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Novel Tools and Methods

RatHat: A Self-Targeting Printable Brain Implant
System
Leila M. Allen,1,ª Maanasa Jayachandran,1,ª Tatiana D. Viena,1 Meifung Su,1 Bruce L. McNaughton,2 and
Timothy A. Allen1,3
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1Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199,
2Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, and 3Department of
Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University, Miami, FL
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Visual Abstract

There has not been a major change in how neuroscientists approach stereotaxic methods in decades. Here,
we present a new stereotaxic method that provides an alternative approach to a traditional u-frame stereotaxic
device and reduces costs, surgical time, and aids repeatability. The RatHat brain implantation system is a 3D-
printable stereotaxic device for rats that is fabricated prior to surgery and fits to the shape of the skull. RatHat
builds are directly implanted into the brain without the need for head-leveling or coordinate-mapping during
surgery. The RatHat can be used in conjunction with the traditional u-frame stereotaxic device, but does not
require the use of a micromanipulator for successful implantations. Each RatHat contains several primary com-
ponents including the implant for mounting intracranial components, the surgical stencil for targeting drill sites,
and the protective cap for preventing damage from impacts and debris. Each component serves a unique
function and can be used together or separately. We demonstrate the feasibility of the RatHat in four different
proof-of-principle experiments: (1) a three-pole cannula apparatus, (2) an optrode-electrode assembly, (3) a
fixed-electrode array, and (4) a tetrode hyperdrive. Implants were successful, durable, and long-lasting (up to
ninemonths). RatHat print files are easily created, can be modified in computer aided design (CAD) software
for a variety of applications, and are easily shared, contributing to open science goals and replications. The
RatHat has been adapted to multiple experimental paradigms in our lab and should be a useful new way to
conduct stereotaxic implant surgeries in rodents.

Key words: cannula; electrodes; optrodes; neurosurgery; rodent surgery; stereotaxic; tetrodes
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Introduction
Rodent neurosurgery is challenging to master, especially

for surgeries involving multiple target sites. Long surgeries
cause surgeon fatigue and distress in animals, affecting re-
covery time and surgical outcomes (Hoogstraten-Miller
and Brown, 2008; Pritchett-Corning et al., 2011; Ferry et
al., 2014; Fox, et al., 2015). With the increased emphasis
on circuit analysis and multiple targets (e.g., DREADDs and
optogenetics), opportunities for positioning errors are in-
creased (Jorgenson et al., 2015; Bassett and Sporns,
2017; Jayachandran et al., 2019).
Typically, brain implants are placed using a u-framed

stereotaxic apparatus in which the rat’s head is stabilized
with ear and tooth bars, putting the rat into 3D atlas space
(Paxinos and Watson, 2013). Micromanipulators allow im-
plants to be precisely moved in xyz coordinate planes.
However, this setup can introduce unrecoverable user er-
rors that go unnoticed. For example, while surgeons are
trained to level the head in the anterior/posterior (A/P)
plane, many fail to level in the medial/lateral (M/L) plane
yielding asymmetrical implants/injections that unnecessa-
rily increase the number of animals needed (Fornari et al.,
2012; JoVE Science Education Database, 2019). Notably,
there has not been a major change in how neuroscientists
approach stereotaxic methods in decades.
As a practical issue, a standard u-frame surgical appa-

ratus can range from $5000 to $50,000 (or more with ad-
dition of specialty add-ons), costing research labs a
considerable portion of their budgets and presenting a
bar-to-entry for less well-funded laboratories. In relation,

an adequate high-resolution 3D printer currently costs
around $3k new (e.g., 3D Systems, FabPro 1000), and
many universities and institutions have shared printers
which can be used for a nominal materials fee (e.g., $10/h
at Florida International University).
Here, we introduce a customizable, fully integrated 3D-

printable stereotaxic brain implant system called RatHat
that is freely available to academic researchers (Allen et
al., 2017, 2019a). The RatHat can be used in conjunction
with, or as an alternative to the u-framed stereotaxic ap-
paratus for methods requiring atlas-based positioning. A
key feature is that the system self-aligns to atlas space
because it fits the skull, eliminating the need for microma-
nipulator measurements and head leveling.
The RatHat has reduced costs in our lab compared with

commercially-available equivalents, and has reduced sur-
gery time (Table 1). It is customizable for a variety of surgi-
cal applications through computer aided design (CAD)
modifications prior to surgery (e.g., Autodesk, Blender,
etc.). RatHat files are easily shared over the Internet and
archived for later use with versioning (aiding new experi-
ments and replications). Printouts are considerably less
expensive than similar commercial products while provid-
ing a larger range of possibilities (Table 1).
RatHat applications have been adopted for a variety of

experimental needs. Here, we demonstrate the use of
RatHat in four experimental applications: multisite chronic
cannula, multisite optrode-electrode implants, a micro-
wire microarray, and a tetrode hyperdrive.
RatHat is freely available to academic researchers,

achieving open science goals. Academic researchers in-
terested in receiving the 3D files can contact Dr. Timothy
A. Allen. We will first provide you a license to be executed
by your institution, and on completion, 3D files of the im-
plant system.

Materials and Methods
RatHat components were printed using the 3DSystems

ProJet1200, a high-resolution (56-mm xy, 30-mm layer
thickness) 3D printer that uses microstereolithography
(laser polymerization of resin and UV light-curing), but any
high-resolution 3D printer is suitable. With ProJet1200
prints, we use VisiJet FTXGreen resin, a UV-curable and
biocompatible plastic composition used in castings be-
cause it is durable, with a tensile strength of 30 MPa (or
4351 PSI). After devices are printed, we ensure holes are
clear of debris or resin by thoroughly cleaning prints with
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Significance Statement

We demonstrate a new approach to rodent stereotaxic surgery. Rodent neurosurgery is a complex skill that
requires expensive equipment for head stabilization and micromanipulators for localization. The RatHat is a
3D-printable brain implant system that reduces costs and time using pre-mapped and printed surgical files.
A surgical stencil allows for quick placement of drill holes, and a RatHat places components in the brain
using atlas coordinates. The RatHat is an easily shared resource facilitating open science goals for replica-
tions and the archiving of specific experimental applications.
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multiple dips in 70% isopropyl alcohol and clearing holes
with pressurized air. Non-printable components such as
wires or tubing are secured to the implant device prior to
surgery with cyanoacrylate (Zap CA1, Super Glue
Corporation) followed by a quick-cure spray (Zip Kicker,
Super Glue Corporation). Another advantage of the
RatHat is that components are easily assembled using
build-specific 3D-printable assembly bases/jigs. All im-
plants are sterilized with 70% ethanol before surgical im-
plantation and a gas sterilizer (ethylene oxide).
Autoclaving is not recommended.

Components: RatHat implant, surgical stencil,
protective cap, and implant jig
Several components are common to all designs. The

RatHat is a stable and secure housing apparatus for long-
term neurosurgical implants. It is secured to the skull with
anchor screws and dental cement. The RatHat underside
contains horizontal channels for dental cement designed
to optimize long-term adhesion to the skull and anchor
screws (up to ninemonths in our experiments). Identifying
information about the animal/experiment can be included
on the print as well.
The surgical stencil contains all alignment and drill

holes for the target sites needed in the surgery and was
designed to facilitate rapid and accurate drilling of implan-
tation and/or infusion sites matching the RatHat implant
base. The surgical stencil is a transformative device for
any surgeon to rapidly and cleanly introduce holes or cra-
niotomies. It is easy to print and uses relatively small
amounts of resin, so multiple copies can be used for a sin-
gle surgery in case a back-up is needed. This also helps
with making straight and unbiased holes during free-
handed drilling.
The protective cap safeguards other RatHat compo-

nents (e.g., cannula, dummies, electrodes, drives, etc.)
from dust, debris, and impacts. It mounts on the RatHat
implant sidewalls and is secured with a screw. The walls

and the protective cap are outfitted with screw-holes for
alignment on all sides to accommodate both left-handed
and right-handed surgeons. The protective cap can be
printed with individualized lab insignia and/or animal
names for identification. Protective caps can be easily re-
placed with a reprint.
The jig serves to model the brain space and allows for

precise placement and securing of implant components
such as cannula tubes in the RatHat prior to surgery. In
order to prepare RatHat cannula implants for surgery, the
cured and cleaned 3D print is placed inside the jig. Next,
pre-measured and cut stainless-steel tubes (27 gauge,
Component Supply Company) are placed into the RatHat
through corresponding holes in the jig. The D/V depths of
the cannula are dictated by CAD-measured ledges
printed within the jig. This reduces fabrication time and
more importantly, measurement errors. Once the stain-
less-steel cannulae are secured to the RatHat, the device
can be implanted in the brain without the need for coordi-
nate mapping during surgery. In this way, the jig replaces
the dorsoventral (D/V) component of a stereotax micro-
manipulator arm, allowing for hand implants (no u-framed
stereotaxic device) if comfortable doing so.

Animals and general surgical methods
Subjects were Long–Evans rats that weighed 250–275 g

on arrival (n=26, 2 females). All rats included were used in
other primary experiments. Rats were individually housed
in clear polycarbonate cages to ensure implants were pro-
tected from damage by cage-mates. Rats were maintained
on a 12/12 h light/dark cycle (lights off at 10:00 A.M.).
Naïve rats were briefly handled for 3–5d after arrival.
Access to food and water was unrestricted before surgery.
All surgical and behavioral methods were in compliance
with the Florida International University Institutional Animal
Care and Use Committee (IACUC) and Institutional
Biosafety Committee (IBC).

Table 1: Time and cost of using RatHat

Sample time and cost for using RatHata

Cannula RatHat Optrode RatHat Single wire RatHat Tetrode RatHat
Print time (in-house)b 2 h 4 h 2 h 3 h 30 min
Materials (not including glue) 3D prints, cannula, sand

paper,c dummy cannula
3D print, EIB,c

stainless-steel
wire, gold pins,
optrode

3D print, EIB,c

stainless-steel
wire, gold pins

3D print, EIB,c

gold pins,
tetrode screws,c

support rods,c

tetrodes
Assembly time 15 min 50 min 1 h 30 min 8 h
Surgery time 1 h 30 min 2 h 20 min 2 h 2 h 30 min
Cost of printing in-house $1.25 $4.50 $3.25 $6.25
Cost of university printing ($10/h) $20.00 $40.00 $20.00 $35.00
Cost of 3D printing service $35.66 $44.92 $35.29 $32.15
Cost of other materials $2.23 $163.82 $153.40 $266.70
Equivalent quoted commercial cost $81.00 (3 individual can-

nula) $161.66 (bilateral
cannula setup plus one
individual cannula)

No equivalent
commercial
product
available

$330.00 $1,870.00 (assem-
bly required and
does not include
tetrodes)

a Times and costs listed are an approximation from data obtained in our lab (http://allenlab.fiu.edu/).
b Print times are the sum of printing all necessary parts.
c Reusable material.
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Surgically implanting the RatHat follows basic techni-
ques for intracranial survival surgery (Fig. 1). Briefly, gen-
eral anesthesia was induced (5%) and maintained by
isoflurane (1–2.5%) mixed with oxygen (800 ml/min). Rats
were placed in a stereotaxic apparatus in the sterile surgi-
cal field for stabilization with ear-bars and tooth-bars
(although RatHat surgeries can be performed without
bars). Rats were administered glycopyrrulate (0.2mg/ml,
0.5mg/kg, s.c.) and 5 ml Ringer’s solution with 5% dex-
trose (subcutaneously) for hydration. Temperature was
monitored with a rectal thermometer and maintained with-
in 61C° of baseline with a heating pad. The skull was ex-
posed following a midline incision or fish-eye cut (Fig. 1A).
The periosteum was detached from the skull using cot-
ton-tipped applicators (Puritan Medical Products) and
clamped with hemostats to expose the width of the skull
up to the lateral ridges (and 2 mm beyond the ridges when
accessing more lateral structures) and 3–4 mm in length
(A/P) beyond bregma and lambda. Score marks were
made on the skull using the scalpel blade for dental ce-
ment adhesion.
The surgical stencil was aligned to bregma and lambda

using landmark holes that are surrounded by crosshairs
to facilitate visualization and placement (Fig. 1B). The
stencil was secured to the skull using cyanoacrylate (Zap
CA1, Super Glue Corporation) followed by a quick-cure

spray (Zip Kicker, Super Glue Corporation). Drill holes
were made in appropriate regions according to the specif-
ic RatHat build using a drill (OmniDrill 3S, World
Precision Instruments). Dura mater was ruptured at the
implant sites using a 32-Gauge needle. The stencil was
removed using a scalpel blade or a spatula and dis-
carded. Excess cyanoacrylate was scraped off the
skull to clear debris that could interfere with placement
of the RatHat implant. The skull was thoroughly
cleaned with sterile saline or hydrogen peroxide (avoid-
ing contact with soft tissue) to ensure successful long-
term adherence of the RatHat. Next, titanium anchor
screws were secured (Fig. 1C). The RatHat was aligned
to drill holes and carefully lowered into place using a
micromanipulator arm or by hand fitting it flush with the
skull. Dental cement was applied in layers to secure the
base to the anchor screws and skull using a wooden
applicator tip, a syringe, or a paint brush (saturated in
the curing liquid and then used to pick up dry powder
which polymerized into the cement and facilitated a
smooth and well-anchored implant free of jagged
edges). The inside of the implant was filled with dental
cement to further stabilize components. The protective
cap was secured onto the wall of the RatHat using a
small screw. The posterior incision was sutured if nec-
essary, rats were administered an analgesic (flunixin,
50mg/ml, 2.5mg/kg, s.c.), and topical antibiotic

Figure 1. RatHat surgical procedures. A, Prep: i, Prepare the skin for incision. ii, Make the incision. iii, Clean skull and expose breg-
ma and lamda. iv, Mark bregma and lamda and secure clamps to periosteum as needed. B, Drill: i, Place the stencil on the skull and
align holes to bregma and lamda, indicated by white arrows. ii, Glue the stencil to the skull using cyanoacrylate and a quick-cure
spray. iii, Drill holes according to the stencil. iv, Holes for skull screws and RE and PER cannula shown (white circles indicate drill
sites for both cannula and skull screws). C, Implant: i, Insert skull screws (white circles indicate inserted skull screws). ii, Manual
placement of the preassembled cannula RatHat implant base. iii, Dental cement RatHat to the skull and insert dummies (asterisks
indicate location of cannula poles). iv, Place the protective cap and secure with a screw. For surgical procedure also see https://
youtu.be/W9zV6lIoIus. RE, nucleus reuniens of the thalamus; PER, perirhinal cortex.
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Figure 2. Three-pole cannula RatHat. A, Full RatHat cannula assembly on the skull. B, Rat skull in different orientations. C,
Protective cap shown in different orientations. D, RatHat implant base with preassembled cannula. E, The jig is used to assemble
the cannula tubes into the RatHat implant prior to surgery. F, The stencil contains reference marks for bregma and lamda to align to
the skull; once adhered, all drill marks are properly placed for cannula access points and anchor screws, saving time. The stencil is
removed and discarded after drill holes are made. G, The cannula RatHat sitting on top of the jig. The star indicates where the can-
nula stops in order to glue the cannula directly to the RatHat or glue the depth stop to the cannula at the correct DV. i, Anchor
screw holes are large so they do not obstruct the RatHat’s fit-to-skull. ii, Dental cement application holes. iii, The depth stop on the
angled cannula allows to place the cannula by hand after the implant base is secured on the skull, while ensuring it descends to the
correct DV. iv, Channels on the underside of the RatHat increase surface area, facilitating dental cement adhesion to ensure a
strong long-term bond between the RatHat Implant and skull. H, i, The RatHat assembly (including bilateral PER cannula) is lowered
onto the skull first. ii, Then the RE cannula with a pre-glued depth stop is inserted (the white circle indicates the RE hole). I, i,
Sample coronal slice. The asterisk indicates the infusion cannula tip location in RE. ii, Microinfusion injector tip location in the RE for
all rats (n=13). Numbers to the right of each section indicate distance (mm) anterior to bregma. J, i, Sample coronal slice. The aster-
isks indicate the infusion cannula tip location in PER. ii, Microinfusion injector tip location in the PER for all rats (n=13). Numbers to
the right of each section indicate distance (mm) anterior to bregma. K, Rats were injected with AAV-hM4Di (an inhibitory DREADD)
in mPFC or a control virus, and a cannula targeted RE and PER (bilaterally). Well-trained rats were infused with CNO in RE and PER
(the DREADD agonist) or vehicle prior to testing. i, Silencing the mPFC ! RE terminals (the CNO-hM4Di group) significantly im-
paired sequence memory (dependent t(9) = 7.074, p=0.0409). ii, Silencing the mPFC ! PER terminals (the CNO-hM4Di group) sig-
nificantly impaired sequence memory (dependent t(9) = 0.2005, p=1 � 10�4). CNO, clozapine N-oxide; mPFC, medial prefrontal
cortex; RE, nucleus reuniens of the thalamus; PER, perirhinal cortex. The data were sourced from Jayachandran et al. (2019).
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ointment was applied. The rat was placed in a postsur-
gical recovery incubator until awake and moving, and
then returned to a clean home cage. A day following
surgery, rats were given an analgesic (flunixin, 50mg/
ml, 2.5mg/kg, s.c.) and topical antibiotic ointment was
applied. The protective cap was removed to check that
the RatHat implant components were in good condi-
tion. Rats were monitored postoperatively for a week
and then resumed experimental testing.
Upon completion of the experiments, intracranial

placements were mapped using postmortem brain sli-
ces. Rats were induced under general anesthesia using
isoflurane (5%) and transcardially perfused with 100 ml
of ice-cold 0.1 M PBS followed by 200 ml of 4% para-
formaldehyde (pH 7.4; Sigma-Aldrich). Brains were
postfixed overnight in 4% paraformaldehyde and then
cryoprotected in a 30% sucrose and 0.1 M PBS solution
prior to sectioning (Leica CM3050S, Leica Biosystems).
Three sets of immediately adjacent sections (40 mm,
coronal) were saved. One set was mounted onto glass
slides for Cresyl Violet staining.

Results
Experiment 1: Three-pole cannula RatHat for
simultaneous implantation of multiple cannula (Fig. 2)
Commercially-available multisite cannula assemblies

from vendors such as inVivo1 and WPI are custom or-
dered, requiring a necessary lead-time, and very expen-
sive [e.g., ;$20–30 per individual cannula, including
guides and dummies (WPI); $340 for 10 bilateral cannula
assemblies (inVivo1); Table 1]. Furthermore, they only ac-
commodate up to two cannulas anchored together by a
thin plastic tether, and are unable to incorporate poles for
angled insertions.
The RatHat cannula system contains multiple pre-

measured cannulas assembled before surgery, reducing
surgical time by eliminating the need to identify coordi-
nates with micromanipulators and make insertions one-
at-a-time. Here, two cannulas targeted perirhinal cortex
(PER) bilaterally, and one cannula targeted the nucleus re-
uniens of the thalamus (RE). PER cannulas were affixed to
the RatHat prior to surgery using the jig, while the RE can-
nula was placed during surgery after the RatHat was

Figure 3. Optrode and SS wire electrode RatHat assembly. A, Optrode/electrode RatHat implant on an average sized rat skull. B,
Rat skull viewed across different anatomic planes. C, View of the RatHat protective cap and wall in different orientations. These
items protect the internal components post implantation. D, RatHat implant base (in teal) preassembled with optrode and electrode
single wires. E, RatHat surgical stencil showing prefabricated holes that correspond to brain coordinates of interest, bregma and
lamda, and screw locations for rapid drilling on the skull. F, Brain sections showing channelrhodopsin (i) and viral control (ii) ex-
pressed neurons in the midline thalamus and the optrode placement (asterisk) just above RE in representative cases, demonstrating
the effectiveness of using the RatHat. G, Perievent spectrograms of representative mPFC and dHC LFP showing the 5-min period
in which the blue LED light was administered via the optrode (see asterisk for tip location) activating ChR2 ion channels in infected
(i; AAVr-CAG-hChR2-H134R-tdTomato) and control (ii; pAAVr-CAG-tdTomato) rats. Also shown, 60 s before and after the stimula-
tion block. Pulsed blue light activation (4Hz, 60-ms pulse width) of RE ChR21 neurons elicited a 4-Hz frequency rhythm (see ar-
rows) in the mPFC (strong) and dHC (weak) LFP signal. We also observed comparable frequency-specific activations at 1, 2, and
8Hz. This change, however, was not observed in control animals (on right; Viena et al., 2019). mPFC, medial prefrontal cortex; dHC,
dorsal hippocampus; RE, nucleus reuniens of the thalamus; PVA, paraventricular nucleus; MD, medial dorsal nucleus; ChR2,
channelrhodopsin.
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secured to the skull (Fig. 2G,H). PER is a good site to
demonstrate the RatHat cannula approach because it is a
difficult structure to access, given its depth and laterality
(A/P, �3.0 to �7.0; M/L,60.7.2; D/V, �6.5 to �7.5;
Burwell, 2001; Paxinos and Watson, 2013). The third can-
nula targeted RE, a structure that lies directly below the
superior sagittal sinus (SSS; A/P, �1.08 to �3.48; M/
L,60.08; D/V, �6.8 to –7.8). SSS can easily rupture, pro-
longing surgical time and causing significant damage or
death. Thus, we incorporated an angled cannula pole
(10°) into this RatHat design to target RE and avoid SSS.
This angled pole is fitted with a depth-stop, eliminating
the need for D/V measurements, and was inserted by
hand into the RatHat (Fig. 2Hii).
Rats (n=13) were trained in an odor sequence memory

task (Jayachandran et al., 2019) followed by RatHat
implantation surgery. We compared surgery times using
the RatHat (n=13, surgery time: 104.0006 4.785min) to
a traditional u-frame stereotaxic approach (n=5, aver-
age surgery time: 183.800613.002min). Surgeries con-
ducted using the RatHat took significantly less time than
the traditional u-frame stereotaxic approach (t(4) = 6.534,
p=0.003). Once recovered, they resumed behavioral

testing which demonstrates the durability of the RatHat,
an ideal device for experiments that require extended
testing periods and involve extensive task related wear-
and-tear. These rats completed ;60 sessions after sur-
gery, with 200–300 nose-pokes/session. Additionally, rats
were given 12 infusions over several weeks to either PER
(bilaterally) or RE. Infusions targeted the structures of inter-
est and resulted in distinct sequence memory disruptions
that relate to the functioning of those regions. RatHat im-
plants stayed on for an average of six to ninemonths when
rats were euthanized for histologic analysis. Overall the ac-
curacy (measured by distance from the intended target)
and reliability (consistently hitting the same spot, measured
by distance from the observed centroid) of RatHat cannula
placements were not significantly different from the tradi-
tional u-frame stereotaxic approach (RatHatTargetDistance:
RE, 0.2946 0.096 mm and PER, 0.320 6 0.121 mm;
RatHatCentroidDistance: RE, 0.246 6 0.135 mm and PER,
0.2546 0.101 mm; TargetDistanceRatHat versus Traditional: RE,
t(4) = �2.329, p=0.080 and PER, t(9) = �1.069, p=0.313;
CentroidDistanceRatHat versus Traditional: RE, t(4) = �1.180,
p=0.304 and PER, t(9) = �0.431, p=0.676; Fig. 2I,J).

Figure 4. Sixteen single wire fixed electrode array RatHat. A, Fixed electrode array RatHat on the skull. B, Rat skull in different ori-
entations. C, The protective cap and wall that protects the electrode array after implantation. D, The RatHat electrode array with
preassembled fixed stainless-steel single wires docks into the RatHat implant base. E, The RatHat implant base is anchored to the
skull before the RatHat electrode array is docked, ensuring the wires descend to the correct DV. F, The stencil contains reference
marks to align bregma, as well as a craniotomy window and drill holes for anchor and ground screws. G, Sample coronal slice of
the 16-wire SS electrode array RatHat. The asterisks indicate single wire tip locations. H, Sample cluster plot showing two isolated
mPFC units on a single channel during free-roaming behavior. PL, prelimbic cortex.
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Notably, we have not seen any major differences in entry
damage to the brain when using the RatHat compared with
the traditional u-frame stereotaxic approach.

Experiment 2: RatHat design for a combination of
optogenetics andmicrowire recordings (Fig. 3)
We implanted rats (n=4; 2 females) weighing ;275–

350 g at surgery. The optrode targeted the junction of the
RE body and RE wing (perireuniens; A/P,�2.3; M/L,�0.5;
D/V, �7.0) and was implanted vertically slightly lateral to
the midline (a different approach compared with the can-
nula; Jayachandran et al., 2019). After the holes were
drilled, an injection of AAVr-CAG-hChR2-H134R-tdTomato
(channelrhodopsin virus; Addgene catalog #28017) or
pAAVr-CAG-tdTomato (control virus; Addgene catalog

#59462) was made using pulled glass pipettes (P-2000
Laser-Based Micropipette Puller, Sutter Instruments) with
a tip diameter between 80 and 100 mm driven by a motor-
ized infusion pump (0.3–0.5ml at 60 nl/min; Nanoject III,
Drummund Scientific). Because the optrode has a built-in
depth-stop for the D/V axis, a jig was not required for this
version.
We `show sample data in which optogenetic stimulation

of RE in experimental rats yielded a 4-Hz frequency
rhythm in the mPFC (strong) and dHC (weak) LFP signal,
but not in controls, demonstrating efficacy of the optoge-
netic approach (Viena et al., 2019; Fig. 3G). Implants re-
mained in place for 4.5months until histologic analysis.
Proper placement of the optrode and electrode wires was
verified and consistent in all rats (Fig. 3F).

Figure 5. Eight-wire tetrode hyperdrive RatHat. A, The fully assembled eight-wire tetrode hyperdrive RatHat on the skull. B, Rat
skull in different orientations. C, The protective cap and wall ensure the RatHat hyperdrive is safe from impacts and debris. D, The
hyperdrive with preassembled drivable tetrodes targeting regions in mPFC. E, The RatHat implant base is secured to the skull and
has docking poles on which the RatHat hyperdrive sits, ensuring the tetrode tips are placed right above cortex. F, The stencil aligns
to bregma and lambda and contains guide holes for drilling craniotomies and anchor screw holes. G, Sample slice with eight-wire
tetrode hyperdrive RatHat. Asterisks indicate the tetrode wire tips. H, Implanted tetrodes in mPFC with hM4Di expression showing
functional inhibition following CNO injection (1mg/kg). CNO, clozapine N-oxide; mPFC, medial prefrontal cortex; PL, prelimbic cor-
tex; Veh, vehicle.
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Experiment 3: RatHat for implanting fixed stainless-
steel wire arrays
Targeting prelimbic (PL) and infralimbic (IL) regions of

the medial prefrontal cortex (mPFC; Fig. 4) were piloted
for feasibility in male rats (n=2; ;350 g at surgery). The
electrode array was built similar to those used in other ex-
periments (Krupa et al., 2004; Narayanan and Laubach,
2006). The surgical stencil for this version included a cra-
niotomy window supporting electrode arrays bilaterally
targeting PL/IL (A/P, 1.7–4.0; M/L, 61.8; D/V, �3.0) in ad-
dition to landmark and anchor screw holes. Once the cra-
niotomy and drill holes were made, anchor screws were
inserted. Next, the RatHat implant was secured to the
skull. The electrode array was then inserted into the brain,
docked into place on the RatHat, and secured with dental
cement. The protective wall was secured with dental ce-
ment (filling in the base up to the electrode interface
board). Once dry, we plugged the rat into the electrophys-
iological recording system (Plexon) to assess neural activ-
ity. Afterwards, the protective cap was secured. Neural
activity was measured over the course of the next several
months. RatHat electrode arrays remained in place
for approximately fourmonths with good signal. We suc-
cessfully recorded well-isolated single-unit activity (Fig.
4H). Marking lesions were performed using a NanoZ for
localizing electrode sites (Fig. 4G).

Experiment 4: Eight-tetrode hyperdrive RatHat (Fig. 5)
Microdrive screws and shuttles for the RatHat hyper-

drive were assembled and implanted similar to others
(Wilson and McNaughton, 1993; Gray, et al., 1995;
Nguyen, et al., 2009). The tetrode array was securely en-
cased in the protective wall prior to surgery. We implanted
the RatHat hyperdrive in male rats (n=2; ;350 g at sur-
gery). This stencil version was the same as that used in
experiment 3. After the RatHat implant base was secured
to the skull, the RatHat hyperdrive was carefully placed by
hand and secured onto the base with dental cement.
Immediately after, tetrodes were driven 1 mm, and the rat
was plugged into the electrophysiological recording sys-
tem (Plexon) to assess signal. Once functionality was es-
tablished, the rat was unplugged and the protective cap
was secured. Tetrodes were driven 250mm/d until reach-
ing a depth of 2.8–3.0 mm (D/V; staggered) with a goal of
recording mPFC cells (A/P range, 4.7–2.5; M/L range,
60.2 to 61.6). The hyperdrive successfully isolated sin-
gle-units in mPFC of freely-behaving rats, demonstrating
the RatHat application (Fig. 5H). Four weeks after implan-
tation, marking lesions were made for histologic verifica-
tion (Fig. 5G).

Discussion
RatHat is a 3D-printed stereotaxic device that can be

used for a range of applications, such as cannula place-
ments, microinfusions, optogenetics, and electrophysio-
logical recordings. The RatHat was developed to reduce
surgical time while providing accuracy and reliability, and
to contribute to open science goals. This is a major
change to current stereotaxic approaches because we

replaced an approach that has been employed for several
decades that uses micromanipulators for measurements
during surgery. The RatHat saves time, money, and
offers reliability. In addition, the build files for any specific
implant can be easily shared between researchers
and labs facilitating experimental replications using identi-
cal approaches. The fundamental system consists of
complementary components including a RatHat implant
base, a surgical stencil, a jig, and a protective cap. Here
we demonstrated four different RatHat systems for feasi-
bility in multiple types of neuroscience experiments. We
verified the durability of these implants, which remained in
place for up to ninemonths, despite movement-rich and
impact-dense behavioral tasks (Jayachandran et al.,
2019).
We plan to develop a RatHat for other commonly used

species in neuroscience, including mice. We have also
developed a version for chronic implants in the domestic
pig, which facilitates surgery without the need for a tradi-
tional large-animal stereotaxic apparatus (HogHat; Allen
et al., 2019b). In addition, RatHat versions for other com-
mon neurosurgical applications are underway including
an acute implant device that allows for single injections of
excitotoxins, AAVs, DREADDs, etc.
Again, we make the RatHat freely available for all aca-

demic researchers to aid in their experiments and contrib-
ute to open science goals. We look forward to seeing new
builds and implementations.
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