeddings followed by a max-pooling layer 

and achieved excellent results on multiple sentence classification benchmarks.[146]  
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Figure 8. The architecture of convolutional neural network for Twitter gender prediction 

The present study extended Kim’s CNN model by adding embedding fusion to model 

word morphology information and sentence syntactic information from the Twitter posts. The 

overall architecture of the framework is illustrated in Figure 8. Specifically, a character layer 

was designed which took the character embedding of each character within a tweet token as the 

input and output the summary of characters for each token using a convolutional layer followed 

by a max-pooling layer. The character layer ensured mapping both the in-vocabulary words and 

the out-of-vocabulary words (e.g. incorrect spellings) to high dimensional vectors. The word 

layer concatenated the output of the character layer, word embedding and part of speech (POS), 

and concatenate them together in order to more comprehensively represent the linguistic features 

of each word. The output of the word layer then was fed to another convolutional layer and max-

pooling layer to represent the information of the Twitter user. A dense layer was added with 

batch normalization on top of the pooling layer. The output layer was a fully connected layer 
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with Softmax outputs. L2 regularization and dropout was added to avoid overfitting. The major 

parameter settings for the proposed model can be seen in Table 3. This deep neural network was 

termed CNN_char_pos. 

Table 3. Major hyper-parameter settings for the proposed character-based convolutional neural 

network with embedding fusion 

Hyper-parameter Setting 

Learning rate 0.001 

Batch size 64 

POS embedding dimension 10 

Character embedding 
dimension  

50 

Pre-trained word embedding  GloVe Twitter embedding (d=200) 

L2 regularization 0.00001 

Dropout rate 0.2 
No. of filters: 
word/character level 

2048/50 

Maximum length of token 2,000 

Maximum length of 
character 

30 

Filter size: word/character 
level 

1,2,3/3 

3.2.3. Experiment setting 

Data preprocessing 
For each tweet, we adopted the script [191] to perform preprocessing (e.g. user name 

normalization, URL normalization, lowercase), and then NLTK TweetTokenizer was used for 

tokenization, and Taggers was utilized for POS Tagging.[192] For each user, all of the available 
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tweets (up to 100) were combined into a single document, which served as input for the machine 

learning and deep learning models. 

Baseline models 
Several competitive traditional machine and deep learning models were chosen for 

comparison. For traditional machine learning algorithms, term frequency-inverse document 

frequency (TF-IDF) was used as features which were then employed to evaluate several 

algorithms, including support vector machine (SVM), logistic regression (LR), and extra tress 

(ET). For deep learning algorithms, the basic CNN model with word embedding only (termed  

CNN), the CNN model with word embedding and character embedding (termed CNN_char), and 

an attentive bi-directional recurrent neural network model (termed RNN) with word embedding, 

only, were evaluated. 

Cross fold validation & community ensemble 
The training dataset was split into 5 folds. For each fold, 4 folds data were used as the 

training set while the remaining fold was used as the validation set. The model which achieved 

the highest accuracy on the validation corpus was selected and evaluated on the official testing 

data. The mean accuracy of models from 5 folds on the testing set and the accuracy of ensemble 

models from 5 folds after a majority voting were calculated. 

3.2.4. Chi-square test 

Gender differences in perceptions regarding the HPV vaccine were investigated using 

Chi-square. Differences were measured by the odds ratio of gender versus perceptions with 

respect to the number of tweets mapped to the constructs of HBM and TPB. This was done for 

each year, from 2014-2018, using Twitter data . It should be noted that the year 2018 had Twitter 



37 

 

data only up to October. Chi-square was used to determine whether there was a significant 

difference between the frequencies based on gender. To adjust for multiple comparisons, a 

Bonferroni correction was used with a nominal significance level of 0.05 and with 35 

comparisons (7 tests each year). 

3.3. Results and Discussion 
3.3.1. Comparison of algorithms on gender inference 

The comparison of different algorithms on gender inference can be seen in Table 4. The 

mean, standard deviation (SD) and voting accuracy of 5 folds for each algorithm on the testing 

dataset were calculated. CNN models outperformed SVM and RNN models on Twitter gender 

inference tasks. The community ensemble model further improved the accuracy for all of the 

algorithms. The ensemble of models from 5 folds led to better performance compared to the 

mean accuracy of 5 folds. The ensemble of CNN_char_pos achieved the highest accuracy among 

all of the models and slightly higher accuracy compared to the best results (0.8221 from [179]) 

reported in Task at PAN 2018. 

Table 4. Comparison of algorithms on Twitter gender inference 
 

SVM RNN CNN CNN 
_char 

CNN_char 
_pos 

Mean 0.7902 0.7874 0.8019 0.8127 0.8128 

SD 0.0035 0.0106 0.0066 0.0018 0.0060 

Voting 0.7968 0.8047 0.8153 0.8189 0.8237 

3.3.2. Gender differences in public perceptions 

The trained ensemble model of CNN_char_pos was then used to infer Twitter user 

gender on the HPV Twitter corpus: the majority voting of predictions from models trained on 



38 

 

each fold was taken as the final prediction. Among 275,753 active Twitter users, 137,506 

(49.87%) were inferred to be women. Out of 1,052,770 tweets in the HPV vaccine Twitter 

corpus, 550,224 tweets (52.26%) were inferred to be sent by women Twitter users. Coverage of 

the ensemble model was evaluated further by calculating the mean of prediction probability (i.e. 

the value of Softmax output) of 5 folds on the prediction of the HPV Twitter corpus. At the 

Twitter user level, 183,394 (66.51%) had a higher average probability than 0.9; 215,722 

(78.23%) had a higher average probability than 0.8. At the tweet level, 653,860 (62.11%) had a 

higher average probability than 0.9; 790,275 (75.01%) had a higher average probability than 0.8 

on their predicted gender. The gender inference model showed high coverage on the corpus. 

The odds ratios of gender versus HBM and TPB measures for years 2014-2018 were 

plotted in Figure 9. Odds ratios greater than 1 meant that men had higher positive rates than 

women. The Chi-square for all the odds ratios were significant, with p-values less than 0.001. It 

was shown that for all of the constructs, men had lower prevalence rates than women, except for 

HBM barriers and TPB positive. Here, the odds ratios were above 1.7 and 1.5, respectively, for 

all five years. The results were largely consistent with findings from previous survey-based 

studies. For example, in a Korean sample,[101] men perceived more barriers to HPV prevention 

than did women, while women perceived more benefits and knowledge of the HPV vaccine. 

Additionally, in a study of African-American college students, [100] found that men scored 

higher on the perceived barriers to the HPV vaccine and lower on perceived severity and 

perceived benefits than did women. 
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Figure 9. Difference in frequencies of tweets aligned to HBM and TPB constructs regarding 

HPV vaccine between gender groups (male vs female).  

3.4. Discussion and conclusion 
In the present study, a character-based CNN model with embedding fusion for Twitter 

gender inference was evaluated with users’ historical English Twitter posts as the input. The 

performance of the proposed model compared favorably with the state-of-the-art performance in 

a recent Author Profiling Task. The comparison of embedding fusion shows the efficacy of using 

character embedding and POS embedding in Twitter gender inference. The trained models on an 

HPV vaccine-related Twitter corpus were leveraged and they identified public perception 

differences regarding the HPV vaccine between gender groups. The findings were largely 

consistent with previous survey-based studies and showed the potential of using social media and 

deep learning models to understand differences in public perceptions of public health related 

topics for different demographic groups. 
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Chapter 4: Exploring Interstate Variations in Public Perceptions of the HPV 

Vaccination from Twitter Using Deep Learning 

4.1. Introduction and Related Work 
Interstate variations in law, policy, religion, history, socioeconomic status, and other 

important institutions and indicators are well-documented. Therefore, it is conceivable that such 

regional differences may also exist with regard to vaccine health belief and coverage. Although 

there is no federal vaccination law, each state has its own set of laws that permit certain 

exemptions for medical (all 50 states), religious (45 states), and philosophical (15 states) 

reasons.[193] 

According to a national immunization survey, HPV vaccine coverage showed higher 

interstate variations compared with other vaccines. For example, in 2017, Missouri had the 

lowest coverage (85.8 %) for the MMR vaccine for children between the ages of 19 to 35 

months, while Massachusetts had the highest (98.3%);[194] Louisiana had the lowest coverage 

(35.3%) for influenza vaccinations for persons six months and older, while Massachusetts had 

the highest (49.7%);[97] However, for the HPV vaccine, Wyoming had the lowest coverage 

(>=one dose, 46.9%) for persons between the ages of 13 and 17, and DC had the highest (>=one 

dose, 91.9%).[195] Such high interstate variations in HPV vaccine coverage suggest that it may 

be interesting and worthwhile to study variation as it applies to vaccination health beliefs and 

attitudes. 

Previous studies leveraged national surveys and interviews to access health beliefs and 

attitudes regarding vaccination in the U.S..[65,196] However, few studies were able to access 

interstate variations in public perceptions. Additionally, traditional survey-based methods suffer 
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limitations in accessing interstate variations possibly due to the cost. However, the use of social 

media, especially Twitter, for accessing interstate variations can be a quick, inexpensive, and 

doable approach. Shapiro et al leveraged Twitter data to examine intercountry variation in HPV 

vaccine health beliefs.[67] In their study, individuals in the UK reported a greater concern with 

the vaccine than did those in Canada and Australia. Dunn et al used information exposure 

derived from Twitter to explain differences in state-level HPV vaccine coverage. They applied 

topic model to classify tweets and used proportional exposure to each topic to construct 

multivariable models for predicting vaccine coverage. They found that measures of information 

exposure derived from Twitter explained differences in coverage.[92] 

Although the geo-location of Twitter users is important for public health-related studies, 

the location information of Twitter users is not typically or directly available on the platform. 

Therefore, in the last few years, Twitter location inference problems have received much 

attention.[181,197–199] There are three types of Twitter-related locations, home location, tweet 

location, and mentioned location. Home location refers to the long-term residential address of 

Twitter users, whereas tweet location refers to the place where a tweet is posted, and mentioned 

location refers to the location names stated in the Twitter text. [181] Home location is more 

important for applications such as public health monitoring and public opinion polling 

estimation.[181] Home location is typically available on Twitter users profiles. However, as it is 

optional for Twitter users to complete their profiles, home location information is very sparse. 

One study found that only 21% of Twitter users reported their residential cities in their 

profiles.[200]  
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The focus of the present study was on the inference of Twitter users’ home location. 

Home location can be represented in different levels of granularity, including administrative 

regions, geographical grids, among others. Most existing studies predicted city-level home 

location for Twitter users; few studies predicted state-level location information. Additionally, 

traditional efforts were based mostly on probabilistic models. For example, Cheng et al proposed 

methods that first identified words in tweets with a strong local geo-scope, and then modeled the 

spatial word usage to infer the location.[199]  Some studies also explored the use of supervised 

machine learning algorithms with word features, including Naive Bayes, logistic regression, 

among others and , to infer locations of the users.[201,202] Recent efforts evaluated the use of 

deep learning for location estimation. Rahimi leveraged a multilayer perceptron with one hidden 

layer to build the Twitter location classifier.[203] Miura et al combined users’ posts 

chronologically and proposed a recurrent neural network to predict home location.[204] The 

current study used administrative regions at the U.S. state level, where decisions actually are 

made about vaccine policies.   

The present study applied deep learning-based approaches for Twitter users’ home 

location inference at the U.S. state level, utilizing chronological English Twitter textual data as 

the input. Interstate variations in public perceptions of the HPV vaccine were investigated. 

Specifically, 

1) The inference of Twitter users’ home location as text classification tasks was framed and 

a set of deep learning and machine learning algorithms on a large open Twitter location 

dataset were evaluated. 
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2) The use of transfer learning for home location inference on the HPV vaccine-related 

Twitter dataset (described in Chapter 3) was evaluated. 

3) The HPV vaccine related Twitter dataset was evaluated using Chi-square and it identified 

interstate variations in public perceptions of the HPV vaccine.  

4.2. Method 
4.2.1. Datasets 

Open Twitter location dataset (Lee dataset) 

Machine learning and deep learning models were evaluated using the dataset provided by 

Lee et al.[199] The original dataset contained two separate datasets for training and testing. The 

training set contained 101,358 Twitter users and 3,744,925 tweets from these users. All of the 

locations of users were self-labeled (in their profiles) at the U.S. city-level granularity. The test 

set contained 5,119 Twitter users and 5,126,035 tweets from the users. All of the locations of 

users in the test set were uploaded from their smart phones with the form of “UT: latitude, 

longitude.” As we only considered the self-reported profiles as ground truth, we evaluated our 

methods on the training data only. An open-source script to map self-reported cities in the U.S 

was applied as the present study focused on U.S. state-level geo-tagging.[205] The script 

leveraged lexicon-based rules to map the U.S. city name to a U.S. state. For example, “Miami, 

FL” to “FL”, “Texas” to “TX”, “Texas, USA” to “TX”, “Syracuse, NY” to “NY”. Out of 

101,358 users in the training set, 98,429 (97.11%) users’ city names were able to be mapped to a 

valid U.S. state. The present study assumed the U.S. state inferred by the lexicon-based script as 

a ground truth label. Twitter users in the Lee training set were randomly split into train, 

validation, and test sets with a proportion of 7: 1: 2. 
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The HPV vaccine-related Twitter location dataset (HPV dataset) 

As described in section 3.2.1., Twitter posts (up to 100) were collected for 275,753 

Twitter users in our HPV vaccine-related Twitter corpus. These users all had accounts that were 

active during the collection period. Out of these Twitter users, 70,858 Twitter users’ location 

profiles could be mapped to one of the U.S. states using the lexicon-based script. It was assumed 

that the U.S. states’ labels inferred by the script from users’ self-reported profiles were ground 

truth labels. The 70,858 users were split randomly into train, validation, and test sets with a 

proportion of 7: 1: 2. These sets were used to evaluate transfer learning. 

4.2.2. The recurrent neural network for Twitter user home location inference 

Twitter home location inference was framed as text classification and we proposed a bi-

directional recurrent neural network with embedding fusion for such tasks. The overall 

architecture of the proposed framework is illustrated in Figure 10. Similar to the character-based 

convolutional neural network that was proposed in section 3.3.2., there was a character layer at 

the bottom, which took the character embedding of each character within a tweet token as the 

input and output the summary of characters for each token using  convolution and  max pooling. 

The character layer ensured mapping both the in-vocabulary words and the out-of-vocabulary 

words to a high dimensional vector. The word layer concatenated the output of the character 

layer, word embedding, and part of speech (POS) embedding to more comprehensively represent 

the linguistic features of each word. The output of the word layer was fed to a bi-directional 

recurrent neural network (RNN) layer to represent the backward and forward information of the 

Twitter user. Long short-term memory (LSTM) was chosen as the RNN unit. The attention layer 

was added on top of the RNN output to capture the salient portions and context.[206,207] 
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Several fully-connected layers were added on top of the attention layer. The output layer was a 

fully connected layer with Softmax outputs. 

 

Figure 10. The architecture of character-based recurrent neural network for Twitter user home 

location inference 

4.2.3. Experiment setting 

Data preprocessing 
The same preprocessing steps were followed as described in section 3.2.3. for Twitter 

text preprocessing. NLTK TweetTokenizer was leveraged for tweet tokenization and POS 

Tagging.[192] For each user, all of the historical tweets (up to 100) were combined into a single 

document, which served as the input data. The ground truth labels were the U.S. states that were 

extracted from users’ profiles using the lexicon-based script. 
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Evaluation of machine learning and deep learning algorithms 
A set of competitive machine learning and deep learning algorithms were chosen for 

comparison. For machine learning algorithms, term frequency-inverse document frequency 

(TFIDF) was used as features and several algorithms, including logistic regression (LR), extra 

trees (ET) and support vector machine (SVM), were evaluated. For the proposed recurrent neural 

network-based framework, three settings were assessed: 1) use of word embedding, output of 

character layer, POS embedding together (termed RNN_char_pos); 2) use of word embedding 

and output of character layer together (termed RNN_char); 3) use of word embedding only 

(termed RNN). The major hyper-parameters settings for these RNN-based algorithms can be 

seen in  Table 5. In addition, the use of convolution neural networks for home location tagging 

tasks was compared. The recurrent neural networks layer and attention layer were replaced with 

the convolution layer and the max-pooling layer, and the same three embedding fusion settings 

as RNN-based framework: CNN_char_pos. CNN_char, and CNN were evaluated. The 

evaluations of these various algorithms were all performed on the open Lee dataset. 

Evaluation of transfer learning on the HPV dataset 
Transfer learning has been shown to be an effective technique to improve the 

performance of learning on a target task with limited data by using some knowledge learned 

from a source task.[208–210]  A previous study found that the use of transfer learning improved 

Twitter text mining tasks.[63] Instead of training the model for a target task from a completely 

blank network, transfer learning can re-use all or some of the parameters trained from a source 

task. Using the Lee dataset as source tasks, transfer learning on the HPV dataset were evaluated 

in three settings: 1) the pre-trained model from the Lee dataset directly on the test set of the HPV 

dataset; 2) the train model from scratch on the training set of the HPV dataset which was then 
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evaluated on its testing set; 3) a fine-tuned pre-trained model from the Lee dataset on the training 

set of the HPV dataset which was then evaluated on its test set. 

Table 5. Major hyper-parameters settings for the proposed character-based recurrent neural 

network for Twitter user home location inference 

Hyper-parameter Setting 
Learning rate 0.001 

Batch size 64 

POS embedding dimension 10 

Character embedding 
dimension  

50 

Pre-trained word embedding  GloVe Twitter embedding 
(d=200) 

Number of hidden 
RNN/Attention units 

256 

Dropout rate 0.2 

Filter size/No. of filters at 
character level 

3/512 

Maximum length of token 2,000 

Maximum length of character 30 

Dimension of hidden fully 
connected layers 

1,280/128/128 

 

Evaluation metrics 
Common evaluation metrics for multi-class classification tasks were followed as the 

home location tagging tasks were framed as text classification tasks. The overall accuracy of 

each algorithm on the test datasets was calculated, as were precision, recall, and F-1 score for 

each U.S. state. 
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4.2.4. Hybrid approaches for home location inference 

Three home location inference methods were adopted for the present study. The first two 

methods took the Twitter users’ location profiles as the input and generated the U.S. state label. 

The third method was based partially on the deep learning approach described in section 4.2.2. 

This approach took Twitter users’ historical posts as the input and generated the U.S. state label. 

There was an accuracy-coverage trade-off among these methods, which is described below. 

Lexicon-based location inference (Profile: lexicon based) 
As mentioned before, among 275,753 active Twitter users in the HPV dataset, 70,858 

Twitter users’ home location could be inferred from their profiles using the lexicon-based script. 

The location labels of these users were considered as ground truth labels. The lexicon-based 

method was considered with high accuracy but low coverage. Only 25.70% of the Twitter users’ 

profiles in the dataset could be mapped to a U.S. state. This method was termed, Profile: lexicon 

based. 

Lexicon and Google Map-based location inference (Profile: lexicon plus Google Map) 
There are some cases where the Twitter users’ profiles contained the U.S. state location 

information, but the information couldn’t be extracted using the lexicon-based approach. For 

example, the lexicon-based script was not able to map location strings such as “Yellow City,” 

“Norfolk,” “Austin/Oslo,” to a U.S. state. Google Map API was leveraged, further, to perform 

home location tagging on the Twitter users’ profiles that couldn’t be geo-tagged by the lexicon-

based script. Using Google Map API, “Yellow City” was able to be identified as “2916 Wolflin 

Ave, Amarillo, TX 79109, USA.” which was then mapped to the U.S. state “TX;” “Norfolk” was 

mapped to “VA,” “Austin/Oslo” was able to be mapped to “TX.” However, Google Map API 

also was able to map some location-irrelevant strings to a U.S. state, which introduced errors into 
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the inference. For example, “heart” was mapped to “Montgomery County, Kansas;” “love” was 

mapped to “Owasso, Oklahoma.” In total, 31,846 Twitter users’ home locations were inferred 

using Google Map API. Together with 70,858 Twitter users that home location was able to infer 

using the lexicon-based approach, 102,704 (37.24%) Twitter users’ home location was inferred 

from Twitter users’ self-reported profiles. This hybrid method increased home location inference 

coverage but decreased accuracy. This method was termed Profile: lexicon plus google map. 

Lexicon and deep learning-based location inference (Profile plus Twitter posts) 
The present study first used the lexicon-based script to infer home location from Twitter 

users’ profiles. For the users whose home location couldn’t be inferred using the lexicon-based 

script, the HPV dataset fine-tuned home location inference deep learning model was applied to 

infer location information from Twitter users. This hybrid method had full coverage but the 

lowest accuracy among all of the methods, primarily due to the moderate accuracy in deep 

learning-based home location tagging. This was termed Profile plus Twitter posts. 

4.2.5. Chi-square  
Using Chi-square, pair-wise interstate variations in public perceptions of the HPV 

vaccine among three U.S. states, California (CA), Texas (TX) and New York (NY) were 

investigated. These three states were chosen due to their large populations and volume of Twitter 

discussions. Differences were measured by the odds ratio between U.S. states versus public 

perceptions with respect to numbers of tweets mapped to the constructs of HBM and TPB each 

year, using Twitter data from 2014-2018. Chi-square was used to determine whether there was a 

significant difference in the frequencies among the three U.S. states. Odds ratios were calculated 

among the states using three home location inferences. To adjust for multiple comparison, 
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Bonferroni correction was used with a nominal significance level of 0.05 and number of 

comparisons 315 (105 tests for each location pair). 

4.3. Results 
4.3.1. Evaluation of various algorithms on the Lee dataset 

The comparison of various machine learning and deep learning algorithms for home 

location inference on the Lee dataset can be seen in Table 6. The F-score of various algorithms 

for each U.S. state can be seen in Appendix I. As demonstrated, the deep learning models 

outperformed traditional machine learning models with a margin in Twitter users’ home location 

inference. Recurrent neural network-based models also outperformed convolution neural 

network-based models on home location geo-tagging. Character layer was found to be beneficial 

in improving the accuracy for both the RNN and CNN-based framework. The use of POS 

embedding showed improvement for the CNN-based models but not for the RNN-based models. 

The best model for home location inference was the RNN-based model with the concatenation of 

word embedding and character layer output (RNN_char). At the U.S. state level, RNN_char 

achieved moderate performance on most of the U.S. states. However, large interstate variations 

also existed. For some states that had a relatively large number of tweets available, RNN_char 

was able to achieve F-scores higher than 0.5, for example, 0.5408 for California (CA), and 

0.5244 for Texas (TX). For some states with a low tweet distribution, RNN_char achieved lower 

performance. In total, RNN_char achieved an F-score higher than 0.5 on nine states and higher 

than 0.4 on 24 states. Figure 11 shows interstate variations of F-scores on home location 

inference from the best-performing RNN_char model. 
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Table 6. Accuracy of machine learning and deep learning algorithms on home location inference 
on Lee dataset 

 Machine learning Convolution neural network Recurrent neural network 

LR ET SVM CNN CNN_char CNN_POS_
char RNN RNN_char RNN_POS_

char 

Accuracy 0.3646 0.3152 0.3715 0.4158 0.4535 0.4622 0.4823 0.4896 0.4857 

 

 

Figure 11. State-wise Twitter user home location inference F-score by RNN_char model on the 

Lee dataset 

4.3.2. Evaluation of transfer learning on the HPV dataset 

The overall accuracy of different settings for transfer learning on Twitter user home 

location inference for the HPV dataset can be seen in Table 7. The detailed F-score for each U.S. 

state can be seen in Appendix J. The pre-trained model from the Lee dataset achieved lower 

accuracy on the HPV dataset. The Lee dataset was compiled from September 2009 to January 

2010, while the HPV dataset was compiled from December 2018 to January 2019. Changes in 

Twitter textual linguistic style over the past 10 years could be one of the reasons why the pre-
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trained model did not work well on the more recently collected dataset. The use of the Lee 

dataset for transfer learning improved the overall accuracy of the HPV dataset, with a 0.017 

increase in overall accuracy compared with the model trained from scratch. Transfer learning 

was also able to improve the F-score in home location inference for 37 U.S. states. In total, the 

use of transfer learning achieved F-scores higher than 0.5 on 21 states and higher than 0.4 on 44 

states. Figure 12 shows a geographic visualization of F-score on home location inference from 

the fine-tuned model. 

Table 7. Accuracy comparison on the use of transfer learning on the HPV dataset. Pre-trained: 

pre-trained model from the Lee dataset; training from scratch: model was trained using the HPV 

dataset; fine-tuned: model was fine-tuned on the HPV dataset from pre-trained model from the 

Lee dataset. 

 Pre-trained  Training 
from 
scratch 

Fine-tuned 

Accuracy 0.4276 0.4680 0.4849 
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Figure 12.  Twitter user home location inference F-score by the transfer learning (i.e. fine-tuned 

model) on the HPV dataset 

4.3.3. Interstate differences 

California versus New York 

The odds ratios for California versus New York’s Twitter discussions for the constructs 

of HBM and TPB for years 2014-2018 can be seen in Table 8. Three location inference methods 

largely showed consistent results. For the health belief model, Twitter discussions in California 

showed lower prevalence than for New York in perceived susceptibility, severity, and benefits, 

while showing higher prevalence in perceived barriers. For the theory of planned behavior, 

California showed higher prevalence in negative attitude and lower prevalence in positive 

attitude than New York. These results were largely consistent over the years. 
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Table 8. Difference in frequencies of tweets aligned to HBM and TPB constructs on the HPV 

vaccine between U.S. states (California versus New York). Odds ratio greater than 1 means 

California have higher prevalence than New York. 

Year  HBM 
Susceptibility 

HBM 
severity 

HBM 
benefits 

HBM 
barriers 

TPB 
positive 

TPB 
negative 

TPB neutral 

2014 

Profile: lexicon based 0.8430 0.9793 0.5265* 2.1715* 0.8288 2.0628* 0.6479* 

Profile: lexicon plus google map 1.0602 0.9271 0.5787* 1.9682* 0.8616 1.8578* 0.6523* 

Profile plus Twitter posts 0.9155 0.9280 0.7031* 1.4177* 0.8344* 1.2546* 0.9843 

2015 

Profile: lexicon based 0.4329* 0.5613* 0.5430* 2.3750* 0.5615* 2.2560* 0.7893* 

Profile: lexicon plus google map 0.4142* 0.5895* 0.5539* 2.2830* 0.5866* 2.1744* 0.7706* 

Profile plus Twitter posts 0.6144* 0.7035* 0.6562* 1.5741* 0.6395* 1.5251* 1.0289 

2016 

Profile: lexicon based 0.7547* 0.6305* 0.5967* 2.5556* 0.5425* 2.4386* 0.8093* 

Profile: lexicon plus google map 0.8054* 0.7348* 0.6280* 2.0462* 0.6002* 1.9757* 0.8601* 

Profile plus Twitter posts 0.7803* 0.8154* 0.7869* 1.4828* 0.7557* 1.4807* 0.8849* 

2017 

Profile: lexicon based 0.7342* 0.7059* 0.8838 1.6518* 0.7234* 1.5941* 0.8894 

Profile: lexicon plus google map 0.8831 0.7922* 0.8749 1.4429* 0.7819* 1.4054* 0.9018 

Profile plus Twitter posts 0.7942* 0.7961* 0.8142* 1.4670* 0.7566* 1.4416* 0.8985* 

2018 

Profile: lexicon based 0.8617 0.7348* 0.9546 1.6746* 0.7603* 1.4940* 0.9136 

Profile: lexicon plus google map 0.8844 0.8360* 0.9642 1.3728* 0.8533 1.3269* 0.8787 

Profile plus Twitter posts 0.7934* 0.7324* 0.7308* 1.7073* 0.7031* 1.5995* 0.8954* 

* p < 0.0001. 
 
New York versus Texas 

The odds ratios for New York versus Texas’s Twitter discussions for the constructs of 

HBM and TPB for the years of 2014-2018 can be seen in Table 9. New York showed lower 

prevalence in perceived barriers and negative attitude than Texas from 2014 to 2017, and higher 

prevalence in perceived benefits and positive attitude in 2014. The prevalence of most constructs 

for New York and Texas has been moving closer (odds ratio is close to 1). The odds ratios from 

three location inference models also were consistent for most constructs in most years. However, 

some variation can be observed, for example in the HBM perceived susceptibility for 2014. 
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Table 9. Difference in frequencies of tweets aligned to HBM and TPB constructs on the HPV 

vaccine between U.S. states (New York vs Texas). Odds ratio greater than 1 means New York 

has higher prevalence than Texas. 

Year  HBM 
Susceptibility 

HBM 
severity 

HBM 
benefits 

HBM 
barriers 

TPB 
positive 

TPB 
negative 

TPB neutral 

2014 

Profile: lexicon based 2.2099 0.8893 1.9904* 0.4454* 1.3159 0.4699* 1.4174* 

Profile: lexicon plus google map 1.1795 0.9278 1.7386* 0.5037* 1.2411 0.5453* 1.3705* 

Profile plus Twitter posts 1.2588 1.1642 1.7561* 0.5520* 1.3060* 0.5967* 1.2980* 

2015 

Profile: lexicon based 1.1706 0.8904 1.0364 0.8744 0.9943 0.7988 1.2734 

Profile: lexicon plus google map 1.2645 0.8955 1.0365 0.8763 1.0065 0.7698* 1.3103* 

Profile plus Twitter posts 1.3226 1.1788 1.4693* 0.6263* 1.3684* 0.5632* 1.3897* 

2016 

Profile: lexicon based 1.0405 1.0625 1.0248 0.7678* 1.0895 0.7566* 1.1721 

Profile: lexicon plus google map 1.0165 0.9403 1.0347 0.8410* 1.0933 0.8091* 1.1182 

Profile plus Twitter posts 0.9554 1.0268 0.9993 0.8526* 1.0412 0.8030* 1.2227* 

2017 

Profile: lexicon based 1.2282 1.1016 0.9095 0.8202 1.1537 0.7912* 1.0696 

Profile: lexicon plus google map 1.1322 1.0291 0.9474 0.8728 1.1119 0.8777 1.0191 

Profile plus Twitter posts 0.9931 1.1383* 1.1617* 0.7942* 1.2214* 0.7018* 1.1959* 

2018 

Profile: lexicon based 1.0968 1.0753 0.8531 0.9151 1.0016 0.9950 1.0031 

Profile: lexicon plus google map 1.1623 0.9567 0.8350* 1.0603 0.9141 1.1143 1.0015 

Profile plus Twitter posts 1.0582 1.0939 1.0777 0.8134* 1.0453 0.7377* 1.3383* 

* p < 0.0001. 
 
California versus Texas 

The odds ratios of California versus Texas’s discussions regarding the constructs of HBM 

and TPB for the years, 2014-2018, can be seen in Table 10. Similar to the previous two 

comparisons, the odds ratios from three location inference methods were largely consistent on 

most of the constructs for most of the years. In the Twitter space, except for year 2014, 

California showed higher prevalence in discussions of perceived barriers and negative attitude, 

and lower prevalence in the discussion of perceived benefits and positive attitude, than Texas. 

California also showed relatively lower prevalence discussions of perceived susceptibility and 

severity in since 2015. 
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Table 10. Difference in frequencies of tweets aligned to HBM and TPB constructs on HPV 

vaccine between U.S. states (California versus Texas). Odds ratio greater than 1 means 

California have higher prevalence than Texas. 

Year  HBM 
Susceptibility 

HBM 
severity 

HBM 
benefits 

HBM 
barriers 

TPB 
positive 

TPB 
negative 

TPB neutral 

2014 

Profile: lexicon based 1.8630 0.8709 1.0480 0.9672 1.0906 0.9693 0.9183 

Profile: lexicon plus google map 1.2506 0.8601 1.0061 0.9914 1.0693 1.0130 0.8939 

Profile plus Twitter posts 1.1524 1.0803 1.2347* 0.7826* 1.0897 0.7487* 1.2776* 

2015 

Profile: lexicon based 0.5068* 0.4998* 0.5627* 2.0766* 0.5583* 1.8021* 1.0050 

Profile: lexicon plus google map 0.5238* 0.5279* 0.5741* 2.0006* 0.5904* 1.6738* 1.0097 

Profile plus Twitter posts 0.8127 0.8293 0.9642 0.9858 0.8751* 0.8590* 1.4299* 

2016 

Profile: lexicon based 0.7852 0.6699* 0.6114* 1.9621* 0.5910* 1.8451* 0.9486 

Profile: lexicon plus google map 0.8187 0.6909* 0.6497* 1.7209* 0.6562* 1.5986* 0.9618 

Profile plus Twitter posts 0.7455* 0.8372* 0.7864* 1.2643* 0.7868* 1.1889* 1.0820 

2017 

Profile: lexicon based 0.9017 0.7776* 0.8038* 1.3548* 0.8346* 1.2613* 0.9514 

Profile: lexicon plus google map 0.9998 0.8153* 0.8288* 1.2594* 0.8694 1.2335* 0.9191 

Profile plus Twitter posts 0.7887* 0.9062* 0.9459 1.1650* 0.9241 1.0118 1.0746 

2018 

Profile: lexicon based 0.9451 0.7902* 0.8144* 1.5324* 0.7615* 1.4866* 0.9165 

Profile: lexicon plus google map 1.0279 0.7997* 0.8051* 1.4555* 0.7800* 1.4786* 0.8800 

Profile plus Twitter posts 0.8395* 0.8011* 0.7875* 1.3888* 0.7350* 1.1799* 1.1983* 

* p < 0.0001. 
 

4.4. Discussion and Conclusion 
In this study, interstate variations in public perceptions regarding HPV vaccines were 

explored using Twitter space. As information on home location is sparse on Twitter users’ 

profiles, the inference of Twitter users’ home location was framed as text classification tasks and 

a character-based recurrent neural network model with attention mechanism for the home 

location inference was proposed. An evaluation was performed on a set of competitive machine 

learning and deep learning algorithms using a publicly available Twitter users location dataset. 

The proposed model outperformed convolutional neural network models and conventional 

machine learning baseline models on home location inference. The study also found that the use 
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of transfer learning could further improve the inference accuracy of home location on the HPV 

Twitter users’ location dataset. 

Three hybrid inference methods were adopted to infer the Twitter users’ home location in 

the HPV Twitter dataset. However, these methods suffered from the trade-off between accuracy 

and coverage. Profile-based approaches have higher accuracy but low coverage, while deep 

learning and historical posts-based approach have decreased accuracy but higher coverage. Chi-

square tests were then applied to explore interstate variations in public perceptions of HPV 

vaccines on U.S. state labels inferred by these three methods. Three U.S. states, California, 

Texas, and New York were selected for testing. Odds ratios from three inference methods 

showed largely consistent results in most of the constructs and for most of the years. The 

difference in public perceptions of health belief and attitude towards HPV vaccination were 

identified. Notably, this appears to be the first effort to study interstate differences in health 

beliefs and attitudes regarding HPV vaccines using Twitter space. 

There are several limitations to the present study. First, inferred location was treated as a 

true home location in the Chi-square tests, which could have led to information bias due to 

misclassification rates.[167] Second, it was not possible to filter out non-U.S. Twitter discussions 

for the deep learning-based approach as country information was not available in the collected 

Twitter corpus. As a result, Twitter users outside the U.S. could have been misclassified into a 

U.S. state. In addition, users’ historical tweets, only, were used as the input for the proposed deep 

learning algorithms. Other information, such as Twitter users’ network, could also have been 

used to infer Twitter users’ home location. Learning from complementary information in 
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multiple modalities was intuitively appealing for improving the performance.[211] Finally, 

Twitter users are not representative of the general population, which also led to bias in the 

analysis. 

As the proposed deep learning model suffered from suboptimal performance (0.48 ~ 0.49 

overall accuracy) in inferring the home location of Twitter users, multimodal deep learning 

should be explored and multiple pieces of Twitter information, including Twitter content, 

context, and users’ networks, should be used to further improve the accuracy of Twitter users’ 

home location. More Twitter users’ location-related data should be collected, especially Twitter 

users’ data from U.S. states with low Twitter discussion distributions. A larger and more 

balanced dataset could further improve the location inference accuracy of deep learning models.  
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Chapter 5: Develop A Web-Based Visualization System to Monitor Real-Time Twitter 

Discussions of the HPV Vaccine 

5.1. Introduction and Related Work 
Data visualization is the graphic representation of information, which produces figures 

that communicate relationships among the represented data to the viewers. Data visualization is 

able to create meaningful and actional information from data that then can be used by decision 

makers. Interactive visualization is powered by programming and can further allow users access 

and opportunities to interact with information. The use of interactive visualization is becoming 

increasingly popular, especially for real-time data (e.g. social media). Users are able to explore 

and interact with real-time data and access information that is customized for their needs. 

Data visualization has been adopted widely by public health agencies to track outbreaks 

of infectious diseases and to estimate the coverage of vaccinations. For example, the CDC 

maintains FluView to monitor seasonal influenza activity. FluView provides geographical 

visualizations of statewide influenza-like illnesses.[212] The CDC also developed 

FluVaxView[213] and TeenVaxView[98] to allow users to explore statewide vaccine coverage. 

FluVaxView and TeenVaxView provide interactive dashboards that permit users to select a 

specific population and location in order to see trends in vaccination coverage. Vaccination 

coverage is estimated using data from several national and local representative surveys, 

including the National Immunization Survey.[103] 

Besides the visualizations and dashboards that use data collected by conventional 

methods (e.g. surveys or clinical data), there also exist some pioneering studies that use internet 

data, such as those from social media, for public health surveillance. Vaccine Sentimeter 
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provides real-time surveillance and trend analyses of vaccination conversations from both 

mainstream and social media. Vaccine Sentimeter leverages automate tools to perform sentiment 

analysis on vaccine-related discussions.[214] VaccineWatch is a monitoring system with 

visualizations and analytics of vaccine information using Twitter and RSS feeds.[104] 

VaccineWatch allows users to filter social media discussions by specific entities, such as the 

names of particular diseases and vaccines. An interactive dashboard is provided to visualize the 

number of relevant social media discussions over time. Similarly, InSTEDD’s Riff was developed 

to visualize multiple streams of information (including Twitter data) in order to monitor 

discussion topics during epidemics and disasters.[215]  

Although these aforementioned studies leverage visualizations to offer useful information 

related to infectious diseases or vaccines by using social media and internet data, the actionable 

insights generated by these tools are limited by their analysis methods (e.g. number of posts, 

sentiment of posts). As was discussed before, an understanding of social media discussions from 

the perspective of behavior change theories can provide more actionable insights for health 

professionals and policy makers concerned with vaccine promotion. In this study,  VaxInsight, a 

web-based dashboard, was built and evaluated. It offers interactive visualizations of public 

perceptions incorporating the perspectives of multiple behavior change theories on vaccines by 

using Twitter data. VaxInsight allows users to explore the prevalence of a specific construct from 

the perspective of multiple behavior change theories and compare differences among 

subpopulations by gender or by location. As part of the present study, a group of faculty and 

trainees with backgrounds in health promotion were invited to evaluate the usability of 

VaxInsight. 
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5.2. System Design 
5.2.1. System architecture 

The overall architecture of VaxInsight is depicted in Figure 13. VaxInsight comprises 

several modules that provide stepwise processing and analysis of Twitter data. The data 

acquisition module collects tweets and users’ timelines via Twitter streaming, API, and Tweepy. 

The data preprocessing module performs preprocessing tasks such as tweet cleaning and 

normalization. Deep learning-based theoretical constructs mapping modules map Twitter 

discussions to the primary constructs of the health belief model and the theory of planned 

behavior (see Chapter 2). The demographic attributes inference module infers two demographic 

labels, gender (see Chapter 3) and the U.S. state-level location (see Chapter 4). For the current 

study, the tweets, predicted labels of the tweets, and inferred demographics of Twitter users were 

stored in MongoDB, which was connected to a web-based dashboard to provide interactive 

visualizations of public perceptions regarding the HPV vaccine, again, using Twitter data. 

The dashboard of VaxInsight was built using Python and Plot.ly Dash.[216] Dash is a 

Python framework built on top of Plotly.js, React, and Flask, that is used for constructing web 

applications, especially for data visualization. Dash is able to create interactive dashboards that 

allow multi-view brushing and filtering. 
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Figure 13. The architecture of VaxInsight 

5.2.2. Functions description 

There were three major goals in designing the VaxInsight prototype : 1) to explore the 

trend of a specific construct from a particular behavior change theory; 2) to compare differences 

among subpopulations in terms of trends related to a specific construct; 3) to browse and verify 

the predictions of deep learning-based theoretical construct mapping. 

Single construct analysis 

Single construct analysis allows users to filter Twitter discussions by time range and 

demographics, and then to explore trends for a particular construct. The screenshot of the single 

construct analysis page can be seen in Figure 14. The descriptions of the options provided on 

that page are below: 

Select Date Range: Select date range of Twitter discussion. Specific start/end dates can 

be selected using a dropdown list, or a date string can be typed into a date string the text box 

with a the format such as “Oct 26 2018.” 
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Select Gender: Filter Twitter discussion by gender. The gender label is inferred by deep 

learning algorithms employing historical user tweets as input. The process was described in 

Chapter 3. 

Select Location Inference Method: Select different method to infer Twitter users’ U.S. 

state-level location information. There are three options available: 1) Profile: lexicon-based, 

where the location is extracted from users’ self-reported location in their profiles using a lexicon-

based approach; 2) Profile: lexicon Based + Google Map, where the location is inferred by the 

lexicon-based approach and Google Map API from users’ self-reported profiles. The present 

study also leveraged Google Map API to extract location information from users whose locations 

could not be inferred by the lexicon-based approach; 3) Profile plus Twitter posts, where the 

location is inferred by the lexicon-based approach and deep learning. The present study also 

leveraged deep learning to infer location information by utilizing users’ timelines as the input 

when user location could not be inferred by the lexicon-based approach in their profiles. Detailed 

descriptions of these methods are provided in Chapter 4. 

Select Behavior Theory: Select the behavior change theory of interest. Currently, 

VaxInsight supports two behavior theories: the health belief model, and the theory of planned 

behavior. The default option is “All”, which returns all of the HPV vaccine-related tweets 

collected by keywords. 

Select Constructs: Select the construct for a particular behavior change theory. Currently, 

for the health belief model, VaxInsight supports four primary constructs, perceived susceptibility, 

perceived severity, perceived benefits, and perceived barriers. For the theory of planned 
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behavior, VaxInsight focuses on attitudes, positive, negative, and neutral. The default option is 

“All”, which will return all the theory-related tweets. 

Select Analysis Method: VaxInsight currently supports two analysis options: 1) Count, 

which calculates the aggregate count of relevant tweets during each time interval unit. 2) Ratio 

(only available when a particular construct is selected), which calculates the ratio of the 

aggregate count of construct-related tweets to the aggregate count of theory-related tweets during 

each time interval unit. 

Select Time Interval Unit: Select the unit of interval that is used to calculate the 

aggregate data. VaxInsight provides options for “Day,” “Week,” “Month,” and “Year.” 

Reset Settings: Reset all of the settings to default. 

Select State: Select a particular state for the analysis. First, it is necessary to click 

“Single” then click one particular state from the U.S. map. By default, the option is “All,” which 

returns all of the data. 
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Figure 14. Screenshot of the single construct analysis page in VaxInsight 

Subpopulation Comparison 

Subpopulation comparison allows users to compare gender and location subgroup 

differences in trends related to theoretical constructs. A screenshot of the subpopulation 

comparison page can be seen in Figure 15. This page provides functions that are similar to 

Single Construct Analysis, such as filtering the data by date range and selecting a particular 

construct. This page also allows users to select subpopulations for comparison using a 

combination of the following two options: 
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Figure 15. Screenshot of the subpopulation comparison page in VaxInsight 

Comparison of: Select the type of subpopulation that is to be compared.  Currently, 

VaxInsight provides two options: “Gender” and “Location.” 

Select Variables: Type the subpopulation that is to be compared. For gender, VaxInsight 

has “male” and “female’ as the options; for location, VaxInsight includes all of the 50 U.S. states. 

Prediction Verification 

Deep learning-based systems can make mistakes in mapping Twitter discussions to 

theoretical constructs. Thus, a web page was developed where users can browse and verify the 

predictions of the system. Users are able to make changes to the predicted labels and the verified 

changes are stored in the database. The verified labels can be used to fine-tune the deep learning 

models in order to improve their accuracy. A screenshot of the prediction verification page can 

be seen in Figure 16. 
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Figure 16. Screenshot of the prediction verification page in VaxInsight 

5.3. System Usability Evaluation 
To evaluate the usability of VaxInsight, a System Usability Scale (SUS)[217] was 

adopted. A small group of researchers with backgrounds in health promotion were recruited from 

the University of Texas School of Public Health. They then performed the usability test of 

VaxInsight. This study received exempt status from the Committee for the Protection of Human 

Subjects at The University of Texas Health Science Center at Houston. The approved IRB 

protocol number is HSC-SBMI-19-0492. The participants were asked to perform four tasks on 

the website and then fill out the evaluation survey. 

5.3.1. Tasks 

Participants were asked to perform four tasks related to the two major functions of 

VaxInsight. The functions were 1) to explore the trend for a particular theoretical construct; 2) to 

compare subpopulation differences on the trend for a particular theoretical construct.  A 

description of the tasks are as follows: 
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Task 1: Select a date range (click dropdown list or type date in the text box), then select a 

specific construct from one theory of interest (e.g. positive in the theory of planned behavior). 

Identify and describe the peaks of counts or ratios in the trend, using the “Toggle Spike Lines” 

function in the Tweets Times Series plot. 

Task 2: Select a date range (click dropdown list or type date in the text box), then select a 

specific construct from one theory of interest (e.g. positive in the theory of planned behavior). 

Filter the Twitter data by gender and/or location (select “Single” in “Select State” and then click 

a state on the U.S. map). Identify and describe the peaks of counts or ratios in the trend, using the 

“Toggle Spike Lines” function in the Tweets Times Series plot. 

Task 3: Select a date range (click dropdown list or type date in the text box), then select a 

specific construct from one theory of interest (e.g. positive in the theory of planned behavior). 

Select either “Count” or “Ratio” in “Select Analysis Method.” Select “Gender” in “Comparison 

of,” then type gender labels (e.g. “male”, “female”) in the “Select Variables” text box. Describe 

the differences among these subpopulations (e.g. which group has relative higher prevalence 

during what time period). 

Task 4: Select a date range (click dropdown list or type date in the text box), then select a 

specific construct from one theory of interest (e.g. positive in the theory of planned behavior). 

Select either “Count” or “Ratio” in “Select Analysis Method.” Select “Location” in “Comparison 

of,” then type location labels (e.g. “california”, “texas”, “new york”) in the “Select Variables” 

text box. Describe the differences among these subpopulation groups (e.g. which group has 

relative higher prevalence during that time period). 
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5.3.2. Evaluation questions 

After the participants performed these tasks, each was asked to complete a survey that 

contained two questions. One question was related to their educational background (i.e. degree) 

and the other asked for recommendations to improve the system. The participants were also 

asked to evaluate 10 statements related to usability. The usability-related statements were as 

follows: 

1. I think that I would like to use this system frequently 

2. I found the system unnecessarily complex 

3. I thought the system was easy to use 

4. I think that I would need the support of a technical person to be able to use this system 

5. I found the various functions in this system were well integrated 

6. I thought there was too much inconsistency in this system 

7. I would imagine that most people would learn to use this system very quickly 

8. I found the system very cumbersome to use 

9. I felt very confident using the system 

10. I needed to learn a lot of things before I could get going with this system 

For these statements, five-point scales were provided which ranged from “strongly 

disagree” to “strongly agree.”  

5.3.3. Evaluation Results 

The evaluation results showed good usability of VaxInsight.  A majority of the 

participants  (four out of six) agreed or strongly agreed that they would like to use this system 

frequently. All participants agreed or strongly agreed that the system was easy to use and was not 

unnecessarily complex. All participants disagreed or strongly disagreed that they would need the 

support of a technical person to be able to use this system. All participants agreed or strongly 
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agreed that the various functions in the system were well integrated and there wasn’t too much 

inconsistency in it. All participants agreed or strongly agreed that most people could learn to use 

this system very quickly and strongly disagreed that this system was very cumbersome to use. 

Five out six participants agreed or strongly agreed that they felt very confident using the system 

and disagreed or strongly disagreed that they needed to learn a lot of things before they got going 

with this system. The full responses can be seen in Appendix H. 

There were also some comments on improving the interactive dashboard of VaxInsight. 

One participant asked for more comparison variables, such as race/ethnicity, education, and city-

level location information. Another participant suggested adding more statistical analysis and 

providing printable summary reports. And another recommendation was to add some tweet 

examples when data were filtered. Two participants also mentioned some issues with web page 

format and color. 

5.4. Discussion and Conclusion 
A prototype of VaxInsight, a web-based interactive dashboard to synthesize HPV 

vaccine-related Twitter discussions in a comprehendible format was built. This prototype was 

based on results from prior research on mapping Twitter discussions to the theoretical constructs 

of behavior change theories and Twitter demographic attributes inference. The present study 

demonstrated that VaxInsight allowed users not only to filter Twitter discussions and track the 

trends for particular theoretical constructs, but also to compare differences in public perceptions 

among subpopulations using visualizations. In addition, VaxInsight provided a web-based 

interface for users to browse and validate predictions of deep learning systems. To evaluate the 

usability of VaxInsight, a group of researchers with backgrounds in health promotion were 
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recruited to perform a usability test on the system. The survey results showed high usability of 

the system. 

VaxInsight offers interactive visualizations of Twitter discussions related to HPV 

vaccines with high usability. However, as a prototype, VaxInsight also suffers from some 

limitations. For example, VaxInsight provides limited analysis options (e.g. counts, ratio) of 

Twitter discussions. Future work will aim to add more statistical analyses (e.g. Chi-square) in 

order to offer more insights. Some additional functions could also be added. For example, 

sample tweets related to a particular construct in a certain time frame can be shown. 

Additionally, the inclusion of printable reports that summarize actionable insights from the 

visualizations would enhance the utility of the system. Currently, VaxInsight continues to be 

tested, internally, with hopes of releasing it in the near future.  
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Chapter 6: Summary 

6.1. Summary of Key Findings 
The present research explored the use of machine learning and deep learning algorithms 

to understand vaccine-related Twitter discussions. The research was framed using the perspective 

of behavior change theories and pioneers the use of artificial intelligence algorithms for public 

health surveillance. The key findings for each chapter are summarized as follows: 

Chapter 1 demonstrated the rising trend of vaccine refusal and hesitancy and discussed its 

consequences for public health. It was then argued that a feasible and accurate method to access 

opinions from a large sample was needed as a first and critical step in reversing this trend and in 

promoting vaccination. A literature review of existing studies that used social media data for 

public health surveillance, with an emphasis on vaccine-related topics, was performed.  The rise 

of social media and advances in machine and deep learning algorithms has opened a new door to 

accessing public perceptions that sidestep many of the limitations of traditional survey-based 

methods. The significance of and challenges to the use of social media were discussed and three 

aims were identified to address these challenges. These aims were: 1) Develop a deep learning-

based system to understand public perceptions of HPV vaccination from the perspective of 

grounded behavior changes theories and by using Twitter data; 2) Develop novel computational 

algorithms to infer users’ demographic attributes and investigate demographic differences in 

public perceptions regarding the HPV vaccine using Twitter data; 3) Develop a web-based 

interactive visualization system to monitor real-time Twitter discussions of the HPV vaccine. 
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Chapter 2 described efforts to evaluate various machine-learning and deep-learning 

algorithms in mapping HPV vaccine-related Twitter discussions to the constructs of multiple 

grounded behavior change theories, specifically the health belief model and the theory of 

planned behavior. Deep-learning algorithms outperformed machine-learning algorithms on all of 

the tasks. The bi-directional long short-term memory (LSTM) with attention mechanism 

achieved overall best performance in most of the tasks. Domain-specific embedding led to 

comparable or higher performance compared with pre-trained embedding from the general 

domain. Locally estimated scatterplot smoothing (LOESS) revealed changes in the constructs. 

For example, in the last two years covered by the study, positive attitude toward the HPV vaccine 

showed an increasing trend, while negative attitude showed a decreasing trend. 

Chapter 3 described efforts to infer gender on Twitter using deep learning.  A character-

based CNN model using historical English Twitter posts as the input for the Twitter gender 

inference task was proposed. Gender differences in public perceptions of the HPV vaccine were 

calculated using Chi-square and such differences were then reported. The performance of the 

proposed model compared favorably to the state-of-the-art performance on a recent Public 

Author Profiling challenge. The fusion of character-based CNN, word embedding, and POS 

embedding led to the best performance in the gender inference task. Furthermore, Twitter gender 

inference models on the HPV vaccine-related Twitter corpus (described in the chapter) were 

leveraged and identified a gender-based difference in public perceptions of the HPV vaccine. 

Men were found to perceive higher barriers and negative attitude and lower benefits and positive 

attitude toward the HPV vaccine. These findings are largely consistent with previous survey-

based studies. Thus, the present study demonstrates the potential of using social media and deep 



74 

 

learning models to understand differences in the public perceptions of public health-related 

topics for different population subgroups. 

Chapter 4 describes efforts to infer Twitter users’ home location (at the U.S. state- level) 

using deep learning. Interstate variations in public perceptions regarding the HPV vaccine were 

explored using Chi-square and the inference of Twitter users’ home location was framed as text 

classification tasks. A character-based recurrent neural network model with attention mechanism 

for such purpose was proposed. Additionally, a set of competitive machine learning and deep 

learning algorithms, employing a publicly available Twitter users’ location dataset, was 

evaluated. The proposed model outperformed convolutional neural network models and 

conventional machine learning baseline models on the Twitter users’ home location inference. 

The study also revealed that the use of transfer learning could improve the accuracy of the home 

location inference on our HPV Twitter users’ location dataset. Chi-square analyses identified 

interstate variations in public perceptions of the HPV vaccine. 

Chapter 5 described efforts to build a web-based interactive visualization system to 

surveil public perceptions regarding the HPV vaccine from real-time Twitter discussions. This 

chapter reports on a prototype of VaxInsight, a web-based interactive dashboard to synthesize 

HPV vaccine-related Twitter discussions in a comprehendible format. The prototype is based on 

previous Twitter mapping work and uses constructs from behavior change theories (Chapter 2). 

It also allows for Twitter demographic attributes inference (Chapter 3 and 4) and permits users to 

filter Twitter discussions and track trends for a particular theoretical construct. Furthermore, it 

can compare demographic differences in public perceptions using visualizations. In addition, 

VaxInsight provides a web-based interface for users to browse and validate predictions of deep 
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learning systems. A group of researchers with backgrounds in health promotion was recruited 

and they performed a usability test of VaxInsight. The survey results showed high usability of the 

system. 

6.2. Innovation and Contribution  
Notably, this is the first study to use deep learning algorithms to understand Twitter 

discussions of the HPV vaccine that is framed in grounded behavior change theories. VaxInsight 

is also the first system that allows users to explore public health beliefs on vaccine-related topics 

from Twitter. In the following discussion, the major innovations and contributions of this study 

from two perspectives, medical informatics and methodology, are identified. 

6.2.1. Medical informatics 

This work contributes to medical informatics, especially public health informatics, by 

proposing a system that uses novel artificial intelligence algorithms (i.e. deep learning) and 

social media data to monitor public perceptions regarding vaccines for the purpose of 

vaccination promotion. It is innovative in the following aspects: 

1) It is hybrid in nature as it combines a data driven approach from informatics and a 

theory driven approach from public health. 

2) It transforms social media data into aggregate population health level attributes, 

which is an improvement over existing efforts that focus on the understanding of 

Twitter content, only.  

3) It allows for informed decision making by policy makers as it synthesizes social 

media data, behavior change theories, and interactive data visualizatons into a 

comprehendible format.  
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6.2.2. Methodology 

The current study proposed and evaluated various machine learning and deep learning 

algorithms using Twitter data. Specifically, it is innovative from a methodological perspective in 

the following ways: 

1) It proposed a novel deep learning framework that was based on a bi-directional long 

short-term memory network with attention mechanism for mapping Twitter 

discussions to the constructs of behavior change theories. The study’s algorithm 

performed better than traditional machine learning and competitive deep learning 

baselines on a majority of tasks. 

2) It proposed a novel character-based convolutional neural network model for a Twitter 

gender inference task. The CNN model with embedding fusion achieved comparable 

state-of-the-art performance in an open general-domain Twitter gender inference 

challenge.  

3) It framed Twitter users’ home location inference as text classification tasks and 

proposed a novel character-based recurrent neural network model for a geo-tagging 

task. The proposed model performed better than other competitive machine learning 

and deep learning algorithms in a general-domain Twitter users’ location dataset. 

6.3. Limitations and Future Work 
This current research makes original and systematical contributions to medical 

informatics. It provides a foundation for the next generation of real-time public health 

surveillance by combining cutting-edge artificial intelligence algorithms with behavior change 

theories. However, it only focuses on Twitter users. These users are not representative of the 
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general population. Therefore, future research should test the model developed in this study with 

other social media platforms and data sources. Particular attention should also be paid to the 

influence of malicious bots which appear on these platforms and are created to spread negative 

and unfounded information about vaccinations. Removing bots (both benign and malicious) is an 

essential step in order to more accurately reflect public opinions. Accordingly, future research 

should adopt bot detection methods and remove discussions which are not generated by humans. 

A furthermore limitation of the present study is that the algorithms suffered suboptimal 

performance on certain tasks. This may be overcome by incorporating the rapid advances in 

natural language processing and deep learning algorithms that are taking place, currently. 

Additionally, future research should integrate feedback from researchers in the field of vaccine 

promotion that may then enhance the model by adding relevant theoretical constructs and 

demographic attributes.  Additional detailed information could provide a more comprehensive 

understanding of the users, their perceptions, and their intentions. Ultimately, the goal of 

research in this area and of the present study, is to use social media platforms to promote 

vaccination behavior. Therefore, an evaluation of tailored and personalized messages aimed at 

promoting vaccinations by using artificial intelligence systems will need to take place.   
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Appendix A: Definitions and Examples in Twitter of Key Constructs of Behavior Change Theories 
Behavior 
Change Theory 

Construct Definition Sample Raw Tweets 

Health Belief 
Model 

Perceived 
susceptibility 

The assessment of the risk of getting HPV 
infections 

• hpv is so common almost everyone will be infected with the virus. but it can cause cancer. so 

why wait? vaccinate! 

• men equally at risk of hpv infection: boys should also be vaccinated for the human 

papillomavirus 

Perceived 
severity 

The assessment of whether an HPV 
infection is a sufficient health concern 

• learn about the human papillomavirus (hpv), which causes almost all cases of cervical cancer 

• hpv is more badass than hiv. keep yourself 

Perceived 
benefits 

Benefits of the HPV vaccine in protecting 
against HPV infection, HPV infection-
induced cancers, and so forth 

• health lifestyle | here's how the hpv vaccine can help cut the risk of cancer in gay men | news 

&gt; 

• benefits of hpv vaccine can be seen in high school girls, study says 

Perceived 
barriers 

Side effects of the HPV vaccine, cost of 
getting an HPV vaccine, negative news and 
reports on the HPV vaccine, and so forth. 

• hpv vaccine is associated with serious health risks 

• hpv vax kills a much higher % of young athletic girls 

Theory of 
Planned Behavior 

Attitude - 
Positive 

Show positive opinion or prompt HPV 
vaccine. 

• Save lives by getting children the HPV vaccine 

• the hpv vax prevents cancers later in life. 

Attitude - 
Neutral 

Related to HPV vaccine topic but contains 
no sentiment, or sentiment is unclear. 

• About I of 10 NJ boys received all 3 doses of HPV vaccine 

• the myths and facts about hpv vaccines 

Attitude - 
Negative 

Concerns or doubts about the HPV vaccine. • Study reveals 'unaoindable' danger of HPV vaccines 

• just seen a story, girl got her hpv vaccination, starting having seizures so bad she couldn't stay 

in school anymore, her junior year! 
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Appendix B: The Impact of Word Embedding Measured by Sensitivity, Specificity, and Accuracy at Levels of Relevance to The 

Theory (HBM- And TPB-Related) and Theoretical Constructs 
 Sensitivity Specificity Accuracy 

 
GloVe 

General 
FT 

HPV 
GloVe 
HPV 

W2V 
HPV Random 

GloVe 
General FT HPV 

GloVe 
HPV 

W2V 
HPV Random 

GloVe 
General FT HPV 

GloVe 
HPV 

W2V 
HPV Random 

HBM-
related 

0.8061 0.8072 0.7991 0.7969 0.7975 0.7985 0.7954 0.7892 0.8079 0.7583 0.8027 0.8018 0.7946 0.8019 0.7796 

HBM 
Susceptibi
lity 

0.7263 0.6889 0.7071 0.7606 0.5980 0.9380 0.9396 0.9333 0.9165 0.9295 0.9058 0.9015 0.8989 0.8928 0.8791 

HBM 
Severity 

0.7597 0.7620 0.7938 0.7767 0.7845 0.9337 0.9419 0.9272 0.9323 0.9130 0.8992 0.9063 0.9008 0.9015 0.8876 

HBM 
Benefits 

0.7122 0.7305 0.6860 0.7280 0.6713 0.9121 0.9197 0.9148 0.9133 0.8816 0.8618 0.8721 0.8572 0.8667 0.8287 

HBM 
Barriers 

0.8867 0.8890 0.8909 0.8913 0.8744 0.9041 0.9219 0.8983 0.9181 0.8746 0.8959 0.9063 0.8948 0.9054 0.8745 

TPB-
related 

0.9514 0.9487 0.9471 0.9506 0.9328 0.8690 0.8710 0.8769 0.8583 0.8514 0.9237 0.9226 0.9235 0.9196 0.9054 

TPB 
Attitude 

N/A 0.7509 0.7538 0.7398 0.7534 0.7259 

Note: average score from 10 experiments 

  



 

 93 

Appendix C: The Impact of Word Embedding Measured by Precision, Recall, and F Score at Levels Of Relevance to The Theory 

(HBM- And TPB-Related) and Theoretical Constructs 
 Precision Recall F score 

 
GloVe 

General 
FT 

HPV 
GloVe 
HPV 

W2V 
HPV Random 

GloVe 
General FT HPV 

GloVe 
HPV 

W2V 
HPV Random 

GloVe 
General FT HPV 

GloVe 
HPV 

W2V 
HPV Random 

HBM-
related 0.8274 0.8254 0.8190 0.8321 0.7986 0.8061 0.8072 0.7991 0.7969 0.7975 0.8162 0.8156 0.8087 0.8140 0.7973 
HBM 
Susceptibi
lity 0.6846 0.6784 0.6654 0.6252 0.6483 0.7263 0.6889 0.7071 0.7606 0.5980 0.7021 0.6805 0.6814 0.6837 0.5747 
HBM 
Severity 0.7437 0.7681 0.7333 0.7422 0.6936 0.7597 0.7620 0.7938 0.7767 0.7845 0.7484 0.7626 0.7593 0.7571 0.7345 
HBM 
Benefits 0.7345 0.7564 0.7320 0.7395 0.6571 0.7122 0.7305 0.6860 0.7280 0.6713 0.7217 0.7407 0.7056 0.7323 0.6618 
HBM 
Barriers 0.8941 0.9123 0.8882 0.9077 0.8633 0.8867 0.8890 0.8909 0.8913 0.8744 0.8898 0.8999 0.8890 0.8992 0.8685 
TPB-
related 0.9350 0.9357 0.9383 0.9300 0.9255 0.9514 0.9487 0.9471 0.9506 0.9328 0.9430 0.9421 0.9427 0.9401 0.9291 
TPB 
Attitude 
(micro-ave) 

N/A 
0.7483 0.7515 0.7383 0.7510 0.7240 

Note: average score from 10 experiments 
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Appendix D: The Impact of Word Embedding Measured by Precision, Recall, and F-Score on TPB Attitude Classification  
 Positive Negative Neutral 

Micro-average F-score  Precision Recall F-score Precision Recall F-score Precision Recall F-score 

GloVe General 0.7587 0.7101 0.7326 0.7856 0.8242 0.8028 0.7134 0.7077 0.7093 0.7483 

FT HPV 0.7425 0.7500 0.7447 0.7987 0.8235 0.8103 0.7172 0.6843 0.6996 0.7515 

GloVe HPV 0.7457 0.7078 0.7257 0.8016 0.7871 0.7925 0.6822 0.7154 0.6966 0.7383 

W2V HPV 0.7460 0.7345 0.7396 0.7977 0.8264 0.8108 0.7151 0.6928 0.7025 0.7510 

Random 0.7308 0.7028 0.7157 0.7651 0.7892 0.7759 0.6831 0.6794 0.6805 0.7240 

Note: average score from 10 experiments 
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Appendix E: The Comparison of Deep Learning and Machine Learning Algorithms Measured by Sensitivity, Specificity, and 

Accuracy at Levels of Relevance to The Theory (HBM- And TPB-Related) and Theoretical Constructs 
 Sensitivity Specificity Accuracy 
 Deep learning Machine learning Deep learning Machine learning Deep learning Machine learning 
 Att-

RNN BERT 
Att-

ELMo TFIDF 
Mean-
emb 

Att-
RNN BERT 

Att-
ELMo TFIDF 

Mean-
emb Att-RNN BERT 

Att-
ELMo TFIDF 

Mean-
emb 

HBM-
related 

0.8072 0.8193 0.8230 0.7962 0.8176 0.7954 0.7678 0.7707 0.7684 0.5378 0.8018 0.7958 0.7992 0.7835 0.6900 

HBM 
Susceptibi
lity 

0.6889 0.8364 0.8152 0.8646 0.7525 0.9396 0.8331 0.8651 0.8752 0.7727 0.9015 0.8336 0.8575 0.8736 0.7696 

HBM 
Severity 

0.7620 0.8085 0.7651 0.8612 0.7264 0.9419 0.9065 0.9247 0.8967 0.7252 0.9063 0.8871 0.8931 0.8897 0.7255 

HBM 
Benefits 

0.7305 0.8006 0.6689 0.8152 0.6848 0.9197 0.8869 0.9375 0.8145 0.7559 0.8721 0.8652 0.8699 0.8147 0.7380 

HBM 
Barriers 

0.8890 0.9003 0.8922 0.8874 0.7327 0.9219 0.9099 0.8831 0.9058 0.7764 0.9063 0.9054 0.8874 0.8971 0.7557 

TPB-
related 

0.9487 0.9489 0.9294 0.9526 0.9521 0.8710 0.8851 0.8591 0.8035 0.4092 0.9226 0.9274 0.9058 0.9025 0.7696 

TPB 
Attitude 

N/A 0.7538 0.7423 0.7420 0.7261 0.6178 

Note: average score from 10 experiments 
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Appendix F: The Comparison of Deep Learning and Machine Learning Algorithms Measured by Precision, Recall, and F Score at 

Levels of Relevance to The Theory (HBM- And TPB-Related) and Theoretical Constructs 
 Precision Recall F score 
 Deep learning Machine learning Deep learning Machine learning Deep learning Machine learning 
 Att-

RNN BERT 
Att-

ELMo TFIDF 
Mean-
emb 

Att-
RNN BERT 

Att-
ELMo TFIDF 

Mean-
emb Att-RNN BERT 

Att-
ELMo TFIDF 

Mean-
emb 

HBM-
related 0.8254 0.8084 0.8108 0.8039 0.6784 0.8072 0.8193 0.8230 0.7962 0.8176 0.8156 0.8136 0.8166 0.8000 0.7414 
HBM 
Susceptibi
lity 0.6784 0.4782 0.5229 0.5555 0.3727 0.6889 0.8364 0.8152 0.8646 0.7525 0.6805 0.6062 0.6359 0.6758 0.4981 
HBM 
Severity 0.7681 0.6837 0.7221 0.6738 0.3951 0.7620 0.8085 0.7651 0.8612 0.7264 0.7626 0.7394 0.7393 0.7554 0.5115 
HBM 
Benefits 0.7564 0.7070 0.7876 0.5968 0.4858 0.7305 0.8006 0.6689 0.8152 0.6848 0.7407 0.7487 0.7212 0.6888 0.5680 
HBM 
Barriers 0.9123 0.9004 0.8734 0.8947 0.7473 0.8890 0.9003 0.8922 0.8874 0.7327 0.8999 0.9002 0.8825 0.8909 0.7396 
TPB-
related 0.9357 0.9424 0.9288 0.9055 0.7610 0.9487 0.9489 0.9294 0.9526 0.9521 0.9421 0.9455 0.9291 0.9284 0.8459 
TPB 
Attitude 
(micro-ave) 

N/A 
0.7515 0.7409 0.7399 0.7263 0.6138 

Note: average score from 10 experiments 
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Appendix G: The Comparison of Deep Learning and Machine Learning Algorithms Measured by Precision, Recall, and F-Score on 

TPB Attitude Classification 
  Positive Negative Neutral 

Micro-average F-score   Precision Recall F-score Precision Recall F-score Precision Recall F-score 

Deep learning Att-RNN 0.7425 0.7500 0.7447 0.7987 0.8235 0.8103 0.7172 0.6843 0.6996 0.7515 

BERT 0.7470 0.7303 0.7372 0.7880 0.8048 0.7958 0.6944 0.6872 0.6898 0.7409 

Att-ELMo 0.7487 0.7171 0.7320 0.7750 0.7937 0.7830 0.7053 0.7070 0.7048 0.7399 

Machine learning TFIDF 0.7315 0.7132 0.7218 0.8087 0.7615 0.7838 0.6489 0.7004 0.6732 0.7263 

Mean-emb 0.6144 0.5745 0.5934 0.6475 0.7093 0.6768 0.5858 0.5581 0.5712 0.6138 

Note: average score from 10 experiments 
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Appendix H: Result Summary of Usability Test on Vaxinsight 
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Appendix I: The Performance Comparison of Machine Learning and Deep Learning Algorithms 

on U.S. State Level Home Location Tagging on Lee Dataset 

States 

F-measure 

Support 
Machine learning Convolution neural network Recurrent neural network 
LR ET SVM CNN CNN_ch

ar 
CNN_PO
S_char 

RNN RNN_ch
ar 

RNN_PO
S_char 

AK 0 0 0 0 0 0 0 0 0 0 

AL 0.1122 0.12 0.2606 0.2215 0.3684 0.3932 0.4211 0.439 0.3962 183 

AZ 0.243 0.2519 0.3201 0.4255 0.4862 0.4531 0.5182 0.5263 0.5049 460 

AR 0.0494 0.0488 0.2268 0.1489 0.26 0.2969 0.2931 0.3529 0.339 79 

CA 0.4417 0.3939 0.4985 0.5637 0.5623 0.5503 0.5396 0.5408 0.5434 4289 

CO 0.3554 0.276 0.3808 0.4763 0.488 0.5049 0.5371 0.5397 0.5506 446 

CT 0 0.02 0.1897 0.048 0.1368 0 0.2969 0.3582 0.3077 98 

DC 0.2286 0.0161 0.3498 0.2456 0.32 0.3235 0.3617 0.3559 0.3301 245 

DE 0 0 0.0364 0 0 0 0.1429 0.1356 0.1429 52 

FL 0.3782 0.2994 0.3223 0.3923 0.4481 0.4639 0.5109 0.5042 0.5049 1170 

GA 0.4104 0.3089 0.3854 0.4416 0.4831 0.5141 0.5507 0.5282 0.5354 795 

HI 0 0 0 0 0 0 0 0 0 0 

ID 0 0 0.0741 0 0.0769 0 0.303 0.25 0.4 25 

IL 0.3911 0.2585 0.3519 0.404 0.4483 0.478 0.5134 0.5175 0.5218 985 

IN 0.0724 0.0543 0.2147 0.1544 0.2882 0.2775 0.3186 0.3434 0.3415 212 

IA 0.144 0.2481 0.3462 0.3743 0.377 0.3918 0.4339 0.4311 0.3974 113 

KS 0.0387 0.0886 0.1731 0.1364 0.2432 0.2601 0.32 0.3216 0.3468 149 

KY 0.0896 0.0458 0.2722 0.1646 0.2857 0.324 0.3684 0.3478 0.3505 127 

LA 0.1359 0.1262 0.296 0.3578 0.3681 0.4164 0.4259 0.4353 0.4495 186 

ME 0 0 0.1212 0.0667 0 0.0625 0.129 0.2927 0.2286 29 

MD 0.0717 0.0938 0.2051 0.1984 0.2572 0.2946 0.327 0.3452 0.3317 240 

MA 0.3228 0.2009 0.3146 0.3515 0.4369 0.4282 0.4574 0.4812 0.4592 555 

MI 0.2287 0.1561 0.2926 0.3694 0.3679 0.4099 0.4598 0.4595 0.4557 372 

MN 0.1031 0.1576 0.3191 0.2569 0.3103 0.3677 0.1395 0.3927 0.4405 180 

MS 0 0 0.1034 0 0 0 0.3235 0.1918 0.2258 51 

MO 0.125 0.0985 0.2625 0.2277 0.313 0.3317 0.399 0.3728 0.381 250 

MT 0.0606 0 0.3 0 0.1081 0.0606 0.2727 0.1622 0.2051 32 

NE 0.0909 0.1449 0.2716 0.25 0.3462 0.303 0.3542 0.3393 0.383 63 

NV 0.242 0.1515 0.2857 0.3077 0.3705 0.3672 0.4203 0.403 0.4208 358 

NH 0 0 0.1053 0 0.1111 0.1538 0.1081 0.2083 0.1951 33 

NJ 0.0406 0.0404 0.1157 0.0982 0.1888 0.2292 0.223 0.2158 0.292 193 

NM 0.0274 0.08 0.1882 0.2273 0.4 0.3551 0.4211 0.4314 0.42 72 

NY 0.3738 0.2158 0.353 0.3886 0.4145 0.4127 0.4396 0.4533 0.4548 1694 
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NC 0.2596 0.2701 0.2698 0.3452 0.4153 0.4591 0.478 0.4854 0.487 601 

ND 0 0 0 0 0 0 0 0 0 16 

OH 0.2722 0.2182 0.3019 0.3663 0.3841 0.432 0.4515 0.4683 0.4601 576 

OK 0.1233 0.2358 0.2778 0.3415 0.3425 0.3704 0.3924 0.3754 0.3636 213 

OR 0.2537 0.2431 0.3043 0.398 0.4466 0.4489 0.4763 0.5024 0.4762 399 

PA 0.2388 0.1463 0.2637 0.3034 0.359 0.3978 0.4428 0.4629 0.4464 569 

RI 0 0.0408 0.1852 0.0727 0.2 0.0408 0.481 0.45 0.4211 48 

SC 0.2025 0.1957 0.3518 0.3363 0.3756 0.4088 0.4237 0.4696 0.4481 210 

SD 0 0 0 0 0.1739 0 0.32 0.2759 0.1667 19 

TN 0.1014 0.0291 0.2621 0.2315 0.3012 0.3828 0.443 0.4361 0.4149 202 

TX 0.4138 0.3802 0.3819 0.4409 0.4687 0.4895 0.5022 0.5244 0.5069 1509 

UT 0.1143 0.1135 0.2921 0.25 0.3111 0.4062 0.4171 0.4167 0.4038 131 

VT 0 0 0.2632 0 0.1143 0.0571 0.3077 0.4898 0.5 33 

VA 0.1562 0.1501 0.2111 0.2489 0.3019 0.3074 0.3531 0.3576 0.3206 449 

WA 0.3615 0.2335 0.3461 0.4505 0.4828 0.4752 0.5115 0.5251 0.5081 667 

WV 0.0519 0.1013 0.3656 0.2022 0.422 0.4348 0.512 0.4874 0.4865 75 

WI 0.1299 0.1217 0.2789 0.2195 0.2848 0.2828 0.3708 0.3729 0.3929 212 

WY 0 0 0.087 0 0 0 0 0.0909 0 21 

Note: measured by F score 
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Appendix J: The Performance Comparison of Transfer Learning on U.S. State Level Home 

Location Tagging on HPV Dataset 
States F-measure Support 

Pre-trained Training from 
scratch 

Fine-tuned 

AK 0 0.4533 0.3881 51 

AL 0.4566 0.4557 0.4444 141 

AZ 0.4444 0.487 0.4786 270 

AR 0.3604 0.4333 0.4299 76 

CA 0.4196 0.4789 0.4575 1921 

CO 0.417 0.453 0.4535 270 

CT 0.2889 0.4609 0.4655 141 

DC 0.1927 0.3225 0.3605 335 

DE 0.1538 0.3415 0.375 23 

FL 0.4366 0.4098 0.4619 831 

GA 0.4735 0.5055 0.5239 449 

HI 0 0.4828 0.525 51 

ID 0.3448 0.5714 0.5429 42 

IL 0.4646 0.4466 0.5174 574 

IN 0.4784 0.4754 0.5066 215 

IA 0.4 0.4835 0.5 117 

KS 0.5226 0.5368 0.5226 107 

KY 0.4236 0.4494 0.4745 156 

LA 0.4131 0.4854 0.5066 179 

ME 0.4364 0.4375 0.4762 40 

MD 0.3473 0.4293 0.4076 355 

MA 0.4832 0.5148 0.5046 465 

MI 0.4348 0.4725 0.4794 318 

MN 0.5235 0.5351 0.5604 217 

MS 0.2637 0.4228 0.3788 68 

MO 0.2845 0.4186 0.4195 179 

MT 0.4151 0.4643 0.4364 39 

NE 0.547 0.5769 0.5614 63 

NV 0.3844 0.4646 0.4397 159 

NH 0.24 0.4348 0.4474 43 

NJ 0.2149 0.367 0.3822 312 

NM 0.4112 0.3962 0.4423 71 
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NY 0.3693 0.4512 0.4632 1202 

NC 0.4426 0.462 0.4984 413 

ND 0.1818 0.375 0.3922 36 

OH 0.5462 0.5266 0.5356 448 

OK 0.4845 0.5246 0.5217 106 

OR 0.4812 0.4835 0.5187 215 

PA 0.4547 0.449 0.4838 537 

RI 0.4286 0.5625 0.5984 72 

SC 0.4514 0.4714 0.5157 172 

SD 0.1538 0.2581 0.2667 23 

TN 0.4157 0.4222 0.4764 230 

TX 0.5663 0.5221 0.5901 1297 

UT 0.4815 0.5375 0.5799 104 

VT 0.4255 0.5172 0.5424 36 

VA 0.3648 0.4041 0.4206 259 

WA 0.4625 0.533 0.5642 492 

WV 0.4828 0.5 0.5111 60 

WI 0.4164 0.4397 0.4721 182 

WY 0.3333 0.5 0.4286 10 

Note: measured by F score 
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