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ABSTRACT
Heterogeneous microprocessors integrate a CPU and GPU
with a shared cache hierarchy on the same chip, affording
low-overhead communication between the CPU and GPU’s
cores. Often times, large array data structures are commu-
nicated from the CPU to the GPU and back. While the on-
chip cache hierarchy can support such CPU-GPU producer-
consumer sharing, this almost never happens due to poor
temporal reuse. Because the data structures can be quite
large, by the time the consumer reads the data, it has been
evicted from cache even though the producer had brought it
on-chip when it originally wrote the data. As a result, the
CPU-GPU communication happens through main memory
instead of the cache, hurting performance and energy.

This paper exploits the on-chip caches in a heterogeneous
microprocessor to improve CPU-GPU communication ef-
ficiency. We divide streaming computations executed by
the CPU and GPU that exhibit producer-consumer sharing
into chunks, and overlap the execution of CPU chunks with
GPU chunks in a software pipeline. To enforce data depen-
dences, the producer executes one chunk ahead of the con-
sumer at all times. We also propose a low-overhead syn-
chronization mechanism in which the CPU directly controls
thread-block scheduling in the GPU to maintain the pro-
ducer’s “run-ahead distance” relative to the consumer. By
adjusting the chunk size or run-ahead distance, we can make
the CPU-GPU working set fit in the last-level cache, thus
permitting the producer-consumer sharing to occur through
the LLC. We show through simulation that our technique re-
duces the number of DRAM accesses by 30.4%, improves
performance by 26.8%, and lowers memory system energy
by 27.4% averaged across 7 benchmarks.

1. INTRODUCTION
Heterogeneous microprocessors integrate a CPU and GPU
onto the same chip, providing physical proximity between
the two. Compared to discrete GPUs, the physical prox-
imity allows for significantly lower-latency CPU-GPU com-
munication. Not only can the CPU and GPU communicate
through a shared main memory system, but many heteroge-
neous microprocessors also integrate shared caches and sup-
port cache coherence between the CPU and GPU as well,
permitting communication to remain entirely on-chip when
access patterns permit.

Enabled by these efficient communication mechanisms, a
few researchers have recently developed parallelization tech-
niques that utilize the GPUs in heterogeneous microproces-
sors to speedup more complex and irregular codes. Tradi-
tionally, discrete GPUs have been used to accelerate mas-

sively parallel kernels which amortize the high cost of kernel
off-loads on these systems. But, the efficient communication
mechanisms associated with integrated GPUs permit more
frequent off-loads of smaller loops to exploit finer granular-
ities of parallelism. This means a wider variety of SIMD
loops, possibly contained within larger non-SIMD computa-
tions, can be gainfully off-loaded onto the integrated GPUs
of heterogeneous microprocessors. At the same time, the
CPU cores can be used to execute parallel non-SIMD com-
putations, perhaps themselves overlapped with GPU exe-
cution. Such heterogeneous parallelization of MIMD and
SIMD code regions has been demonstrated for distributed
loops [1] as well as nested loops [2].

Besides enabling acceleration of more complex codes, the
fast CPU-GPU communication mechanisms available in het-
erogeneous microprocessors can also benefit massively par-
allel kernels that have traditionally been accelerated using
GPUs. Large GPU kernels move significant amounts of data
into and out of the compute units of a GPU. Often, this data
is either produced by the CPU immediately prior to kernel
launch, or is consumed by the CPU immediately after the
GPU finishes execution, or both. Such producer-consumer
sharing between the CPU and GPU naturally arises as com-
putation migrates from the CPU to the GPU and back.

While heterogeneous microprocessors efficiently support
CPU-GPU communication, unfortunately, the on-chip cache
mechanisms that afford the greatest levels of efficiency are
bypassed for producer-consumer sharing across large ker-
nels. The problem is poor temporal reuse owing to the large
volumes of data that are accessed by the CPU and GPU. As
a result, any producer-consumer sharing occurring from the
CPU to the GPU or vice versa is not supported by the on-
chip caches, but instead, occurs entirely through DRAM.

In this paper, we propose pipelined CPU-GPU scheduling
for caches, a locality transformation supported by a novel
CPU-GPU synchronization mechanism that increases tem-
poral reuse between the CPU and GPU. During kernel exe-
cution, a GPU does not access the entire dataset associated
with the kernel all at once. Instead, it tends to consume and
then produce data in a linear streaming fashion. The same is
true for the CPU, both when setting up the input data prior to
a kernel launch and when consuming the GPU’s results after
kernel execution. Hence, it is possible to overlap the CPU
and GPU execution, creating a software pipeline in which
the producer executes just in front of the consumer, feeding
it data. A novel synchronization mechanism sequences the
producer and consumer through their pipeline stages.

Such pipelined CPU-GPU execution can provide higher
performance through increased parallelism. However, pipelin-
ing the CPU and GPU also permits tuning the degree of tem-



_ _ g l o b a l _ _ void GPU_Producer ( i n t *A) {
i n t i = b l o c k S i z e ( ) * b l o c k I d ( ) + t h r e a d I d ( ) ;
A[ i ] = . . . ; / / W r i t e t o A ( produce )

}

void CPU_Consumer ( i n t *A, i n t i t e r s ) {
f o r ( i n t i = 0 ; i < i t e r s ; i ++ ) {

. . . = A[ i ] ; / / Read from A ( consume )
}

}

i n t main ( ) {
i n t nBlocks = nThreads / t h r e a d s _ p e r _ b l o c k ;
i n t *A = m al lo c ( nThreads * s i z e o f ( i n t ) ) ;

GPU_Producer <<<nBlocks , t h r e a d s _ p e r _ b l o c k >>>(A ) ;
d e v i c e S y n c h r o n i z e ( ) ;

CPU_Consumer (A ) ;
}

Figure 1: Kernel off-load with producer-consumer (GPU to
CPU) sharing of a large array.

poral reuse associated with the producer-consumer sharing
pattern simply by controlling how far ahead of the consumer
the producer is allowed to execute. If a sufficiently small
“run-ahead distance” is maintained, then the size of the data
communicated from the producer to the consumer can be
made to fit in the heterogeneous microprocessor’s caches.
Thus, the communication occurs entirely on-chip. This not
only improves performance, but it also benefits energy and
efficiency by significantly reducing the number of accesses
to main memory.

Our work makes several contributions in the context of
pipelined CPU-GPU scheduling for caches:

• We propose to overlap CPU and GPU execution in a
software pipeline to improve temporal reuse of shared
between the producer and consumer.

• We propose a novel hardware synchronization mecha-
nism, called thread-block throttling, that permits the
CPU to directly control the rate of execution in the
GPU, and use this mechanism to maintain the producer’s
run-ahead distance relative to the consumer.

• We undertake a simulation-based evaluation using seven
benchmarks that shows our technique reduces memory
system energy by 27.4% and increases performance by
26.8% on average.

The rest of this paper is organized as follows. Section 2
presents our pipelined CPU-GPU scheduling technique with
the novel thread-block throttling mechanism. Then, Sec-
tion 3 describes the experimental methodology used for our
quantitative evaluation. Next, Section 4 presents the results.
Finally, Section 5 discusses related work, and Section 6 con-
cludes the paper.

2. PIPELINED CPU-GPU SCHEDULING
GPU kernel offloads are a form of computation migration,
moving computations from the CPU to the GPU to take ad-
vantage of more parallel hardware. This computation mi-
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Figure 2: (a) Serial schedule. (b) Pipelined schedule.

gration is accompanied by data movement in a producer-
consumer fashion: the CPU provides input values to the
GPU upon kernel initiation, while the GPU provides results
back to the CPU upon kernel completion. Moreover, the
amount of data movement can be quite significant if large
array data structures are involved.

The goal of our technique is to exploit the on-chip cache
hierarchy of heterogeneous microprocessors to support such
producer-consumer data movement between the CPU and
GPU efficiently. This section describes the program trans-
formation and GPU support needed by our technique.

2.1 Scheduling for Cache Locality
Figure 1 shows a working code example that we assume
runs on a heterogeneous microprocessor. In the figure, the
GPU_Producer kernel writes an integer array, A, while the
CPU_Consumer function reads it. The GPU kernel and CPU
function are separated by a synchronization operation (de-
viceSynchronize); hence, the two execute serially such that
the GPU kernel produces the entire array before the CPU
function begins consuming it. Figure 2(a) illustrates this se-
rial execution of the GPU kernel and the CPU function over
time.

If the integer array, A, is large compared to the micropro-
cessor’s on-chip caches, then the producer-consumer sharing
will occur through DRAM, as illustrated in Figure 3. In Fig-
ure 3, we assume the GPU and CPU both have their own
private caches, but a last-level cache (LLC) is shared be-
tween the two. As the GPU_Producer kernel executes, it
streams the A array into the GPU’s private cache in order
to perform the producer writes (labeled 1a©). Assuming the
LLC is managed as a victim buffer, the A array bypasses the
shared cache during the GPU’s initial demand fetches, but
fills the LLC when it is evicted from the GPU’s private cache
(labeled 2a©). Eventually, the LLC itself becomes full with A
array elements, and evicts them back to DRAM (labeled 3a©).
By the time the CPU_Consumer function executes, the data
it references has left both the GPU’s private cache and the
LLC, so the CPU misses to DRAM (labeled 4a©). Hence, the
A array is fetched from DRAM twice: once by the GPU and
once by the CPU.

To address this inefficiency, we propose to overlap the
GPU and CPU execution so that temporal reuse of the A ar-
ray is improved. Our technique creates a software pipeline
of the GPU_Producer kernel and the CPU_Consumer func-
tion. (We also propose a hardware mechanism for efficiently
synchronizing the software pipeline, which will be presented
in Section 2.2). Instead of serializing the GPU and CPU, we
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chunk the GPU_Producer kernel and CPU_Consumer func-
tion, and execute chunks from the GPU and CPU simultane-
ously. To enforce data dependences, we stagger the chunks
such that the GPU always runs one chunk ahead of the CPU:
as the CPU consumes the portion of the A array correspond-
ing to chunk i, the GPU produces the portion of the A ar-
ray corresponding to chunk i+1. Figure 2(b) illustrates this
pipelined execution of the GPU kernel and the CPU function
assuming each is divided into 4 chunks.

Comparing Figures 2(a) and 2(b), we can see that software
pipelining improves performance in part because of parallel
execution of the GPU_Producer kernel and CPU_Consumer
function. Rather than executing all 8 chunks in series as
shown in Figure 2(a), the pipeline overlaps the execution of
3 chunks, reducing the execution time by 3

8 . (This assumes
all chunks run for the same amount of time. Depending on
the application, it is also possible for per-chunk execution
times to vary which could result in load imbalance and less
speedup.) In general, for a chunking factor N, the execution
is reduced from 2N chunks down to N +1 chunks.

But in addition to increased parallelism, software pipelin-
ing also reduces the liveness of the A array. Rather than
wait until the GPU completes the entire kernel to begin ex-
ecution, the CPU starts consuming the A array right after
the GPU completes the first chunk. If the GPU and CPU
remain synchronized such that the GPU runs ahead of the
CPU by 1 chunk, then the CPU will always consume the
chunk just produced by the GPU as the GPU produces the
next chunk. This means that the producer-consumer shar-
ing can occur through the on-chip cache hierarchy if two
chunks can fit simultaneously in the LLC. By choosing a suf-
ficiently small chunking factor, or “run-ahead distance,” the
combined GPU-CPU working set of 2 chunks can be made
to fit in cache and enable on-chip communication of the A
array. The run-ahead distance (RAD) that achieves this for
each benchmark can be determined either analytically or ex-
perimentally, which we will show in Section 4.1.

Figure 4 illustrates the case when producer-consumer shar-
ing occurs through the on-chip cache. Similar to Figure 3,
Figure 4 shows the GPU_Producer kernel filling the LLC by
way of the GPU’s private cache (labeled 1b© and 2b©). Thanks
to the improved temporal reuse afforded by software pipelin-
ing, the CPU_Consumer function references the A array data

before it has a chance to leave the LLC, resulting in an LLC
hit (labeled 2b©). With software pipelining, the A array is only
fetched from DRAM once.

Although our running example in Figures 1 through 4 in-
volves the specific case of a single GPU producer and a sin-
gle CPU consumer, our technique generalizes to many other
cases. First, the direction of communication can be reversed:
it is possible for a CPU producer to feed a GPU consumer.
Second, there can be multiple producer / consumer stages
working at the same time. Specifically, a chain of 3 or more
stages could execute back-to-back. (For example, a CPU
producer feeds a GPU consumer which becomes a GPU pro-
ducer that feeds a CPU consumer). Rather than ensure that
each stage takes up 1/2 the LLC, with more simultaneous
stages, the fraction of the LLC allocated to each stage goes
down proportionally. Section 3.3 will present our workloads
and discuss the different software pipelines that are possible.

2.2 Thread-Block Throttling
In addition to chunking the GPU_Producer kernel and the
CPU_Consumer function and executing the chunks in an
overlapped fashion, it is also necessary to synchronize the
GPU and CPU so that neither one gets ahead of the other
in the software pipeline and violate data dependences. Such
CPU-GPU synchronization can be challenging, though, given
the massive parallelism in the GPU. A critical issue is the
amount of computation per synchronization operation. In
particular, the smaller the per-synch computation, the more
efficient the synchronization mechanisms need to be, and po-
tentially, the greater the coordination that will be necessary
with the GPU’s massively parallel threads.

As shown in Figure 2(b), a synchronization operation is
performed after every chunk is executed by the GPU and
CPU. Chunks are sized according to their cache footprint,
with the requirement that two chunks must fit in the LLC
simultaneously. The relationship between chunk size–say, in
terms of GPU threads–and cache footprint size can be highly
application dependent. However, in our benchmarks, we find
that each GPU chunk can have several times the number of
hardware threads resident in the GPU, and yet still exhibit a
cache footprint that fits within the LLC.

For example, assume the code from Figure 1 runs on a het-
erogeneous microprocessor with a 4MB LLC. Each chunk
of the GPU_Producer kernel should not use more than half
the LLC, or 2MB. Given 4-byte elements, this implies the
GPU can produce 512K elements of the A array each time it
executes a chunk. In Figure 1, each A array element is pro-
duced by a single GPU thread, so this translates into 512K
threads per chunk, which is about 70x more than the number
of threads in the GPU from our experiments (7,680).

This per-synch computation granularity has implications
for the kind of synchronization mechanisms we require. For
instance, it is likely that purely software approaches will
be inadequate. The simplist software approach is to divide
the original GPU kernel in Figure 2(a), labeled “GPU0,”
into multiple sub-kernels corresponding to the chunks shown
in Figure 2(b), labeled “GPU1”–”GPU4,” and to perform
a launch and deviceSynchronize() operation for each sub-
kernel. Unfortunately, kernel launches are heavy weight op-
erations with high associated overheads. Although the per-



CPU GPU
Number of cores 4 Number of CUs 3
CPU Clock rate 2.95 GHz GPU Clock rate 1100 MHz
Issue width 8 Number of SIMD Units per CU 4
Issue queue size 64 SIMD size 16
Reorder buffer size 192 Wavefront size 64
L1-I cache (private per core) 32 KB Wavefront slots (max WFs per CU) 10
L1-D cache (private per core) 64 KB L1 (TCP) Size (Private per CU) 128 KB
L2 cache (shared per core-pair) 2 MB L2 (TCC) Size 256 KB
L3 Cache (LLC) 4MB
Main Memory 8 GB DDR4 16x4 (64 bit) @ 2400 MHz

Table 1: Simulation parameters used in the experiments. The modeled heterogeneous microprocessor resembles a Ryzen
2XXXU series APU.
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Figure 5: Thread-block throttling mechanism.

synch computation exceeds the number of GPU hardware
threads, performing a kernel launch for every chunk would
result in significant performance degradation.

Rather than rely on purely software approaches, we pro-
pose a hardware-assisted mechanism to mitigate the over-
heads. Our approach launches a single GPU kernel (“GPU0”
in Figure 2(a)) to amortize the launch overhead, but allows
the CPU to control the progress of the kernel’s execution. To
do this, we expose the scheduling of thread blocks within the
GPU’s command processor / thread-block dispatcher shown
in Figure 5. Normally, the command processor / thread-
block dispatcher schedules as much of a kernel’s pool of
thread blocks as will fit onto the GPU. We modified the dis-
patcher to schedule thread blocks in groups equal to the per-
synch computation size. (The group size is communicated
to the command processor during kernel launch). The dis-
patcher schedules thread blocks one group at a time, with
each group released only after a signal from the CPU. (This
CPU signal is much lighter weight than a kernel launch).
Upon completion of each group, the GPU also signals to
the CPU so that it may coordinate the release of subsequent
groups. We call this synchronization mechanism thread-
block throttling. Section 3.2 will provide more details on
its implementation.

3. METHODOLOGY
This section describes our experimental methodology for eval-
uating pipelined CPU-GPU scheduling for caches. Recently,

a new Gem5 simulator [3] was developed to include a real-
istic integrated GPU model from AMD based on the Graph-
ics Core Next 3 (GCN3) architecture, and to support the
HSA standard [4]. This new Gem5 simulator better reflects
how the hardware-software stack in a real GPU works com-
pared to older simulators, like the original Gem5-gpu, so
we use it in our evaluation. Section 3.1 discusses the sim-
ulation parameters we use with the new Gem5 simulator,
and describes the cache hierarchy architecture we model.
Next, Section 3.2 presents the software architecture of the
new Gem5’s GPU driver system, and the customizations that
we created within that driver system to support our tech-
nique. Finally, Section 3.3 discusses the workloads used in
the quantitative evaluation of our technique.

3.1 Model Configuration
Table 1 lists the configuration parameters we used in the
evaluation of our technique on the Gem5 simulator. (The ter-
minology for the GPU attributes in this table is from AMD).
We based the configuration off of the Ryzen 3 2XXXU series
of APUs. The modeled chip has 4 out-of-order CPU cores
integrated with a modestly sized GPU. Since gem5 does not
model Dynamic Voltage and Frequency Scaling (DVFS), we
chose clock speeds for both the CPU and GPU in the middle
of the range for the Ryzen 2200U chip.

Cache Hierarchy. Unlike the original Gem5-gpu simu-
lator which did not model a shared last-level cache (LLC),
the new Gem5 simulator does implement an LLC that can
support fast CPU-GPU data sharing. Each CPU has private
L1 I/D caches, with every two CPUs grouped together in
"core pairs" sharing an L2 cache. The GPU’s Compute Units
(CUs) share an L1 instruction cache known as a Sequencer
Cache (SQC), while each CU has a private L1 data cache
known as a Texture Cache per Pipe (TCP). The CUs share
the GPU’s L2 cache known as a Texture Cache per Channel
(TCC) [4]. Since our configuration has 4 CPU cores and 3
CUs, there are 3 L2 caches in the system.

In the new Gem5 simulator, the LLC is managed as an ex-
clusive victim cache for the GPU and CPU L2s, controlled
by a stateless directory-based controller that implements a
coherence protocol called GPU_VIPER. In this protocol, read
requests from the L2s check the LLC for the requested block,
and if a hit occurs, removes that block from the LLC and
sends it to the requesting L2. If a miss occurs, the controller
sends a request to main memory while at the same time prob-



Benchmark Suite Input Stage Order
CEDT Chai 2146 x 3826 video GGCC
BE Hetero-Mark 1080p video CG
EP Hetero-Mark 8192 Creatures CGC
DWT2D Rodinia 1125x2436 image CG
Kmeans Rodinia 512K Objects, 34 Features GC
LavaMD Rodinia 1000 boxes, 100 Particles per box CG
SmithWa OMP2012 ref - 1048576 GC

Table 2: Benchmarks used in the experimental evaluation of Pipeline Scheduling for Shared Data Cache Locality.

ing the other L2s for the requested block. One implication of
this is that even if the data is in one of the L2s, DRAM is still
read and the energy used for this access is wasted. Presum-
ably, the protocol was designed this way to minimize read
latency: speculatively reading DRAM without waiting for
the L2 probes to come back. Thus, we are motivated further
to service requests from the LLC, regardless of the block’s
location in the cache hierarchy.

Writes for the CPU and GPU behave differently from each
other. The CPU caches write back evicted blocks whether
they are clean or dirty. The blocks are then stored in the
LLC by the controller. The GPU’s caches, on the other
hand, are write-through caches. Stores to blocks automat-
ically update all levels of the cache hierarchy, and any evic-
tions from the GPU’s L2 cache are considered to be write
throughs as well. By default, the LLC is bypassed during a
write through, but a pre-existing option exists to fill the LLC
during a write through. Our technique relies on this option
to keep producer-consumer data in the cache system, and we
keep the option turned on save for experiments aimed at re-
moving the benefits of our technique which we will describe
in Section 4.

When an eviction is necessary in the GPU’s L2, the GPU
only writes dirty blocks through to the LLC. This makes
sense for the GPU which could be reading massive amounts
of data, to not thrash the LLC. However, it creates a problem
for workloads that exhibit Read-Read sharing with a GPU
kernel reading the data first. Since reads by default are not
cached in the LLC and the GPU does not evict clean blocks
to the LLC, the CPU has to read main memory a second
time for the same data. To alleviate this problem, we modi-
fied the GPU_VIPER protocol to be able cache reads in the
LLC when it receives a read request.

3.2 Driver Stack Architecture
Along with AMD’s GCN3 architecture, the new Gem5 sim-
ulator also supports AMD’s Radeon Open Compute Plat-
form (ROCm), which serves as the hardware-software in-
terface between the workloads and the GPU. ROCm enables
communication from user space to the emulated Kernel Fu-
sion Driver in kernel space (ROCk) by sending command
packets conforming to the HSA specification through soft-
ware queues that map to hardware queues on the GPU. The
emulated kernel receives the packets and sends them to the
GPU’s command processor which executes various functions
according to the packet type and sends back a completion
signal when the task has been completed.

For instance, when a user performs a kernel launch through
ROCm, it sends a kernel dispatch packet containing the loca-
tion of the kernel’s code in memory along with its parameters
and an additional completion signal to the GPU command

processor. The command processor then instructs the hard-
ware scheduler to schedule the kernel’s thread blocks to the
GPU’s compute units, and signals that the kernel has been
launched. Finally, when the last thread block of the kernel
is completed, the GPU sends the kernel completion signal
back to user space via the kernel driver.

Custom Scheduling Controller. In order to implement
our thread-block throttling mechanism from Section 2.2, we
exploit a type of HSA command packet, known as an agent
dispatch packet, which contains fields set by the application
that the command processor can read. We customized the
command processor and hardware dispatcher to respond to
two new commands from the agent packet: INJECT_SIGNAL
and FWD_PROGRESS. The INJECT_SIGNAL command
injects a custom HIP signal created by the software interface
and associates that signal with a kernel id. If the hardware
dispatcher sees that a custom signal has been injected for
a particular kernel id, when that kernel is launched with a
normal kernel launch packet, it will not schedule any thread
blocks for execution on the GPU. Instead, when the applica-
tion desires threads blocks to execute on the GPU, it sends
the second type of command, FWD_PROGRESS. This com-
mand instructs the dispatcher to execute a given number of
thread blocks rather than all of the kernel’s thread blocks.
The number of thread blocks executed can be varied by the
application in user space to control the cache footprint of the
GPU. When the last of these thread blocks is completed, the
command processor sends back the custom signal given to it
from the injection command packet.

Using the HSA API significantly reduces the synchroniza-
tion overhead. Across our benchmarks, we find that our
custom synchronization mechanism is roughly an order of
magnitude faster than a kernel launch. However, the HSA
API also introduces complexity to programmers who want
to use our optimization technique. To mitigate the com-
plexity associated with the underlying control scheme, we
created a software interface that abstracts much of the com-
plexity away from the programmer. The programmer need
only wrap an interface class around the producer-consumer
stages in their application code, and then call the pipeline.

3.3 Benchmarks
We use seven benchmarks, shown in Table 2, to evaluate our
technique. CEDT is the task partitioning version of Canny
Edge Detection; BE performs background extraction in which
a video is passed frame by frame from the CPU to the GPU;
EP is a genetic algorithm that simulates the evolution of
creatures on an island; DWT2D performs a popular digital
signal processing technique called discrete wavelet trans-
form; Kmeans computes the well-known k-means cluster-
ing algorithm; LavaMD performs a 3D molecular dynamics



Benchmark PTAS TPB RAD-A RAD-E
CEDT 10 256 1639 956
BE 12 64 5462 8192
EP 12,064 256 3 3
DWT2D 12 256 911 256
Kmeans 284 256 58 32
LavaMD 157.04 100 268 500
SmithWa 73 512 112 65

Table 3: Run-ahead distance determined analytically (RAD-
A) and through experimental sweeps (RAD-E).

simulation; and SmithWa implements the Smith-Waterman
sequence alignment algorithm. Each of these benchmarks
comes from one of four benchmark suites, as indicated in
the second column of Table 2: Chai [5], Hetero-Mark [6],
Rodinia [7], or SPEC OMP 2012 [8]. (Although SmithWa is
originally from SPEC OMP, we use a version of this bench-
mark parallelized for integrated CPU-GPU chips performed
in our prior work [2]).

The third column of Table 2 reports the program inputs
we used for each benchmark. In most cases, these are the
standard inputs that come with the benchmarks. However, in
CEDT and Kmeans, the standard inputs result in small cache
footprints that fit in the LLC we simulated, so we increased
these input sizes. (For CEDT, we used a higher-resolution
video, and for Kmeans, we generated a larger input using the
dataset generator that comes with the benchmark). We sim-
ulated each benchmark by fast-forwarding past its initializa-
tion code, and then turning on detailed models to simulate its
main compute code. The one exception is DWT2D. For this
benchmark, we performed detailed simulation of the file I/O
and pre-processing steps that preceed the main computation.
These initialization steps occur in many image processing
workloads, and give rise to significant CPU-GPU commu-
nication. Although the main computation in DWT2D dom-
inates execution time, its initialization code could be found
in many different applications, so we believe studying it is
still worthwhile.

Finally, the last column in Table 2 shows the structure of
the software pipelines we created for each benchmark. In
most cases, there is a single pipeline from the CPU to the
GPU, or from the GPU to the CPU (where the latter is the
case illustrated in Figure 2 and discussed in Section 2.1).
But we also created more complex pipelines, too. For EP,
there are two back-to-back pipelines: one from the CPU to
the GPU and than another from the GPU back to the CPU.
And for CEDT, there is an even longer chain of 4 pipelines:
two GPU stages followed by two CPU stages.

4. EXPERIMENTAL EVALUATION
This section presents our experimental results that demon-
strate the effectiveness of pipelined CPU-GPU scheduling
for caches. We begin in Section 4.1 with results on determin-
ing the best run-ahead distance for each of our benchmarks.
Then, we present the memory and performance results in
Section 4.2.

4.1 Run-Ahead Distance
As discussed in Section 2.1, our technique requires deter-
mining the run-ahead distance (RAD). In particular, our tech-
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Figure 6: Run-ahead distance (RAD) sweep for the EP
benchmark. X-axis shows RAD in GPU thread-blocks. Re-
sult of optimal RAD shown in green.

nique determines the RAD in terms of GPU thread blocks
since the mechansim from Section 2.2 controls the run-ahead
distance by throttling thread blocks. Because the number of
threads in each thread block and the amount of data accessed
by each thread is application specific, each benchmark will
have a different RAD that permits its working set to fit in the
LLC (which is fixed at 4MB, as shown in Table 1).

One way to determine the RAD is through analysis of a
benchmark’s code to identify how much data each thread
accesses, and then compute the number of thread blocks
that could be accommodated in the LLC given the analyzed
per-thread data access size. In Table 3, the column labeled
“PTAS” reports this per-thread access size in bytes for each
benchmark which we acquired manually. Multiplying this
value by the number of threads per thread block (reported
in the column labeled “TPB”) yields the data footprint for a
single thread block from each benchmark. Dividing the LLC
capacity by this value yields the analytical RAD, which we
report in the column labeled “RAD-A” in Table 3.



While the RAD-A results in Table 3 are relatively easy
to compute, they may be inaccurate since the analytical ap-
proach does not take into consideration factors such as lim-
ited LLC associativity nor runtime overhead. To quantify the
impact of such real-world effects on the RAD value, we also
ran our benchmarks on the simulator multiple times, sweep-
ing the RAD value around the analytically computed values.

For example, Figure 6 shows our RAD sweep experiments
for the EP benchmark. Since Table 3 reports a RAD-A value
of 3 for EP, in Figure 6, we sweep RAD from 2 to 64 (X-
axis), and graph three metrics reported by the simulator:
number of DRAM accesses, execution time, and memory
system energy. (For all three metrics, lower is better). Fig-
ure 6a shows that a smaller RAD value of 2 results in even
fewer cache misses and DRAM accesses; however, greater
runtime overhead occurs with the smaller RAD value, caus-
ing execution time and memory system energy to get worse,
as shown in Figures 6b and 6c. In our work, we use energy
as the determiner for the best RAD value. Based on energy,
Figure 6c shows 3 is indeed the best RAD value for EP.

We performed similar RAD sweep experiments for all the
benchmarks, and identified the best RAD value experimen-
tally. The column labeled “RAD-E” in Table 3 reports these
results. Although the analytically and experimentally com-
puted RAD values for EP are identical, Table 3 shows that
RAD-A and RAD-E are not the same in the other bench-
marks. In some cases they are similar, but in other cases,
there can be a noticeable discrepancy. In our main results
reported next, we use the RAD-E values from Table 3.

4.2 Results
Figure 7 presents the main results of our evaluation. It re-
ports the simulated results for our technique, pipelined CPU-
GPU scheduling for caches (blue bars), normalized to the de-
fault serial execution (the "1.0" red bars). In the simulations
of our technique, the run-ahead distance maintained within
software pipelines is the experimentally determined RAD-E
values from Table 3. As in Figure 6, results are shown for
three separate metrics: number of DRAM accesses, execu-
tion time, and memory system energy.

In Figure 7a, we see that our technique significantly re-
duces LLC misses and their subsequent DRAM accesses
across all of the benchmarks. At least 9% (DWT2D), and
as much as 61% (CEDT), of the DRAM accesses are elim-
inated by our technique. Averaged across all benchmarks,
the number of DRAM accesses goes down by 30.4% com-
pared to serial execution. This directly quantifies the bene-
fit of keeping producer-consumer communication within the
on-chip cache hierarchy.

These main memory access savings translate into perfor-
mance gains. On average, Figure 7b shows our benchmarks
enjoy a 26.8% reduction in execution time. Workloads with
CPU consumer stages (CEDT, EP, Kmeans, and SmithWa)
received the largest performance gains, achieving an aver-
age 38.8% execution time reduction. Our technique keeps
data meant for CPU consumer stages in the LLC, reducing
access latency which can significantly benefit the latency-
sensitive CPU cores. On the other hand, those workloads
with GPU consumers (BE, DWT2D, LavaMD) did not re-
ceive as much performance gain, achieving a less substantial
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Figure 7: Results for all seven benchmarks. Blue bars show
pipelined CPU-GPU scheduling for caches using the exper-
imentally determined RAD. Red bars show serial execution.

10.9% reduction in execution time. This is to be expected
since the GPU cores are more latency tolerant. For bench-
marks with GPU consumers, the speedups are primarily due
to software pipelining overlap, and not to locality improve-
ment. The benchmark in Figure 7b with the smallest perfor-
mance gain, LavaMD, only achieves a 0.74% reduction in
execution time. Not only does LavaMD exhibit GPU con-
sumers, but the GPU stage’s execution time is much larger
than the CPU stage’s execution time, leaving little opportu-
nity for overlapped pipeline execution.

Finally, Figure 7c shows that the DRAM access reduc-
tions and performance gains from our technique afford mem-
ory system energy savings. Averaged across all the bench-
marks, we achieve a 27.4% reduction in total DRAM en-
ergy. This includes access energy savings as well as reduc-
tions in refresh, pre-charge, and associated background en-
ergies. Again, we see that the CPU consumer patterns per-
form better than their GPU consumer counterparts: a 41.3%



reduction in energy on average compared to only 8.8% on
average. Notably, LavaMD actually receives an increase in
total DRAM energy compared to the serial case. While the
access energy goes down proportionally to the savings in ac-
cesses, the background energies, namely precharge and ac-
tivation background energies, increase when we apply our
technique. LavaMD performs a stencil computation where
each block within the calculation accesses its neighbors and
has non-contiguous data structures to keep track of details
about its neighbors. When our technique is applied, data
structures for non-contiguous blocks are accessed, leading to
banks waiting in activated and precharged states for a longer
amount of time.

5. RELATED WORK
Hestness et al. [9] were the first to recognize that pipelining
GPU kernels can improve temporal locality and make use of
the on-chip caches within heterogeneous microprocessors.
However, they do not conduct a detailed study of such lo-
cality transformations. Compared to their work, ours is the
first to present a synchronization mechanism that permits the
CPU to have direct control over GPU execution at an intra-
kernel granularity for the purposes of software pipelining.
We are also the first to present detailed results on the effi-
cacy of CPU-GPU locality transformations.

Work by Kim et al. [10] recognizes that GPGPU work-
loads may consist of multiple dependent stages that include
CPU, GPU kernels, I/O, and copies that constitute pipeline
parallelism. They introduce several optimizations in the hard-
ware and virtual memory system to automatically schedule
GPU thread blocks based on their dependence relationships
with other stages. Rather than study integrated heteroge-
neous microprocessors, they investigate these pipeline op-
timizations for discrete GPGPU platforms. In contrast, our
work studies integrated CPU-GPU chips, and focuses specif-
ically on saving energy by reducing superfluous DRAM ac-
cesses.

Kayi et al. [12] and Cheng et al. [11] both dynamically de-
tect producer-consumer sharing in chip multiprocessors and
come up with coherence protocol optimizations to programs
exhibiting producer-consumer sharing. They do not examine
GPUs and the complexities they introduce to coherence and
producer-consumer sharing.

Finally, several benchmark suites [6, 13, 5] have been
developed in recent years to provide suitable programs to
test heterogeneous chips. Previously, researchers needed to
adapt CPU and traditional GPU benchmarks to glean in-
sights about heterogeneous chips. These suites contain bench-
marks which exhibit sharing, producer-consumer relation-
ships, synchronization and more. Our research exploits the
examples from these benchmark suites.

6. CONCLUSION
Heterogeneous microprocessors support efficient communi-
cation between the CPU and GPU via shared on-chip caches.
This paper presents pipelined CPU-GPU scheduling for caches,
a technique that improves temporal locality on data shared
between the CPU and GPU so that communication can hap-
pen through the on-chip caches rather than main memory.
Our technique breaks the computations performed in the CPU

and GPU into chunks, and executes multiple chunks simul-
taneously in a software pipeline such that the producer of
data executes one chunk ahead of the consumer of the data.
Chunks are sized so that the aggregate CPU-GPU working
set fits in the last-level cache. We develop a novel synchro-
nization mechanism that permits the CPU to directly con-
trol the rate of thread-block scheduling in the GPU in order
to maintain the producer’s run-ahead distance relative to the
consumer. We show through simulation that our technique
reduces the number of DRAM accesses by 30.4%, improves
performance by 26.8%, and lower memory system energy
by 27.4% on average.
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