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Incorporating promising biomarkers to improve risk assessment and prediction is the

central goal in many biomedical studies. Cost-effective designs and longitudinal designs

are often utilized for measuring biomarker information, but they pose challenges to the

data analyses. Statistical analyses for these kinds of data are routinely performed using

parametric models. When the model assumptions are violated, parametric models may

lead to substantial bias in parameter estimation, risk evaluation and prediction. In this

dissertation, we will develop robust, flexible statistical methods for risk assessment for

matched case-control, nested case-control, and case-cohort designs, as well as a dynamic

prediction tool for longitudinal data. In the first aim, we will develop a distribution-free

method for identifying an optimal combination of biomarkers to differentiate cases and

controls in matched case-control data. In the second aim, we will develop a semipara-

metric regression model with minimal assumptions on the link function for data from

two-phase sampling designs with binary outcomes. In the third aim, we will develop a

model-free dynamic prediction method for a survival outcome that provides dynamically

updated risk scores using longitudinal biomarker(s).
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Chapter 1

Rationale and Objectives

Numerous novel biomarkers have emerged with the advent of biotechnologies, and they

have the potential to improve disease screening, diagnosis, and prognosis. The immediate

questions are whether the novel biomarkers are useful (e.g., whether they can substan-

tially improve current or standard performance) and how to incorporate biomarkers with

routine clinical risk factors. To identify useful biomarkers for early detection of cancer,

Pepe et al. (2001) defined a set of comprehensive guidelines that included five phases

of biomarker development. The statistical methods in this dissertation address the sta-

tistical challenges in different phases of biomarker development. The first method in

this dissertation can be employed in the phase 2 of the biomarker development where the

cases (those with cancer) and controls (those without cancer) are selected through a cross-

sectional study, usually a matched case-control study. The focus of the first method is to

assess how well a combination of biomarkers can discriminate the cases from the controls

in an individually matched study. The second method in this dissertation can be viewed

as a tool for the phase 3 of the biomarker development where cases and controls are sam-

pled from a prospective cohort study. While routine clinical variables are available for

the entire cohort, only a portion of the cohort are sampled for biomarker measurement.

This kind of study designs include the nested case-control (NCC) and the case-cohort

study designs (Liddell et al., 1977; Prentice and Breslow, 1978; Prentice, 1986). The

14



goal of the second method is to combine novel biomarkers and routine variables for risk

assessment as well as dealing with the outcome-dependent data missingness. The third

method in this dissertation can aid the phase 3 of biomarker development where the pre-

diction power over time is of interest. In this phase, biomarkers are measured repeatedly

during the follow-up so that risk prediction can be refined utilizing the most recent infor-

mation. Thus, the goal of the third method is to fully use the longitudinal information

and to facilitate dynamically updated risk prediction through the information captured

in repeated measurement data.

Statistical analyses for the aforementioned study designs are routinely performed

using parametric or semiparametric models with strong model assumptions. However,

when the assumptions are violated, these models may lead to biased parameter estimates

and invalid risk prediction. Thus, it is more desirable to relax the assumptions by posing

minimal constraints on the link function or using distribution-free methods. Therefore,

in this dissertation, we aim to develop robust semiparametric methods to improve risk

assessment and dynamic prediction while incorporating cost-effective study designs and

longitudinal study designs.

1.1 Assessing discrimination capacity of a combina-

tion of biomarkers under matched case-control

studies

1.1.1 Introduction

The performance of the current cancer screening programs is still far from satisfactory

for many types of cancers. For example, the sensitivity of the current surveillance for

hepatocellular carcinoma (ultrasound every 6 months in cirrhosis patients) only ranges

from 32% to 65% (Singal et al., 2009, 2012). Under such circumstances, biomarkers and

their combinations with patients’ clinical characteristics can serve as promising tools and

15



will likely be the best option for future research to complement the current population

screenings (Schütte et al., 2015). Pepe et al. (2001) provided a comprehensive set of

guidelines and recommended five phases for biomarker development studies. In phase 2

studies, case-control studies are commonly used to assess the ability to distinguish cases

and controls. Particularly, a matched case-control study is a popular option to reduce the

confounding issue, in which each of the cases is matched to one or more controls based on

variables believed to be confounders. There are several advantages of matching. First,

it allows to assess the classification accuracy of the biomarkers beyond the contribution

of the matching variables (Janes and Pepe, 2008). Second, it has been reported that a

balanced number of cases and controls across the levels of the matching variables can

reduce the variance for estimating parameters of interest compared to an unmatched

study with the same sample size (Breslow et al., 2005; Rose and Van der Laan, 2009).

1.1.2 Literature review

Matched case-control data have been routinely analyzed by conditional logistic regres-

sion in literature. Then the combination of biomarkers, termed as composite score, is

derived by maximizing the conditional likelihood, a global fit criterion. To quantify the

discrimination ability of the derived composite score, sensitivity and specificity are two

commonly used measures. The sensitivity and specificity associated with a cut-off can

be calculated respectively using the percentage of positive results (e.g., composite score

> the cut-off) under cases, and the percentage of positive results (e.g., composite score

≤ the cut-off) under controls. The cut-off can be determined by a certain criterion such

as Youden’s index (Unal, 2017).

Maintaining a high specificity has been noted as the top priority for population screen-

ing since it can prevent a large number of disease-free subjects from going through un-

necessary costly medical procedures and psychological stress (Pepe et al., 2001, 2008).

Taking the ovarian cancer screening as an example, a clinically acceptable specificity

should exceed 98% (Skates et al., 2004; Pepe et al., 2008). Although the aforementioned

16



composite score is derived by maximizing the likelihood function, it is not clear it is

still an optimal score within this clinically meaningful region. Another limitation of the

conditional logistic regression is the parametric link function that connects the composite

score and disease risk. In practice, investigators often have little prior knowledge about

the mathematical form of the underlying true link, although the logit link is routinely

used. Misspecified link functions may lead to non-optimal composite scores (Shen et al.,

2018). Thus, it is more desirable to make the link function unspecified and enjoy the

robustness of semiparametric models.

Some recent works considered the unique features of population screening and con-

structed composite scores by maximizing a local criterion. For the data from case-control

studies, Meisner et al. (2017) and Zhang et al. (2019) proposed to directly maximize the

sensitivity under the constraint that the specificity is greater than a pre-specified thresh-

old. Nevertheless, this method only included information from the cases and ignored the

information from controls in the objective function. Consequently, the derived compos-

ite scores may not be able to maintain the pre-specified specificity in external validation

studies, the top priority in population screening. Yan et al. (2018) alternatively de-

rived the composite score by maximizing the partial area under the receiver operating

characteristic (ROC) curve, which is a trade-off between the local and global criteria.

1.1.3 A motivating example

The first project in this dissertation is motivated by a prostate cancer data set in the

Carotene and Retinol Efficacy Trial (CARET). It is a randomized trial that was originally

designed to evaluate the efficacy of the combination of beta-carotene and retinol on

reducing lung cancer risk. It enrolled 18,314 subjects at high risk for lung cancer. During

the intervention phase of CARET, blood samples were collected and stored, and thus

provided invaluable resources for future research.

Within the CARET, a matched case-control study was conducted. For each of the

71 prostate cancer cases diagnosed between 1998 and 1995, one control who was free of
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prostate cancer by the study time was matched by age and number of blood samples.

Two biomarkers for prostate cancer, the total prostate specific antigen (tPSA) and the

free prostate-specific antigen (fPSA), were measured from the stored blood samples of

the subjects in the data set. The details of this study were provided in Etzioni et al.

(1999). It is of interest here to evaluate the discrimination ability of the biomarkers with

a tool that can simultaneously address the matched design and offer robustness in terms

of model mis-specification.

1.2 Risk assessment under two-phase sampling de-

signs

1.2.1 Introduction

In disease risk assessment in a large prospective cohort, two-phase sampling designs

are commonly adopted as a cost-effective alternative (Liddell et al., 1977; Prentice and

Breslow, 1978; Prentice, 1986). Furthermore, to overcome the inherent problem of low

incidence encountered with rare diseases, it is often necessary to employ two-phase designs

for early detection in a cohort of disease-free subjects. In the first phase of a two-phase

sampling design, a large cohort is sampled from the target population. The outcome

variable is prospectively collected and some easy-to-obtain covariates such as routine

clinical risk factors and demographic characteristics are recorded. In the second phase, a

subcohort of all the cases and a fraction of the controls in the full cohort are selected for

biomarker measurements. Two commonly used two-phase sampling designs are the NCC

design and the case-cohort design, which differ in their approach for selecting controls.

In the NCC design, controls are chosen without replacement from the risk set at each

event time (Liddell et al., 1977; Prentice and Breslow, 1978). In the case-cohort design,

controls are randomly selected at baseline (Prentice, 1986). However, these cost-effective

sampling strategies create challenges for statistical analysis because of data missingness

for biomarker measurements.
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1.2.2 Literature review

The analysis of two-phase design data with binary outcomes has routinely been carried

out using parametric models. Two popular methods are the conditional logistic regression

model for the NCC design (Schwartz et al., 2017; Keizman et al., 2017) and the logistic

regression model with inverse probability weighting (IPW), hereafter termed IPW-based

logistic regression, for the case-cohort design (Noma and Tanaka, 2017; Landry et al.,

2017). In application, researchers often have limited information regarding the mathe-

matical specification of the true regression function, although a logit link between the

disease probability and risk score is a convenient choice. However, the underlying rela-

tionship may differ from the logit link in many situations, leading to biased estimation

of the regression coefficients and/or disease probabilities. It is more desirable to assume

a semiparametric model with minimal assumptions on the link function. Isotonic regres-

sion is a least squares problem in which only monotonicity is assumed on the shape of the

regression models. Pioneering work was done by Ayer et al. (1955) and comprehensive

reviews were provided by Barlow et al. (1972) and Robertson et al. (1988). A unique so-

lution to standard isotonic regression exists and can be obtained using the pool-adjacent

violators algorithm (PAVA) (Barlow et al., 1972; Best and Chakravarti, 1990; Qin, 2017).

The computational aspects and fast implementation of PAVA in R are discussed by Mair

et al. (2009). However, standard isotonic regression with PAVA cannot be directly ap-

plied to the data from two-phase studies due to the outcome-dependent data missingness.

Therefore, the goal of this aim is to handle such data under a semiparametric isotonic

regression model and to develop a computationally appealing algorithm by integrating

PAVA, the IPW method and the profiling method.

1.2.3 A motivating example

The Rotterdam breast cancer data include 2,982 primary breast cancer patients under-

went primary surgery between 1978 and 1993. The details of the data can be found in

Sauerbrei et al. (2007). Biomarkers such as progesterone receptor and estrogen recep-
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tor were available for the full cohort. Other prognostic factors and treatment variables

included age, menopausal status, tumor size, tumor grade, number of positive lymph

nodes, hormonal therapy and chemotherapy. Using this full data set, we can create an

NCC data set nested within this cohort and evaluate the risk of developing an important

clinical event (e.g., death in two years after primary surgery).

1.3 Dynamic scoring system of a survival outcome

using longitudinally collected biomarkers

1.3.1 Introduction

Longitudinal designs for biomarker traits are very appealing. The repeated collection

of biomarker information of the same patient over time can update the prognosis and

improve the time-varying classification of patients with different predicted risk levels.

Several dynamic scoring systems emerged for assorted diseases such as the Dynamic In-

ternational Prognostic Scoring System (DIPSS) and its refined version (DIPSS-plus) for

primary myelofibrosis (Passamonti et al., 2010; Gangat et al., 2011); the Dynamic Stage,

Size, Grade, and Necrosis (D-SSIGN) score for clear-cell renal cell carcinoma (Thompson

et al., 2007); the dynamic thrombolysis in myocardial infarction (dynamic TIMI) risk

score for ST-elevation myocardial infarction (Amin et al., 2013); and the dynamic prog-

nostic score for head and neck squamous cell carcinoma (van der Schroeff et al., 2012).

Unlike the static scores which are used to stratify patients only at study enrollment or

baseline, these dynamic scores are designed to help guide treatment decisions at any time

during the follow-up.

1.3.2 Literature review

Although dynamic scoring system attracts increasingly more attention in the medical

field, there is a lack of methodology development. To our knowledge, current dynamic
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scores were constructed by either repeating analysis at multiple follow-up times or using

a time-dependent covariate Cox model. There are several drawbacks regarding these

methods. First, repeated analyses utilize the information at one time point in each

analysis; they do not make full use of the longitudinally collected information, and a set of

follow-up times need to be pre-specified. Second, although the time-dependent Cox model

is a convenient option to obtain biomarker effects or hazard ratios, it assumes biomarkers

are available continuously over time, which is rarely true in biomarker measurement.

Motivated by the need to incorporate longitudinal biomarkers for a dynamic scoring

system, the statistical challenge is how to efficiently use a tool capable of updating

risk prediction as more longitudinal information is collected during follow-up. Designed

for the dynamic prediction task, the partly conditional model is a system of prediction

models that change with the follow-up time (Zheng and Heagerty, 2005). Its regression

term that combines the biomarkers can be naturally treated as a dynamic score. A

similar approach is called the landmark model (van Houwelingen and Putter, 2011).

Within the partly conditional model framework, Maziarz et al. (2017) proposed a two-

stage procedure that improves the prediction performance when large variation exists due

to measurement errors in biomarkers. Nevertheless, even though the partly conditional

model can be more easily implemented in practice, the validity of model inference requires

the proportional hazards assumption for the sequence of Cox models. Another approach

for dynamic prediction is the joint modeling, which models the longitudinal trend of

the time-dependent covariates, usually through individual-specific random effects and

parametric models (Rizopoulos, 2011). However, the joint modeling does not provide

a direct combination of the longitudinal biomarkers that physicians can use for risk

stratification, and thus will not be discussed in the rest of this study.

1.3.3 A motivating example

The third project in this dissertation is motivated by the data from the Terry Beirn

Community Programs for Clinical Research on AIDS didanosine/zalcitabine trial, which
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randomized 467 human immunodeficiency virus (HIV) infected patients to receive one of

the two antiretroviral drugs: didanosine or zalcitabine. Absolute CD4 cell count in the

peripheral blood was measured at baseline, 2nd, 6th, 12th, and 18th months during the

follow-up. The primary outcome is time to death and about 40% of patients died at the

end of the study. Details of the study design can be found in Abrams et al. (1994). To

discriminate between patients with high-risk and low-risk of death by using all available

information including the longitudinal CD4 count measurements, a dynamic prediction

model must be constructed.

1.4 Public Health Significance

1.4.1 Assessing discrimination capacity of a combination of biomark-

ers for prostate cancer

The proposed method in the first project in this dissertation can identify the optimal

combination of biomarkers for the data in matched case-control studies. The method is

especially useful in early phase biomarker development for population screening. It can

accurately detect true positive subjects, and then reduce morbidity and mortality. By

constraining specificity to be higher than a cutoff, the proposed method can also help

avoid unnecessary public health burdens caused by false positive results in population

screening.

1.4.2 Risk assessment for breast cancer patients

The proposed method in the second project in this dissertation can generate accurate pa-

rameter estimates to facilitate optimal scoring systems for data from two-phase sampling

designs. Successful implementation of the proposed study could ensure more accurate risk

stratification for patients with breast cancer. Consequently, it will help health providers

identify high-risk subjects and make good use of the limited healthcare resources. In

particular, if high-risk subjects are identified and treated earlier, they can achieve better
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health and quality of life.

1.4.3 Timely disease prognosis of AIDS

AIDS is a syndrome caused by HIV infection which destroys the immune system. The

prognosis of HIV infected patients can be improved with 80% reduction of death rate

and 20-50 years increase of life span if the patients are treated properly (Collaboration

et al., 2008). So, it is critical to provide timely disease prognosis and adjusted medical

treatments for HIV patients.

Our proposed method can provide updated risk stratification by taking into account

longitudinally measured CD4 count. It can provide personalized information for patients

and facilitate guided treatment decision making, too. In fact, our proposed method can

be applied to typical longitudinal studies where longitudinal measurements are collected

during the follow-up.

1.5 Specific Aims

Specific Aim 1: To develop a robust method to identify optimal combination

of biomarkers given data in the matched case-control studies.

We will develop an objective function to maximize the discrimination ability of the

composite score. This method is more robust than the commonly used conditional logistic

regression model by leaving the link function unspecified. Moreover, it is also more

tailored to clinical needs by imposing a constraint on specificity.

Specific Aim 2: To develop estimation procedures and computation algorithm

for conducting semiparametric isotonic regression in two-phase studies.

We will develop estimation procedures under a semiparametric isotonic regression by

integrating PAVA, the IPW method and the profiling method. This proposed method

can combine multiple biomarkers, construct risk scores, assess absolute risks, and handle

data from two-phase sampling designs with binary outcomes.
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Specific Aim 3: To develop an optimal scoring system for dynamic prediction

using longitudinal biomarkers.

We will develop a model-free dynamic prediction method that can facilitate timely

disease prognosis at each biomarker measurement time. The estimates in this model

will evolve with the ever-changing risk sets and handle both regularly and irregularly

measured longitudinal data.

24



Chapter 2

Methods and Results for Aim 1

2.1 Method

2.1.1 Notations

Consider a matched case-control study that allows multiple cases or controls in each

stratum. Denote Yki as the disease status for the ith subject in the kth stratum, k =

1, . . . , K. Yki = 1 means diseased (e.g., case) and Yki = 0 means non-diseased (e.g.,

control). Let nkD and nkD̄ be the number of cases and matched controls in stratum k,

respectively, and denote nk = nkD +nkD̄ as the stratum total. Then nD =
∑K

k=1 nkD and

nD̄ =
∑K

k=1 nkD̄ are the total numbers of cases and controls, respectively. For notation

simplicity, we arrange the subjects in each stratum such that the first nkD subjects are

cases. Let Xki be the p-dimensional vector of biomarkers for the ith subject in the kth

stratum. We define the composite score as a linear combination βTXki, where β is a

vector of coefficients with the same dimension of Xki.

Given the composite score and a cut-off c, the sensitivity can be estimated as

Ŝe(β, c) =

∑K
k=1

∑nkD
i=1 I(βTXki > c)∑K
k=1 nkD

. (2.1)
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Similarly, the study-specific specificity can be estimated as

Ŝps(β, c) =

∑K
k=1

∑nk
i=nkD+1 I(βTXki ≤ c)∑K

k=1 nkD̄
. (2.2)

Note that the controls are sampled based on the matching variables of their matched

cases instead of random sampling, and thus they cannot represent the general control

population. Denote the sampling probability as pki, i ∈ {nkD + 1, . . . , nk}. Then we can

estimate the population-level specificity as follows:

Ŝp(β, c) =

∑K
k=1

∑nk
i=nkD+1 ŵkiI(βTXki ≤ c)∑K
k=1

∑nk
i=nkD+1 ŵki

, (2.3)

where ŵki = 1/p̂ki and the estimated sampling probability, p̂ki, can be estimated empiri-

cally or via a logistic regression model.

2.1.2 Review of Existing Methods

Data from matched case-control studies are routinely analyzed using conditional logistic

regression. The associated conditional likelihood is conditional on the total number of

cases and the total number of subjects within each stratum, which avoids the estimation

of stratum-specific nuisance parameters,

LCL(β) =
K∏
k=1

∏nkD
i=1 exp(βTXki)∑

J∈CDk

∏
j∈J exp(βTXkj)

, (2.4)

where CDk are all subsets of size nkD from Ck = {1, . . . , nk}. Denote β̂CL as the estimator

of β, which maximizes the conditional likelihood in (2.4). In cancer population screening,

a high specificity is its top priority, so the cut-off value is usually determined by ĉCL =

inf{c : Ŝp(β̂CL, c) ≥ τ}, where τ is a pre-specified specificity such as 0.98 for the ovarian

cancer screening. Then the corresponding sensitivity is ŜeCL = Ŝe(β̂CL, ĉCL).

Alternatively, for case-control studies, Meisner et al. (2017) and Zhang et al. (2019)

proposed a direct method to maximize the sensitivity under the constraint that the speci-
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ficity ≥ τ . For matched case-control studies, the population specificity in (2.3) instead of

the study-specific specificity in (2.2) should be used. Denote the maximizers as (β̂D and

ĉD). The corresponding sensitivity can be subsequently calculated by ŜeD = Ŝe(β̂D, ĉD).

As expected, the direct method may derive a score with substantially higher sensitivities

than that by the conditional logistic regression, since it maximizes the sensitivity directly.

. However, the objective function of the direct method only includes information from the

cases and ignores information from the controls. Given the external validation data sets,

as shown in Meisner et al. (2017), its composite score cannot maintain the pre-specified

specificity.

Yan et al. (2018) recently developed an optimal score by maximizing the partial area

under the ROC curve, termed as pAUC method. This method was originally designed

for data from case-control studies, so we will generalized this method to accommodate

data from matched case-control studies and evaluate its performance in this setting in

Section 2.2.

2.1.3 Proposed Method

Motivated by the limitations of the existing methods in Section 2.2 and the robustness of

semiparametric models, we leave the link function unspecified and propose the following

pseudo-conditional likelihood function:

L(β, c) =
K∏
k=1

∏nkD
i=1 I(βTXki > c)

∏nk
i=nkD+1{1− I(βTXki > c)}∑

J∈CDk

[∏
j∈J I(βTXkj > c)

∏
j∈Ck\J{1− I(βTXkj > c)}

] . (2.5)

The derivation of (2.5) is provided in the Appendix. To ensure identifiability, we set the

Euclidean norm ‖β‖2 =
√∑p

i=1 β
2
i to be 1. When maximizing this likelihood, we add a

tiny number ε to the numerator and denominator to avoid a zero in the denominator. The

simulation studies confirm that the estimation is not sensitive to the value of ε. Similar to

the conditional likelihood, the pseudo-conditional likelihood characterizes the discrimi-

nation ability of the composite score within each case-control stratum, and eliminates the
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need to estimate stratum-specific parameters. The pseudo-conditional likelihood makes

a close connection with the final rules to calculate the sensitivity and specificity and

avoids a parametric specification on the link function between the composite score and

the probability of being diseased. The denominator describes all possible classifications

while the numerator is the correct classification. Different from the objective function of

the direct method, our pseudo-conditional likelihood unitizes the information from both

cases and controls; and ensures a better control for specificity on independent validation

data sets, which is confirmed in Section 2.2.

To ensure the clinically acceptable specificity as our priority, we maximize the pseudo-

conditional likelihood subject to the constraint of Ŝp(β, c) ≥ τ . The threshold τ is pre-

specified and should be tailored to the study of interest. For example, a threshold of

80% might be reasonable in a study of high-risk subjects, and a much higher threshold

(e.g., 98%) is usually required for general population screening. Maximizing (2.5) un-

der the constraint is not computationally straightforward, so we propose a stable and

computationally efficient algorithm based on the profiling approach. For any given β,

we can obtain an estimate of c, denoted as ĉ(β), by finding the τth quantile of βTX

among controls after incorporating the sampling weights. We then plug ĉ(β) in equation

(2.5) and maximize the profiled pseudo-conditional likelihood L{β, ĉ(β)} with respect to

β. Given these estimates, the sensitivity and specificities can be calculated by equations

(2.1), (2.2) and (2.3).

Note that the pseudo-likelihood is not a continuous function of the unknown pa-

rameters. With a small number of biomarkers, we can adopt the Nelder-Mead method

and multiple starting values to identify the global maximizers. However, with a large

number of biomarkers, this method is impractical due to the intensive computation. An

alternative solution is to use a continuous kernel function to approximate the indicator

function,
∫ βTXki−c
−∞ K(u;hn)du, where K(·, hn) is a symmetric kernel function and hn is

the bandwidth (Jones, 1990; Zeng and Lin, 2007; Shen et al., 2018). Accordingly, we
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have the following kernel-smoothed pseudo-conditional likelihood:

LK(β, c) =
K∏
k=1

∏nkD
i=1

∫ βTXki−c
−∞ K(u;hn)du

∏nk
i=nkD+1{1−

∫ βTXki−c
−∞ K(u;hn)du}∑

J∈CDk

[∏
j∈J
∫ βTXkj−c
−∞ K(u;hn)du

∏
j∈Ck\J{1−

∫ βTXkj−c
−∞ K(u;hn)du}

] .
(2.6)

Although any smooth and symmetric probability density functions can be used as the

kernel function, the standard normal distribution is a popular choice in practice. Details

about the Gaussian kernel for equation (2.6) are provided in the Appendix.

2.2 Asymptotic Properties

In this section, we establish the asymptotic properties of (β̂, ĉ) and Ŝe(β̂, ĉ). Denote

the true values of these parameters by (β̃, c̃) and S̃e = S̃e(β̃, c̃). The main technical

challenge is the discontinuity of L(β, c) due to the indicator function, since standard

methods require the smoothness and differentiability of the likelihood function. Under

the mild regularity conditions given in the Appendix, we apply the empirical processes

techniques to prove that Ŝe is a consistent estimator of S̃e.

2.3 Simulation Studies

We conducted extensive simulation studies to evaluate the finite sample performance of

the proposed method and compared it to that of three existing methods: the conditional

logistic regression, the direct method by Meisner et al. (2017) and Zhang et al. (2019),

and pAUC method by Yan et al. (2018).

To enable fair comparisons, we first extended the pAUC method to accommodate data

from matched case-control studies. We estimated the density function for the control

29



group by incorporating the sampling weights,

f̂D̄(s) =
1∑K

k=1

∑nk
i=nkD+1{ŵkihD̄}

K∑
k=1

nk∑
i=nkD+1

ŵkiK

(
s− βTXki

hD̄

)
, (2.7)

where K(.) is the kernel function, and hD̄ is the bandwidth. The density function for

the case group can be estimated in a similar fashion but without the weight, named as

f̂D. Then the two estimated survival functions were ŜD(s) =
∫∞
s
f̂D(t)dt and ŜD̄(s) =∫∞

s
f̂D̄(t)dt), respectively. The kernel smoothed ROC was then given by R̂OCK(t) =

ŜD{Ŝ−1
D̄

(t)}. Integrating over the range of specificities of interest (t0, 1), or equivalently

the range of false positive rates (0, 1− t0), we derived the corresponding kernel smoothed

pAUC, p̂AUCK =
∫ 1−t0

0
R̂OCK(t)dt. Given the coefficient estimates β̂pauc that maxi-

mized p̂AUCK , we can identify the cutoff value ĉpauc to make Ŝp(β̂pauc, c) ≥ τ . The

subsequent sensitivity and specificity can be obtained by equations (2.1)-(2.3).

2.3.1 Data Generation

We considered different scenarios for the performance evaluation:

Scenario 1. We generated two independent biomarkers, X1 and X2, from the standard

normal distribution. We generated two matching variables Z1 and Z2 from Bernoulli(0.3)

and Bernoulli(0.1) independently. We then defined the matching group S based on

the values of Z1 and Z2: S = 1 if Z1 = 0 and Z2 = 0; S = 2 if Z1 = 1 and

Z2 = 0; S = 3 if Z1 = 0 and Z2 = 1; and S = 4 otherwise. We last gener-

ated the disease status from a Bernoulli distribution with a diseased probability of

logit−1{(X1 + 3X2 + 0.5Z1 + 4Z2)/1.5− 7}, where logit(t) = log{t/(1− t)}.

Scenario 2. We generated two biomarkers X1 and X2 as well as the matching variable

Z1 from a multivariate normal distribution conditional on the disease status. Among con-

trols, X1 followed N(0, 3), and both X2 and Z1 followed N(0, 1). They were pairwise cor-

related with a correlation coefficient of 0.3. Among cases, X1, X2, and Z1 independently

followed N(3, 3), N(3, 5), and N(3, 5), respectively. Hence, both means and covariance
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matrices of the biomarkers and the matching variable were dependent on the disease

status, and the covariance matrices were disproportional for cases and controls. We then

generated the matching group as S = I{Z1 ≥ Φ−1(1/4)}+ I{Z1 ≥ Φ−1(1/2)}+ I{Z1 ≥

Φ−1(3/4)}+ 1, where Φ is the standard normal cumulative distribution function.

Scenario 3. We used the same sampling mechanism used in Scenario 2, except that the

correlation between biomarkers among cases was increased to 0.9 to further the extent

of disproportion in the covariance matrices.

Scenario 4. We considered the same means but different correlation directions between

controls and cases in this scenario. Specifically, X1, X2 and Z1 were negatively correlated

with a correlation coefficient of -0.3 among controls, whereas they were positively corre-

lated with a correlation coefficient of 0.3 among cases. The marginal distribution of X1

was N(0, 3), and the marginal distributions of X2 and Z1 were N(0, 1) for controls and

N(0, 5) for cases. In this scenario, because the cases and controls had the same means,

it was not easy to separate them.

In all four scenarios, we used 1:1 matching to construct the matched case-control

data; that is, for each case, we sampled one control among those nondiseased subjects

in the same matching group as that in the case. We added a tiny number of .0001 to

both the numerator and the denominator of the pseudo-conditional likelihood function

to avoid the occurrence of zero in the denominator or the product. To ensure that we

identify the global maxima of the proposed likelihood, we used 20 sets of starting values

around the coefficient estimates by the conditional logistic regression. We then obtained

the proposed estimates that achieve the largest value of the objective function over the

20 maximizations with different initial values. Note that the maximization converged

quickly for our method even though multiple starting values were used. We adopted the

bootstrap method for the variance estimation. In particular, we resampled the strata

with replacement 200 times and calculated the sample standard deviation.

To generate true sensitivities under Scenario 1, we used the known true optimal com-

bination of the biomarkers and 1,000 independent huge datasets to mimic the population

data. The final truth was the average over the resulting 1000 sensitivities. To gener-
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ate truth for reference under Scenario 2-4, we used the known true distributions of the

biomarkers. Since there were only two biomarkers in simulation, a full grid search based

on the equation of sensitivity under multivariate normal assumption for biomarkers,

Φ(µD−µD̄+σD̄Φ−1(1−τ)

σD
), was adopted to generate performance reference. Here, µD and µD̄

are the means of the composite scores for cases and controls, respectively; and σD and σD̄

are the standard deviations of the composite scores for cases and controls, respectively.

When implementing the kernel-smoothing method, we chose bandwidth hn = Ch(nD)−1/3,

where (nD)−1/3 is the optimal bandwidth recommended by Jones (1990) and Ch = 0.2, 1,

or 5. nD = nD̄ varied from 50 to 400, and the pre-specified threshold of specificity τ var-

ied from 0.70 to 0.98. For each setting, we used 1,000 simulation replicates to summarize

the simulation results. We calculated the sensitivities and specificities of the composite

score by the aforementioned four methods using independent external validation data

sets with a large sample size of 20,000, such that the variability due to the external data

sets was ignorable (Payne et al., 2016; Yan et al., 2018). The specificity range of interest

for pAUC method was set to be (0.7, 1) or t0 = 0.7. For fair comparison, the same 20

sets of starting values were used for the proposed, the direct, and the pAUC methods.

2.3.2 Simulation Results

Figures 2.1 & 2.2 show the average values and empirical standard errors (ESE) of esti-

mated sensitivities (± ESE) and specificities (± ESE) on the validation data at various

prespecified specificities τ (0.70, 0.75, 0.85, 0.90, 0.95, and 0.98). Here the composite

scores and the cutoffs were estimated using the training data sets with a sample size

of 200. To better differentiate the results of the four different methods, the error bars

corresponding to different τs were shifted slightly along the x-axis. The corresponding

summary tables are presented in Tables 6.1-6.4 in the Appendix.

Under Scenario 1, the logistic regression model is the underlying true model. When

the sample size was small (nD = nD̄ = 50), all methods could not maintain specificity, as

shown in Figure 2.1(B). But the proposed, the pAUC, and the conditional logistic meth-
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ods had higher specificities than the direct method. When the sample size was increased,

all methods except the direct method can maintain the prespecified specificities well, as

seen in Figure 2.2(B). The direct method had slightly higher sensitivities compared with

the other three methods, but had lower specificities than the prespecified levels. This

finding made the direct method suboptimal, since a small drop in specificity will translate

to a lot of subjects having false positive results in general population screening.

Under Scenarios 2-4, there is not a simple parametric model such as the logistic model

to present the probability of having the disease. As expected, the proposed method

clearly outperformed the other three methods. First, the proposed method produced

the highest specificities. When the sample size was moderate or large (e.g., nD = nD̄ ≥

100), the specificities from the proposed method were close to the prespecified level of

τ , and even higher than τ in some settings. Specifically, the difference between the

average of estimated specificities and the prespecified level was between -0.02 and 0.01.

This superiority of the proposed method can be explained by the full utilization of the

control information in the proposed pseudo-conditional likelihood. On the other hand,

the direct method again failed to preserve the specificity. For example, under Scenario

3 with nD of 100 and τ of 0.80, the difference between the average of the estimated

specificities and the prespecified level was as large as 0.06 (see Figure 2.2(F)). Similar

to the direct method, the pAUC method could not maintain the specificity, especially

when τ ≤ 0.95, even though it had a better control than the direct method. Second, the

estimated sensitivities by the proposed method were consistently higher than those by the

conditional logistic regression, due to the model flexibility of the semi-parametric property

of the proposed method. For example, when τ = 0.98, the relative percentage difference,

defined as (mean Ŝe−mean ŜeCL)/mean ŜeCL×100%, ranged from 32% to 124%. Third,

the proposed method, the direct method , and the pAUC method had much smaller

empirical standard errors of the sensitivities than the conditional likelihood. For example,

under Scenario 4, the empirical standard errors from the proposed method, the direct

method, and the pAUC method were only 9% to 77% of those from the conditional logistic

regression. This statistical efficiency gain was achieved mainly because all the three
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methods focused on local or sub-global performances by focusing on clinically-relevant

levels of the specificity; whereas the conditional logistic regression maximized the global

performance including those clinically-irrelevant specificities, e.g, τ = 0.3. Moreover, we

evaluated the Youden’s Index of the four methods and summarized the results in Tables

6.6-6.9 in the Appendix. Again, the proposed method showed better discrimination

capacity than the conditional logistic regression when the evaluation metric placed equal

importance on sensitivity and specificity.

Simulation results on the training data are summarized in Table 2.1 and Table 6.5

in the Appendix. The ESEs and the average of the estimated standard errors (ASEs)

by the bootstrap method agreed well, indicating the bootstrap method can accurately

capture the variability of the proposed method. Coverage probabilities based on the

Fisher transformation were close to the nominal level except when both τ was close to 1

and sample size was moderate or large. We also implemented the method by maximizing

the kernel-smoothed pseudo-conditional likelihood, and summarized the results in Table

6.10 in the Appendix. Overall, it results were very similar to those by the pseudo-

conditional likelihood, suggesting the kernel-smoothed method is a reasonable alternative

in our setting. In addition, we compared the results by using three different values of

Ch and found that the kernel-smoothed method is quite robust to the choice of the

bandwidth in our setting.

2.4 Application

We return to the aforementioned prostate cancer data set (Section 1.1.3) and illustrate

the proposed method for disease status discrimination. For the illustrative purpose, we

identified 68 matched pairs of cases and controls from that existing matched case-control

study. Our goal was to compose a risk score using the biomarkers (tPSA and fPSA) to

distinguish cases from controls under a matched study design. We performed bootstrap

validation with a bootstrap sample size of 10,000 (Steyerberg et al., 2001). Due to the

small sample size, we only focused on τ from 0.70 to 0.95. Overall, the proposed method
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Figure 2.1: Visualization of simulation results on validation data when the sample size
of the training data is nD = nD̄ = 50. Error bars are shifted slightly along the x-axis. τ :
prespecified threshold of specificity. Gray dashed line: y-axis at 0.98.
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Figure 2.2: Visualization of simulation results on validation data when the sample size
of the training data is nD = nD̄ = 100. Error bars are shifted slightly along the x-axis.
τ : prespecified threshold of specificity. Gray dashed line: y-axis at 0.98.
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Table 2.1: Summary statistics of estimated sensitivities on the training data. K: number
of strata; τ : prespecified specificity; Clogit: conditional logistic regression; Mean: empir-
ical mean sensitivity; ESE: empirical standard error; ASE: average of estimated standard
errors; CP: 95% coverage probability.

Scenario K τ
Proposed Direct pAUC Clogit

Mean ESE ASE CP Mean ESE Mean ESE Mean ESE

1 50 .70 .911 .061 .067 .916 .925 .052 .901 .064 .898 .066
.75 .885 .073 .079 .941 .900 .065 .873 .074 .867 .080
.80 .848 .087 .094 .960 .867 .075 .838 .086 .829 .093
.85 .794 .107 .113 .974 .820 .093 .789 .102 .773 .110
.90 .717 .130 .132 .976 .752 .111 .709 .131 .692 .133
.95 .597 .158 .140 .935 .636 .146 .582 .171 .555 .166
.98 .476 .172 .130 .840 .506 .174 .435 .205 .413 .187

100 .70 .914 .043 .046 .967 .924 .038 .908 .043 .906 .044
.75 .885 .053 .056 .969 .898 .045 .880 .050 .876 .053
.80 .846 .066 .068 .969 .865 .055 .841 .061 .837 .064
.85 .791 .081 .083 .955 .815 .069 .788 .073 .783 .077
.90 .711 .095 .103 .965 .739 .084 .701 .096 .696 .094
.95 .565 .121 .123 .958 .603 .111 .558 .128 .540 .127
.98 .432 .136 .120 .885 .461 .132 .389 .157 .384 .146

2 50 .70 .767 .091 .090 .977 .797 .077 .747 .078 .753 .095
.75 .743 .092 .092 .981 .774 .078 .736 .079 .725 .105
.80 .720 .086 .092 .974 .751 .077 .725 .078 .693 .108
.85 .691 .091 .092 .980 .725 .075 .707 .078 .653 .113
.90 .668 .090 .093 .968 .699 .075 .682 .078 .604 .122
.95 .640 .093 .093 .977 .665 .076 .641 .081 .533 .130
.98 .615 .092 .091 .957 .632 .080 .597 .087 .452 .137

100 .70 .754 .067 .070 .986 .781 .057 .733 .057 .748 .067
.75 .729 .065 .071 .978 .758 .055 .721 .057 .717 .072
.80 .702 .066 .070 .976 .734 .056 .705 .058 .683 .082
.85 .678 .067 .070 .968 .711 .054 .690 .058 .640 .092
.90 .653 .067 .070 .970 .686 .054 .667 .057 .586 .100
.95 .623 .068 .069 .957 .654 .054 .632 .059 .506 .112
.98 .605 .063 .065 .957 .624 .055 .598 .064 .432 .107

3 50 .70 .746 .105 .108 .972 .770 .094 .709 .072 .714 .111
.75 .714 .105 .109 .979 .741 .091 .701 .071 .680 .124
.80 .685 .103 .109 .980 .713 .088 .690 .072 .643 .129
.85 .659 .101 .108 .983 .688 .085 .675 .074 .596 .138
.90 .633 .106 .107 .967 .660 .087 .657 .078 .540 .149
.95 .609 .103 .107 .953 .629 .092 .630 .080 .468 .154
.98 .588 .109 .108 .940 .598 .104 .601 .083 .385 .163

100 .70 .726 .075 .081 .984 .749 .067 .706 .048 .705 .078
.75 .697 .069 .078 .986 .723 .061 .697 .049 .671 .085
.80 .674 .067 .077 .982 .702 .056 .685 .051 .634 .093
.85 .655 .066 .077 .974 .682 .053 .671 .051 .587 .102
.90 .632 .068 .078 .970 .661 .053 .653 .050 .528 .112
.95 .607 .071 .078 .967 .637 .055 .627 .054 .448 .125
.98 .594 .068 .077 .969 .612 .058 .598 .055 .373 .127

4 50 .70 .483 .097 .111 .984 .522 .082 .515 .054 .459 .117
.75 .466 .097 .112 .983 .503 .080 .505 .055 .427 .121
.80 .445 .099 .113 .985 .484 .080 .494 .054 .390 .123
.85 .418 .105 .116 .987 .463 .081 .481 .053 .350 .128
.90 .399 .109 .118 .975 .443 .084 .463 .054 .305 .138
.95 .378 .112 .122 .976 .413 .092 .435 .055 .252 .143
.98 .358 .109 .121 .981 .380 .099 .403 .059 .200 .146

100 .70 .465 .065 .081 .985 .499 .052 .496 .036 .431 .087
.75 .447 .071 .084 .979 .484 .052 .486 .036 .396 .095
.80 .429 .076 .088 .974 .470 .050 .476 .037 .355 .104
.85 .411 .079 .092 .974 .455 .051 .460 .040 .316 .113
.90 .389 .087 .096 .957 .438 .049 .439 .042 .271 .123
.95 .364 .088 .097 .967 .413 .053 .417 .042 .219 .130
.98 .351 .082 .094 .966 .384 .059 .384 .045 .177 .130

37



Table 2.2: Study-specific results for the prostate cancer data. τ : prespecified threshold
of specificity; Clogit: conditional logistic regression; Se: sensitivity; Sp: specificity.

τ
Proposed Direct pAUC Clogit

Se Sp Se Sp Se Sp Se Sp

.70 .912 .706 .912 .706 .897 .706 .897 .706

.75 .897 .750 .897 .750 .882 .750 .882 .750

.80 .867 .809 .868 .809 .838 .809 .838 .809

.85 .838 .853 .838 .853 .838 .853 .823 .853

.90 .809 .911 .809 .911 .794 .911 .809 .911

.95 .720 .956 .720 .956 .647 .956 .632 .956

outperformed the conditional logistic regression method. For example, when requiring

95% specificity, the proposed method could identify 72% of cases, while only 63% could be

identified by the conditional logistic regression method (Table 2.2). The proposed method

also showed advantages over the pAUC method in terms of optimizing sensitivity. The

discrimination measures were almost identical for the proposed and the direct methods

for this particular data example.

Since the sampling probabilities of the controls in the prostate cancer data are unavail-

able, the estimated cut-off, sensitivity, and specificity are study-specific, and as a result

can not be generalized to the general population directly. To control the population-level

specificity, one solution is to combine the current matched case-control data with the

Census data. However, the population from the Census data differs systematically from

the at-risk screening population, and thus is not an optimal source for this study. Instead,

we can borrow information from the intervention arm of the Prostate, Lung, Colorectal

and Ovarian (PLCO) Cancer Screening Trial by comparing the age distribution of the

controls in the prostate cancer data and the age distribution of the participants in the

PLCO trial. The validation results by controlling the population-level specificity are

shown in Table 2.3. Sampling probabilities were calculated using an approach similar to

the propensity score method. We observed a consistent trend of performance between

the different methods.
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Table 2.3: Population-level results for the prostate cancer data. τ : prespecified threshold
of specificity; Clogit: conditional logistic regression; Se: sensitivity; Sp: specificity.

τ
Proposed Direct pAUC Clogit

Se Sp Se Sp Se Sp Se Sp

.70 .897 .704 .911 .703 .911 .703 .897 .721

.75 .896 .765 .896 .759 .882 .757 .882 .757

.80 .882 .801 .882 .801 .882 .801 .838 .812

.85 .838 .851 .852 .855 .838 .866 .823 .874

.90 .809 .906 .809 .920 .809 .920 .809 .927

.95 .750 .956 .750 .956 .735 .956 .633 .966
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Chapter 3

Methods and Results for Aim 2

3.1 Notation and Model

3.1.1 General Notations

Suppose that N subjects are followed prospectively in a study. Let Yi be the binary

outcome of interest, indicating whether subject i develops the disease of interest during

the study. Cases and controls are respectively defined as subjects for whom Yi = 1 and

Yi = 0. For notational simplicity, we use Xi to denote the p-dimensional vector of the

covariates, including the routine variables and novel biomarkers. Note that under the

two-phase sampling design, novel biomarkers are only ascertained at the second phase

for the selected subcohort. Let n be the sample size of the subcohort. We consider two

popular two-phase sampling designs, the case-cohort and the NCC designs, to introduce

the selection probability.

In a case-cohort design, all cases are selected into the subcohort, and controls are

randomly chosen at baseline from the full cohort. Accordingly, the probability of sampling

the ith subject into the subcohort is

pi = Yi + (1− Yi)α,
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where α is a constant that represents the probability of being selected as a control.

Under stratified case-cohort sampling, the full cohort is divided into L strata based on

the baseline covariates. A subcohort is subsequently sampled from the full cohort using

stratified sampling. Then pi = Yi + (1 − Yi)αl where αl is the probability of being

selected as a control for the lth stratum, and l denotes the stratum to which the ith

subject belongs.

In the NCC design, cases that occur during the study are identified and for each case,

a pre-specified number of controls are selected among those who have not developed the

disease by the time the disease occurred for the case. Denote the risk set at time t as

R(t) = {i : Zi ≥ t}, where Zi = min(Ti, Ci), Ti is the event time and Ci is the follow-up

time. Let the number of subjects in R(t) be n(t) =
∑N

i=1 I(Zi ≥ t). We define n1 to be

the number of cases and ti, i = 1, . . . , n1 to be the failure times of the cases. At each

failure time ti, m controls are randomly selected without replacement from the risk set

R(ti), excluding the case. Hence, the probability of sampling the ith subject into the

subcohort is

pi = Yi + (1− Yi){1−G(Zi)},

where G(Zi) denotes the probability that subject i has never been selected as a control

up to the end of the study follow-up time Zi. In stratified NCC sampling, at each case’s

failure time, controls are selected randomly without replacement among those who are

in the risk set and matched to the case based on some covariates (Shiels et al., 2015). To

accommodate stratified sampling, the G(·) in the sampling probability can be replaced

by GK(Zi, Ki), where K defines the covariate strata.

3.1.2 Regression Model

Our goal is to identify a scoring system S(X), where a higher score is related to a higher

risk of developing the given disease, and to estimate the absolute risk given the score.

We assume that the probability of Yi = 1 is related to the covariate vector through a
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semiparametric regression model,

P (Yi = 1|Xi) = π {S(Xi;βββ)} , (3.1)

where π(·) denotes an unknown monotonic nondecreasing function, S(X;βββ) is a pre-

specified function of the subjects’ characteristics, and βββ is an unknown vector of the

same dimension as the covariate vectorX. A commonly used linear score summarizes the

individual information as S(X;βββ) = βββTX. In this case, the model is called a single index

model (McCullagh and Nelder, 1989). Since π is left unspecified, we set the Euclidean

norm of the coefficients ‖βββ‖2 =
√∑p

i=1 β
2
i to be 1, to ensure identifiability. Such a

semiparametric model covers a wide range of regression models, including the logistic and

the probit regression models (Hristache et al., 2001; Ichimura, 1993). It offers substantial

robustness and flexibility by relaxing the assumption regarding the form of the link

function. Note that the monotonic assumption on π(·) is necessary to construct the

scoring system; without this assumption, the scoring system cannot be used for risk

stratification.

3.2 Likelihood and Estimation

We consider estimation procedures for both βββ and π(·) under model (3.1). After incor-

porating the unequal sampling probabilities, the weighted log-likelihood function of the

data from the subcohort (Yi,Xi, i = 1, · · · , n) is

l(βββ, π) =
n∑
i=1

ŵi

(
Yi log[π {S(Xi;βββ)}] + (1− Yi) log[1− π {S(Xi;βββ)}]

)
, (3.2)

subject to the monotonic constraint for π, where ŵi = 1/p̂i is the estimated version of

wi = 1/pi. The weight wi can be regarded as the contribution of the ith subject to the

likelihood function (Støer and Samuelsen, 2013; Samuelsen, 1997). Extensive simulations

confirmed that IPW estimators, which break the matching for two-phase designs, are
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efficient (Kim, 2015; Delcoigne et al., 2017).

For the case-cohort design, the parameter α can be straightforwardly estimated by

the empirical proportion n0/N , where n0 is the sample size of the random samples from

the full cohort at baseline. For the NCC design, the unknown function of G(·) can be

consistently estimated by a Kaplan-Meier-type estimator (Samuelsen, 1997), where

Ĝ(Zi) =
∏

j:Zj<Zi

{
1− mYj

n(Zj)− 1

}
.

Thus, the sampling probability for subject i can be estimated by

p̂i =

 Yi + (1− Yi)α̂ in the case-cohort design,

Yi + (1− Yi){1− Ĝ(Zi)} in the NCC design.

In the presence of matching or stratification, we replace α̂ with α̂l = n0l/Nl for the case-

cohort studies, where n0l and Nl denote the sample size of the random samples at baseline

on the lth stratum and the full cohort on the lth stratum, respectively. Similarly, we

replace Ĝ(Zi) with ĜK(Zi, Ki) for the NCC studies, where

ĜK(Zi, Ki) =
∏

j:Zj<Zi,Kj=Ki

{
1− mYj

nK(Zj, Kj)− 1

}
,

and nK(Zj, Kj) =
∑N

i=1 I(Zi ≥ Zj, Ki = Kj) is the size of the risk set at failure time Zj

after matching.

Note that directly maximizing the weighted likelihood in equation (3.2) with the

monotonic constraint for π is computationally challenging. Considering that the like-

lihood in (3.2) belongs to the exponential family, we can apply PAVA to simplify the

computational task (Best and Chakravarti, 1990; Qin et al., 2014). Following the theory

of isotonic regression (Robertson et al., 1988), maximizing the likelihood in (3.2) un-

der the monotonic constraint is equivalent to minimizing the following sum of squares,
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denoted as Q(βββ, π), under the same constraint,

arg max
π{S(1)(βββ)}≤···≤π{S(n)(βββ)}

l(βββ, π) = arg min
π{S(1)(βββ)}≤···≤π{S(n)(βββ)}

n∑
i=1

ŵi [Yi − π {S(Xi;βββ)}]2 , (3.3)

where S(1)(βββ), ..., S(n)(βββ) denote the sorted S(Xi;βββ), i = 1, 2, ..., n in ascending order.

To minimize the right-hand side, we design a stable and efficient algorithm based on the

method of profiling. For any given βββ, we can apply PAVA to minimize the objective

function Q(βββ, π), with respect to π(·) subject to the condition that if S(1)(βββ) ≤ S(2)(βββ) ≤

· · · ≤ S(n)(βββ), then π
{
S(1)(βββ)

}
≤ π

{
S(2)(βββ)

}
≤ · · · ≤ π

{
S(n)(βββ)

}
. Denote the corre-

sponding estimate as π̂(βββ). We then minimize Q{βββ, π̂(βββ)} with respect to βββ and denote

the minimizer as ξ̂n = {β̂ββn, π̂n(·)}. Even though the estimation procedure involves the

profiling idea, the computation is fast and can be easily implemented by existing pro-

grams. For example, the PAVA step can be accomplished using the R package isotone or

Iso, and the minimization after profiling can be implemented using the R function optim.

3.3 Asymptotic Properties

We establish the asymptotic properties of ξ̂n, where true values of the parameters are

denoted as ξ0 = {βββ0, π0(·)}. Technical challenges arise due to the infinite dimension of

π(·), as well as the variability due to the estimated sampling probabilities. Under the mild

regularity conditions given in the Appendix, we apply the empirical processes techniques

(van der Vaart and Wellner, 1996; van der Vaart, 2002) to prove the consistency and

asymptotic normality of β̂ββn and the uniform convergence of π̂n. We further show that π̂n

converges to π0 at a convergence rate of n−1/3 using the technique of bracketing entropy.

Let ‖·‖2 be the Euclidean distance and define the metric ‖·‖ by

‖π‖ =

{∫
π(u)2du

}1/2

.
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The Hellinger distance h between the two density functions gξ1 and gξ2 is defined by

h2(gξ1 , gξ2) =

∫ {√
gξ1(u)−

√
gξ2(u)

}2

du.

We summarize the theoretical results in the following theorem and provide the detailed

proof in the Appendix.

THEOREM 1. Under the regularity conditions listed in the Appendix, β̂ββn and π̂n are

asymptotically consistent:

‖β̂ββn − βββ0‖2 → 0, and ‖π̂n − π0‖ → 0,

in probability. Furthermore,
√
n(β̂ββn − βββ0) converges to a normal distribution, while π̂n

has a convergence rate of n−1/3 in the Hellinger distance.

3.3.1 Variance Estimation

The explicit form of the asymptotic variance relies on many unknown quantities, pre-

venting direct estimation of the variance. Alternatively, resampling techniques can be

adopted for consistent variance estimation. Note that the standard bootstrap method

cannot be applied to the full cohort, since the novel biomarkers are missing for subjects

outside the subcohort. For the case-cohort study, we adopt the bootstrap method by

Wacholder et al. (1989), in which the cases and controls are separately resampled from

the subcohort with replacement such that the bootstrap data keep the same numbers of

cases and controls.

For the NCC design, this modified bootstrap method cannot account for the complex

dependence structure induced by repeatedly sampling without replacement from the risk

sets. Thus, we apply the perturbation resampling method by Cai and Zheng (2013),

where a more delicate resampling scheme was designed to account for the dependence.

Specifically, let Vi be an indicator of whether subject i has ever been selected in the

second phase, V0i be a binary variable taking the value of 1 if subject i has ever been
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sampled as a control, and V0ij be a variable indicating if the jth subject has been chosen

as a control for the ith subject. The resampling method perturbs these indicators with

independent random numbers to mimic the Bernoulli sampling (with replacement). The

sampling probabilities estimated from these perturbed indicators then recover the de-

pendence structure in the finite population sampling (without replacement) and ensure

that the corresponding perturbed IPW estimator has an appropriate limiting distribu-

tion. The formal justification of the resampling method can be found in Cai and Zheng

(2013). We describe the perturbation procedure below.

(1) Generate non-negative random numbers {Ijk, j = 1, . . . , N ; k = 1, . . . , N} indepen-

dently from a known distribution with E(Ijk) = 1 and var(Ijk) = 1, such as the unit

exponential distribution.

(2) Obtain perturbed weights ŵ∗i = V ∗i /p̂
∗
i , where V ∗i = YiIii + (1 − Yi)V

∗
0i, p̂

∗
i =

Yi + (1− Yi)p̂∗0i, p̂∗0i = 1− exp{−Λ̂∗marg(Zi)},

V ∗0i = 1−
∏

j:i∈Rj\{j}

(1− YjV0jiIji), and

Λ̂∗marg(t) =
∑

j:Zj≤t,Yj=1

∑
k∈Rj\{j} V0jkIjk
n(Zj)− 1

.

(3) Define Q∗(βββ, π) by replacing the ŵi in Q(βββ, π) with ŵ∗i and apply the proposed

algorithm. The resulting (β̂ββ
∗
n, π̂

∗
n) = arg minQ∗(βββ, π), under the monotone constraint, is

a perturbed counterpart of (β̂ββn, π̂n).

Steps (1) - (3) can be repeated for B0 times to obtain {(β̂ββ
∗
n, π̂

∗
n)(b), b = 1, ..., B0}, where B0

is the total number of perturbations. The variance of β̂ββn can be estimated consistently

by the empirical variance of its resampled counterparts, which would facilitate Wald-type

confidence intervals and hypothesis testing.
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3.4 Simulation Studies

We conducted simulation studies to examine the finite sample performance of the pro-

posed method under two study designs: NCC study and case-cohort study.

3.4.1 Simulation Studies: NCC Study

Data Generation:

We generated X1, X2, and X3 independently from Beta(2, 2, 0, 2), Bernoulli(0.5), and

Uniform(0, 2), respectively, such that the three covariates had similar variances. Here

Beta(2, 2, 0, 2) is a four-parameter beta distribution. The binary response Yi was simu-

lated following a Bernoulli distribution with a success probability of π(βββTX) = π(β1X1i+

β2X2i+β3X3i), where the true regression coefficients were (β1, β2, β3)T = (0.707, 0, 0.707)T .

We generated Ti from a uniform distribution Uniform(0, 5) for the cases and set the

follow-up time to be 5.1 for all controls. Let Zi = min(Ti, 5). For each case, three

controls were sampled without replacement from its risk set, excluding the case.

We generated the event probabilities using different link functions. We considered

four scenarios: Scenario 1 represented the case when the logistics regression model was

the true model; Scenario 2 was used by other papers, such as Leitenstorfer and Tutz

(2006); Scenario 3 was a combination of concave and convex curves, and Scenario 4 was

for the sensitivity analysis when the monotonic assumption was violated. These curves

were chosen to exemplify real-life relationships between the outcome probability and

covariates, which may follow various shapes and curvatures.

Scenario 1: The true curve followed the logistic curve, π(βββTX) = 1/[1+exp{−3.1(βββTX−

2.5)}].

Scenario 2: The true curve had three curvatures, as shown in Figure 3.1, middle row,

π(βββTX) = 0.1/[1 + exp{−20(βββTX− 1.2)}] + 0.2/[1 + exp{−16(βββTX− 2.3)} .

Scenario 3: The true curve was concave at the left tail and convex at the right tail, as

displayed in Figure 3.1, bottom row, π(βββTX) = tan{1.65(βββTX− 0.56)− 1.4}/95 + 0.06.
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Scenario 4: The true curve was not monotone, as shown in Figure 6.1 of the Appendix,

π(βββTX) = 0.12/[1+exp{−20(βββTX−1.2)}]+0.24/[1+exp{−16(βββTX−2.3)}]−0.05/[1+

exp{−5(βββTX− 2)}].

We considered two sample sizes of 2500 and 5000 for the full cohort and two sample

sizes of 700 and 1400 for the subcohort. To ensure that we would locate the global

minima, we implemented 25 sets of random initial values around the estimates obtained

from logistic regression and identified the estimators that achieved the lowest loss. The

number of simulation replicates was 1000, and the resampling number B0 was 499 (Dufour

and Kiviet, 1998; Davidson and MacKinnon, 2000). For comparison, we implemented

conditional logistic regression and IPW-based logistic regression.

Simulation Results:

The simulation results under the NCC design are summarized in Table 1 and Table 6.11

in the Appendix. The summary statistics are the empirical mean, empirical standard

error (ESE) for βββ and the curve π(·) at the 25th, 50th, and 75th percentiles of the scores;

average of the estimated standard error (ASE) based on resampling; and the empirical

coverage probability of the 95% confidence interval. The estimate of β1 was determined

as a function of the estimates of β2 and β3 by the unit Euclidean norm constraint,

and for completeness, all estimated coefficients were reported. The empirical means of

the estimated π curves are plotted in Figure 3.1 and Figure 6.1 in the Appendix, in

which the 5th and 95th percentiles of the scores βββTX are chosen as the limits of the

x-axis. In Scenario 1, all three methods performed well, since the true model followed

logistic regression. As shown in the top row of Figure 3.1, both the proposed method

and IPW-based logistic regression captured the underlying π function. The empirical

biases of the estimates obtained by all three methods were negligible, and the coverage

probabilities were reasonably close to the nominal level. As expected, the ESEs of the two

logistic regression methods were smaller than those from the proposed method, since the

two logistic regression methods utilized the information on the underlying link function

(logistic curve) while the proposed method did not.
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Figure 3.1: Estimated risk functions under the NCC design.
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Figure 3.2: Estimated risk functions under the case-cohort design.

In Scenario 2, the underlying π curve exhibited more curvature than that assumed

by the logistic regression model (Figure 3.1, middle row). The proposed method still

performed well in terms of estimating the regression coefficients βββ and the link function

π. Using IPW-based logistic regression, the estimates of βββ were close to the true values,

but the estimated curve deviated from the true function. As a result, the risk probability

could not be reliably estimated, due to the substantial bias in the estimated π. For

example, for a subject with a median risk score, IPW-based logistic regression severely

underestimated the risk probability by 50%, which would give misleading information to

the subject. Under this setting, although the underlying true model was not the logistic

regression model, conditional logistic regression was quite robust and performed similarly

to the proposed method. However, the conditional regression model could not estimate

the absolute risk, which was important in our setting.

In Scenario 3, the proposed method remained robust and accurate in terms of both

the regression coefficients and the π function. In comparison, IPW-based logistic re-

gression could not estimate the underlying link well. For example, the risk estimation

around the 75th quantile of the risk score overestimated the true risk by 80% (Figure 3.1,

bottom row). Both logistic regression methods had biased estimates for the regression

coefficients due to the mis-specification of the underlying link function. For IPW-based

logistic regression, the biases were larger than the corresponding ESEs for some regression
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coefficients, leading to poor coverage probabilities as low as 59%.

In Scenario 4, the true curve was not monotonic; thus the monotonic assumption was

not satisfied for the logistic methods, as well as the proposed method. Nevertheless, our

proposed method still outperformed the commonly used logistic regression methods in

estimating the link function (Figure 6.1 in the Appendix).

3.4.2 Simulation Studies: Case-cohort Study

Data generation:

We used the same sample sizes (2500 and 5000) and data generation scheme as specified

in Scenario 3 of Section 3.4.1 to simulate the covariates and outcomes for the full cohort.

For the subcohort, we selected 550 or 1100 controls from the full cohort at baseline.

We compared the performance of our proposed design with that of IPW-based logistic

regression.

Simulation Results:

Simulation results under the case-cohort design are summarized in Table 3.2. Similar to

our previous findings under the NCC design, the estimates of β̂ββn and π̂n by the proposed

method were close to the true values, and the empirical coverage probabilities of the

confidence intervals of β̂ββn were close to the nominal level. In contrast, IPW-based logistic

regression overestimated β1 by 10% and underestimated β3 by 13%, which resulted in

coverage probabilities as low as 53%. As shown in Figure 3.2, the proposed method fitted

the true curve well with small biases, while logistic regression could not capture the true

curve. The substantial differences between the estimated and true curves indicated that

the use of logistic regression may result in misleading risk assessments when the model

assumptions were not valid.

In summary, with the link function unspecified, the proposed method robustly esti-

mated both the risk score using regression coefficients and the link function under various

scenarios, given data from two-phase sampling designs. By comparison, logistic regres-
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sion approaches generated severely biased estimates for both the risk score and the link

function, even under the settings with large sample sizes. These results signified the

advantage of relaxing the model assumptions by using the proposed method.

3.5 Application

We return to the Rotterdam breast cancer data set introduced in Section 1.2.3. To create

an NCC data set, we first defined subjects who died in two years’ of follow up as cases.

Then each case was matched to two controls who were alive at the case’s event time,

and cases and controls are matched based on variables including age group (≤40 years,

40-60 years, >60 years), tumor size (≤20 mm, 21–50 mm, >50 mm), tumor grade (≤ 2,

3), hormonal therapy, and chemotherapy. A total of 1340 subjects were included in the

analysis. We then constructed risk scores by combining number of positive lymph nodes

(NODES), progesterone receptor (PGR), and estrogen receptor (ER). The estimated

regression coefficients, standard errors, and p-values using the proposed method and

the conditional logistic regression method are reported in Table 3.3. The two methods

resulted in different conclusions. The effect of ER was significant with a relatively high

impact on the risk score in the model fitted by the proposed method, while this effect

was insignificant with a relatively small impact in the model by the conditional logistic

regression method. Differences in the coefficients and p-values of NODES were also

seen between the results from the two methods. In Figure 3.3, the risk curve estimated

by the proposed method was above the curve by the logistic regression method. This

indicated the true risk curve may differ from the logistic curve, and as a result, the

proposed method, which imposed less constraint on the shape of the link function, may

be preferred for this data set.

As one feature of the proposed method, the derived risk scores can be used for risk

stratification. Using the estimated median risk score as the cutoff, we divided the subjects

equally into two groups (high-risk and low-risk groups). For the proposed method, 64.6%

of the subjects in the high-risk group died in two years, and 35.4% of the subjects in the
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Figure 3.3: Estimated risk of death in two years in the Rotterdam breast cancer popula-
tion.

low-risk group died in two years. In comparison, for the conditional logistic regression

method, 63.3% of the high-risk and 36.7 % of the low-risk died.

Table 3.3: Estimated regression coefficients, standard errors, and p-values using the
proposed method and the conditional logistic regression model in the Rotterdam breast
cancer data.

Proposed Conditional logistic regression

Coefficient SE P-value Coefficient SE P-value

Nodes 0.317 0.200 0.11 0.709 0.137 < 0.001
PGR/100 -0.511 0.255 0.045 -0.586 0.223 0.04
ER/100 -0.799 0.266 0.003 -0.393 0.271 0.17
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Chapter 4

Methods and Results for Aim 3

4.1 Method

4.1.1 Notations

Suppose there are n patients followed prospectively in a study. For the ith subject, let Ti

and Ci be the event time and censoring time, respectively. We observe Yi = min(Ti, Ci)

and the censoring indicator δi = I(Ti ≤ Ci). At a given time point t, define the risk set as

R(t) = {j : Yj > t}. Let ti1 < ti2 < . . . < tini < Yi be the measurement times, where ni

is the total number of measurement times of the ith subject, and the measurement times

may be irregular and are not the same for different subjects. Denote by Xi(tij), a p× 1

vector of risk factors collected on the ith subject at time tij, j = 1, . . . , ni. The notation

Xi(tij) includes both baseline and time-dependent variables. Let X̃i(tij) be the summary

information up to time tij, such as average values, changes or rates of changes of risk

factors. We assume that the measurement times are independent of the longitudinal risk

factors and the event time.

4.1.2 Estimation

At any time t, we aim to develop a dynamic prediction score, denoted S{X̃(t);β(t)}, to

characterize the risk of the event of interest using all collected information. Ideally, given
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the collected information from subject i at time tij, we can update the risk prediction by

calculating S{X̃ i(tij);β(tij)}. A commonly used linear model summarizes the patient

information by a linear form, S{X̃ i(t);β(t)} = β(t)′X̃ i(t), which will be used for the

illustration. The unknown function β(t) describes the time-varying effects of risk factors.

We can impose smoothing constraints, such as fractional polynomials and splines, for

the unknown parameter function β(t). As an illustration, for each scalar risk factor

X̃k
i (t)(k = 1, . . . , p), we assume

β(t)X̃k
i (t) = {βk0 + βk1 ln(t+ 1) + βk2

√
t+ βk3/

√
t+ 1 + βk4 t+ βk5/(t+ 1)}X̃k

i (t).

Assume that we can observe X̃(t) at {tij, j = 1, . . . , ni; i = 1, . . . , n}, we then con-

struct the composite-likelihood function as

`n(β) =
n∏
i=1

ni∏
j=1

(∑n
k=1 I(Yk ≥ Yi)I[S{X̃ i(tij);β(tij)} − S{X̃k(tij);β(tij)} ≥ 0]∑n

k=1 I(Yk ≥ Yi)

)δi
.

(4.1)

This composite-likelihood reflects the concept of concordance, which are also used in

Payne et al. (2016) and Shen et al. (2018) to form objective functions. For identifiability

purposes, we set β0 = 1 in model (4.1). Directly maximizing the above composite-

likelihood is computationally challenging due to the indicator function, so we propose an

approximation to `n(β) by applying the smoothing kernel method:

`sn(β) =
n∏
i=1

ni∏
j=1

(∑n
k=1 I(Yk ≥ Yi)

∫ S{X̃i(tij);β(tij)}−S{X̃k(tij);β(tij)}
−∞ Kh1(u)du∑n

k=1 I(Yk ≥ Yi)

)δi
, (4.2)

where Kh1(u) = 1
h1
K( u

h1
), and K(·) is a symmetric kernel function with a pre-specified

bandwidth h1. Note that the measurement times could be irregular and different for

different subjects. We are faced with the challenge that the time-varying risk factors are
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not observed at all measurement times. So, if the risk factor X̃k
i is not available at time

s, we borrow the observed information around s to approximate the missing value by

using a kernel weight: X̃k
i (s)∗ =

∑ni
j=1 Kh2(tij − s)X̃k

ij/
∑ni

j=1Kh2(tij − s), where Kh2(.)

is similarly defined as Kh1 . Accordingly, we can revise the likelihood function in (4.2) by

plugging in X̃k
i (s)∗:

`sn(β) =
n∏
i=1

ni∏
j=1

(∑n
k=1 I(Yk ≥ Yi)

∫ S{X̃i(tij);β(tij)}−S{X̃
∗
k(tij);β(tij)}

−∞ Kh1(u)du∑n
k=1 I(Yk ≥ Yi)

)δi
. (4.3)

Theoretically, any smooth and symmetric probability density function can be adopted as

the kernel function K(·). The Gaussian kernel is a popular choice in practice and thus is

implemented for illustration. The bandwidth can be selected either via cross validation or

the recommendation made by Jones (1990). Please see Section 4.2 for more details. The

regression coefficients in the model can be obtained by maximizing `sn(β) with respect to

β, and we denote the maximizer as β̂.

4.1.3 Prediction Discrimination

After the model fitting, we then need to find out to what extent can the derived dynamic

score discriminate between patients who will experience the event in the next w time

period and those who will not given these patients have survived up to time s. To this

end, one important pair of metrics for summarizing the discrimination capacity of the

prediction models is sensitivity (Se) and specificity (Sp). To adapt the metrics to the

longitudinal setting and utilize the risk scores that may include multiple time-independent

and time-varying covariates, we define

Ses,w(c) = P (S{X̃ i(s); β̂(s)} > c | Yi ≥ s, Ti ≤ s+ w) and (4.4)

Sps,w(c) = P (S{X̃ i(s); β̂(s)} ≤ c | Yi ≥ s, Ti > s+ w), (4.5)

where c is a pre-specified threshold.
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We may estimate Ses,w(c) and Sps,w(c) empirically by

Ŝes,w(c) =

∑
i I(S{X̃ i(s); β̂(s)} > c)I(Yi ≥ s)I(Ti ≤ s+ w)∑

i I(Yi ≥ s)I(Ti ≤ s+ w)
and (4.6)

Ŝps,w(c) =

∑
i I(S{X̃ i(s); β̂(s)} ≤ c)I(Yi ≥ s)I(Ti > s+ w)∑

i I(Yi ≥ s)I(Ti > s+ w)
, (4.7)

However, in most real cases, some subjects are censored, and the event times are

unobserved for those subjects. To adjust for the censoring and obtain unbiased estimates

for evaluation, here we propose the following estimators which are adapted from those in

Uno et al. (2007):

Ŝes,w(c) =

∑
i I(S{X̃ i(s); β̂(s)} > c)I(s ≤ Yi ≤ s+ w)δi/Ĝ(Yi)∑

i I(s ≤ Yi ≤ s+ w)δi/Ĝ(Yi)
and (4.8)

Ŝps,w(c) =

∑
i I(S{X̃ i(s); β̂(s)} ≤ c)I(Yi > s+ w)∑

i I(Yi > s+ w)
, (4.9)

where Ĝ(t) = Pr(Ci > t) is the Kaplan-Meier-type estimator for the distribution of

the censoring time. Subsequently, the area under the Receiver Operating Characteristic

(AUC) can be calculated: ÂUCs,w =
∫

Ŝes,w(c)dŜps,w(c).

4.2 Simulation

We conducted extensive simulation studies and compared the performance of the pro-

posed method to that of the four existing methods that are capable of handling longitu-

dinal measurements as well as derive dynamic risk scores, namely, the Cox model with

time-dependent covariates (COX), the Cox model with both time-dependent covariates

and time-dependent coefficients (VCOX) (Therneau and Grambsch, 2000), the partly

conditional model without time-dependent coefficients (PC), and the partly conditional

model with time-dependent coefficients (VPC) (Zheng and Heagerty, 2005).
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4.2.1 Data generation

The data were generated according to the following three scenarios:

Scenario 1. We generated two longitudinal biomarkers X̃1
i (t) = γ1 + γ2t, and X̃2

i (t) =

γ3 + γ4t, where γ1 ∼ Unif(0, 2), γ2 ∼ 4 × Beta(2, 5), γ3 ∼ Unif(0, 2), and γ4 ∼ 3 ×

Beta(1, 3). Then we generated the failure time Ti from the hazard function of the form:

λi(t) = 0.02I(t ≤ 1) exp{2X̃1
i (t) + 0.5X̃2

i (t)} + 0.02I(t > 1) exp{0.5X̃2
i (t)}, so that the

coefficient of X̃1
i would change with t.

Scenario 2. We generated the biomarkers in the same way as that in Scenario 1. Then we

generated the failure time Ti from the hazard function λi(t) = 2(1−Zi)logit−1{30X̃1
i (t)−

5X̃2
i (t)− 1}+ 2Zilogit−1{0.1X̃1

i (t) + 10X̃2
i (t)− 15}, which was a mixture of two inverse

logit functions. Here, Zi = I{X̃1
i (t = 0) > 1}, and logit(p) = log{p/(1− p)}.

Scenario 3. The data generation for the biomarkers remained the same as that in the

previous scenarios, but the hazard function was changed to λi(t) = 2logit−1{0.15X̃1
i (t) +

15X̃2
i (t)− 15}.

For each scenario, Ci ∼ Unif(4, 6). We considered both regular visits and irregular

visits in all three scenarios. For regular visits, longitudinal biomarkers were recorded

at pre-determined scheduled times, such as t = 0, 0.6, 1.2, . . . , 6, as long as the subject

was at risk. For irregular visits, each observation time was randomly generated from a

uniform distribution with the support to be the scheduled time ±0.3, and not earlier than

the last observation time. This mimicked the situation in which the study subjects may

visit the clinics slightly before or after the scheduled time. A summary of the number of

measurements in each scenario is presented in Table S3.

We set the bandwidth h1 = n−1/3, which was the optimal bandwidth for density

estimation problems recommended by Jones (1990). In fact, we conducted a sensitivity

analysis using several different bandwidths for h1 and found that the choice of bandwidth

did not affect estimation as long as the bandwidth was on the same scale of the optimal

value. To choose bandwidth h2 for borrowing information in the presence of missing data,
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we employed a grid search with an independent data set under each scenario, and the

bandwidth resulting the highest value of averaged Uno’s C-statistic across s was selected

(Uno et al., 2011).

Moreover, for fair comparison, the same bases in fractional polynomials were used in

the proposed method, the VCOX method, and the VPC method. The implementation of

the existing methods were accomplished by existing programs and sample codes. Specif-

ically, we employed the survival package in R for COX, and specified the tt option for

VCOX. We used the partlyconditional package in R for PC (Therneau, 2015; Maziarz

et al., 2018). Since the partlyconditional package did not allow for varying coefficients,

we implemented the method in Zheng and Heagerty (2005) for VPC by adapting the

sample codes in Maziarz et al. (2017).

In each simulation replicate, we first obtained the coefficient estimates for the biomark-

ers on the training data set, and derived the dynamic score term for each method. Then

we applied the dynamic score term to an independent data set that had the same sample

size as the training data set. Next, we calculated AUCs,w discussed in Section 4.1.3 on

multiple combinations of s and w, where s = 0, 1.2, 2, and 4, and w = 0.6 and 1.2. We

also evaluated the difference in the restricted mean survival time (RMST) (Tian et al.,

2014). Specifically, subjects at-risk at s were divided into two groups (high-risk and

low-risk) of equal size with respect to the median survival time. Then the difference in

RMST between the high-risk and the low-risk groups were reported. The truncation time

point for RMST was set to be the 95% quantile of the observed survival time. Sample

size n = 200 and 400, and the number of simulation replicates were 1,000.

4.2.2 Results

Tables 4.1 and 6.12 in the Appendix present the simulation results for regular measure-

ment. When the true underlying model was a Cox-like model and the coefficient changed

with time (Scenario 1), the proposed method and the VPC had the best discrimination

performance. On the other hand, although the COX and the PC correctly specified the
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model form, they wrongly assumed the coefficients were fixed over time, and as a result

their discrimination ability was compromised.

When the true model deviated from a Cox-like model (Scenarios 2&3), the proposed

method outperformed the competing methods. In particular, the proposed method had

the highest AUCs,w and difference in RMST, as well as the smallest standard deviation.

Interestingly, the VPC was quite robust at the baseline and when the landmark time

was close to the baseline, yet it did not perform well when s was large. For example,

in Scenario 2 at s = 2.4 and w = 0.6, its value for AUCs,w was less than that of the

proposed method by 0.077 .

The PC performed better than its varying-coefficient counterpart (VPC) when s = 1.2

and 2.4 and the true coefficients were fixed (Scenarios 2&3). This was expected because

the PC used the correct trend of the coefficients. We also found that in some cases,

the performance of VCOX was not as good as that of its fixed-coefficient counterpart

(COX), even when the true biomarker effect changed with time. We checked the regres-

sion coefficients of VCOX, and we discovered that although empirical biases of VCOX

were close to zero, the variations were unusually large. Moreover, the Cox model maxi-

mizes the partial likelihood, which is a global criterion and not necessarily translates into

classification ability.

Tables 4.2 and 6.13 in the Appendix present the simulation results for irregular mea-

surement. Here we observed similar patterns as those in the regular measurement sit-

uation, and even the variations were similar in both cases. These suggested that the

data borrowing in our proposed method worked well, and the irregular measurements

had minimum impact on our proposed method.

4.3 Application

We illustrate the proposed method on the AIDS data set discussed in Section 1.3.3. In this

data application, we aim to see if the dynamic scoring system including longitudinal CD4

cell count information and gender can discriminate between patients who had high risk of
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Table 4.1: Simulation results for Scenario 1-3 when measurements were regular: esti-
mated area under the ROC curve and difference in restricted mean survival time between
low-risk and high-risk groups obtained from the proposed method, the Cox model with
time-varying covariates (COX), the Cox model with time-varying covariates and coeffi-
cients (VCOX), the partly conditional cox model (PC), and the partly conditional cox
model with time-varying coefficients (VPC) on validation data. Number of replicates was
1, 000, n = 200.

Scenario s w Proposed COX VCOX PC VPC
Mean SD Mean SD Mean SD Mean SD Mean SD

1 AUCs,w 0 0.6 .823 .031 .794 .039 .739 .145 .737 .054 .823 .030
0 1.2 .819 .030 .790 .037 .736 .143 .733 .052 .819 .029

1.2 0.6 .642 .201 .599 .201 .559 .200 .629 .200 .646 .200
1.2 1.2 .671 .135 .625 .133 .582 .138 .657 .134 .675 .134
2.4 0.6 .721 .153 .657 .162 .700 .167 .699 .158 .723 .154
2.4 1.2 .751 .103 .680 .112 .726 .121 .726 .107 .754 .103

RMSTdiff 0 1.985 .276 1.796 .322 1.449 .922 1.388 .386 1.991 .276
1.2 .735 .295 .534 .300 .339 .348 .679 .289 .755 .286
2.4 .629 .221 .452 .233 .565 .264 .567 .221 .637 .218

2 AUCs,w 0 0.6 .729 .037 .674 .047 .558 .134 .647 .058 .724 .038
0 1.2 .791 .041 .737 .052 .571 .172 .707 .064 .787 .041

1.2 0.6 .804 .056 .789 .062 .790 .061 .787 .067 .778 .070
1.2 1.2 .856 .054 .836 .061 .838 .063 .836 .066 .827 .071
2.4 0.6 .862 .086 .789 .124 .781 .136 .805 .120 .778 .148
2.4 1.2 .885 .078 .802 .115 .798 .129 .821 .113 .793 .144

RMSTdiff 0 .947 .162 .824 .174 .265 .647 .747 .206 .940 .162
1.2 1.333 .234 1.256 .251 1.270 .258 1.255 .270 1.226 .288
2.4 .891 .226 .659 .298 .659 .326 .710 .301 .647 .363

3 AUCs,w 0 0.6 .793 .032 .793 .032 .615 .182 .792 .032 .793 .032
0 1.2 .815 .034 .814 .035 .622 .195 .814 .035 .814 .035

1.2 0.6 .831 .052 .823 .055 .809 .061 .821 .056 .814 .059
1.2 1.2 .890 .051 .879 .055 .861 .064 .877 .056 .867 .060
2.4 0.6 .885 .077 .856 .096 .803 .138 .849 .103 .828 .122
2.4 1.2 .922 .064 .885 .088 .826 .134 .879 .093 .855 .118

RMSTdiff 0 1.063 .143 1.062 .144 .397 .637 1.060 .142 1.062 .144
1.2 1.269 .235 1.239 .235 1.186 .252 1.231 .240 1.203 .245
2.4 .837 .199 .750 .225 .617 .300 .734 .239 .682 .278
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Table 4.2: Simulation results for Scenario 1-3 when measurements were irregular: esti-
mated area under the ROC curve and difference in restricted mean survival time between
low-risk and high-risk groups obtained from the proposed method, the Cox model with
time-varying covariates (COX), the Cox model with time-varying covariates and coeffi-
cients (VCOX), the partly conditional cox model (PC), and the partly conditional cox
model with time-varying coefficients (VPC) on validation data. Number of replicates was
1, 000, n = 200.

Scenario s w Proposed COX VCOX PC VPC
Mean SD Mean SD Mean SD Mean SD Mean SD

1 AUCs,w 0 0.6 .822 .031 .790 .040 .691 .187 .734 .055 .823 .031
0 1.2 .819 .030 .787 .039 .689 .186 .731 .055 .819 .030

1.2 0.6 .641 .207 .610 .217 .567 .219 .634 .214 .635 .212
1.2 1.2 .671 .143 .635 .146 .587 .152 .664 .145 .667 .145
2.4 0.6 .730 .160 .669 .163 .710 .174 .710 .161 .736 .157
2.4 1.2 .749 .104 .684 .115 .730 .124 .727 .110 .756 .102

RMSTdiff 0 1.995 .266 1.778 .321 1.156 1.178 1.365 .402 1.997 .265
1.2 .719 .298 .551 .304 .331 .380 .686 .305 .706 .304
2.4 .625 .223 .455 .241 .577 .279 .567 .235 .643 .218

2 AUCs,w 0 0.6 .729 .037 .680 .047 .561 .134 .650 .059 .724 .038
0 1.2 .793 .038 .745 .049 .575 .171 .710 .063 .788 .039

1.2 0.6 .799 .060 .787 .064 .788 .064 .789 .064 .781 .069
1.2 1.2 .848 .057 .832 .065 .835 .063 .838 .066 .832 .068
2.4 0.6 .856 .092 .780 .130 .791 .129 .805 .114 .779 .144
2.4 1.2 .880 .085 .791 .123 .804 .125 .820 .109 .794 .141

RMSTdiff 0 .952 .156 .841 .169 .287 .639 .759 .207 .944 .156
1.2 1.304 .260 1.245 .282 1.260 .273 1.267 .280 1.244 .290
2.4 .881 .247 .638 .311 .676 .324 .709 .293 .648 .370

3 AUCs,w 0 0.6 .794 .032 .793 .033 .616 .185 .793 .033 .794 .032
0 1.2 .816 .036 .815 .036 .623 .197 .815 .036 .815 .036

1.2 0.6 .833 .053 .827 .056 .809 .064 .825 .057 .817 .060
1.2 1.2 .891 .049 .884 .052 .862 .065 .881 .053 .872 .058
2.4 0.6 .882 .078 .854 .094 .801 .139 .848 .099 .824 .120
2.4 1.2 .919 .067 .884 .090 .826 .138 .878 .096 .851 .119

RMSTdiff 0 1.075 .147 1.071 .148 .412 .657 1.069 .148 1.071 .146
1.2 1.286 .235 1.265 .238 1.199 .262 1.255 .238 1.225 .245
2.4 .827 .207 .740 .236 .616 .309 .726 .250 .664 .287
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death and those had not. We hope that by timely identifying high-risk patients, we can

inform physicians so that they adjust medical treatments accordingly. Here besides the

proposed method, we also implemented the other methods mentioned in the simulation

section.

To reduce bias, we adopted K-fold cross validation for the performance evaluation.

Specifically, we randomly divided the study subjects into K folds of approximately equal

sizes. For each k, k = 1, . . . , K, we estimated the model coefficients using the subjects

outside the kth fold, and calculated the AUCs,w and difference in RMST for the subjects

inside the kth fold. This process was repeated 100 times, and then the average of the

K × 100 values for each evaluation metric was the final cross validation result. The

bandwidth h2 was tuned using a similar cross validation procedure and the decision was

made based on the average of Uno’s C-statistic across s (Uno et al., 2011). The truncation

time point for RMST was 18, which was the 95% quantile of the time-to-events. Since the

VPC and the COX failed to converge, we decreased the number of fractional polynomial

bases from 6 to 4 for the two methods.

The resulting AUCs,w and the difference in RMST on different s and w were presented

in Table 4.3. Overall, the proposed method performed similarly to the other methods,

except that the VCOX method had lower values given baseline measurement (s = 0),

suggesting that the true model underlying the AIDS data set may not deviate much from

the Cox-like model. AUCs,w ranged from 0.659 to 0.756, indicating that the dynamic

scoring system that incorporated the longitudinal CD4 cell count measurements had

fair to moderate discrimination ability on advanced HIV patients, which is consistent to

the previous findings in the literature (Goldman et al., 1996; Rizopoulos, 2011). The

estimates of difference in RMST also revealed little differences among those methods on

this data set. For example, for subjects who survived up to 2 months, the difference in

RMST were around 3.5 for all methods, which meant the subjects in the high-risk group

survived about 3.5 months shorter than those in the low-risk group on average, when

following up the patients 18 months.

65



Table 4.3: Area under the ROC curve and the difference in restricted mean survival time
(based on 5-fold cross validation repeated for 100 times) on s = 0, 2, and 6 months, and
w=2, 4, and 6 months, applied in the AIDS data.

s w Proposed COX VCOX PC VPC
Mean SD Mean SD Mean SD Mean SD Mean SD

AUCs,w 0 2 .756 .218 .740 .214 .659 .226 .723 .215 .732 .214
4 .746 .088 .742 .088 .693 .101 .733 .090 .738 .089
6 .737 .072 .736 .071 .698 .079 .731 .072 .734 .072

2 2 .718 .098 .729 .096 .727 .097 .728 .096 .724 .096
4 .710 .077 .722 .074 .720 .074 .721 .074 .718 .074
6 .721 .060 .726 .060 .725 .060 .726 .060 .725 .060

6 2 .670 .124 .669 .122 .669 .122 .671 .123 .673 .124
4 .669 .081 .664 .081 .666 .081 .669 .082 .672 .082
6 .710 .058 .708 .059 .709 .058 .711 .058 .712 .057

RMSTdiff 0 3.961 .955 3.957 .954 3.548 1.020 3.866 .973 3.911 .954
2 3.498 .920 3.469 .916 3.510 .904 3.506 .904 3.541 .899
6 2.056 .767 2.072 .746 2.087 .742 2.084 .755 2.077 .761
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Chapter 5

Discussion

5.1 Assessing discrimination capacity of a combina-

tion of biomarkers under matched case-control

studies

In Aim 1, we proposed an alternative semiparametric method to the conditional logistic

regression given the data from matched case-control studies. We developed a pseudo-

conditional likelihood function to avoid the need to estimate stratum-specific parameters.

In the meanwhile, instead of using parametric link functions as in the conditional logistic

regression, we directly used the decision rule on the construction of the pseudo-conditional

likelihood. We maximized the proposed likelihood with a constraint of achieving a clini-

cally acceptable specificity, based on the general guidance in cancer population screening

practice. Different from the objective function of the direct method, the proposed likeli-

hood utilized information from both cases and controls, and was shown advantageous to

maintain the pre-specified specificity in the independent validation data.

Being able to maintain specificity is a pre-requisite for a good screening tool since even

tiny loss in specificity has severe consequences. For instance, in liver cancer screening,

per 1% drop in specificity would result in 1,000 more subjects getting false positive
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results, experiencing psychological trauma, or even going through biopsy for diagnosis

in a population screening program of 100,000 subjects considering the low incidence of

liver cancer (U.S. Cancer Statistics Working Group, 2019). Thus, being able to keep

specificity on external validation data makes the proposed method more appealing than

other existing methods in population screening. Although the focus of this project is

individually matched data, the proposed method can be straightforwardly extended to

studies that use frequency matching (e.g, case and control groups have similar proportion

of smokers, females in a lung cancer study) by post-hoc forming strata.

Of note, we maximized the proposed likelihood by using 20 different sets of initial

values, to minimize the possibility that the algorithm converged to a local maxima of the

likelihood function depending on the starting values. Even though we applied multiple

starting values, the computation burden was not heavy. For example, in a 100-run

simulation with a sample size of 400 under Scenario 1, the CPU time of a desktop with

3.30GHz CPU was 0.86 minutes for the point estimation and 2.37 hours for the variance

estimation. If there is a large number of risk factors, we can then use the kernel-smoothed

method since it has shown satisfactory performance as shown in our simulation studies.

5.2 Risk assessment under two-phase sampling de-

signs

In Aim 2, we proposed a semiparametric isotonic regression model for constructing risk

scores and assessing absolute risks given data from two-phase studies. This aim will

help identify high-risk patients and improve the shared decision making between at-risk

patients and their physicians by providing a quantifiable personalized risk assessment.

We leave the link function unspecified, other than the monotonicity assumption, which

is a necessary assumption to achieve a sensible risk score. Although our model involves

a nonparametric component, a profiling method and PAVA are utilized to improve com-

putational efficiency and can be easily implemented using existing software. Thus, the
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proposed method offers robustness, easy implementation, and computational efficiency.

One challenge of the proposed method is model specification for the risk score: how to

select the best set of risk factors and how to determine an appropriate form for combining

multiple risk factors. A simple screening procedure (e.g., marginal correlation) or stepwise

model selection procedures can be applied to select risk factors for the risk score, however,

it may not be able to identify the optimal subset of risk factors. Next, to combine multiple

factors, we focus on the linear form due to its simplicity and popularity. Standard model

comparison tools, such as the likelihood ratio test, are not directly applicable and cannot

handle the additional variation due to the estimated weights. Developing rigorous tools

that simultaneously select the optimal set of risk factors and identify the best way to

combine them is beyond the scope of this project, though worthy of future research.

The ranked set sampling (RSS) design, as an alternative design to the two-phase

sampling designs, has been proposed by McIntyre (1952) and has received increasing

attention. Recently, Zamanzade and Vock (2015) showed that the RSS design is more

efficient than the two-phase sampling designs under certain cases, and Zamanzade and

Mahdizadeh (2019) used a variation of RSS to efficiently estimate the prevalence of a

rare disease in a given population. It is of interest to extend our work to RSS-based

designs for constructing risk scores and assessing absolute risks simultaneously for future

research.

5.3 Dynamic scoring system of a survival outcome

using longitudinally collected biomarkers

In Aim 3, we proposed a dynamic scoring system that takes into account all available

information and the ever-changing risk set. It is dynamic in the sense that the scoring

system can provide updated risk stratification to physicians at any time during the follow-

up. This method is model-free and hence not restricted to the proportional hazard

assumption, which is a drawback in the partly conditional model. Our approach can be
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widely applied to typical longitudinal studies with survival outcomes where longitudinal

measurements are collected during follow-up, either regularly or irregularly.

Since we focused on developing a dynamic prediction rule, in evaluation of the meth-

ods, we used existing point-wise metrics, such as AUC given the score at a prediction

time s and the binary outcome in an additional time interval w. A measure of prediction

performance tailored for dynamic prediction rules for a survival outcome is beyond the

scope of this project. Moreover, how to identify risk factors to be included in the dy-

namic risk score is an important topic, especially when biomarkers and other risk factors

are abundant. Pre-selection procedures are often used in literature, but they may not

lead to an optimal set of risk factors when the models on which the procedures rely is

incorrect. Hence, a dynamic scoring system with an integrated variable selection function

is attractive and is of future research interest.
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Chapter 6

Appendices

6.1 Appendix for Aim 1

6.1.1 Derivation of the pseudolikelihood

In kth stratum, the conditional likelihood of the observed data given that one of the

patients is the case and the remaining patients are controls may be written as:

Lk(β, c) =

∏nkD
i=1 Pr(Xki|Yki = 1,β, c)

∏nk
i=nkD+1 Pr(Xki|Yki = 0,β, c)∑

J∈CDk

{∏
j∈J Pr(Xkj|Ykj = 1,β, c)

∏
j∈Ck\J Pr(Xkj|Ykj = 0,β, c)

}
=

∏nkD
i=1

Pr(Yki=1|Xki,β,c) Pr(Xki|β,c)
Pr(Yki=1)

∏nk
i=nkD+1

Pr(Yki=0|Xki,β,c) Pr(Xki|β,c)
Pr(Yki=0)∑

J∈CDk

{∏
j∈J

Pr(Ykj=1|Xkj ,β,c) Pr(Xkj |β,c)
Pr(Ykj=1)

∏
j∈Ck\J

Pr(Ykj=0|Xkj ,β,c) Pr(Xkj |β,c)
Pr(Ykj=0)

}
=

∏nkD
i=1 Pr(Yki = 1|Xki,β, c)

∏nk
i=nkD+1 Pr(Yki = 0|Xki,β, c)∑

J∈CDk

{∏
j∈J Pr(Ykj = 1|Xkj,β, c)

∏
j∈Ck\J Pr(Ykj = 0|Xkj,β, c)

}
=

∏nkD
i=1 Pr(βTXki > c)

∏nk
i=nkD+1{1− Pr(βTXki > c)}∑

J∈CDk

[∏
j∈J Pr(βTXkj > c)

∏
j∈Ck\J{1− Pr(βTXkj > c)}

] .
(6.1)
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Substitute the probabilities in (6.1) with indicator functions, we then have the pseudo-

conditional likelihood function:

Lk(β, c) =

∏nkD
i=1 I(βTXki > c)

∏nk
i=nkD+1{1− I(βTXki > c)}∑

J∈CDk

[∏
j∈J I(βTXkj > c)

∏
j∈Ck\J{1− I(βTXkj > c)}

] . (6.2)

6.1.2 Kernel smoother

In order to solve the optimization problem stated in (2.6), we choose to use the Gaussian

kernel K(u, hn) = 1
hn
K( u

hn
), where K(u) = 1√

2π
e−

u2

2 . Then we have

I(βTXki > c) =

∫ βTXki−c

−∞
K(u;hn)du

=

∫ βTXki−c

−∞

1

hn
K(

u

hn
)du

=

∫ βTXki−c

−∞

1

hn

1√
2π
e−

(u/hn)2

2 du ( Let x =
u

hn
)

=
1√

2πhn

∫ βTXki−c
hn

−∞
e

−x2

2 hndx

=
1√
2π

∫ βTXki−c
hn

−∞
e

−x2

2 dx

= Φ

(
βTXki − c

hn

)
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6.1.3 Simulation Results on Validation Data

Table 6.1: Simulation results on validation data under Scenario 1. K: number of strata;
τ : prespecified specificity; Clogit: conditional logistic regression; ESE: empirical standard
error.

K τ

Proposed Direct pAUC Clogit

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .889 .051 .694 .080 .901 .046 .671 .083 .898 .048 .694 .081 .893 .052 .698 .085
.75 .861 .063 .739 .076 .874 .057 .716 .081 .871 .058 .737 .078 .861 .068 .744 .081
.80 .822 .077 .783 .073 .840 .068 .763 .077 .835 .069 .782 .072 .822 .080 .789 .076
.85 .767 .098 .828 .069 .791 .087 .809 .073 .783 .087 .828 .066 .766 .096 .836 .068
.90 .691 .118 .874 .058 .722 .105 .858 .062 .701 .119 .877 .061 .684 .118 .883 .059
.95 .566 .148 .922 .046 .605 .138 .908 .051 .572 .160 .926 .048 .548 .152 .932 .045
.98 .447 .165 .951 .038 .476 .169 .941 .044 .424 .191 .959 .040 .404 .178 .962 .036

100 .70 .897 .037 .697 .058 .906 .032 .681 .058 .903 .033 .699 .059 .902 .034 .701 .060
.75 .868 .045 .745 .056 .879 .039 .731 .056 .874 .041 .746 .055 .871 .043 .750 .057
.80 .829 .055 .791 .051 .846 .047 .776 .051 .835 .052 .793 .052 .833 .051 .796 .052
.85 .771 .071 .838 .047 .794 .060 .824 .047 .781 .064 .840 .047 .777 .065 .843 .048
.90 .691 .085 .887 .041 .718 .076 .875 .041 .693 .087 .891 .041 .691 .083 .893 .041
.95 .547 .113 .937 .030 .584 .106 .927 .032 .552 .120 .940 .031 .537 .120 .945 .030
.98 .415 .129 .965 .023 .443 .128 .959 .024 .384 .150 .972 .022 .382 .140 .973 .021

200 .70 .903 .025 .698 .043 .910 .021 .688 .043 .906 .022 .702 .042 .906 .022 .703 .043
.75 .873 .032 .747 .040 .882 .028 .738 .040 .877 .029 .751 .039 .876 .029 .752 .041
.80 .835 .039 .793 .037 .846 .034 .784 .036 .836 .037 .799 .037 .838 .037 .797 .038
.85 .778 .049 .842 .033 .793 .043 .833 .033 .780 .046 .847 .033 .780 .046 .847 .033
.90 .694 .062 .892 .029 .714 .056 .883 .029 .692 .061 .898 .028 .694 .061 .897 .029
.95 .553 .082 .942 .021 .579 .076 .935 .022 .545 .084 .947 .020 .546 .086 .946 .021
.98 .401 .098 .971 .015 .422 .096 .967 .016 .377 .107 .976 .015 .375 .106 .976 .015

400 .70 .905 .016 .700 .030 .910 .015 .694 .030 .908 .015 .703 .031 .908 .015 .704 .030
.75 .875 .021 .750 .027 .882 .019 .744 .027 .879 .020 .752 .028 .878 .020 .754 .028
.80 .836 .025 .797 .025 .844 .023 .791 .025 .838 .025 .801 .026 .838 .024 .801 .025
.85 .778 .033 .847 .023 .789 .030 .841 .022 .782 .032 .849 .023 .780 .032 .851 .022
.90 .691 .044 .897 .020 .707 .040 .891 .020 .693 .043 .900 .020 .692 .043 .901 .020
.95 .546 .060 .946 .014 .564 .055 .942 .014 .540 .060 .950 .013 .540 .061 .950 .014
.98 .387 .073 .975 .010 .403 .072 .973 .011 .364 .074 .980 .010 .368 .077 .979 .010
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Table 6.2: Simulation results on validation data under Scenario 2. K: number of strata;
τ : prespecified specificity; Clogit: conditional logistic regression; ESE: empirical standard
error.

K τ

Proposed Direct pAUC Clogit

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .732 .069 .691 .125 .753 .061 .649 .115 .736 .043 .658 .114 .741 .073 .676 .120
.75 .710 .066 .733 .119 .730 .059 .693 .110 .724 .043 .703 .108 .713 .083 .721 .115
.80 .689 .062 .775 .104 .710 .055 .735 .102 .711 .041 .746 .100 .682 .086 .766 .105
.85 .661 .068 .824 .093 .688 .052 .784 .091 .694 .040 .794 .089 .643 .093 .814 .094
.90 .641 .068 .865 .076 .664 .049 .836 .078 .669 .041 .847 .075 .596 .100 .864 .077
.95 .614 .069 .911 .056 .636 .046 .895 .056 .631 .046 .907 .053 .526 .106 .919 .052
.98 .592 .063 .948 .038 .606 .047 .941 .040 .590 .057 .950 .036 .448 .116 .956 .033

100 .70 .733 .051 .695 .095 .753 .044 .661 .084 .729 .034 .675 .104 .744 .053 .684 .090
.75 .711 .047 .744 .090 .731 .042 .704 .080 .717 .032 .724 .095 .713 .059 .733 .086
.80 .684 .048 .805 .079 .710 .036 .759 .076 .702 .031 .776 .086 .679 .066 .788 .078
.85 .663 .049 .850 .068 .689 .032 .808 .068 .686 .032 .823 .076 .636 .074 .837 .068
.90 .639 .049 .894 .056 .665 .032 .859 .057 .664 .031 .871 .063 .583 .085 .884 .058
.95 .611 .048 .937 .040 .636 .034 .914 .043 .631 .035 .924 .040 .504 .098 .933 .042
.98 .593 .043 .963 .024 .610 .032 .954 .026 .595 .041 .961 .023 .427 .093 .966 .023

200 .70 .736 .034 .696 .064 .752 .030 .669 .056 .728 .019 .680 .064 .746 .034 .687 .061
.75 .712 .031 .748 .060 .728 .027 .716 .054 .717 .020 .727 .067 .715 .038 .737 .059
.80 .687 .030 .811 .053 .705 .024 .778 .051 .701 .020 .785 .061 .676 .041 .802 .052
.85 .664 .033 .861 .046 .686 .022 .826 .048 .684 .021 .838 .054 .635 .047 .848 .048
.90 .641 .034 .906 .037 .664 .021 .876 .040 .659 .023 .892 .043 .580 .056 .896 .040
.95 .611 .032 .950 .026 .634 .023 .929 .031 .626 .026 .940 .032 .491 .074 .946 .028
.98 .586 .035 .973 .017 .604 .026 .964 .018 .588 .036 .972 .018 .406 .089 .973 .018

400 .70 .737 .024 .697 .043 .749 .021 .679 .039 .725 .014 .692 .048 .745 .024 .691 .041
.75 .713 .020 .748 .040 .726 .018 .725 .037 .713 .013 .744 .045 .715 .026 .739 .040
.80 .691 .020 .810 .039 .705 .016 .785 .038 .699 .012 .799 .036 .680 .029 .798 .037
.85 .669 .021 .860 .033 .685 .015 .835 .034 .682 .013 .850 .032 .635 .032 .849 .0333
.90 .645 .020 .908 .027 .662 .015 .887 .028 .660 .013 .895 .024 .578 .040 .899 .028
.95 .613 .023 .954 .019 .631 .016 .938 .021 .627 .015 .946 .019 .488 .054 .948 .021
.98 .582 .025 .979 .011 .599 .020 .971 .013 .588 .025 .976 .013 .392 .069 .978 .014
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Table 6.3: Simulation results on validation data under Scenario 3. K: number of strata;
τ : prespecified specificity; Clogit: conditional logistic regression; ESE: empirical standard
error.

K τ

Proposed Direct pAUC Clogit

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .720 .088 .683 .124 .740 .079 .649 .112 .713 .032 .648 .113 .710 .093 .675 .122
.75 .690 .083 .729 .117 .712 .069 .692 .104 .703 .032 .691 .106 .675 .104 .721 .112
.80 .664 .079 .774 .105 .688 .061 .736 .098 .691 .033 .735 .102 .640 .106 .765 .103
.85 .639 .077 .820 .093 .665 .056 .783 .092 .676 .033 .787 .091 .593 .114 .815 .090
.90 .614 .084 .865 .074 .640 .053 .838 .073 .656 .032 .842 .076 .536 .125 .864 .072
.95 .592 .076 .913 .051 .611 .061 .898 .053 .625 .035 .905 .054 .460 .130 .914 .049
.98 .567 .083 .946 .037 .579 .077 .940 .039 .595 .041 .948 .037 .377 .140 .952 .034

100 .70 .711 .058 .701 .097 .731 .052 .661 .084 .708 .025 .670 .094 .704 .063 .695 .091
.75 .685 .051 .750 .092 .707 .042 .705 .080 .698 .025 .710 .090 .670 .068 .743 .086
.80 .663 .047 .789 .082 .688 .032 .740 .076 .686 .024 .760 .079 .631 .076 .777 .080
.85 .644 .047 .838 .072 .670 .027 .795 .070 .669 .025 .814 .071 .583 .085 .829 .072
.90 .622 .047 .888 .057 .649 .027 .853 .061 .650 .025 .866 .058 .522 .095 .881 .060
.95 .596 .051 .932 .042 .625 .029 .909 .041 .624 .028 .917 .042 .440 .109 .932 .041
.98 .583 .046 .959 .026 .600 .032 .949 .028 .595 .028 .957 .027 .363 .111 .965 .024

200 .70 .710 .038 .701 .065 .726 .034 .668 .054 .707 .016 .679 .066 .705 .040 .697 .061
.75 .688 .030 .752 .059 .704 .025 .715 .054 .696 .017 .727 .062 .670 .043 .747 .059
.80 .668 .025 .797 .057 .686 .020 .758 .057 .683 .018 .776 .060 .630 .048 .788 .058
.85 .648 .029 .849 .049 .669 .018 .812 .051 .667 .019 .826 .052 .582 .055 .840 .052
.90 .627 .030 .898 .038 .650 .018 .867 .042 .646 .018 .883 .039 .520 .068 .892 .042
.95 .600 .032 .943 .029 .623 .020 .922 .031 .615 .021 .939 .029 .428 .087 .943 .029
.98 .578 .037 .969 .020 .597 .024 .958 .020 .583 .031 .971 .019 .345 .097 .971 .018

400 .70 .708 .022 .702 .043 .720 .020 .677 .037 .704 .012 .692 .052 .704 .028 .699 .042
.75 .689 .016 .752 .041 .701 .014 .723 .037 .693 .011 .744 .044 .668 .029 .750 .040
.80 .672 .016 .796 .038 .686 .012 .767 .038 .680 .013 .790 .041 .630 .030 .786 .039
.85 .654 .018 .849 .034 .669 .012 .822 .035 .664 .013 .841 .035 .581 .037 .842 .035
.90 .632 .021 .898 .027 .649 .012 .876 .028 .645 .015 .888 .032 .518 .047 .895 .029
.95 .603 .023 .947 .021 .621 .013 .930 .022 .617 .016 .940 .022 .422 .059 .947 .020
.98 .577 .025 .977 .014 .593 .018 .967 .016 .586 .019 .975 .015 .321 .075 .978 .013
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Table 6.4: Simulation results on validation data under Scenario 4. K: number of strata;
τ : prespecified specificity; Clogit: conditional logistic regression; ESE: empirical standard
error.

K τ

Proposed Direct pAUC Clogit

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .423 .070 .697 .117 .451 .056 .639 .116 .468 .027 .653 .116 .403 .097 .657 .123
.75 .406 .071 .738 .110 .435 .054 .689 .109 .457 .027 .695 .108 .372 .099 .703 .115
.80 .388 .074 .784 .099 .419 .054 .739 .099 .446 .027 .740 .104 .338 .099 .752 .100
.85 .364 .081 .833 .084 .403 .056 .793 .088 .432 .026 .793 .087 .301 .105 .804 .089
.90 .347 .087 .879 .069 .384 .059 .848 .071 .416 .025 .847 .068 .261 .112 .857 .072
.95 .326 .087 .926 .046 .358 .066 .912 .047 .390 .026 .911 .046 .212 .116 .915 .048
.98 .309 .083 .959 .030 .328 .072 .956 .030 .360 .031 .954 .032 .167 .118 .959 .029

100 .70 .425 .050 .710 .081 .452 .034 .658 .084 .462 .020 .681 .085 .392 .074 .671 .082
.75 .410 .054 .755 .078 .440 .034 .708 .081 .450 .020 .730 .081 .358 .082 .720 .078
.80 .392 .063 .807 .069 .428 .034 .762 .072 .437 .020 .780 .074 .320 .089 .777 .072
.85 .376 .065 .853 .061 .415 .033 .813 .064 .422 .023 .832 .068 .284 .100 .826 .064
.90 .355 .074 .899 .050 .400 .032 .868 .054 .404 .025 .883 .057 .242 .108 .879 .053
.95 .331 .074 .942 .035 .376 .037 .923 .036 .381 .026 .930 .039 .194 .115 .930 .036
.98 .319 .069 .967 .021 .348 .043 .962 .021 .353 .028 .966 .024 .157 .115 .962 .021

200 .70 .435 .033 .709 .054 .454 .022 .669 .055 .461 .012 .688 .056 .386 .063 .681 .053
.75 .420 .038 .760 .051 .445 .021 .721 .055 .450 .013 .736 .053 .353 .075 .730 .053
.80 .407 .042 .810 .048 .434 .016 .776 .050 .438 .013 .785 .047 .320 .088 .784 .051
.85 .389 .044 .860 .041 .421 .017 .827 .045 .424 .013 .834 .041 .284 .098 .835 .045
.90 .365 .054 .907 .035 .403 .018 .880 .039 .406 .014 .887 .036 .242 .109 .888 .037
.95 .337 .060 .953 .023 .378 .021 .935 .028 .379 .019 .940 .027 .193 .116 .940 .025
.98 .318 .055 .976 .016 .351 .027 .967 .017 .353 .021 .971 .014 .154 .118 .970 .016

400 .70 .443 .022 .709 .038 .458 .012 .679 .039 .459 .010 .698 .043 .378 .059 .687 .036
.75 .429 .025 .760 .036 .448 .011 .730 .037 .448 .010 .749 .040 .343 .072 .737 .036
.80 .416 .026 .808 .033 .436 .011 .781 .033 .435 .010 .797 .036 .314 .085 .790 .036
.85 .399 .030 .860 .029 .422 .011 .835 .031 .421 .009 .847 .029 .277 .097 .842 .031
.90 .378 .035 .909 .023 .405 .011 .888 .025 .403 .010 .899 .023 .235 .109 .894 .026
.95 .347 .047 .954 .016 .379 .015 .939 .019 .379 .011 .946 .017 .185 .117 .945 .018
.98 .324 .037 .980 .010 .351 .018 .972 .012 .347 .017 .977 .012 .145 .117 .975 .012
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6.1.4 Additional Simulation Results on Training Data

Table 6.5: Additional summary statistics of estimated sensitivities on the training data.
K: number of strata; τ : prespecified specificity; Clogit: conditional logistic regression;
Mean: empirical mean sensitivity; ESE: empirical standard error; ASE: average of esti-
mated standard errors; CP: 95% coverage probability.

Scenario K τ
Proposed Direct pAUC Clogit

Mean ESE ASE CP Mean ESE Mean ESE Mean ESE

1 200 .70 .914 .030 .032 .979 .922 .026 .909 .031 .909 .030
.75 .884 .037 .039 .972 .894 .032 .880 .038 .879 .036
.80 .846 .046 .047 .968 .859 .040 .840 .046 .840 .045
.85 .790 .056 .058 .948 .807 .050 .784 .055 .784 .056
.90 .708 .071 .073 .956 .730 .064 .698 .069 .699 .071
.95 .568 .090 .092 .938 .595 .083 .551 .091 .551 .094
.98 .415 .103 .103 .906 .437 .100 .385 .111 .380 .112

400 .70 .913 .021 .022 .982 .919 .019 .909 .021 .910 .021
.75 .883 .025 .027 .967 .891 .023 .880 .025 .881 .025
.80 .844 .029 .033 .975 .853 .027 .839 .030 .840 .029
.85 .787 .037 .041 .967 .799 .033 .784 .037 .783 .036
.90 .700 .049 .052 .959 .717 .045 .696 .049 .695 .048
.95 .554 .064 .066 .950 .574 .059 .544 .064 .543 .066
.98 .396 .075 .077 .917 .412 .074 .370 .078 .374 .080

2 200 .70 .749 .048 .050 .976 .770 .041 .728 .038 .748 .048
.75 .723 .046 .050 .970 .746 .040 .717 .037 .717 .053
.80 .696 .044 .050 .970 .720 .037 .701 .037 .676 .053
.85 .671 .047 .051 .963 .698 .037 .683 .037 .635 .060
.90 .647 .047 .052 .963 .674 .037 .659 .041 .579 .067
.95 .616 .046 .051 .959 .642 .039 .627 .045 .491 .083
.98 .591 .049 .047 .944 .612 .041 .586 .051 .407 .097

400 .70 .746 .034 .036 .963 .762 .029 .725 .031 .747 .033
.75 .721 .032 .034 .968 .738 .028 .713 .029 .717 .036
.80 .696 .030 .034 .965 .714 .027 .699 .028 .681 .037
.85 .673 .031 .034 .957 .692 .027 .682 .027 .637 .041
.90 .649 .031 .036 .962 .668 .027 .660 .026 .577 .047
.95 .617 .033 .037 .960 .637 .028 .627 .029 .487 .059
.98 .586 .035 .035 .949 .604 .031 .584 .040 .392 .073

3 200 .70 .719 .050 .054 .980 .737 .046 .709 .036 .705 .052
.75 .695 .044 .050 .974 .713 .040 .697 .035 .671 .057
.80 .675 .041 .049 .971 .695 .037 .685 .036 .631 .061
.85 .655 .044 .050 .963 .677 .037 .670 .037 .583 .068
.90 .634 .047 .053 .958 .658 .038 .650 .037 .523 .080
.95 .608 .048 .053 .962 .632 .039 .618 .042 .433 .097
.98 .584 .053 .049 .946 .604 .043 .585 .048 .352 .107

400 .70 .714 .033 .035 .980 .727 .031 .703 .025 .705 .037
.75 .694 .029 .032 .968 .707 .027 .691 .024 .670 .040
.80 .676 .029 .032 .966 .690 .025 .680 .025 .631 .042
.85 .658 .030 .034 .962 .674 .025 .665 .027 .581 .047
.90 .637 .031 .036 .962 .655 .026 .647 .028 .520 .055
.95 .608 .034 .038 .968 .628 .027 .618 .027 .427 .066
.98 .581 .035 .036 .948 .597 .031 .584 .030 .326 .081

4 200 .70 .463 .045 .057 .991 .488 .035 .487 .025 .416 .072
.75 .448 .049 .060 .980 .477 .035 .477 .026 .382 .084
.80 .433 .052 .065 .978 .465 .030 .466 .027 .346 .097
.85 .414 .053 .070 .987 .451 .031 .452 .028 .308 .108
.90 .391 .062 .075 .974 .432 .031 .434 .027 .264 .119
.95 .362 .067 .076 .964 .405 .032 .404 .029 .212 .128
.98 .343 .062 .069 .976 .377 .037 .377 .032 .170 .130

400 .70 .460 .031 .040 .984 .481 .022 .480 .021 .397 .067
.75 .447 .033 .043 .985 .470 .021 .469 .022 .362 .079
.80 .432 .035 .046 .985 .457 .021 .456 .021 .332 .093
.85 .415 .038 .051 .985 .443 .021 .443 .019 .293 .106
.90 .394 .040 .056 .979 .424 .021 .423 .021 .250 .118
.95 .362 .051 .061 .970 .397 .023 .396 .021 .198 .126
.98 .340 .043 .053 .972 .368 .025 .366 .025 .155 .126
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6.1.5 Simulation Results of Youden’s Index

Table 6.6: Summary statistics of Youden’s Index on the validation data under Scenario 1.
K: number of strata in the training data; τ : prespecified specificity; Clogit: conditional
logistic regression; ESE: empirical standard error.

K τ
Proposed Direct pAUC Clogit

Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .583 .047 .572 .053 .592 .041 .591 .042
.75 .599 .040 .590 .047 .608 .033 .606 .036
.80 .605 .040 .604 .040 .616 .026 .611 .033
.85 .596 .054 .601 .046 .611 .035 .602 .043
.90 .565 .074 .580 .062 .578 .067 .568 .069
.95 .488 .111 .513 .100 .498 .118 .480 .113
.98 .398 .133 .417 .134 .383 .156 .367 .146

100 .70 .593 .035 .587 .036 .602 .029 .603 .030
.75 .612 .029 .610 .029 .620 .020 .621 .022
.80 .619 .026 .621 .022 .628 .015 .629 .015
.85 .609 .038 .619 .025 .621 .023 .620 .023
.90 .578 .052 .592 .042 .585 .050 .584 .046
.95 .485 .088 .511 .079 .492 .092 .481 .092
.98 .380 .109 .402 .108 .356 .129 .354 .121

200 .70 .601 .024 .598 .025 .608 .021 .609 .022
.75 .620 .020 .619 .018 .628 .013 .628 .014
.80 .628 .016 .630 .012 .635 .008 .635 .008
.85 .620 .023 .626 .015 .627 .016 .627 .015
.90 .585 .038 .598 .030 .590 .034 .591 .033
.95 .495 .063 .514 .057 .492 .065 .493 .066
.98 .372 .084 .389 .082 .353 .093 .351 .092

400 .70 .605 .018 .604 .017 .611 .016 .612 .016
.75 .625 .013 .626 .012 .631 .009 .632 .009
.80 .634 .010 .635 .008 .639 .004 .639 .004
.85 .625 .015 .630 .011 .631 .010 .631 .010
.90 .589 .027 .598 .022 .593 .023 .593 .023
.95 .492 .047 .506 .043 .491 .047 .491 .048
.98 .362 .063 .375 .062 .344 .065 .347 .067
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Table 6.7: Summary statistics of Youden’s Index on the validation data under Scenario 2.
K: number of strata in the training data; τ : prespecified specificity; Clogit: conditional
logistic regression; ESE: empirical standard error.

K τ
Proposed Direct pAUC Clogit

Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .423 .070 .402 .064 .394 .081 .417 .058
.75 .443 .069 .423 .062 .427 .073 .434 .054
.80 .464 .065 .445 .059 .457 .065 .449 .049
.85 .485 .066 .472 .054 .488 .055 .458 .049
.90 .506 .063 .499 .049 .516 .044 .459 .059
.95 .525 .060 .531 .038 .538 .038 .445 .079
.98 .540 .054 .547 .035 .540 .049 .404 .098

100 .70 .429 .053 .414 .046 .404 .076 .428 .041
.75 .455 .052 .435 .046 .441 .068 .447 .036
.80 .490 .051 .469 .046 .478 .058 .467 .032
.85 .513 .048 .497 .042 .509 .047 .473 .035
.90 .533 .045 .525 .036 .535 .038 .467 .048
.95 .548 .037 .550 .026 .555 .023 .437 .071
.98 .556 .033 .564 .022 .556 .033 .393 .079

200 .70 .432 .035 .421 .030 .408 .048 .433 .027
.75 .459 .035 .445 .031 .444 .050 .452 .024
.80 .498 .037 .484 .033 .486 .043 .478 .019
.85 .524 .033 .512 .031 .522 .034 .483 .022
.90 .547 .029 .540 .024 .551 .022 .476 .031
.95 .561 .023 .563 .015 .566 .013 .437 .055
.98 .559 .025 .568 .014 .560 .024 .379 .077

400 .70 .434 .024 .428 .020 .417 .037 .436 .018
.75 .461 .025 .451 .022 .457 .034 .455 .015
.80 .501 .027 .490 .025 .498 .025 .478 .013
.85 .529 .024 .520 .022 .531 .020 .484 .014
.90 .553 .018 .549 .016 .555 .011 .478 .021
.95 .567 .015 .570 .009 .572 .007 .437 .039
.98 .561 .018 .570 .011 .564 .016 .370 .059
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Table 6.8: Summary statistics of Youden’s Index on the validation data under Scenario 3.
K: number of strata in the training data; τ : prespecified specificity; Clogit: conditional
logistic regression; ESE: empirical standard error.

K τ
Proposed Direct pAUC Clogit

Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .403 .063 .389 .055 .362 .084 .385 .055
.75 .420 .072 .404 .055 .394 .077 .397 .056
.80 .438 .074 .424 .061 .426 .071 .405 .061
.85 .459 .077 .448 .063 .463 .060 .408 .073
.90 .479 .081 .478 .053 .498 .047 .399 .093
.95 .504 .070 .509 .054 .531 .032 .374 .113
.98 .513 .076 .519 .069 .543 .032 .329 .131

100 .70 .412 .052 .392 .045 .377 .071 .399 .037
.75 .435 .056 .412 .048 .408 .066 .413 .038
.80 .451 .057 .429 .050 .445 .055 .408 .042
.85 .482 .053 .465 .049 .483 .047 .412 .053
.90 .510 .046 .502 .042 .516 .035 .404 .069
.95 .528 .042 .534 .025 .541 .019 .372 .091
.98 .541 .037 .550 .024 .552 .016 .328 .103

200 .70 .411 .036 .394 .028 .386 .050 .402 .024
.75 .440 .039 .419 .034 .423 .046 .417 .025
.80 .465 .041 .444 .040 .459 .042 .417 .031
.85 .498 .038 .482 .036 .493 .033 .421 .038
.90 .525 .030 .517 .026 .528 .022 .412 .052
.95 .544 .025 .545 .016 .553 .011 .371 .073
.98 .547 .027 .555 .014 .554 .018 .316 .089

400 .70 .410 .026 .397 .020 .397 .040 .403 .016
.75 .441 .028 .424 .026 .436 .033 .418 .017
.80 .468 .029 .453 .027 .471 .029 .416 .022
.85 .503 .025 .491 .024 .504 .023 .423 .027
.90 .530 .020 .525 .017 .532 .017 .413 .036
.95 .550 .017 .551 .010 .557 .008 .369 .050
.98 .553 .018 .559 .008 .560 .007 .299 .068
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Table 6.9: Summary statistics of Youden’s Index on the validation data under Scenario 4.
K: number of strata in the training data; τ : prespecified specificity; Clogit: conditional
logistic regression; ESE: empirical standard error.

K τ
Proposed Direct pAUC Clogit

Mean ESE Mean ESE Mean ESE Mean ESE

50 .70 .120 .085 .090 .081 .120 .090 .059 .074
.75 .145 .085 .123 .081 .153 .082 .075 .081
.80 .172 .085 .158 .080 .186 .078 .091 .088
.85 .198 .085 .196 .075 .225 .063 .105 .097
.90 .227 .085 .233 .066 .263 .046 .117 .105
.95 .252 .082 .271 .063 .301 .026 .127 .114
.98 .268 .078 .285 .066 .315 .016 .126 .117

100 .70 .135 .070 .110 .066 .143 .066 .063 .065
.75 .165 .071 .149 .066 .180 .062 .079 .076
.80 .199 .069 .190 .060 .217 .055 .097 .086
.85 .229 .067 .228 .053 .254 .047 .110 .096
.90 .254 .070 .268 .044 .286 .035 .121 .105
.95 .273 .066 .299 .032 .311 .019 .124 .112
.98 .286 .061 .310 .036 .318 .012 .119 .114

200 .70 .144 .050 .123 .047 .149 .043 .067 .060
.75 .180 .051 .166 .047 .186 .040 .083 .073
.80 .217 .048 .210 .039 .223 .035 .103 .084
.85 .249 .046 .248 .035 .258 .028 .119 .096
.90 .272 .052 .284 .027 .293 .022 .130 .106
.95 .290 .054 .313 .014 .319 .011 .132 .114
.98 .294 .049 .318 .018 .324 .010 .124 .116

400 .70 .152 .036 .137 .033 .158 .034 .065 .058
.75 .189 .035 .179 .030 .197 .030 .081 .072
.80 .224 .033 .218 .025 .232 .026 .103 .086
.85 .259 .032 .257 .023 .268 .020 .119 .099
.90 .286 .032 .293 .016 .302 .013 .130 .109
.95 .301 .043 .319 .009 .324 .008 .130 .117
.98 .304 .033 .322 .010 .324 .008 .119 .117
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6.1.6 Simulation Results of the Kernel Smoothing Method

Table 6.10: Simulation results of the kernel smoothing method on training data under
Scenario 1. K: number of strata in the training data; τ : prespecified specificity; Mean:
empirical mean sensitivity; ESE: empirical standard error.

K τ
Proposed

Kernel Kernel Kernel
Ch = 1/5 Ch = 1 Ch = 5

Mean ESE Mean ESE Mean ESE Mean ESE

100 .80 .846 .066 .836 .067 .832 .067 .838 .064
.85 .791 .081 .780 .080 .773 .081 .782 .076
.90 .711 .095 .696 .095 .683 .100 .696 .094
.95 .565 .121 .550 .121 .524 .123 .542 .125
.98 .432 .136 .407 .139 .377 .139 .387 .145

200 .80 .846 .046 .838 .047 .837 .047 .839 .045
.85 .790 .056 .781 .058 .778 .059 .785 .055
.90 .708 .071 .695 .072 .688 .073 .702 .069
.95 .568 .090 .552 .091 .536 .091 .559 .091
.98 .415 .103 .396 .105 .376 .104 .389 .112

400 .80 .844 .029 .839 .030 .839 .030 .839 .028
.85 .787 .037 .780 .038 .778 .039 .784 .035
.90 .700 .049 .693 .048 .686 .051 .699 .048
.95 .554 .064 .542 .064 .531 .066 .551 .065
.98 .396 .075 .383 .076 .370 .073 .381 .083
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6.1.7 Asymptotic Properties

In the following, we prove the consistency of (β̂, ĉ) and Ŝe(β̂, ĉ). Denote the true values

of these parameters as (β̃, c̃) and S̃e(β̃, c̃). For simplicity, we focus on data with one case

in each stratum.

Regularity conditions

We summarize the regularity conditions as follows.

1. Observations are randomly sampled conditional on disease status Y.

2. nD + nD̄ →∞ and nD/nD̄ → λ ∈ (0, 1).

3. The covariate vector X is in a bounded compact set X in Rd.

4. The parameters (β, c) are in the space B × C, where B × C is a compact space in

Rd+1, and B = {β | ‖β‖2 = 1,β ∈ Rd}.

5. At least one component of X is continuous.

6. There exists a constant kr > 0 such that infβ∈B eigmin[J{c̃(β);β}] > kr.

7. sup
β:d(β,β̃)≥ε

M(β) < M(β̃) for every ε > 0.

Proof of consistency

Let X1, . . . ,Xn be a random sample from a probability distribution P on a measurable

space. Given a measurable function f , we define Pf for the expectation Ef(X) =
∫
fdP

and Pnf for the average n−1
∑n

i=1 f(X i).

For simplicity, we scale the weights such that
∑nD

k=1

∑nk
j=2 ŵkj = nD̄. Since the estima-

tion of c given β depends only on the rank of the control data, ĉ is invariant to the scaling.

We define Wn(β, c) = 1
nD̄

∑nD
k=1

∑nk
j=2

{
ŵkjI(βTXkj ≤ c) − τ

}
= Pn

{
ŵkjI(βTXkj ≤

c) − τ

}
=: Pnzβ,c(Xkj), where τ is the prespecified threshold. Define z̃ as the coun-

terpart of z using true weight w̃kj, and W̃n as the counterpart of Wn using z̃. Let
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W (β, c) = EWn(β, c), and ĉ(β) = inf{c : Wn(β, c) ≥ 0}. By regularity conditions (C5),

for any given β, Wn{β, c(β)} is monotone in c with a jump size that converges to 0. So,

Wn{β, ĉ(β)} p→ 0. (6.3)

By regularity conditions, |βTx| < Cβ|x| for Cβ = supβ∈B |β|, the class of functions x 7→

βTx is therefore Glivenko-Cantelli. For any c ∈ C, the class of functions s 7→ I(s ≤ c)

is monotone and is in the Glivenko-Cantelli class by Theorem 2.7.5 in Van Der Vaart

and Wellner (1996). By the permanence properties of Glivenko-Cantelli classes (Van

Der Vaart and Wellner, 1996, Section 2.6.5), the class of functions x 7→ I(βTx ≤ c)

is in the Glivenko-Cantelli class. It follows that z̃β,c is in the Glivenko-Cantelli class.

Applying the property of Glivenko-Cantelli class (Van der Vaart, 2000, page 269), we

have the uniform convergence sup
β
|W̃n(β, c) − W (β, c)| = op(1), for any given c. Since

maxkj |ŵkj − w̃kj| = Op(n
1/2), we conclude that

sup
β
|Wn(β, c)−W (β, c)| = op(1), for any given c. (6.4)

Combining (6.3) and (6.4), we have

sup
β
|W{β, ĉ(β)} −W{β, c̃(β)}| = sup

β
|W{β, ĉ(β)}|

= sup
β
|W{β, ĉ(β)} −Wn{β, ĉ(β)}+Wn{β, ĉ(β)}|

≤ sup
β
|W{β, ĉ(β)} −Wn{β, ĉ(β)}|+ sup

β
|Wn{β, ĉ(β)}|

= op(1). (6.5)

By Taylor expansion of W{β, ĉ(β)} around c̃(β) and combining with the boundedness

of J−1(c̃;β) in condition (C6), we immediately have

sup
β
|ĉ(β)− c̃(β)| p→ 0. (6.6)

84



Next, we define the random function

Mn(β) =
1

nD

nD∑
k=1

log
1{βTXk1 > c̃(β)}

∏nk
i=2 1{β

TXki ≤ c̃(β)}∑nk
l=1 1{β

TXkl > c̃(β)}
∏nk

j=1,j 6=l 1{β
TXkj ≤ c̃(β)}

(6.7)

=: Pnmβ,c̃(β){Xk1, . . . ,Xknk}. (6.8)

Let M = EMn = Pm denote the expectation of the random function. By the similar

arguments to the proof for (6.4) , we may conclude

sup
β
|Mn(β)−M(β)| p→ 0, (6.9)

Define M̂n as the counterpart ofMn with c̃ being replaced with ĉ. Since β̂ is the maximizer

of M̂n(β), we get

M̂n(β̂)− M̂n(β̃) ≥ 0. (6.10)

Following the consistency of ĉ to c̃ in (6.6), we have

M̂n(β̃)−Mn(β̃)
p→ 0 and M̂n(β̂)−Mn(β̂)

p→ 0. (6.11)

The combination of (6.10) and (6.11) thus gives Mn(β̂)−Mn(β̃) = {Mn(β̂)− M̂n(β̂)}+

{M̂n(β̂)− M̂n(β̃)}+ {M̂n(β̃)−Mn(β̃)} ≥ −op(1). That is,

Mn(β̂) ≥Mn(β̃)− op(1). (6.12)

It follows from (6.9), (C7), (6.12) and Theorem 5.7 by Van der Vaart (2000) that

β̂
p→ β̃. (6.13)

Last, we write Ŝe(β̂, ĉ) − S̃e(β̃, c̃) = {Ŝe(β̂, ĉ) − S̃e(β̂, ĉ)} + {S̃e(β̂, ĉ) − S̃e(β̃, c̃)},

where S̃e denotes the true sensitivity, which is a probability. The law of large numbers
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and the continuous mapping theorem then yield

Ŝe(β̂, ĉ)
p→ S̃e(β̃, c̃). (6.14)

6.2 Appendix for Aim 2

6.2.1 Simulation results under Scenario 4

Simulation results under Scenario 4 were summarized in Table 6.11 and Figure 6.1.
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Figure 6.1: Estimated risk functions under the NCC design under Scenario 4.

6.2.2 Asymptotic Proofs

Regularity conditions

Denote the parameters ξ = (βββ, π). We summarize the regularity conditions as follows.

1. The covariate vector X is in a bounded compact set X in Rp.

2. The parameters ξ are in the space Θ = B × P , where B is a compact space in Rp

and P is a space of monotonic nondecreasing functions of bounded variation.

3. The true value βββ0 is in the interior of the set B. The true curve π0(·) is continuously

Fréchet differentiable on K, where K = [η1, η2] is the support of βββTX, βββ ∈ B, and

X ∈ X .
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Due to identifiability constraint, we restrict that B = {βββ | ‖βββ‖2 = 1,βββ ∈ Rp}; partic-

ularly, we treat (β2, · · · , βp) as unknown parameters and β1 as a function of (β2, · · · , βp).

Without loss of generality, we let S(X;βββ) = βββTX throughout the proof, and the re-

sults can be easily extended to other forms of scoring. Let U1, . . . , Un be a random

sample from a probability distribution P on a measurable space. Given a measurable

function f , we define Pnf = n−1
∑n

i=1 f(Ui), Pf =
∫
fdP , and Gn =

√
n(Pn − P )f =

n−1
∑n

i=1 {f(Ui)− Pf}.(van der Vaart and Wellner, 1996) The weighted log-likelihood

function for a single subject with data Di = (Xi, Yi) is

lξ(Di) = ŵi[Yi log{π(βββTXi)}+ (1− Yi) log{1− π(βββTXi)}].

The estimator ξ̂n = (β̂ββn, π̂n) maximizes the weighted log-likelihood function n−1
∑n

i=1 lξ(Di).

Proof of consistency

Define a metric ‖·‖ on the parameter space Θ by ‖ξ1 − ξ2‖2 = ‖βββ1 − βββ2‖2
2 + ‖π1 − π2‖2,

where ‖·‖2 is the Euclidean metric on a finite dimensional space, and ‖π‖2 =
∫ η2

η1
π(u)2du.

The consistency of ξ̂n can be proven by verifying the conditions in Theorem 5.7 for M-

estimators.(Van der Vaart, 2000)

Given a known sampling weight, the likelihood function of the observed data from a

single subject, denoted as d = (x, y), can be written as

pξ(d) = {π(βββTx)}wy{1− π(βββTx)}w(1−y).

Also write p̂ξ(d) as the estimated counterpart of pξ(d), obtained by replacing the true

weight w with ŵ. We consider the following class of functions that is related to Kullback-

Leibler information,

mξ(d) = log

{
pξ(d) + p0(d)

2p0(d)

}
, (6.15)

where p0(d) = pξ0(d). Note that the function mξ(d) −mξ0(d) is bounded from below,

mξ(d)−mξ0(d)≥− log 2, which is necessary for being the Glivenko-Cantelli class. Define
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Mn(ξ) = Pnm̂ξ, M̃n(ξ) = Pnmξ, and M(ξ) = EM̃n, where m̂ξ = log {(p̂ξ + p̂0)/(2p̂0)}.

We first show the uniform convergence of M̃n(ξ) to M(ξ) using the permanence

properties of the Glivenko-Cantelli class (Section 2.6.5 of van der Vaart and Wellner

(1996)) . We partition the likelihood into two parts according to the values of Y ({0, 1}).

We then show that the following two classes of functions are P-Glivenko-Cantelli:

F1 =
{
{π(βββTX)}w : βββ ∈ B, π ∈ P

}
; (6.16)

F2 =
{
{1− π(βββTX)}w : βββ ∈ B, π ∈ P

}
. (6.17)

Given these results, the density function {pξ(d) : βββ ∈ B, π ∈ P} is also Glivenko-Cantelli.

By regularity conditions, |βββTx| < Cβββ|x| for Cβββ = supβββ∈B |βββ|, the class of functions

x 7→ βββTx is therefore Glivenko-Cantelli. The class of functions s 7→ π(s)1(s ∈ K) is in

the Glivenko-Cantelli class by Theorem 2.7.5 in van der Vaart and Wellner (1996). By the

permanence properties of Glivenko-Cantelli classes, the class of functions x 7→ π(βTx)w

is Glivenko-Cantelli. It follows that the classes of functions F1,F2 are all Glivenko-

Cantelli. By the regularity conditions, we have that p0(d) is bounded away from zero,

and P{p−1
0 (D)} < ∞. Finally, the following class of functions is Glivenko-Cantelli as

its envelope function is bounded,
{

log{(pξ + p0)/2p0} : ξ ∈ Θ
}
. Then we can apply the

property of the Glivenko-Cantelli class to show that sup
ξ∈Θ
|M̃n(ξ) −M(ξ)| = sup

ξ∈Θ
|Pnmξ −

Pmξ|
p−→ 0.

Next, we verify the uniform convergence of |Mn(ξ) − M̃n(ξ)| to 0. Without loss of

generality, we let ŵi be the weight under the NCC design. The results can be easily

extended to the case-cohort design. Given the asymptotic behavior of the product limit

estimator (Andersen and Gill, 1982), sup
t
|Ĝ(t)−G(t)| = Op(N

− 1
2 ), and we have maxi |ŵi−

wi| = Op(N
− 1

2 ). It follows that

p̂0

p0

=
πŵy0 (1− π0)ŵ(1−y)

πwy0 (1− π0)w(1−y)
= π

(ŵ−w)y
0 (1− π0)(ŵ−w)(1−y) p−→ 1. (6.18)
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Therefore, p̂0 − p0
p−→ 0 and log(p̂0/p0)

p−→ 0. Similarly, p̂ξ/pξ
p−→ 1, p̂ξ − pξ

p−→ 0, and

log(p̂ξ − pξ + p̂0 − p0 + pξ + p0)
p−→ log(pξ + p0). Combing these results, we have that

Mn(ξ)− M̃n(ξ) = Pnm̂ξ − Pnmξ =
1

n

n∑
i=1

{
m̂ξ(di)−mξ(di)

}
=

1

n

n∑
i=1

(
log {p̂ξ(di) + p̂0(di)} − log {pξ(di) + p0(di)} − [log{p̂0(di)} − log{p0(di)}]

)
=

1

n

n∑
i=1

{
log(p̂ξ − pξ + p̂0 − p0 + pξ + p0)− log(pξ + p0)− log(p̂0/p0)

}
p−→ 0. (6.19)

Therefore, we have

sup
ξ∈Θ
|Mn(ξ)−M(ξ)| ≤ sup

ξ∈Θ
|Mn(ξ)− M̃n(ξ)|+ sup

ξ∈Θ
|M̃n(ξ)−M(ξ)| p−→ 0. (6.20)

Next, by the concavity of the logarithm and the definition of ξ̂n, we have

Pn log

(
p̂ξ̂n + p̂0

2

)
≥ 1

2
Pn(log p̂ξ̂n + log p̂0) ≥ Pn log p̂0.

Hence,

Mn(ξ̂n) = Pnm̂ξ̂n
≥ Pnm̂ξ0 = Mn(ξ0). (6.21)

In addition, the true value ξ0 is always the maximum point of Pmξ as by Jensen’s

inequality,

M(ξ) = P log

(
pξ + p0

2p0

)
≤ logP

(
p0 + p0

2p0

)
= M(ξ0) = 0, (6.22)

and the equality sign can be achieved only when pξ = p0. Thus, supξ:d(ξ,ξ0)≥εM(ξ) <

M(ξ0) is confirmed. Combining Equations (6.20), (6.21), (6.22), and Theorem 5.7 of

Van der Vaart (2000), we have ‖ξ̂n − ξ0‖ → 0 in probability as n → ∞. As the model

is identifiable on the parameter set Θ, we conclude that β̂ββn
p−→ βββ0, and π̂n(s)

p−→ π0(s)

uniformly in s.
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Proof of convergence rate

We first derive the convergence rate of ξ̃n, which is the counterpart of ξ̂n with known

weights using Theorem 8.1 in van der Vaart (2002) (equivalently, Theorem 3.4.4 in van der

Vaart and Wellner (1996)). Consider the class of functions defined in (6.15), Mδ =

{mξ −mξ0 : ‖ξ − ξ0‖ < δ}. The first condition of Theorem 8.1 in van der Vaart (2002)

is satisfied under the Hellinger distance (Lemma 4.2 of van de Geer (2000)),

E(mξ −mξ0) = E log

(
pξ + p0

2p0

)
≤ −h2{(pξ + p0)/2, p0} . −h2(pξ, p0),

where the Hellinger distance h is defined in Section 3.3 and x . y is a shorthand of

x ≤ K0y for a constant K0. Here the first inequality is by the connection of the Kullback-

Leibler divergence to the Hellinger distance. The second inequality follows from the fact

that the Hellinger distance between any pair of densities f1 and f2 is equivalent to the

Hellinger distance between f1 and (f1 + f2)/2 (page 328 of van der Vaart and Wellner

(1996)).

Lemma 8.6 of van der Vaart (2002) shows that the bracketing entropy of the class of

functions Mδ can be shown to be of order 1/ε, which implies

J[ ](δ,F , L2) =

∫ δ

0

√
K1ε−1dε . δ1/2,

where K1 is a constant. Together with Lemma 8.2 of van der Vaart (2002), we have

E sup
f∈Mδ

|Gnf | . δ1/2

(
1 +

δ1/2

δ2
√
n

)
= δ1/2 +

1

δ
√
n
.

Plugging in φn(δ) =
√
δ + 1/(δ

√
n) and δn = n−1/3 in Theorem 8.1 of van der Vaart

(2002), we have
φn(δn)

δ2
n

= δ−3/2
n +

δ−3
n√
n

= 2
√
n.

Then the rest of the conditions in Theorem 8.1 of van der Vaart (2002) are satisfied,
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confirming the convergence rate is n−1/3 for ξ̃n. Combined with the asymptotic normality

of ŵi, we can show the convergence rate of ξ̂n is n−1/3 in the Hellinger distance.

Next, we follow the efficient score method by Bickel et al. (1993) to obtain the informa-

tion bound of βββ given known weights. Note that model (3.1) belongs to the type II semi-

parametric regression model in Section 4.3 of Bickel et al. (1993). Let π̇(s) = dπ(s)/ds.

By Proposition 4.3.2 of Bickel et al. (1993), ṙ(X|βββ, π) = ∂π(βββTX)/∂βββ = π̇(βββTX)X, and

İ(D|βββ, π) = ∂lξ(D)/∂π|π=π(βββTX) = w{Y − π(βββTX)}/[π(βββTX){1− π(βββTX)}]. Denote

B0 as the sigma field generated by π(βββTX). Then the efficient score function of βββ takes

the form I∗(D) = r̃İ(D|βββ, π), where r̃ = ṙ(X|βββ, π)−Eβββ0,π0(ṙ(X|βββ, π)İ2(D|βββ, π)|B0)/I(X),

and I(X) = Eβββ0,π0{İ2(D|βββ, π)|B0}. It follows that the information bound for βββ is

Ω = Eβββ0,π0{I∗I∗T}.

Last, following Liu and Qin (2018), we establish the asymptotic normality of β̂ββn

by treating the monotone function π(·) as a nuisance parameter. We first establish

the asymptotic normality of β̃ββn which is the counterpart of β̂ββn with known weights by

verifying the conditions in Theorem 6.20 of van der Vaart (2002). To verify the no-bias

condition, we can follow the steps in Section 9.3 of van der Vaart (2002). Let ψβββ,π be

the score function which is an approximation of the efficient score function I∗ by using a

least favorable submodel. Then we can verify the no-bias condition,

|Pβββ0,π0ψβββ0,π̂n| .
∫ η2

η1

|π̂n − π0|2(s)ds = Op(n
−2/3).

Note that the class of functions x 7→ βββTx belong to the Donsker class by Lemma 6.11

in van der Vaart (2002), and the functions s 7→ π(s) belongs to the Donsker class by

Theorem 2.7.5 in van der Vaart and Wellner (1996). It follows that the functions x 7→ ψβββ,π

belongs to the Donsker class by the permanence of the Donsker property (van der Vaart

and Wellner (1996), Section 2.10). Therefore the Donsker condition is verified. Hence, by

Theorem 6.20 of van der Vaart (2002), β̃ββn is asymptotically normal with a convergence

rate of
√
n. Combining this result with the normality of the estimated weights, we have

the asymptotic normality of β̂ββn.
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6.3 Appendix for Aim 3

Table 6.12: Simulation results for Scenario 1-3: estimated area under the ROC curve
and difference in restricted mean survival time between low-risk and high-risk groups es-
timated using the proposed method, the Cox model with time-varying covariates (COX),
the Cox model with time-varying covariates and coefficients (VCOX), the partly condi-
tional cox model (PC), and the partly conditional cox model with time-varying coefficients
(VPC) on validation data. Number of replicates was 1000, n = 400.

Scenario s w Proposed COX VCOX PC VPC
Mean SD Mean SD Mean SD Mean SD Mean SD

1 AUCs,w 0 0.6 .824 .021 .793 .027 .783 .084 .735 .039 .824 .021
0 1.2 .820 .021 .790 .027 .779 .082 .732 .039 .820 .021

1.2 0.6 .642 .145 .603 .146 .565 .147 .631 .146 .644 .146
1.2 1.2 .663 .088 .621 .091 .579 .095 .652 .088 .667 .088
2.4 0.6 .724 .104 .662 .111 .716 .106 .702 .108 .724 .104
2.4 1.2 .754 .069 .683 .077 .746 .073 .729 .073 .756 .068

RMSTdiff 0 1.994 .189 1.797 .227 1.721 .544 1.357 .287 1.996 .191
1.2 .740 .204 .543 .215 .344 .240 .685 .204 .754 .205
2.4 .640 .154 .462 .163 .620 .158 .576 .157 .646 .153

2 AUCs,w 0 0.6 .730 .026 .672 .035 .589 .123 .643 .042 .727 .027
0 1.2 .793 .027 .734 .038 .612 .160 .701 .048 .790 .028

1.2 0.6 .807 .040 .795 .043 .799 .043 .796 .044 .787 .048
1.2 1.2 .859 .038 .843 .043 .848 .042 .846 .043 .837 .047
2.4 0.6 .866 .054 .799 .087 .794 .090 .822 .079 .775 .105
2.4 1.2 .893 .051 .816 .086 .812 .089 .843 .076 .791 .102

RMSTdiff 0 .953 .110 .824 .119 .420 .601 .742 .146 .946 .110
1.2 1.365 .173 1.301 .180 1.324 .185 1.316 .185 1.282 .202
2.4 .945 .151 .720 .232 .705 .250 .794 .220 .652 .275

3 AUCs,w 0 0.6 .796 .023 .795 .023 .666 .159 .795 .023 .795 .023
0 1.2 .816 .025 .815 .025 .677 .171 .815 .025 .816 .025

1.2 0.6 .834 .038 .829 .039 .821 .042 .828 .040 .824 .041
1.2 1.2 .895 .034 .888 .037 .879 .041 .887 .038 .881 .040
2.4 0.6 .889 .051 .867 .063 .826 .089 .863 .066 .840 .083
2.4 1.2 .926 .042 .898 .060 .850 .095 .894 .062 .868 .084

RMSTdiff 0 1.076 .105 1.075 .105 .581 .574 1.074 .104 1.076 .104
1.2 1.308 .174 1.284 .176 1.257 .183 1.280 .175 1.266 .181
2.4 .872 .129 .800 .167 .681 .227 .787 .171 .722 .212
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Table 6.13: Simulation results for Scenario 1-3 when measurements were irregular: esti-
mated area under the ROC curve and difference in restricted mean survival time between
low-risk and high-risk groups estimated using the proposed method, the Cox model with
time-varying covariates (COX), the Cox model with time-varying covariates and coeffi-
cients (VCOX), the partly conditional cox model (PC), and the partly conditional cox
model with time-varying coefficients (VPC) on validation data. Number of replicates was
1000, n = 400.

Scenario s w Proposed COX VCOX PC VPC
Mean SD Mean SD Mean SD Mean SD Mean SD

1 AUCs,w 0 0.6 .825 .021 .792 .028 .746 .130 .734 .038 .824 .021
0 1.2 .820 .021 .788 .028 .742 .129 .731 .038 .820 .021

1.2 0.6 .650 .144 .615 .154 .570 .158 .639 .150 .643 .147
1.2 1.2 .670 .090 .631 .095 .581 .102 .659 .094 .664 .092
2.4 0.6 .735 .103 .673 .112 .729 .108 .712 .109 .737 .104
2.4 1.2 .753 .066 .687 .075 .747 .070 .729 .072 .756 .066

RMSTdiff 0 2.003 .194 1.791 .230 1.483 .837 1.356 .279 2.005 .193
1.2 .745 .195 .562 .206 .346 .266 .691 .204 .712 .202
2.4 .644 .151 .473 .161 .625 .153 .578 .159 .649 .149

2 AUCs,w 0 0.6 .730 .025 .679 .034 .579 .126 .645 .043 .727 .026
0 1.2 .794 .027 .743 .036 .601 .162 .704 .049 .791 .028

1.2 0.6 .801 .042 .792 .046 .795 .045 .794 .047 .785 .050
1.2 1.2 .851 .041 .839 .047 .844 .045 .844 .045 .836 .049
2.4 0.6 .860 .056 .783 .091 .798 .087 .817 .081 .772 .102
2.4 1.2 .886 .052 .795 .092 .816 .087 .836 .083 .789 .105

RMSTdiff 0 .958 .111 .844 .120 .379 .608 .750 .149 .952 .111
1.2 1.331 .176 1.283 .199 1.307 .193 1.312 .195 1.278 .206
2.4 .926 .160 .665 .240 .716 .248 .775 .230 .649 .283

3 AUCs,w 0 0.6 .796 .022 .795 .022 .658 .163 .795 .022 .795 .022
0 1.2 .817 .025 .816 .025 .668 .176 .816 .025 .817 .025

1.2 0.6 .833 .036 .830 .038 .820 .043 .828 .039 .824 .040
1.2 1.2 .893 .033 .889 .035 .876 .043 .887 .036 .881 .039
2.4 0.6 .887 .051 .866 .063 .826 .091 .863 .065 .837 .085
2.4 1.2 .922 .042 .898 .059 .851 .095 .894 .063 .864 .084

RMSTdiff 0 1.080 .100 1.078 .098 .557 .592 1.077 .099 1.079 .099
1.2 1.304 .158 1.293 .162 1.255 .176 1.287 .163 1.270 .167
2.4 .863 .135 .798 .169 .685 .230 .785 .178 .713 .218

Table 6.14: summary of number of visits in each simulation scenario.

Scenario Median Min Max
1 2 1 10
2 2 1 10
3 2 1 11
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