
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 23, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Feature Importance for Black-box Models

 Student: Ard Kelmendi

 Supervisor: Ing. Veronika Maurerová

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2021/22

Instructions

Interpretability is getting more and more critical for Machine Learning Modeling. Especially in the
healthcare and financial industry. For example, it is not good if the model predicts the patient will die, and
the data scientist or doctor can’t explain how the model has made the decision.
It is easy to calculate feature importance for linear or logistic regression or tree algorithms - the feature
importance is a side effect of the calculation of inner parameter values. However, there are plenty of
models where feature importance can’t be easily calculated during training. Or the models are black-box,
so a user can only use the model for training and scoring and nothing else.
The goal is:

1.    Select and describe a feature importance calculation for black-box models.

2.    Implement the algorithm to the H2O-3 Open Source Machine Learning platform.

3.    Test functionality and performance.

4.    Compare results with other open-source implementation.
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Abstrakt

Důležitost proměnných je technika, která přǐrazuje skóre vstupńım proměnným
(sloupc̊um strukturovaných dat) na základě jejich vlivu na predikováńı ćılové
proměnné. Sloupce datasetu, které jsou použity jako vstup do algoritmu stro-
jového učeńı se nazývaj́ı proměnné. Některé vtupńı proměnné můžou být v́ıce
d̊uležité než ostatńı t́ım, že v́ıce ovlivňuj́ı ćılovou proměnou. Globálńı senzi-
tivńı analýza přǐrazuje hodnoty jednotlivým vstupńım proměnným na základě
jejich interakćıch pri predikci s ohledem na ćılovou proměnnou a poskytuje tak
skóre pro interpretaci model̊u. Ćılem této bakalářské práce je popsat metodu
Permutačńı d̊uležitosti proměnných a implementovat tuto metodu do H2O-3
open-source Machine Learning platformy.

Kĺıčová slova Strojové učeńı, interpretovatelnost, black-box modely, Globálńı
Senzitivńı analýza, Permutačńı d̊uležitost proměnných, One At a Time

Abstract

Feature importance is a technique that assigns a score to input features (tab-
ular data columns) based on the influence of predicting the target feature.
The columns of a dataset that servers as an input of the Machine Learning
algorithms are called features. Some features may be more important than
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others giving more influence towards the output. Global Sensitivity Analysis
quantifies the importance of model features and their interactions with respect
to model output. Assigning different values to the features one at a time pro-
vides the user with a mapping score of importance to features to interpret the
model. The aim of this bachelor’s thesis is to describe Permutation Feature
Importance and implement this method to the H2O-3 open-source Machine
Learning platform.

Keywords Machine Learning, Interpretability, black-box Models, Global
Sensitivity Analysis, Permutation Feature Importance, One At a Time
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Introduction

Memory is a curious thing. The way the brain retrieves information is highly
intriguing. One can no doubt recite the Alphabet from A to Z, how about
spelling it backward? Shouldn’t be a hard task since the brain already has
the information, however, it is quite a challenging task. The brain stores and
organizes information according to patterns, and throughout history humans
have become able to see patterns, understand them, and even predict future
events based on what is known at the present. Humans have become so
efficient with finding patterns in nature that they have created machines and
algorithms to do it for them, faster and with promising results.

The term Machine Learning (ML) refers to the automated detection of
meaningful patterns in data [1]. ML assists computer systems in progressively
improving their performance. ML algorithms automatically build a mathe-
matical model using sample data to devise decisions without specifically being
programmed make such decisions.

Understanding and trusting these mathematical models and their results
lead to good science. Today’s forces of innovation and competition are lead-
ing analysts and ML engineers to try ever-more-complex predictive modeling.
Using such complex algorithms tend to lead to more accurate predictions, at
the same time leading to difficulties in understanding why those predictions
are made. Higher Accuracy almost always trades off the interpretation of the
model, known as “black-box” models. The columns of the dataset will be
referred as features or variables based on context.

This thesis aims to analyze the mathematical model to obtain which fea-
tures of the input data have the highest influence on the construction of the
ML model on predicting the target feature. Changing the values of the fea-
tures one at a time gives insight into the relationship of the data. Upon using
“black-box” algorithms that tend to lose interpretation of the model’s predic-
tion, Permutation Feature Importance (PFI) sets forth a different approach
of understanding without having to retrain the model. It’s implementation is
within H2O-3 open-source Machine Learning platform.

1





Chapter 1
Machine Learning

The term Machine Learning first came up in 1952 from Arthur Samuel, who
created a computer program that with a small amount of limited memory was
able to design a scoring function attempting to measure the chances of each
side winning, his program became harder to beat [2].

1.1 Brief history

ML is based on a model of brain interaction created in 1949 by Donald Hebb
in his book titled The Organization of Behaviour. The book consists of Hebb’s
theories on neuron communication and excitement. Hebb mentioned “When
one cell repeatedly assists in firing another, the axon of the first cell develops
synaptic knobs (or enlarges them if they already exist) in contact with the
some of the second cell” [3]. Hebb’s concepts can be translated into Artificial
Neural Networks (NN).

Combining Donald Hebb’s model of brain cell interaction with Arthur
Samuel’s ML contributions, Frank Rosenblatt in 1957 was able to build soft-
ware to be later installed in a custom-build machine, called Mark 1 perception
[4], constructed for image recognition. The mentioned machine was unable to
detect many kinds of visual patterns.

With more advancement in both technology and investment on ML within
the next decades, ML has come to be used daily for simple and complex
problems. Stanford University defined ML as “the science of getting computers
to act without being explicitly programmed” [2]. Modern ML models can be
used to make predictions ranging from add selection, self-driving vehicles,
outbreaks of disease, to rise and fall of stocks. ML today is responsible for
some of the most significant advancements in technology.
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1. Machine Learning

1.2 Introduction to Machine Learning

ML is a scientific study of algorithms and statistical models that computer
systems detect (learn) meaningful patterns in data. In 1959 Arthur Samuel
defined ML as a “Field of study that gives computers the ability to learn with-
out being explicitly programmed” [5]. The model holds the learning behind
the conclusion, it can be a mathematical representation of the relationship of
data. The goal is to program a computer so that it can learn from sample
data (training data see section 1.3). The input of ML is training data to be
used from the program as experience. The output of ML can range from a
prediction of some event to another computer program that can perform a
task. In the past couple of decades when it comes to extracting data from
large datasets ML has become a very common tool, seen as a positive factor
on hectic data-driven decisions.

For ML theory, distinguishing learning mechanisms that result in super-
stition from useful learning is a central goal [6]. The machine, unlike humans,
cannot rely on common sense to filter out random meaningless learning con-
clusions. One must provide well defined crisp principles that ensure useful
conclusions. Incorporation of prior knowledge, biasing the learning process, is
inevitable for the success of learning algorithms. Developing tools to express
knowledge and understand the essential aspects of a specific field of inquiry,
guiding the process, and evaluating the end product within the context of
value and validity, translating it into a learning bias (set of assumptions that
the learner uses to predict the output given datasets that it has not encoun-
tered), and quantifying the effect of such a bias on the success of the learning
is a central theme of the theory of Machine Learning. The stronger the prior
knowledge at the start of the learning process, the easier it becomes to learn
from upcoming examples. On the other hand, the stronger these assump-
tions (prior knowledge), the less flexible the learning is, it is bound by these
assumptions [6].

1.3 Train and Learn data

Given some data, called the training dataset, a model is trained. The model
is built so that it will try to answer the question put based on the data
provided, for instance, predict one (dependent) variable based on all the other
(independent) variables or upon having data separated into clusters, predict
which cluster the new data refers to and so on. After the model outputs a
prediction a second dataset is needed to verify the performance of the model,
the testing dataset. The model learned from the training data is used on
the testing data discerning how well it predicts the variable in question. A
robust model performs very similarly to the test dataset, whereas when a
model predicts correctly on the training set and poorly on the testing set
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1.4. Supervised and Unsupervised Learning

then the model is overfitting the data. In other words, the model does not
capture the dominant trend of the data, not being able to predict a likely
output for an input that it has never seen before. Underfitting is the case
where the model has “not learned enough” from the training data, resulting
in low generalization and unreliable predictions [7]. See Figure 1.1.

Figure 1.1: Underfit, robust, overfit [7].

The loss function is a method of evaluating how well the algorithm models
the given data (if the prediction deviates too much from the actual results,
the loss function would consist of a large number). “A measurement of the
cost to the performance task (and/or benefit) of making a prediction Y” [8].

1.4 Supervised and Unsupervised Learning

In ML there are two main categories of tasks: supervised and unsupervised.
Supervised learning, in contrast to unsupervised, has prior knowledge of the
output values; one has input variables and output variables and uses an algo-
rithm to learn the mapping function from the input to the output. The goal of
supervised learning is to learn a function, which uses sample data and knows
desired outputs, that describes the best approximation of the relationship be-
tween sample data and desired outputs. On the other hand, Unsupervised
learning which has no labeled outputs goal is to deduce and conclude with
reasoning from data points a natural structure on data [9].

Supervised learning solves problems for classification or regression. When
one wants to map an input to output labels, it refers to classification problems,
whereas when one wants to map an input to a continuous output, it refers to
regression problems. Even though different algorithms are used in both clas-
sification and regression, the goal for both is finding a specific interconnection
of the input data in such a way that allows one to effectively produce cor-
rect predictions. While it stands true that one has more than one dataset,
the model’s output is determined using the training dataset only. The main
considerations of supervised learning are model complexity and bias-variance
trade-off. Model complexity indicates the complexity of the function attempt-
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1. Machine Learning

ing to be learned, in the case of linear regression it would be the degree of
a polynomial. The complexity of the model is generally determined by the
input data itself (one scenario that could lead to a higher complexity is a huge
amount of data with many variables). High-complexity models with small-
data tend to over-fit the data. Bias-variance trade-off is also linked with the
generalization of a model, bias meaning the constant error term, and variance
meaning the quantity the error can change in different training sets. Increasing
bias leads to lower variance and vice versa.

Figure 1.2: Classification vs regression tasks [9].

1.4.1 Linear regression

There are many supervised learning algorithms. One being linear regression
which solves regression tasks. It is a simple algorithm to demonstrate how to
create a model that is easy to understand and quite reliable. In linear regres-
sion one wants to model the relationship between scalar response variables
(dependent variable) yi and a scalar or multivariate explanatory variable (in-
dependent variable) xi. There exists a noise term e that affects the causality
between the dependent variable and independent variable, yi = f(xi) + ei.

f(xi) is some linear function of xi, whereas ei is a random variable. The
goal of linear regression is to predict future values, predict values on missing
existing data points (if any), and explain the change of the dependent variable
based on the independent variables.

Assume the existence of p regressors xi1, . . . , xip determining each yi for
i = 1, . . . , n and adopt a linear regression model in the form of a general line,

yi = β0 + β1xi1 + . . .+ βpxip + ei

=
[
xi1, . . . , xip

]  0
...
βp

+ ei

= xTi β + ei.
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1.4. Supervised and Unsupervised Learning

for all n points we obtain the model as follows:

y =


y1
y2
...
yn

 , X =


1 x11 . . . x1p
1 x21 . . . x2p
...

... . . . ...
1 xn1 . . . xnp

 , β =


β0
β1
...
βp

 , e =


e1
e2
...
en


and write

y = Xβ + e.

The elements are the vector of regression coefficients β, the vector of observa-
tions/data/dependent variables y, the vector of noise terms e and the design
matrix X.

In a situation with n equations and p+ 1 unknowns (more equations than
unknowns), the aim is to have the “best” estimation of β, therefore there is
the need for a criterion such as Sum of Squared Residuals (SSR). Assuming
that b is a value for β [10]:

SSR(b) = ||y −Xb||2 =
n∑
i=1
|yi −

p∑
j=1

Xijbj |2 (1.1)

Now to find β̂ (Minimization of SSR),

β̂ = argmin
β
SSR(β)

• predictions ŷ = Xβ.

• residues of residuals ê = y − ŷ.

• estimate of σ2

σ̂2 = SSR(β̂)
n− p

(1.2)

• total sum of squares SST =
∑
i(yi − ȳ)2

- ȳ is the mean value

• residual sum of squares SSR =
∑
i(yi − ŷi)2.

• regression sum of squares SSReg =
∑
i(ŷi − ¯̂yi)2 (¯̂yi is the mean of

predictions).

• coefficient of determination of

R2 = 1− SSR

SST
(1.3)
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1. Machine Learning

- R2 ∈ [0, 1], R2 = 1 expresses perfect fit

• Adjusted R2 is used when the number of features in the model is large,
R2 increases as well even if some features do not contain any information,
nor contribute to obtain the target value at all.

R2 = 1− n− 1
n− p

(1−R2) (1.4)

• Means Squared Error (MSE) is used as a default metric (loss func-
tion see section 1.3), for evaluation of the performance of most regression
algorithms and is computed as

MSE = 1
n

n∑
i=1

(yi − ŷi)2. (1.5)

Figure 1.3: We have Measurement data points and we try to find a function
that best fits the data.

Figure 1.4: By fitting data we imply that the function is constructed in such
a way that the total amount of distances from each data point from function
projection is the minimum value.
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1.4. Supervised and Unsupervised Learning

1.4.2 Decision Trees

A decision tree is an algorithm that recursively divides the training data using
splitting criteria and tries to predict the given target variable [11]. Similarly,
as in linear regression, we want to model the relationship between the scalar
response variables here denoted as Y and scalar or multivariate explanatory
variable (independent variable) here denoted as X having p variables. This
supervised learning algorithm wants to explain Y given X0, X1, . . . , Xp−1 such
that for most examples

Y ≈ f(X0, X1, . . . , Xp−1)

This algorithm also shows that f doesn’t need to be a mathematical function,
it can be a tree. The type of function dependent on Y can be a classification
problem (whether a patient is sick or healthy) or for continuous values (the
price of an apartment) a regression problem. Classification trees predict an
outcome that is chosen through a voting system where the majority class
within a leaf vertex wins, whereas regression trees predict a numeric value that
is based on the target’s distribution within a vertex. A decision Tree can be
used in both cases. A frequent classification problem is a binary classification,
Y must consist of only two values. The input is a n-row target Y and p
features X0, X1, . . . , Xp−1, whereas the goal is to describe Y with a Decision
tree of depth k. There exist many algorithms on how to construct the optimal
tree, for example, the ID3:

1. For each element on a feature Xi calculate the value of (some suitable)
criterion.

2. Select Xi with the best criterion value to Split the dataset with.

3. Continue splitting the resulting subsets until we hit the stopping rule.

Criterion can be: IG, Gini index. The stopping rule can be: selected k tree
depth reached or maximum tree depth, no more attributes to be selected, no
more data in the subset.

To describe how a decision tree works we will use a classification tree. Clas-
sification trees are essentially a series of questions designed to assign a classi-
fication. The image below is a classification tree trained on the IRIS dataset
(flower species). Root (brown) and decision (blue) nodes contain questions
that split into subnodes. The root node is just the topmost decision node.

Classification trees start at the root node (brown) and traverse the tree
until you reach a leaf (terminal) node. Using the classification tree in the
the image below 1.5. Imagine you had a flower with a petal length of 4.5
cm and you wanted to classify it, let’s call this flower lily. Starting at the
root node, the first question would be if lily’s petal length (cm) is ≤ 2.45.
Since lily’s length is ≥ 2.45 it would follow the “false” arrow proceeding to

9



1. Machine Learning

the next decision node. On this node, the question would be if the lily’s petal
length (cm) is ≤ 4.95, answer being true and decision tree, lead to a leaf node,
therefore could predict lily’s species as versicolor.

Figure 1.5: Classification tree for classification task for one of three flower
species (IRIS Dataset) [12]

A classification tree learns which sequence of features to use to build the
tree questions on every node. Every node splits the data into (two) branches
(on each node) based on some value known as a split point, 2.45 on our case,
(A) of the Figure 1.6. To understand which feature we should use to first split
involves having a good split point value. A good value, which results in the
largest IG, for a split point is one that separates one class from the others.
An example of a good split, (B) of the Figure 1.6, all the points to the left of
the split point are classified as setosa while all the points to the right of the
split point are classified as versicolor.

The figure shows that setosa was correctly classified for all 38 points. It
is a pure node. Classification trees don’t split on pure nodes. It would result
in no further IG. However, impure nodes can split further. Notice the right
side on (B) of the Figure 1.7 shows that many points are miss-classified as
versicolor. In other words, it contains points that are of two different classes
(virginica and versicolor). If it wasn’t for a stopping rule, the algorithm would
continue splitting until all leaves are pure nodes, however that could lead to
a very large tree depth that would lead to overfitting and usually there is a

10



1.4. Supervised and Unsupervised Learning

Figure 1.6: Section of classification tree explaining the goal of a split point.
[12]

max tree depth specified [12]. Tree depth is a measure of how many splits a
tree can make before coming to a prediction.

Figure 1.7: Section of classification tree explaining the goal of a split of depth
2. [12]

Decision trees split between the feature and corresponding split point that
results in the largest Information Gain (IG) for a given criterion (Gini or
Entropy). We want to select the feature that maximally reduces the entropy
i.e. highest IG.

IG(Dp, X) = I(Dp)−
∑

j∈V alues(X)

|Nj |
|N |

I(Nj) (1.6)

Since classification trees have binary splits, split the data in two, the for-
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1. Machine Learning

mula can be written as follows:

IG(Dp, X) = I(Dp)−
|Nleft|
|N |

I(Dleft)−
|Nright|
|N |

I(Dright). (1.7)

where:

X is feature splitting upon.

Dp is dataset of the parent node.

Dleft is dataset of left child node.

Dleft is dataset of right child node.

I is impurity criterion Equation 1.8.

N is total number of samples.

Nleft is total number of samples at left child node.

Nright is total number of samples at right child node.

Entropy is a measure that should quantify the disorder (uncertainty) of the
probability. It can be zero for deterministic case (all samples at a node belong
to the same class), maximal (pure randomness), increasing or decreasing:

IH = −
c∑
i=1

pi log pi (1.8)

where:

pi is the proportion of the samples that belong to class c for a particular node.

Instead of entropy once can use Gini index (Gini impurity),

IG = 1−
c∑
i=1

p2
i =

c∑
i=1

pi(1− pi). (1.9)

where:

pi is the proportion of the samples that belong to class c for a particular node.

Let’s assume now that we want to describe a continuous function with a
Decision tree. This method can be seen as fitting a model that is piece-wise
constant over some disjoint number of regions Rm,

f(x) =
∑
m

cmI, x ∈ Rm
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1.4. Supervised and Unsupervised Learning

and can be written as follows:

f(x) = cm, x ∈ Rm.

The most common method for building a regression tree model based on a
sample of unknown regression surface goes about trying to obtain the model
parameters that minimise the least squares error criterion,

1
n

n∑
i

(yi − ŷ)2. (1.10)

where:

n is the sample size.

ŷ is the prediction of the regression model for a data point < xi, yi >.

Area Under The Curve (AUC) - Receiver Operating Characteristics (ROC) is a
performance measurement for classification (loss function section 1.3) problem
at various thresholds settings. ROC is a probability curve and AUC represents
the degree or measure of separability. It tells how much the model is capable
of distinguishing different classes. Higher the AUC, better the model is at
predicting 0s as 0s and 1s as 1s. By analogy, the Higher the AUC, better the
model is at distinguishing between patients with the disease and no disease
[13].

1.4.3 Ensemble Techniques

There exist ML algorithms that use more than one decision tree such as Gradi-
ent Boosting Machines (GBM) and Random Forests (RF) also there is General
Linear Model which includes more than one linear regression.

Tree Ensebled Techniques These algorithms are tree-based ensembles i.e.
the target variable is based on more than one decision tree. GBM is a
model that sequentially trains decision trees, each decision tree is built
on the errors of the previous tree, additively collecting an ensemble
of weak models to create a robust learning system (boosting). GBM
combines two powerful tools: gradient-based optimization and boosting
[14]. Gradient-based optimization uses gradient computations in train-
ing data to minimize a model’s loss function. There is an initialized
prediction that is used for the first tree to be built.
RF construct many individual decision trees at training, their predic-
tion (from all the trees) are pooled–majority vote–to make the final
prediction. From the original dataset, n datasets of the same cardinal-
ity are built (sampling with replacement). For each of these subsets, a
small-depth decision tree is learned, each having a prediction. The final
prediction of the RF is the majority vote for classification tasks or the
mean for regression tasks.
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Generalised Linear Model The term General Linear Model (GLM) usu-
ally refers to conventional linear regression models for a continuous re-
sponse variable given continuous and/or categorical predictors. It in-
cludes more than one linear regression. GLM refers to a larger class of
models where the response variable is assumed to follow an exponential
family distribution, (some often nonlinear function). Some would call
these “nonlinear” because of the nature of the function, however, Mc-
Cullagh and Nelder consider them to be linear because the covariates
affect the distribution of response variable only through the linear com-
bination [15]. The GLM requires that the response variable follows the
normal distribution whilst the generalized linear model is an extension
of the general linear model that allows the specification of models whose
response variable follows different distributions [16].
In “Classical” regression important assumptions are made: the outcome
is a continuous variable and that it is normally distributed. “Classical”
linear models, although very useful, are not suitable for many different
problems. In reality, this is not always the case. Outcomes are not al-
ways normally distributed, nor are they always continuous variables. For
instance, if the modeled variable is defined on [0, 1], or it is binary {0, 1},
or when it denotes counts. For the GLM different link functions can be
used that would denote a different relationship between the linear model
and the response. for instance, logistic regression (where the dependent
variable is categorical) or Poisson regression (where the dependent vari-
able is a count variable) are both generalized linear models. GLMs are
a class of models that are applied in cases where linear regression isn’t
applicable or fails to make appropriate predictions.
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Chapter 2
Analysis of Machine Learning

models

This chapter will explain the term black-box models and why they are called
so, furthermore the term interpretability will be defined and elaborated based
on “An introduction to Machine Learning” Interpretability[17].

2.1 Black-Box Models

Machine Learning algorithms such as Neural Networks (NN), Support Vec-
tor Machines (SVM) are considered to produce so-called black-box models
because there is no direct explanation for their prediction. Since black-box
models could outperform simple linear models or even decision trees their
usage increases. The out-performance implying that the prediction of these
models fits the data more compared to linear models, black-box models usually
have a more complex relationship in the data leading to this higher predictive
performance. Nevertheless, despite NN algorithms being more accurate one
tends to stick to and prefer linear models due to the fact of their simplicity and
are easier to interpret. Having more accurate predictive models is not always
preferred since one will face the problem of interpretation. During this last
century, quite the effort was and is still being made to understand the models
that undergo the complex learning and making sense of the reasoning behind
the predicted output. Many researchers have, therefore, developed and imple-
mented several model-agnostic (see subsection 2.3.1) interpretability tools to
have a better understanding.

Predicting modeling and ML algorithms became more complex aiming to
get more accurate results, the understanding towards identifying the reason-
ing behind the prediction on the other hand fades away. Inscrutable ML
Algorithms are called “black-box” models; such as Artificial Neural Networks
(ANN), Gradient Boosting Machines (GBM), and Random Forests (RF). Even
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though GBM and RF are not black-box models in general, they consist of
trees which actually can be explained. Due to the nature of these models,
them containing a large number of trees (hundreds and more), they tend to
become harder to interpret, similarly for ANN. It is exactly this complex
inner structure of the ML algorithm that makes the model accurate. Due
to this trade-off, data science professionals, in industries such as healthcare,
insurance, banking, are being limited to using traditional, linear modeling
techniques to create their predictive models.

ML is being used in companies and organizations as predictive models
for a very wide variety of revenue or value-generating applications. A frac-
tion of those applications includes deciding whether to release someone from
a hospital, allowing one to make a loan. In today’s data-driven commercial
landscape it is crucial for the ML models to learn to their maximal potential
for the companies to stay competitive. In the context of applying ML in real-
life scenarios, companies tend to face a unique challenge. ML algorithms and
models that they choose have to be simple and transparent enough to allow for
detailed documentation of internal system mechanisms and in-depth analysis
by government regulators. One must be able to explain the reasoning behind
the output of the ML, therefore transparent, interpretable, and fair models
are a legal mandate in banking, insurance, healthcare, and other industries.
Numerous regulatory statutes are governing these industries including Civil
Rights Acts, Health Insurance Portability and Accountability Act, and Euro-
pean Union (EU) Greater Data Privacy Regulation (GDPR) Article 22 [18].
Furthermore, regulatory statutes continuously are changing, and these regula-
tory regimes have a role in shaping what constitutes interpretability in applied
ML.

2.2 Machine Learning Interpretability

One of the many important hopes for ML is to assist in one’s day-to-day or-
ganization, aiming for simple convenience. ML also promises quick, accurate,
and unbiased decision making from simple to life-changing scenarios. Theo-
retically, by using ML we allow the computer to make objective, data-driven
decisions in crucial situations. To guarantee this promise, among other tech-
nological advances, interpretability is needed.

As demand and human nature always aims for the best results we get this
fundamental trade-off. By requiring more accurate predictions, which in some
cases linear models might not deliver, more complex algorithms and model
structure are used which lead to losing interpretability. Interpretability is
crucial to overcome the trust issues of our nature. In many industries, linear
models have been preferably chosen as tools for predictive modeling of ML.
The very same human nature also pushes towards closest to optimal results,
nonlinear models (generated by training ML algorithms) make more accurate
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predictions on previously unseen data therefore are more likely to obtain such
results. Linear model predictions tend to fail complex dependencies in train-
ing data which is a drawback when predicting biological data [19]. The model
has to be accepted by internal validation teams and business partners and has
to be approved by external regulators. In cases when non-linear models are
to be used (they can allow more sophisticated and potentially more accurate
decisions) interpretability can increase transparency and trust in those com-
plex models. Using interpretable ML is fundamentally difficult and it’s quite
the new field of research. Complex ML techniques for the same prediction
targets and set of input variables can produce multiple accurate models that
are similar, however, have different internal architectures.

The models created by training ML algorithms seemed to be uninter-
pretable for many years, however, there have been numerous advancements
made to make the often nonlinear, non-monotonic, and noncontinuous machine-
learned responses functions more understandable. It is quite likely that these
black-box functions will never be as interpretable and direct as more tradi-
tional linear models. The idea behind linear models is focusing on understand-
ing and predicting average behavior, whereas more complex models can often
make accurate predictions, and making it more difficult to explain subtler
aspects of the modeled phenomenon. Decision trees are suitable for finding
non-linear predictions and since they are interpretable the RF was designed to
overcome the instability and lack of smoothness of decision trees, combining
interpretability of decision trees with the performance of black-box models
such as ANN. In some cases black-box models can also be simple, however,
their implementation is hidden, be it in a huge amount of decision trees for
RF. When a new computation is run on a network of ANN it ends up with
a different new weight matrix. This is a result of starting with small random
values that are then adjusted as the program runs. Aside from the random
starting point a reason that it is difficult to describe, mathematically at least,
a network is in a state of change, and mathematics are in effect stateless. That
is we can use mathematics to describe a start, an end, and a point in the pro-
cess, but the learning process is a sequence of results from many operations
and is not stateless. This is why ANN’s are black-box [20].

Let’s say we want to predict the number of purchases knowing a customer’s
age. On Figure 2.1 we model the relationship between those factors and
obtaining a function g(x), which fails to model youngsters purchasing more
(lost profits) than older generations. Whereas On Figure 2.2 which uses a more
complex non-linear model is more successful in modeling this relationship.
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Figure 2.1: Linear model g(x) given a customer’s age predicts the average
number of purchases. Prediction explanations are straightforward and stable,
however can be inaccurate [21].

Figure 2.2: Linear model g(x) given a customer’s age predicts the average
number of purchases. Prediction is very accurate, almost replicating the ac-
tual, unknown generating function, f(x) [22].

Interpretability, in the context of ML models and their results, has been
defined as “the ability to explain (present) in understandable terms to a hu-
man”. The complexity of a ML algorithm model often has a high relation
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with interpretability. Hence, the more complex the ML model the more one
loses interpretation and explanation. Upon analyzing the functional form of a
model and discussing their degree of interpretability these various class cases
follow [17]:

High Interpretability This class refers to linear and monotonic models. In
Linear and monotonic models by a change in any given input variable
(or combination or function of an input variable), the output of the
response function does change. The change is with a defined rate, in
only one direction, at a magnitude that can be represented by a coeffi-
cient. Monotonicity lets one have an intuitive, and in some cases even
automatic, reasoning about predictions. Models in this class are mostly
composed of traditional regression algorithms.

Medium Interpretability This class refers to nonlinear, monotonic mod-
els. “Although most machine-learned response functions are nonlinear,
some can be constrained to be monotonic with respect to any given inde-
pendent variable” [17]. By changing a single input variable in nonlinear
and monotonic functions there is no single coefficient that represents
the change in the response function, however, it is known they always
change in one direction. Therefore, nonlinear and monotonic response
functions are interpretable and suitable for use.

Low Interpretability This class refers to nonlinear, nonmonotonic models,
which includes most ML algorithms. In this class the functions change in
both positive and negative directions with an unstable rate for a change
in an input variable, therefore this is the least interpretable class. The
(only) standard interpretability measures provided by these functions
are the feature importance measures.

2.3 Feature Importance

Since ML algorithms such as NN often produce black-box models losing in-
terpretability, however, outperforming linear models or decision trees in pre-
dictive performance as they tend to model complex relationships in the data.
Many types of research have therefore developed various interpretability tools,
which visualize or express the unprovided explanation of the black-box model
prediction by feature importance. Feature importance describes how or to
what extent each feature contributes to the prediction of the model. The fea-
ture contribution and feature attribution can be calculated either on a local
or a global level.

We use the term feature importance to describe how important the feature
was for the predictive performance of the model, regardless of the shape (e.g.,
linear or nonlinear relationship) or direction of the feature effect. The higher
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the value the more important the feature. This implies that measures of
feature importance require knowledge of the true values of the target variable.
The most prominent approach is the permutation importance introduced by
Breiman [23] for random forests [24]. “Feature importance is calculated as the
decrease in node impurity weighted by the probability of reaching that node”
[25]. To calculate the node probability we simply divide the number of samples
reaching the node by the total number of samples. For each decision tree we
calculate (assuming binary tree) a single node’s importance using Gini Index
1.9 or IG 1.6 for classification tasks and Mean Square Error for regression
tasks 1.10,

nij = wjIj − wljIlj − wrjIrj .

where:

nij is j’s node importance (importance of node j).

wj weighted number of samples that reached node j (subscript “lj” and “rj”
imply child node from left and right split on node j, respectively).

Ij is the Impurity value on node j (similarly, sub “lj” and “rj” implication is
observed).

Then, for each feature on a decision tree the importance is calculated as fol-
lowing:

fii =
∑
j nij∑

n∈N nin
.

where:

fii feature i-th importance.

nij importance of node j (j: node j splits on feature i).

n is a node from all the nodes N.

To get normalized values between 0 and 1,

fii(norm.) = fii∑
j∈allfeatures fij

.

Finally, to calculate feature importance values from each tree (for Random
Forest),

RFfi =
∑
j fiij(norm.)∑

(j∈allfeatures)(k∈alltrees) fiik(norm.)
.

In linear regression models the importance of a feature can be calculated
by the absolute value of the estimated weight scaled with its standard error
1.2. The linear regression model predicts the target as a weighed sum of the
feature inputs. The importance of a feature increases with increasing weight,
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the more variance the estimated weight has (lower certainty about the correct
value), the less important the feature is. The importance of a feature is in
inverse proportion with the estimated weight of a feature 1.1 (β̂ representing
learned feature weights):

tβ̂j
= β̂j

SSR(β̂j)
.

Let’s consider weather and calendar information, and let’s predict the number
of rented bikes, data from [26], for a particular day (we examine the estimated
regression weights here).

Features Weight SSR |t|
. . . . . . . . . . . .
weathersitMISTY -379.4 87.6 4.3
weathersitRAIN/SNOW/STORM -1901.5 223.6 8.5
temp 110.7 7.0 15.7
. . . . . . . . . . . .

Table 2.1: Feature importance for linear regression subsection of dataset.

The table consists of numerical and categorical features, and shows each
feature estimated weight, SSR, and the absolute value of the t-statistic. In-
terpretations for features follows [27]:

• Numerical feature “temperature”: By an increase of temperature by one
degree Celsius the target variable increases by 110.7 and other features
remain fixed.

• Categorical feature “weathersit”: On days when it is raining, snowing
or stormy, the estimated number of bicycles drops by 1901.5 (again, the
other features remain fixed) and drop by 379.4 when weather is misty,
that is compared to the number of bikes on good weather.

The advantage of “isolating” other features on linear regression–where the
predicted target is a linear combination of the weighted features–is that it
directly gives an insight into the increase or decrease of a certain feature to
the prediction. The disadvantage is that the interpretation ignores the joint
distribution of the features. In some realistic scenarios, the change of a feature
can lead to affect another (increasing the number of rooms in a flat increases
the total number of the area in the flat).

2.3.1 Model-agnostic Interpretability

It is vital to be able to explain the ML predictions by providing a rationale
using textual, visual components to gain knowledge of what would happen if
the components were different. Instead of supporting models that are labeled
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as black-box models, a prevailing solution was to only use “interpretable”
models. These approaches use models in which one can derive the model’s
components directly. “An alternative approach to interpretability in ML is to
be model-agnostic, i.e. to extract post-hoc explanations by treating the orig-
inal model as a black-box ” [28]. By learning an interpretable model on the
predictions of the black-box model, changing the input in certain ways to ob-
serve how the model reacts. Since linear models are inherently crippled (in the
sense of most accurate predictions deliverance) by the need to be interpretable
they are not of the highest level suited for most real-world applications. The
separation of interpretability from the model thus frees up the model to be
as flexible as necessary for the task, enabling the use of any ML approach
also allowing the control of the complexity-interpretability trade-off which is
defined as following [28, 29]:

Model flexibility and interpretation: “One cannot use a model whose
behavior is very complex, yet expect humans to fully comprehend it
globally”. The paper argues that separating the interpretability from
the model frees up the model to be as flexible as needed such as for
arbitrary Deep NN. This allows the interpretation method to work with
any ML model.

Explanation flexibility: Different explanations are needed in different sit-
uations, such as how the model would behave if certain features had dif-
ferent values. One is not limited to a certain explanation. This doesn’t
bound the model to be always black-box, certain cases seem to have
a linear formula as more fit. By keeping the model separate from the
explanations one can obtain the information needed whilst the model is
fixed. Therefore, not being limited to a certain form of explanation.

Representation flexibility: In the cases of the features them-self being not
interpretable, the interpretable model can be created on such features,
however not being interpretable persists. Model-agnostic approaches
can be used to generate explanations by using different features as op-
posed to the underlying model. The explanation system can be able
to, instead of using the non-interpretable features, use different feature
representations.

The reasoning behind having the explanation of feature significance sepa-
rately from the ML model (model-agnostic interpretation methods over model-
specific ones) is that their flexibility lets one choose ML algorithm more freely.
In terms of interpretability, it is more suited to work with mode-agnostic ex-
planations since the same method can be used for any type of model. Model-
Agnostic explanation systems explained in Riberio, Singh, and Guestrin work
[29].
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2.4 Global and Local Interpretability

To understand the entire model one has trained on a global scale, global
interpretations help to understand the inputs and their relationship with the
prediction target. It is also useful to zoom in into local parts of the data or
predictions to derive local explanations.

Global model interpretation is a set of techniques that try to translate
the model’s behavior in general. Finding such features that drive pre-
dictions and such features that are more or completely useless for the
prediction. This knowledge helps explain the model, this knowledge be-
ing the relationship between the target variable and the other variables.
Most global interpretation techniques get this knowledge by investigat-
ing the conditional interactions between the dependent variable and the
independent variables on the complete dataset.

Local model interpretation is understanding small regions of the machine-
learned relationship between the input variables and the target variable.
Local interpretability allows one to answer why the model made a cer-
tain prediction for an instance, by zooming in on that instance (or a
cluster of input records) and it’s (their) corresponding prediction(s).

Local interpretations are focused on single features or a group of similar fea-
tures that lead to the model prediction. Local explanations tend to be more
accurate than global ones because small regions of a machine-learned response
function are more likely to be linear and monotonic. By combining results of
both global and local interpretations techniques is the way to get the best
explanation results [17].
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Chapter 3
Sensitivity Analysis

It is impossible to define a single set of rules that would apply to every model-
ing. If one characterizes modeling as a heterogeneity lacking systematization
then sensitivity analysis would seem overly ambitious to offer an universal
application [30]. In an economics background, one derives instances of sensi-
tivities as outputs versus a particular input. On the other hand, others who
use sensitivity analysis in practice, which are fewer in number, have a different
view on this matter. This minority actively uses importance measures that
have a more global approach, that is, assessing the output factors by analyzing
the entire input space, rather than locally looking at a point in that space.

3.1 Global Sensitiviy Analysis

A simple yet powerful way to understand a ML model is by doing sensitivity
analysis where one examines the impact of each feature on the model’s pre-
diction. Global Sensitivity Analysis as stated by Salteli [30] is the study of
how a model’s uncertain output (numerical or otherwise) can be apportioned
to different sources of uncertainty in the model input. It determines how the
output (dependent variable) is affected by different values of input (indepen-
dent variables) under a given set of assumptions. Sensitivity Analysis studies
how a couple of different sources of uncertainty, mathematically add to the
overalls models uncertainty. In simple terms, one will look at how the vari-
ables move as well as how the target is affected by the input variables, which
can determine the most contributing features on output behavior.

There are numerous applications to Sensitivity Analysis such as model
verification, understanding and simplifying the model. Sensitivity Analysis
first appeared as the local approach, when observing the impact of small input
perturbations on the model and the output is studied. Local methods have
their limitations, therefore throughout the years a new class of methods has
been developed and is referred to as Global Sensitivity Analysis. It is referred
to as global since it considers the entire variation range of the independent
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variables. Sateli and Pappenberger [30] emphasized the need to specify the
objectives of a study clearly, before making a sensitivity analysis. Among the
objectives, there could be a need to identify and prioritize the most influential
inputs (the random variables that mostly affect the prediction), or the non-
influential ones. One can fix the non-influential inputs to nominal values (the
mean of the random variable for instance). An objective could also be to
focus only on a specific domain of inputs if necessary. On parametric models
(models that include fixed numeric values) one can assume their values to
make the model more flexible. “Parameter values can be guessed by expert
knowledge, therefore even avoiding the need for observed data” [31].

To calculate the sensitivity of a feature one changes the feature’s values (or
even ignore it), while other features stay constant, and observe the output.
If the model’s outcome changes drastically by changing the feature’s value,
it means that the feature changed has a big impact on the prediction. The
higher the change rate of the output’s model the more significant a feature’s
role on the output. “A good sensitivity analysis should conduct analyses over
the full range of plausible values of key parameters and their interactions,
to assess how impacts change in response to change in key parameters” [32].
Since the models can be made to produce virtually any desired behavior with
both plausible structure and parameter values it is considered that a quality
check, provided by a careful sensitivity analysis, it’s worth the effort. Based
on the work and experience of the European Commission [32] it is believed
that the target of interest shouldn’t be only the model’s output, the target
should also be the question itself that the model has been called to answer. To
give a better understanding an example was given: “One should seek from the
analyses conclusions of relevance to the question put to the model, as opposed
to relevant to the model” [30]. To clarify, the output of interest applies to the
usage of the model, not the model building itself.

There are screening qualitative methods, called screening methods, which
allow studying sensitivity measures of importance. Screening methods are
based on a discretization of the inputs in levels, allowing a fast exploration of
the code behavior.

3.2 Permutation Feature Importance

“Permutation Feature Importance (PFI) measures the increase in the predic-
tion error of the model after we permuted the feature’s values, which breaks
the relationship between the feature and the true outcome”[33]. After building
the model which predicted the target variable PFI is measured by calculat-
ing the increase in the model’s prediction error after permuting a feature of
the dataset. Let Xj be a feature in the dataset and we want to measure its
importance. By shuffling its values we create Xp

j . Upon scoring (predicting)
the target variable with the permuted feature Xp

j instead of Xj can lead to
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an increase of the model’s error, then feature Xi is considered important.
PFI evaluates how much the models prediction relies on each feature. Let’s

refer to the input dataset as Z = [yX], and assume a matrix composed of a
n-length with target vector y as the first column , followed by remaining
columns as n× p matrix X = [X0, . . . , Xp].

Algorithm 1: Permutation Feature Importance
Result: Sorted array of FI
Input: Trained model f , dataset Z, error measure L(y, f).
Output: Sorted features FI
Calculate original model error eog = L(y, f(X)) (eg. AUC, MSE);
for i← 0 to p do

Randomly shuffle Xi into Xp
i , Xi ∈ X ;

Replace Xi with Xp
i denoted as Xp, Xp

i ∈ Xp;
Calculate estimation error epi = L(y, f(Xp));
Calculate FI i = epi − eog;
Replace Xp

i with Xi;
end
Sort features FI ;

If the FIj value with permutated feature Xj leads to no increase or a
low one then the feature is not important or less important. This approach
was first introduced by Breiman [23] for RF, then later on Fisher, Rudin,
and Dominici [34] built upon Breiman’s idea and proposed a model-agnostic
version which was called Model Reliance on their paper.

3.3 One At a Time

One At a Time (OAT) is a screening method in which each input is varied while
fixing the others. Screening methods are based on a discretization (the process
through which one can transform continuous variables or models into a discrete
form) of the inputs in levels, allowing quick exploration of the behavior. Based
on practice it is shown that only a small number of inputs are influential. The
aim of screening techniques is to identify the non-influential inputs, without
the need to have a lot of model calls, making realistic hypothesis on the model
complexity [35].

To implement the Morris Screening method, a number r of different tra-
jectories through variable space have to be constructed. When the number
of trajectories r is small, it is possible that not all the possible factor levels
are explored. It is assumed that valuable results can be obtained for r in the
range of 4 to 10. Indices are obtained as follows [35]:

µ∗j = 1
r

r∑
i=1
|FI (i)

j | (3.1)
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σj =

√√√√1
r

r∑
i=1

(
FI (i)

j −
1
r

r∑
i=1

FI (i)
j

)2

(3.2)

where:

FI is Feature Importance calculated on algorithm 1.

µ∗j is a measure of the influence of the j-th input on the output (mean of the
absolute value of the feature importance). The larger µ∗j the more the
j-th input contributes to the dispersion of the output.

σj is a measure of the non-linear and/or interaction effects of the j-th input
(standard deviation of the permutation feature importance). If σj is
small, elementary effects have low variations on the support of the in-
put, suggesting a linear relationship between the studied input and the
output. Whereas the larger the σj the less likely the linearity hypothesis
is. Thus a variable with a large σj will be considered having non-linear
effects or implies interaction with at least one other variable.

The method of Morris allows to classify the features into three groups: features
having negligible effects, features having large linear effects without interac-
tions, and features having large non-linear and/or interaction effects. The
method consists of randomly shuffling the input space for each feature one at
a time, then performing a given number of OAT designs. The repetition of
these steps allows the estimation of elementary effects for each feature.

3.4 Permutation Feature Importance for Model
selection

Keeping in mind that a ML models goal is to generate the real-world scenarios
and model the reality for predictions. Permutation Feature Importance, for
example in RF, measures the decrease in prediction accuracy depending on
the information on each independent features, or in NN where noise is added
to independent features. This existing Feature Importance does not generally
account for the fact that there can be many models constructed to fit the
data (almost) equally well, meaning that different models may rely on entirely
different independent features for predicting outcomes. This scenario is known
as the “Rashomon” effect of statistics. The Rashomon effect concerns how to
give comprehensive descriptions of the input features, also raises the question
does the model with the best predictions necessarily gives the most accurate
interpretation? [34] That is not the goal of this thesis, however, the realization
can be used in that field.
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Chapter 4
Implementation

The main parts of Implementation are:

• Used libraries and technologies,

• Permutation Feature Importance

• Permuting the Dataset,

4.1 Introduction to H2O

H2O.AI is a technology involved with impressive force in AI and ML. Based
on Ellen Friendman [36] it is practiced across a wide range of business settings,
with options that work well for both beginnings, less experienced teams, as well
as more professionals. Providing very powerful and sophisticated approaches
that advanced data scientists look for. H2O.AI has both free and open-source
offerings as well as a choice of enterprise-grade products and services. H2O-3
is a highly scalable, distributed, in-memory, very fast open-source software
technology for building AI and ML systems. It can run on-premises or in
the cloud and provides production-ready artifacts for deployment. H2O-3
requires Java but also lets you use familiar programming languages, including
Python, R, or Scala to build ML models for both supervised and unsupervised
approaches. H2O-3’s REST API allows access to all the capabilities of H2O-3
from an external program or script via JSON over HTTP. The Rest API is
used by H2O-3’s web interface (Flow UI), R binding (H2O-R), and Python
binding (H2O-Python). H2O-3 has numerous ML algorithms developed which
one can use for building models.
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4.2 Implementation of Permutation Feature
Importance

My implementation of PFI will be used after training and scoring the model
which will give a tabular form of features with the values of influence on the
outcome. The model is created and after training so that it can be used
to score (make a prediction). I will be using CSV files to read the dataset.
A CSV is a comma-separated values file, which allows data to be saved in
a tabular format. In code the naming changed from Permutation Feature
Importance to Permutation Variable Importance. I will read the CSV file, and
the dataset will be represented as a Frame within H2O-3. The features are
represented in Vec (vectors) containing the values of the features. I implement
PFI as it was presented in the PFI chapter algorithm 1. There are different
prediction categories for models, such as Binomial, Multinomial, Regression,
etc. implying that not every model can have all the metrics pre-calculated.
Since I am allowing the user to select the metric to be used to find PFI, I shall
first show the pre-processes of the algorithm. As stated in the algorithm as
input we will have the trained model m, dataset Z which from now on I will
denoting as a Frame, and error measure L(y,m) which from now on will be
referred to as a metric. Let’s start decomposing the lines of code, and how it
is implemented. PFI is obtained on the following steps:

1. Preprocess: First lines of the code are regarding setting the variables to
shuffle and setting model training metric. Method “arrangeColsToShuf-
fle()” collects in a list the response column (target variable) and (if any)
variables to be ignored which can be set by the user. Furthermore,
users can define weight and fold columns as a part of a frame and these
columns should not be treated as features. Method “setOgModelMet-
ric()” sets the metric selected by the user. In H2O-3 when a model is
trained it also generates the metrics based on the algorithm specified and
tasks specified. I run checks to see which category the model belongs
to ensuring the selected metric exists for this model, store it, otherwise
throw an error. Also, it is stated that MSE exists for every model in
H2O-3 so I use it as a default (if the user doesn’t specify the metric) see
Equation 1.5.

2. I will go through all the variables to be shuffled which is a subset of the
Frame Z, since it’s not including the List of variables already set.
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4.2. Implementation of Permutation Feature Importance

1 public TwoDimTable permutationVarImportance(){
2 arrangeColsToShuffle();
3 setOgMetric(); // get the metric value from the model
4 _varImpMap = new HashMap<>(_varsToShuffle.length);
5
6 int id = 0;
7 for (int f = 0; f < _inputFrame.numCols() ; f++){
8 if (isIgnored(_variables[f]))
9 continue;

10 // shuffle values of feature
11 Vec shuffledFeature = VecUtils.ShuffleVec(

_inputFrame.vec(_variables[f]), _inputFrame.vec(
_variables[f]).makeCopy());

12 Vec ogFeature = _inputFrame.replace(f,
shuffledFeature);

13
14 // score the model
15 Frame newScore = _model.score(_inputFrame);
16
17 // set and add new metrics ˜ fills @param _p_var_imp

needed for ModelMetrics.calcVarImp()
18 setVariablesMetric(id);
19
20 // return the original data and add to map
21 _inputFrame.replace(f, ogFeature);
22 _varImpMap.put(_variables[f], _pVarImp[id++]);
23
24 newScore.remove();
25 shuffledFeature.remove();
26 }
27 // Create TwoDimTable having (Relative + Scaled +

percentage) importance
28 _permutationVarImp = ModelMetrics.calcVarImp(_pVarImp,

_varsToShuffle);
29 return _permutationVarImp;
30 }

3. Now I shuffle feature Xi and create Xp
i (“shuffledFeature”) (line 11).

The shuffling is done according to Fisher-Yates algorithm [37], To see the
shuffling mechanism in more detail see number 7. The replace method,
updates the vector at position i with the shuffled Vec and returns the
original Vec denoted as ogVar, updating the Frame.

4. now I call the scoring method from the model (line 15) which scores
the model with the Frame which has the variable shuffled. The scor-
ing method will also generate new metrics which I am going to extract
and store (line 18). Similarly as “setOgModelMetric()”, “setVariable-
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4. Implementation

Metric()” retrieves the metric from the model according to the specified
metric. Also, calculating FIi = epi −eog and storing it on an array, which
will be used to generate a two dimensional table (line 28).

5. I return the Frame to its original form, replacing the shuffled Vec with
the original Vec (line 21). I map variables FIi score it’s i name (String)
to the score (line 22). Remove the Frame and Vec which are no longer
useful.

6. After every variable gets the FIi score, we sort the importance. The Sort-
ing takes place in the “ModelMetrics.calcVarImp(...)” method which
also creates a data structure called a TwoDimTable, which is a two-
dimensional table, which has row names as well. For the header of
columns I leave the variables names and for the rows Relative impor-
tance, Scaled importance, and Percentage.

7. The Fisher-Yates algorithm is implemented within H2O-3:

1 public static class ShuffleVecTask extends MRTask<
ShuffleVecTask> {

2 @Override public void map(Chunk ic, Chunk nc) {
3 Random rng = getRNG(seed(ic.cidx()));
4 for (int i = 1; i < ic._len ; i++) {
5 // inclusive upper bound <0,i>
6 int j = rng.nextInt(i);
7 switch (ic.vec().get_type()) {
8 case Vec.T_BAD: break; /* NOP */
9 case Vec.T_UUID:

10 if (j != i) nc.setAny(i, ic.at16l(j));
11 nc.setAny(j, ic.at16l(i));
12 break;
13 case Vec.T_STR:
14 if (j != i) nc.setAny(i, ic.stringAt(j));
15 nc.setAny(j, ic.stringAt(i));
16 break;
17 case Vec.T_NUM: /* fallthrough */
18 case Vec.T_CAT:
19 case Vec.T_TIME:
20 if (j != i) nc.setAny(i, ic.atd(j));
21 nc.setAny(j, ic.atd(i));
22 break;
23 default:
24 throw new IllegalArgumentException("Unsupported

vector type: " + ic.vec().get_type());
25 }
26 }
27 }
28 }
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4.2. Implementation of Permutation Feature Importance

The Map/Reduce style distributed system (MRTask) includes a map
and reduce methods that can be overridden to specify a computation.
MRTask is used to distribute the computation over threads and ma-
chines. The map overload gives a single local input Chunk. Chunks (a
compression scheme, over a chunk of data) are collections of elements
and support an array-like API. Chunks are subsets of Vecs. Chunks are
mapped many-to-one Vecs. Chunk updates are not multi-thread safe,
therefore I use map/reduce jobs on a single column in an input Frame.
Chunks hold Java primitive values, timestamps, UUIDs, or Strings. This
method extended from MRTask parent class (line 1) overloads the map
method and is given a two local input Chunk (line 2). Since I am using
the Fisher-Yates algorithm, which consists of accessing a random ele-
ment of, in this case, the chunk as input, I give the source Vec with the
original values and a copy of it which will be shuffled and returned. I
found it more convenient and straightforward to make a copy than to
initiate a new Chunk with NaN values and with the Vec type and size ac-
cordingly. The map method takes two parameters Chunk ic and Chunk
oc. When dealing with Larger Vecs, it is separated into some Chunks.
Chunk ic will refer to the input Chunk (original values), whereas Chunk
oc will refer to the output Chunk with shuffled values. The Chunks in
the MRTask are separately shuffled then during the reduce phase it put
them together in a Vec which is returned.

The input dataset which I will be using to demonstrate PFI is prostate.csv.
The file is read and parsed into a Frame. The dataset file is taken from the
smalldata folder in h2o-3 repository, and is the following:

Figure 4.1: First 10 rows of Frame prostate.csv
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4. Implementation

Whether to calculate PFI on test data or train data, depends on what one is
seeking to obtain from the result. Upon using training data it shows how much
the model relies on each variable for making the prediction, whereas upon
using testing data it shows the performance of the model on unseen data [33].
I am focused on the reliance of each variable towards the prediction, therefore
will be using the training data. The first model I use to do the prediction
is GBM model, see subsection 1.4.3. GBM by design has feature importance
calculated and I can use those results and compare them to PFI. The core
implementation is in Java, however, the user can use the implementation in
Python and R. The following plots can be executed by the user within h2o-3
with Python.

Figure 4.2: Result of Permutation Feature Importance for prostate Frame,
Scaled Importance using metric logloss
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4.2. Implementation of Permutation Feature Importance

Figure 4.3: Feature importance within GBM

4.2.1 Implementation of One At a Time screening technique

The Morris method for Global Sensitivity Analysis is a so-called One At a
Time (OAT) method, meaning that in each run only one input parameter is
given a new value. It facilitates a Global Sensitivity Analysis by making a
number r of local changes at different input points of the possible range of
input values. The local changes made on the Frame are as explained in PFI
algorithm algorithm 1 the change of input points being randomly selected and
swapped within the column. Now we will use the OAT screening technique
see section 3.3 to explain which features have the highest importance. The
literature suggests r as a number between 4 and 10 [35].

1. We execute “permutationVarImportance()” r times and use this infor-
mation to calculate the mean of the absolute value of the PFI of every
feature µ∗ see Equation 3.1 and the standard deviation of the feature
importance of every feature σ see Equation 3.2.

2. Now based on these two we can analyze and categorize the importance
of the features to the output of the model.

To illustrate which features are influential and which not see Figure 4.4
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4. Implementation

Figure 4.4: parameter importance ranking

Now that I have shown how to interpret µ∗ and σ let’s execute all the steps
mentioned in the chapter on a real dataset, prostate.csv. We build and train
a GBM model, to predict “CAPSULE”. For FI scores see Figure 4.2, Morris
OAT method see Figure 4.5: Input “GLEASON” is the most influential group,
whereas “VOL”, “DROPS”, “PSA” are on influential group, then “DCAPS”
and “DROPS” as non-influential.
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4.2. Implementation of Permutation Feature Importance

Figure 4.5: Result of Morris method for r = 4 on prostate Frame execution 1

Figure 4.6: Result of Morris method for r = 4 on prostate Frame execution 2
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4. Implementation

4.2.2 Testing with big data

The following dataset has 15 columns and 163987 rows. The response column
shall be “bad loan”, whether the loan will be repaid or not. The dataset is
within the big data folder of h2o-3 libraries.

Figure 4.7: The first rows (transposed for visibility purposes) of the loan
dataset
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4.2. Implementation of Permutation Feature Importance

Figure 4.8: Showing 10 most influential variables of PFI using MSE metric

Figure 4.9: Showing 10 most influential variables of PFI using log-loss metric
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Figure 4.10: Showing OAT using Morris method with MSE
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4.3. Advantages and disadvantages

4.3 Advantages and disadvantages

The main advantage of PFI is providing global insight into the model’s predic-
tion. This technique is especially useful for non-linear models. Including every
feature on the calculation while having one permuted automatically measures
the interaction with the other features. Permuting features destroys the in-
teraction effects with other features, considering both the main features effect
and the interaction effects on the model performance. This comes with a dis-
advantage, the interaction between features is included on every iteration of
the model performance measurement for every feature permuted. PFI takes
as input a trained model, which means retraining the model is not required.
Considering that some model’s training has quite the computational cost and
could be time-consuming, whereas this technique keeps the model constant
and includes permuting all the features and scoring the model on every per-
mutation. PFI has a low computational cost: the plan then requires a total
number of runs that is a linear function of the number of examined features.

If two or more features are correlated unrealistic data instances can be
created. Permuting one feature affects the other correlated feature, however,
PFI disregards how the other might change. There can be uncertainty about
whether to use training data or test data. Since PFI depends on permuting the
feature, adding randomness to the measure, the results might vary one from
another using OAT to repeat the permutation and averaging the measures
stabilizes the measure, however, it increases the computation.

Global Sensitivity Analysis methods principle explore the entire interval
of the definition of each factor. Each ‘effect’ for a factor is an average over the
possible values of the other factors. Moreover, providing a simplified model of
the input-output mapping, showing the variables of highest influence to the
output, allowing the possibility to find such variables that can be disregarded
upon training the model since those variables have little to no influence.

The Morris method, like all screening methods, provides sensitivity mea-
sures that tend to be capable of ranking the input factors in order of impor-
tance, but do not attempt to quantify by how much one given factor is more
important than another. Therefore, combining PFI together with OAT Morris
method implies a more quantitative method.

4.4 Existing Implementation of Permutation
Feature Importance

An existing PFI is from scikit learn [38] which also specifies that this method
is useful for non-linear estimators. Its validation performance is measured
only via R2 or accuracy for a classifier. PFI on scikit learn can be computed
either on the training set or hold-out testing or validation set. The scikit
learn implementation combines both the algorithm algorithm 1 together with
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Equation 3.1 in the sense that, when going through the features, in the for
loop, scikit learn has a second loop repeated k ∈ 1, ...,K times, and outside
this inner loop it calculates the FI score as following:

FI j = s− 1
K

K∑
k=1

sk,j

s denotes the loss function score, j the current feature, and k represents the
number of runs. For comparing the results I shall be using the data set of cars
Figure 4.11.

Figure 4.11: First rows of cars.csv dataset

My PFI scoring for cars dataset: weight (lb) : 0.49268, displacement
(cc): 0.25558, 0-60 mph (s): 0.2143, cylinders: 0.02729, year: 0.010, econ-
omy (mpg):0.00003.

Scikit learn’s PFI scoring for the same dataset: weight (lb): 0.418 (+/-
0.066), displacement (cc): 0.286 (+/- 0.048), 0-60 mph (s): 0.217 (+/- 0.044),
cylinders: 0.049 (+/- 0.012).
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Figure 4.12: Results of my implementation of PFI on cars dataset having
“power (hp)” as a target variable

4.5 Existing Implementations of One At a Time

There is OAT Sensitivity Analysis usage for Genetic Algorithm Solving Con-
tinuous Network Design Problems [39]. The papers OAT focus is on the
parameters set using genetic algorithms for continuous network design prob-
lems. Using sensitivity analysis on the effects of parameters, demonstrating
that setting some parameters has clear effects on the solution. The paper uses
OAT for parameter analysis and uses the ’nominal’ or ’standard’ value per pa-
rameter, proposing two extreme values to represent the range of likely values
for each parameter. The magnitudes of the differences between the outputs
are then compared to find such parameters that significantly affect the model.

Also straight from the book “Sensitivity analysis in practice: a guide to
assessing scientific models” [40] which is very similar to what we’ve seen in
the previous chapter. The model relies on a sensitivity measure, called the
elementary effect, which uses incremental ratios and is a local measure. The σ
and µ∗ are obtained by averaging several elementary effects and their absolute
values, computed at different points of the input space to lose the dependence.
It attempts to explore several regions of the input space therefore the method
can be regarded as global.
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Chapter 5
Conclusion

This bachelor thesis provides detailed descriptions towards the importance of
interpretable ML models. Also describing how more complex models labeled as
black-box tend to lose interpretability to achieve better results. Elaborating on
why it’s crucial to trust the models output, we use Global Sensitivity Analysis
to understand how the entire input affects the output. Global analysis focuses
on the impact of each feature on a models numerical or other output. Random
shuffling the input features OAT breaks the relationship between the feature
and the target prediction. Calculating permutation feature importance values
of the model indicate the dependence of the feature towards the outcome. This
model-agnostic technique allows to calculate the importance of the features
many times representing the average of those runs. The implementation could
have been simpler by only executing PFI multiple times resulting a range of
importance of each feature, however, I chose combine OAT Morris method
as I believe it gives more insight to the importance of the features, and also
grouping them. This method could be very time consuming in the case of big
data. Having n features and m rows of the dataset (Fisher-Yates algorithm
O(m)) complexity of the permutation feature importance algorithm is O(nm).
Having r OAT calls (r ∈ [4, 10]) calculating µ∗j and σj increases the complexity
to O(rn2m) = O(n2m) which could have been more efficiently.

H2O’s core code is written in Java, so is the implementation of Permutation
Feature Importance for black-box models. There is open Github pull request of
my implementation (https://github.com/h2oai/h2o-3/pull/4610)
on H2O’s library. Tested functionality of the MRTask for shuffling and PFI.
MRTask testing includes testing allowed data types, Frames which have more
than one Vec, and parallel runs. PFI testing includes regression and classifi-
cation problems with GBM and GLM models, and testing PFI values against
standardized beta values of GLM. Compared solutions with existing imple-
mentation from scikit learn. This implementation can also be used on R and
Python. Tested big data files on Python and created demo on Jupyter Note-
book.
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5. Conclusion

When I was implementing the code it was straightforward that every fea-
ture needs to be shuffled, however, in H2O’s dataset (Frame) there were such
columns that aren’t inherited from the input dataset. Some columns could be
set by the user to be ignored, so one challenge was shuffling the Frame only
on columns from the dataset, without removing the columns from the Frame.
I had to learn how H2O-3 approaches storing the parsed input data and read
the documentation on what data structures are being used for the input of
my implementation. One thing that could be more efficient is the creation
of the Frame for the PFI table. I create a H2O-3 data structure of tabular
form then transform it to a another H2O-3 data structure used for parsed
input data (frame), since it was impossible to pass the tabular data structure
via JSON API in Python and R. While I could’ve implemented an efficient
method to avoid those steps I decided to use existing working methods that
H2O-3 already had for the table creation and permutation feature importance
scores sorting. I learnt to follow existing code techniques that solved similar
or subsets of the code problems I am facing.
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Chapter 6
Glossary

black-box data goes in, decisions come out, but the processes between input
and output are opaque.
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