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Pore-forming transmembrane domains control ion
selectivity and selectivity filter conformation in the
KirBacl.1 potassium channel

Marcos Matamoros and Colin G. Nichols®

Potassium (K*) channels are membrane proteins with the remarkable ability to very selectively conduct K* ions across the
membrane. High-resolution structures have revealed that dehydrated K* ions permeate through the narrowest region of the
pore, formed by the backbone carbonyls of the signature selectivity filter (SF) sequence TxGYG. However, the existence of
nonselective channels with similar SF sequences, as well as effects of mutations in other regions on selectivity, suggest that
the SF is not the sole determinant of selectivity. We changed the selectivity of the KirBacl.1 channel by introducing mutations
at residue 1131 in transmembrane helix 2 (TM2). These mutations increase Na* flux in the absence of K* and introduce
significant proton conductance. Consistent with K* channel crystal structures, single-molecule FRET experiments show that
the SF is conformationally constrained and stable in high-K* conditions but undergoes transitions to dilated low-FRET states in
high-Na*/low-K* conditions. Relative to wild-type channels, 1131M mutants exhibit marked shifts in the K* and Na*
dependence of SF dynamics to higher K* and lower Na* concentrations. These results illuminate the role of 1131, and
potentially other structural elements outside the SF, in controlling ion selectivity, by suggesting that the physical interaction of
these elements with the SF contributes to the relative stability of the constrained K*-induced SF configuration versus

nonselective dilated conformations.

Introduction

The exquisite ability to discriminate between K* and Na*, or
other monovalent cations, yet at the same time to permeate K*
ions at close to diffusion-limited rates, allows K channels to play
an essential physiological role in controlling electrical properties
of the cell membrane and modulating cell function. There is
overwhelming evidence that the narrowest part of the pore,
formed by the backbone carbonyls of the TxGYG channel sig-
nature sequence, generates the K* selectivity filter (SF; Doyle
et al,, 1998; Zhou et al,, 2001; Roux, 2017). Hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels have a related
GYG-containing SF sequence yet allow significant Na* permea-
bility. In HCN1 cryo-EM structures, the filter can adopt a non-
canonical conformation in which only two of the cation binding
sites are formed (Lee and MacKinnon, 2017), as is also seen in
NaK, a nonselective channel in which the SF sequence is re-
placed by TVGDG (Shi et al., 2006). Changes in K channel SF
crystal structures with ion concentration (Roux et al., 201];
Roux, 2017; Noskov et al., 2004) and structures that reveal dis-
rupted, presumably inactivated SF conformations (Cuello et al.,
2010; Bhate et al., 2010; Cordero-Morales et al., 2007) argue

against any simplistic view that the K channel SF must always
adopt a rigid canonical structure. Moreover, molecular simu-
lations have consistently indicated that the filter structure
should be dynamic (Wang et al., 2016; Wang et al., 2019), with an
uneven contribution of the SF K binding sites to selectivity
(Noskov et al., 2004). Using single-molecule FRET (smFRET) to
assess intramolecular movements in real time (Wang et al., 2016;
Wang et al., 2019), we have shown that the predominantly K*-
selective KirBacl.l channel SF transitions between distinct
conformations as a function of the ionic milieu, from a con-
strained K*-selective conformation in the presence of K* to di-
lated Na*-selective conformations in the absence of K* (Wang
et al., 2019). That study revealed that the constrained confor-
mation is actually induced by the presence of K* ions, rather
than being preformed and independent of the presence of per-
meant ions (Wang et al., 2019).

The latter study thus provides experimental evidence that
the K channel SF can adopt distinct conformations that depend
at least in part on the nature of the permeant ions themselves.
The SF is surrounded by other structural elements that do not
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contact permeant ions, and multiple studies have shown that K*
selectivity can be modulated by mutations outside the SF (Yi
et al, 2001; Bichet et al.,, 2004; Bichet et al., 2006) and by
the polarizability of surrounding residues (Rossi et al., 2013). In
the present study, we use ion flux experiments to examine the
functional effect of non-SF mutations in the neighboring
transmembrane helix 2 (TM2) on KirBacl.l ion selectivity and
smFRET experiments to examine the effect on SF conformations.
The results provide evidence for a simple model in which
modulation of ion selectivity by such mutations results from
shifting the relative stability of constrained (i.e., K*-selective)
versus dilated (i.e., Na*-selective) conformations of the SF.

Materials and methods

Plasmids

Plasmids containing tandem dimeric KirBacl.1 protein-encoding
cDNAs (T120C-WT and T120C-WT [I131M]) were constructed as
described in previous studies using the pQE60 expression vector
(Amp"; Wang et al., 2019; Wang et al., 2016). For KirBacl.l mu-
tants, mutations were introduced by QuikChange II XL site-
directed mutagenesis kit (Agilent) and confirmed by DNA
sequencing.

Protein expression and purification and fluorophore labeling
Homotetrameric and tandem dimeric KirBacl.l (WT and mu-
tant) proteins were expressed and purified following protocols
reported previously (Enkvetchakul et al, 2004; Wang et al.,
2009; Wang et al., 2019; Wang et al., 2016). The metal affinity-
purified proteins were passed through a Superdex-200 10/
300 size-exclusion column (GE Healthcare) with running buffer
containing 20 mM HEPES, 150 mM KCl, and 5 mM decyl mal-
toside, pH 7.0. Tetrameric fractions were pooled and concen-
trated via Amicon Ultra-4 centrifugal filter (MWCO 100 kD;
Millipore). Fluorophore labeling was started immediately after
gel filtration by adding 1:1 (molar ratio) mix of Alexa Fluor 555
and 647 c2 maleimide to protein solution at final protein:fluo-
rophore molar ratio of 1:5. Labeling reactions proceeded at room
temperature for 1 h and were terminated by the addition of
2-mercaptoethanol at a final concentration of 10 mM. A second
metal affinity purification was performed to remove free fluo-
rophores or those associated with protein through noncovalent
bonds. The labeled proteins were loaded onto a size-exclusion
column (Superdex-200 10/300; GE Healthcare), and tetrameric
fractions were collected and concentrated for liposome recon-
stitution. A labeling control using KirBacl.1 WT protein without
intrinsic cysteine was always included to evaluate fluorophores
bound nonspecifically or associated with protein through non-
covalent bonds. All purifications were performed at 4°C except
for labeling reactions.

Protein reconstitution

POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine)
and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-
glycerol)) lipids (3:1, wt/wt) were dissolved in buffer containing
20 mM HEPES, 150 mM KCl, and 30 mM 3-(3-cholamidopropyl)
diethylammonio-1 propanesulfonate, pH 7.5, at a final concentration
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of 10 mg/ml. Protein labeled with Alexa Fluor 555 and 647 fluo-
rophores was mixed with lipid solution at a protein:lipid ratio of
1:200 (wt/wt), with 2% biotinylated-POPE (wt/wt of the total
lipids). The lipid/protein mix was incubated at room temperature
for 20 min and then passed through a Sephadex G-50 desalting
column to remove detergents, thereby forming proteoliposomes.
Residual detergents were removed by dialysis against 1 liter of
buffer containing 20 mM HEPES and 150 mM KCl or NaCl, pH 7.5,
three times, and proteoliposomes were harvested and stored at
-80°C for single-molecule imaging.

Single-molecule imaging

Chamber slides were prepared following the protocol of Joo and
Ha (2012a). An objective-based TIRF microscope, built on a Ni-
kon inverted microscope (TE-2000s) with 100x APO TIRF
NAL1.49 objective lens and 532- and 640-nm lasers, was used for
single-molecule imaging. Donor and acceptor emissions were
separated by OptoSplit II (Cairn) with a 638-nm longpass beam
splitter, passed through 585/65- and 700/75-nm emission filters
(Chroma), and then collected by an Evolve 512 delta electron-
multiplying charge-coupled device camera (Photometrics). A
CRISP autofocus system (ASI) was incorporated to compensate
for focus drift due to mechanical vibrations and thermal fluc-
tuations. Liposomes containing fluorophore-labeled KirBacl.l
proteins were immobilized on the slide surface by biotin-
neutravidin interactions with biotinylated-POPE in liposomes.
Fluorophores were excited by a 532-nm laser, and videos were
collected using NIS-element (Nikon) with frame rates of 10
frames/s (i.e., time resolution of 100 ms). Laser power was
~9.1 W/cm? (at the objective lens side). Recording times were
2 min, with half bleaching times typically ~45 s. Except for the
20 mM HEPES and different concentrations of cations, all
imaging buffers contained ~3 mM 6-hydroxy-2,5,7,8-tetrame-
thylchroman-2-carboxylic acid (Trolox), 2 mM 4-nitrobenzyl
alcohol, 2 mM cyclooctatetraene, 5 mM protocatechuic acid,
and 15 pg/pl protocatechuate-3,4-dioxygenase to enhance the
photostability of the fluorophores (Aitken et al., 2008; Dave
et al., 2009). 50 uM B-escine was used to permeabilize lip-
osomes (Fan and Palade, 1998; Wang et al., 2019) for experiments
with symmetric ionic conditions. Control liposomes recon-
stituted with labeled control KirBacl.1 WT protein at the same
concentration were included to evaluate the fluorescent impu-
rities, ensuring that they were <5% in comparison with sample
liposomes. For every protein, at least two independent labeled
samples were used; for every sample, 210 videos were collected.

Single-molecule imaging data analysis

For every video, individual molecules were identified, and donor
and acceptor fluorescence intensity profiles were extracted by
IDL scripts developed by the Ha group (Joo and Ha, 2012b; Roy
et al.,, 2008). Leak and direct excitation corrections were not
applied, as leakage was <0.06, and direct excitation was unde-
tectable. Traces were inspected and selected manually following
criteria described in previous publications (Wang et al., 2018;
Wang et al., 2019; Wang et al., 2016). The bin size of all time
histograms was set as 0.025 of recording time, ensuring an equal
contribution from each trace to avoid dominant effects of long
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traces (Blanco and Walter, 2010). FRET contour plots were
generated from the first 3 s of each trace. For idealizing smFRET
traces using HaMMy software (McKinney et al., 2006), FRET
traces in the same condition used to make the histograms were
concatenated into a single file. Subsequent transition analysis
was performed using TDP (McKinney et al., 2006), Microsoft
Excel, and GraphPad Prism 6.

Fluorescence liposome flux assay

KirBacl.l proteins were reconstituted into POPE/POPG lip-
osomes with a protein:lipid ratio of 1:500, by passing through
Sephadex G-50 desalting columns equilibrated with buffer
(20 mM HEPES and 150 mM KCl or NaCl, pH 7.5). Immediately
before flux assay, the extraliposomal buffer was replaced by
buffer containing 150 mM NMDG. 9-Amino-6-chloro-2-me-
thoxyacridine (ACMA) stock was then added to reach a final
concentration of 13 uM into a 96-well plate. Baseline fluores-
cence (excitation wavelength 400/30 nm and emission wave-
length 495/10 nm; Top50 Mirror) was measured by a Synergy
2 plate reader as previously described (Wang et al., 2019). All
flux data were normalized to the maximum quenching after
valinomycin or monensin addition, and the values of empty
liposomes were subtracted in each condition.

Radioactive rubidium and sodium flux assays
KirBacl.l proteins were reconstituted, and 8Rb* and 22Na* flux
assays were performed as described previously (Wang et al., 2019).

Statistics

The FRET histogram data for each sample/condition were pre-
sented as equal contributions from all individual molecule traces
(rather than each data point). The FRET contour map for each
sample/condition was calculated from the first 3 s of all traces,
with equal contributions from all individual traces (all selected
traces were >5 s). The trace number n for each sample/condition
is included in the accompanying figure legends as published
previously (Wang et al., 2018; Wang et al., 2019; Wang et al.,
2016). For each condition, FRET data were split into three dif-
ferent datasets with a similar number of traces coming from
multiple different videos in each case, to assess variability. The
number of videos for each of the three subsets (i, ii, and iii) are
as follows: for WT from 150 mM NaCl to 150 mM KCl sequence
as in Fig. 10: 150 mM Nadl, 6, 6, 9; 150 mM NaCl/0.5 mM KCl, 5, 2, 4;
150 mM NaCl/5 mM K], 15, 16, 14; 100 mM NaCl/50 mM K(l, 4, 11,
6; 5 mM NaCl/150 mM K], 2, 10, 5; 0.5 mM NaCl/150 mM KCl, 6, 3,
8; 0.05 mM NaCl/150 mM K(l, 3, 5, 8; and 150 mM KCl, 15, 5, 10; and
for 1131M, 13, 8,12; 2, 4, 7; 13,12, 16; 4, 5, 5; 3, 4, 6; 3, 6, 8; 4, 8, 10; and
6, 10, 7, respectively. The calculated rate constants and state proba-
bilities are therefore represented as mean + SEM of n = 3 datasets. To
assess state dwell time distributions in Fig. 9, full datasets without
splitting were used to fit monoexponential decay functions. Time
constants are represented as mean + 95% confidence interval of the
fitting. All flux data are presented as mean + SEM.

Code availability
The script used to convert TIF video files to PMA files for later
data processing is available upon request. IDL scripts developed
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by the Ha group (fully described in Joo and Ha [2012b] and Roy
et al. [2008]) were used for video data processing (PMA files).
Subsequent analysis was performed using Microsoft Excel and
GraphPad Prism 6.

Data availability

All data generated or analyzed during this study are included in
this article or are available from the corresponding authors upon
reasonable request.

Online supplemental material

Fig. S1 shows K-driven 8Rb* efflux at different pH values. Fig.
S2 shows the functionality of tandem dimers, after labeling. Fig.
S3 shows concatenated smFRET trajectories in high-Na/low-K
conditions. Fig. S4 shows concatenated smFRET trajectories in
high-K/low-Na conditions. Table S1 lists the number of indi-
vidual molecules and identified transitions for idealized smFRET
records. Table S2 lists rate constants for the three-state model.

Results

Previous studies have demonstrated that mutation of certain
residues in the TM2, outside the SF, can significantly alter the
selectivity of at least two K channels, e.g., Kir3.2 (S177W/G;
Bichet et al., 2006; Bichet et al., 2004; Yi et al., 2001) and K
channel of Streptomyces lividans (KcsA; M96V; Renart et al.,
2012). Mechanistic explanation for these findings has been ab-
sent, but our recent results (Wang et al., 2019) raise the possi-
bility that the steric interaction of these mutations with the SF
might alter the relative stability of constrained versus dilated
conformations. To examine this, we introduced mutations in
KirBacl.1 at the equivalent 1131 position (Fig. 1, A and B), purified
recombinant tetrameric proteins, and assessed reconstituted
channel activity and structural dynamics in liposomes.

Mutations in TM2 reduce K selectivity

The favored binding of K* (or Rb*) over Na* in the K channel SF
is required for conduction of K* at high rates and selection over
other ions. As we have shown in KirBacl.l WT, the constrained
K*-selective conformation is dependent on the presence of K*
ions themselves, while dilated, dynamic, SF conformations in
pure Na* solutions are correlated with Na* permeating states.
We directly tested selective permeation of KirBacl.l 1131x mu-
tants by examining radioactive ion uptake into KirBacl.l-con-
taining liposomes, under driving forces generated solely by K* or
Na* ions (Fig. 1, C and D), as previously described for KirBacl.1 or
KcsA (Cheng et al., 2011; Enkvetchakul et al., 2004; Wang et al.,
2019). While K*- and Na*-driven 86Rb* fluxes are similar for WT
and mutant subunits (except for the I131G mutant, which is
lower; Fig. 1 E), Na*-driven 2>Na* fluxes are clearly higher in
KirBacl.l I131M than in WT, implying increased Na* ion per-
meation and a relative decrease in selectivity (Fig. 1 F). Impor-
tantly, we also detected 22Na* fluxes when the driving force was
generated by K* ions, but these were much smaller than Na*-
driven fluxes (Fig. 1 F, right), suggesting that Na* permeation
through KirBacl.l WT and I131x is actually inhibited by K,
consistent with previous findings that the ion configuration
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Figure 1. Changes in permeant ion-induced conductance between KirBacl.1 WT and 1131x mutants. (A) Sequence alignment of SF signature sequences
and TM2 of potassium channels. SF in green and 131 equivalent position in red. (B) Crystal structure of KirBacl.1 SF and transmembrane domains with residues
forming K binding sites highlighted in green and 1131 position in red. (C and D) Cartoon diagram of K-driven 8Rb* or 22Na* assays (C) or Na-driven assays (D).
(E) Time course of 8¢Rb* uptake into liposomes (POPE:POPG, 75:25%), with 450 mM internal K* (left) or Na* (right). Inf, influx. (F) Time course of 22Na* uptake
into liposomes (POPE:POPG, 75:25%), with 450 mM internal K* (left) or Na* (right). Liposomes were reconstituted with no protein (empty, gray), KirBacl.1 WT
(black), or KirBac1.11131S/G/M (red, blue, and green, respectively; 2 pug/mg lipid). *, P < 0.05 versus. WT. All data are represented as mean + SEM of at least n =

3 experiments.

within the SF is an important determinant of selectivity in K
channels (Cheng et al., 2011; Thompson et al., 2009; Valiyaveetil
et al., 2006; Wang et al., 2019).

1131x mutants increase Na* flux and generate
proton permeation
To further assess ion selectivity, purified WT or mutant Kir-
Bacl.l channels were reconstituted into liposomes in the pres-
ence of 150 mM KCl or NaCl (Fig. 2 A). Vesicles were then diluted
into an (impermeant) ACMA-NMDG-containing solution (low
K/Na phase), which creates a strong chemical gradient for
the efflux of K* or Na*. In the assay, K* or Na* efflux is then
initiated by the addition of the H* ionophore carbonyl cyanide
m-chlorophenylhydrazone (CCCP), which allows influx of H* to
counter the efflux of K* or Na* (CCCP phase). H* influx is
monitored by H*-dependent quenching of ACMA fluorescence.
Finally, a K* or Na* ionophore (valinomycin or monensin, re-
spectively) is added to allow complete dissipation of the gradient
(Fig. 2, A and B).

Each of the KirBacl.l 1131 mutants were expressed at levels
similar to WT, and each showed similar overall K* fluxes, but all
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showed significantly higher fluxes of sodium in the absence of
K" (Fig. 2 B), consistent with a loss of K* selectivity. Surprisingly,
the fluorescent assay additionally indicates that these mutations
also introduce significant proton permeation (Fig. 2, Band C). As
shown in Fig. 2, B and C, the fluorescent signal is stable after
adding empty liposomes or liposomes containing WT channels
(low-XCl phase), until CCCP is added to initiate proton flux,
indicating essentially no proton permeability of the liposomes
themselves, or the WT channel. However, after adding lip-
osomes containing any of the mutant channels, in particular
1131G, there is a rapid and significant decay in fluorescent signal,
even before adding CCCP, indicating intrinsic proton permea-
bility of these mutants (Fig. 2, B and C). In addition, while the
1131G mutant has markedly lower 8Rb* uptake than WT under
control conditions (pH 7 inside and outside; Fig. 1 E), uptake is
also much more pH sensitive than WT: increasing external pH
from 7 to 9 increases 8Rb* uptake fourfold in the mutant, but
only twofold in WT (Fig. S1). This suggests that the proton
gradient can help to drive 8Rb* permeation in I131G and that the
intrinsic ion permeability of this mutant is actually high, as
indicated by the ACMA assays (Fig. 2 B). Proton “wires,”
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Figure 2. Mutations at position 1131 alter
KirBacl.1 ion selectivity and generate proton
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hydrogen-bonded chains allowing protons to tunnel through the
membrane, have been identified in multiple membrane pro-
teins, including serotonin transporters (Cao et al., 1997), in
bacteriorhodopsin (Wikstrom, 1998; Bondar et al., 2008) or cy-
tochrome c oxidase (Hofacker and Schulten, 1998; Namslauer
et al., 2007), and after replacing S4 arginines by histidine in
the Shaker potassium channel, which creates a proton permea-
tion path through the voltage sensor domain (Starace and
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Bezanilla, 2004; Starace and Bezanilla, 2001; Starace et al.,
1997). The proton path in these 1131 mutants is unclear at this
juncture.

To assess the relevance of specific structure, functional K
channels were reconstituted from multiple amino acid 131 sub-
stitutions. Both sodium and proton permeability was present in
hydrophilic or negatively charged, and even relatively large
hydrophobic, amino acid mutants (1131G/M/S/T/E/A/N/L), but
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Figure 3. Proton permeation is blocked by AAA mutation and by PIP, addition. (A and B) The AAA SF mutation (in which the SF GYG sequence is replaced
by AAA) was introduced on the 1131x mutation backgrounds. All mutants show no activity in either K* or Na* conditions (A) and no H* permeation above that for
empty liposomes (Lipo) when valinomycin (Val) is added instead of CCCP (B). (C) Fluorescence assays for WT and [131S/G/M mutants in K* conditions as a
function of membrane [Ptdins(4,5)P,]. All data are represented as mean + SEM of at least n = 3 experiments.

was not apparent in positively charged and aromatic substitution
mutants (I131F/W/R; Fig. 2, C and D), which also exhibited lower
overall fluxes. We found that both ion and proton flux through I131x
mutants were abolished by replacement of the SF GYG sequence with
AAA. None of the mutants showed activity in K* or Na* conditions
(Fig. 3 A), and valinomycin-induced proton flux in the absence of
CCCP is not different from that for empty liposomes (Fig. 3 B).

Finally, in contrast to all eukaryotic Kir channels, KirBacl.1
channel activity is inhibited by phosphatidylinositol phosphates,
such as phosphatidylinositol 4,5-bisphosphate (PIP,; Enkvetchakul
et al., 2004; Cheng et al., 2009). Both ion and proton permeation
through I131x mutants are inhibited by PIP, at different concen-
trations (Fig. 3 C). While not providing a definitive test, these
results are consistent with a common pathway for both protons
and permeant ions.

E106-D115 hydrogen bond disruption does not alter K
selectivity in KirBacl.1

In some K channels, a glutamate-aspartic acid hydrogen bond or
glutamate-arginine salt bridge behind the SF is involved in
maintaining the SF structure. Disruption of the E71-D80 hy-
drogen bond in KcsA or the E138-R148 salt bridge in Kir2.1 or
Kir3.1 reduces K selectivity (Cheng et al., 2011; Yang et al., 1997;
Dibb et al., 2003). Specifically, the KcsA [E71A] and Kir2.1
[RI38E, E148R] mutants exhibit reduced selectivity for K* over
Na* compared with WT in the absence of K*, in which conditions
WT channels become nonconductive. Although this bridge is not
conserved throughout K channels, KirBacl.l has a glutamate/
aspartate residue pair (E106-D115) that could form a hydrogen
bond equivalent to that in KcsA (Fig. 4, A and B). However,
multiple single or double substitutions of E106 or D115 result in
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functional channels that maintain K selectivity and do not show
proton permeation (Fig. 4 C). These data suggest that the
E106-D115 residues are not involved in maintaining the K se-
lectivity in KirBacl.1 channels.

Mutations in TM1 can restore K selectivity

Previously, introduction of a secondary mutation (Y102N) in
transmembrane domain 1 (TMI1) on the nonselective Kir3.2
[S177W] background (Kir3.2 [Y102N,S177W]) was shown to re-
cover K* selectivity (Bichet et al., 2004). It has been hypothe-
sized that in the KirBacl.l equivalent position F71, the aromatic
side chain is oriented toward the cavity and can stabilize the
open conformation (Fig. 5 A; Amani et al., 2020). Introduction of
the equivalent F7IN mutation on I131x mutant backgrounds had
no effect on ion selectivity, with the notable exception of the
F71N, 1131G double mutation, which does restore significant K*/
Na* selectivity, but without abolishing the proton flux (Fig. 5 B).

1131M mutation shifts the K* dependence of smFRET-reported
SF conformation

We have developed a smFRET approach that allows real-time
assessment of conformational dynamics in functional, liposome-
embedded K channels (Fig. 6 A, left; Wang et al., 2019; Wang
etal., 2016). With fluorophores placed at diagonal T120C sites of
homotetrameric channels (Fig. 6 A), this has revealed K* ion-
dependent flexibility of the KirBacl.1 SF in functional constructs
(Wang et al., 2019; Wang et al., 2016). The same construct with
the additional I131M mutation retains K* and Na* conductance
when labeled (Fig. S2). In the present study, we first confirmed
that, in the absence of K* (replaced with 150 mM Na*), WT SF
signals are dynamic, with low (~0.2) and medium (~0.45) FRET
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Figure 4. The E106/D115 residue pair,
equivalent to E71/D80 in KcsA, is not involved
in maintenance of K selectivity. (A) Potassium
channel SF signature sequence alignments
(green) with E106 and D115 equivalent positions
in yellow and red, respectively. (B) Crystal
structure of KirBacl.1 SF and the hydrogen bond
behind SF (E106 in yellow and D115 in red),
equivalent to E71-D80 in KcsA. (C) Relative flux
calculated as in Fig. 2, for mutants, as indicated.
KirBacl.1 hydrogen bond mutants are functional
in 150 mM KCl (left) and maintain K selectivity in
150 mM NaCl (right). All data are represented as
mean + SEM of at least n = 3 experiments.
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efficiencies predominating, and then switch to a constrained
predominantly high (~0.8) FRET state in the presence of high
(150 mM) K* (Figs. 6 and 7; Wang et al., 2019). At all [K*] between
0 and 150 mM, FRET amplitude distributions show clear peaks,
requiring a minimum sum of three Gaussians for adequate fit-
ting (Figs. 6 and 7), with the same FRET amplitude peaks at ~0.2,
~0.45, and ~0.8. Addition of K* in the presence of 150 mM Na*
results in a concentration-dependent switch from being pri-
marily dilated (low FRET) and dynamic to being constrained
(high FRET), and this is essentially saturated at ~5 mM K* for
WT KirBacl.l (Figs. 6 B and 7 B; Wang et al., 2019).

B

1.0 0.8 0.6 0.4 0.2 0.0

— Low Na/K
== CCCP

Na-driven

We observe qualitatively similar behavior in I131M channels,
but the [K*] dependence of the FRET distributions is markedly
different between WT and I131M channels (Figs. 6 B and 7 B).
Dynamic, predominantly low (~0.2) FRET states in 150 mM Na*
are not obviously suppressed by substitution of up to 50 mM K*
(Fig. 6 B, bottom); if anything, the low FRET state occupancy is
slightly increased. Conversely, addition of only 5 mM Na* is
sufficient to substantially increase low FRET signals in 150 mM
K* (Fig. 7, A and B). As shown in Fig. 8, overall FRET sensitivity
to [K*] is reduced ~100-fold in the KirBacl.l I131M mutant rel-
ative to WT (Fig. 8 A), while sensitivity to [Na*] is increased ~3-
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K-driven
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11318
131G
1131M
F71N

F71N +1131S
/3 Low Na/K

F71IN +1131G = CCCP
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Na-driven

Figure 5. F7IN mutation recovers K selectivity. (A) Crystal structure of KirBacl.1 SF and transmembrane domains with residues forming K binding sites
highlighted in green, 1131 position in red, and F71 position in magenta. (B) Relative flux calculated as in Fig. 2, for mutants, as indicated. All data are represented

as mean + SEM of at least n = 3 experiments.
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Figure 6. Mutations in position 1131 reduces K sensitivity of KirBac1.1 SF dynamics. (A) Left: smFRET imaging of KirBacl.1 proteins in liposomes labeled
with Alexa Fluor 555/647 c2 maleimide pair. Proteoliposomes were immobilized on a polyethylene glycol (PEG)-coated coverslip surface with biotin-POPE and
then permeabilized by 50 pM B-escin to achieve symmetrical ionic conditions. Side view of KirBacl.1 crystal structure indicating diagonally opposed T120C
labeling sites (purple and magenta) in the SF loop and 1131 position in red. Tetrameric channels are formed from pairs of tandem dimers in which only one
protomer contains the cysteine mutation. Due to the asymmetric structures, the two dimers can only assemble anti-parallel, with two cysteine residues at
diagonal subunits. Right: Representative smFRET trajectories in different [ion] for KirBac1.1 WT and 1131M mutant. Fluorescence intensities of the donor Alexa
Fluor 555 and acceptor Alexa Fluor 647 (AF555/647) are colored cyan and red, respectively; calculated FRET is colored blue. FU, fluorescence uptake. (B) FRET
histograms for AF555/647 fluorophores labeled at diagonal T120C sites in the SF loop in the WT and I131M protein, at increasing [K*] from 0 to 50 mM on a
background of 150 mM Na*, as indicated (n indicates number of traces in each case). In all histograms, over the whole range of [K*] and [Na*], the FRET
amplitude distributions show clear peaks, requiring a minimum sum of three Gaussians for adequate fitting, with FRET peaks at ~0.2, ~0.45, and ~0.8.
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fold in the mutant (Fig. 8 B). This is consistent with the 1131M
mutation reducing the intrinsic stability of the constrained, K*-
selective high FRET state, thereby requiring higher [K*] to
achieve the same fractional occupancy.

Time (s)

Time (s)

Counts (%) Time (s)

Counts (%) Time (s)

Counts (%) 3

Counts (%)

[K*]-dependent conformational kinetics
With the caveat that changes in the FRET signal may arise be-
cause of changes in anisotropy, rather than separation of the

Figure 7. Mutations at position 1131 alter KirBacl.1 SF dynamics at low [Na]. (A) Representative smFRET trajectories in different [ion] for KirBacl.1 WT
and 1131M mutant. Fluorescence intensities of the donor Alexa Fluor 555 and acceptor Alexa Fluor 647 (AF555/647) are colored cyan and red, respectively; FRET
is colored blue. FU, fluorescence uptake. (B) FRET histograms for AF555/647 fluorophores labeled at diagonal T120C sites in the SF loop in the WT and 1131M
protein, at increasing [Na*] from 0 to 5 mM on a background of 150 mM K*, as indicated (n indicates number of traces in each case); fits as in Fig. 6.

fluorophores, the [K*] dependence of FRET amplitude distributions
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Figure 8. SF-loop conformation dependence on ion occupancies is
shifted in KirBac1.11131M. (A and B) Fractional amplitudes from three-state
fits to FRET histograms in Figs. 6 B and 7 B, with sigmoidal equation fits of
[ion] dependence of fractional occupancy of high (F0.8) and low (F0.2) states
for KirBacl.1 WT (gray) and KirBacl.1 I131M (green), for increasing [K*]
concentrations on a high [Na*] background (A; F0.8: Ky, WT, 0.81 mM;
Ky 1131M, 113.2 mM; FO.45 and FO.2: Ki/» WT, 0.8 mM; Ky, 1131M, 815
mM), and increasing [Na*] concentrations on a high [K*] background (B;
FO0.8: Ky WT, 12.96 mM; Ky, 1131M, 7.29 mM), medium (F0.45), and low
(F0.2: Ky, WT, 15.35 mM; Ky, 1131M, 4.76 mM). For this figure and Fig. 10,
all datasets were split into three equal-sized groups and analyzed sepa-
rately, to assess variability in the data, which are presented as mean +
SEM of the three data groups. *, P < 0.05 versus WT. All data are rep-
resented as mean + SEM.

(Figs. 6 and 7) suggests a simple scenario in which the SF-loop of
the two diagonally apposed subunits contributing to the FRET
signal are predominantly “dilated,” i.e., the fluorophores are rel-
atively away from the pore axis (generating the low FRET 0.2
state, L), in intermediate position (generating the intermediate
FRET 0.45 state, M), or constricted toward the pore axis (gener-
ating the high FRET 0.8 state, H). We analyzed the kinetics of
idealized concatenated FRET records (Fig. 9 A; full dataset in Figs.
S3 and S4; see Materials and methods; Wang et al., 2019). To
overcome the limitations of short recordings and attempt to esti-
mate lifetimes, we randomly concatenated all trajectories obtained
under the same condition (Blanco and Walter, 2010) into three
equal records (Fig. 9 A; see Materials and methods; Wang et al.,
2019). The total number of molecules () and the total number of
identified transitions (nt) are given for each condition in Table S1).
As shown in Fig. 9 B, the idealized state lifetimes are distributed
approximately exponentially. Single exponential fits to these
lifetimes reveal a qualitative dependence on ionic conditions, with
H state lifetimes increasing, and L state lifetimes decreasing, as
Na* is replaced by K* (Fig. 9 C). For I131M, this analysis suggests a
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similar relationship for both, but both appear less sensitive to [K*]
(Fig. 9 C).

The full datasets were also analyzed in terms of a three-state
model (Fig. 10 A), assuming free access between states
(McKinney et al., 2006). As shown in Fig. 10 B, transition density
plots indicate that the most frequent paths are H&M, M<L,
with H< L being much less frequent, under all conditions. This
analysis indicates the dependence of fractional state occupancy
(H, M, and L state probability calculated from the idealization) on
ionic conditions: H state occupancy increases, and L state occu-
pancy decreases, as Na* is replaced by K* (Fig. 10 C). Again, for
I131M, this analysis suggests a similar relationship for both, but
again both appear less sensitive to [K*]. Not only lifetimes, but
also transition paths, are obtained from such idealizations, al-
lowing calculation of individual rate constants for each transition
(full dataset in Table S2), which indicate that increase in the M>H
(kyer), L>M (kpyr), and L>H (kpy) transition rates are the pre-
dominant drivers of altered FRET distributions as [K*]/[Na*]
increases, while the H>M (kggym), M>L (kyy), and H>L (kg ) rates
tend to decline as [K*]/[Na*] increases. These distributions are
similar to those reported from previous WT analysis and gen-
erally consistent with an allosteric three-state kinetic model, in
which transition rate constants kyp;, ki, and kyg increase, and
kem, kur, and kyy, decrease, as [K*]/[Na*] increases (Wang et al.,
2019). It is important to note that this analysis pushes the limits
of the method but, again, for 1131M, there is a trend toward re-
duced sensitivity of the rate constants to [K*]/[Na*], particularly
for kpm, kmu, and kpy (Fig. 10 D).

Discussion

Structural basis of K selectivity

All highly K*-selective members of the cation channel super-
family contain the canonical Gly-Tyr-Gly sequence that gen-
erates multiple K* ion binding sites in the SF. Intense study,
using crystallographic, electrophysiological, and biochemical
approaches, has shown that this is unequivocally where K* ions
are selected over Na* ions (Alam and Jiang, 2011; Doyle et al.,
1998; Heginbotham et al., 1994; Liu and Lockless, 2013; Lockless
et al., 2007; Noskov and Roux, 2006; Roux, 2005; Roux, 2017;
Sauer et al., 2011). Despite this unquestioned reality, several
findings are not easily accommodated in this framework. In
multiple K channels, selectivity can be altered by mutations
located outside the SF, including Kir2.l1 (Thompson and
Begenisich, 2001), Kir3.2 (Bichet et al., 2006; Bichet et al.,
2004; Yi et al,, 2001), and KcsA (Renart et al., 2012; Cheng
et al., 2011). There are channels with similar SF structure
that are nonselective, and the simplistic view that the SF is a
relatively fixed structure with the appropriate dimensions to
accommodate K* ions, but not Na* ions, has repeatedly been
cautioned against (Roux et al., 2011; Roux, 2017; Nimigean and
Allen, 2011; Dixit and Asthagiri, 2011; Alam and Jiang, 2011;
Andersen, 2011). Our smFRET studies reveal that the SF con-
formation is actually conformationally dynamic and dependent
on the nature of the ions present: rather than being “designed”
to accommodate K* ions, the canonical K-permeating confor-
mation is actually generated in the presence of K* ions, i.e., the
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Figure 9. Permeant ion-dependent kinetics of SF conformational dynamics in KirBac1.1 WT and I1131M. (A) smFRET trajectories for all WT (gray) and
I131M (green) traces (n traces given in Figs. 6 and 7) in 150 mM KCl and 150 mM NaCl were concatenated and idealized into three (low, middle, and high) FRET
states (red). (B) Lifetime probability density function of low (L) and high (H) FRET states as a function of [K*]/[Na*], from idealized trajectories as in A (and Figs.
S3 and S4), fitted with a single exponential distribution in each case. (C) WT and 1131M lifetimes (from fits in B) reveal qualitative dependence on ionic
conditions, with H state lifetimes increasing, and L state lifetimes generally decreasing, as Na* is replaced by K*. For the time constants, a monoexponential
decay function was fitted to the full dataset without splitting. The time constants are represented as mean + 95% confidence interval of the fitting.
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Figure 10. Three-state ion-dependent kinetic model in KirBacl.l WT and 1131M. (A) Three-state kinetic model for ion-dependent conformational
transitions in KirBacL1. The channels SF is presumed to exist in high FRET state (H), medium FRET state (M), and low FRET state (L). (B) Transition density
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7). (C) lon dependence of calculated state probability obtained from the idealized traces. The [K*]/[Na*] dependence of H and L state probability is weaker in
1131M than in WT. (D) Calculated rate constants for WT and 1131M as a function of [K*]/[Na*]. *, P < 0.05 versus WT. As in Fig. 8, concatenated trajectories
were split into three equal-sized groups and analyzed separately to assess variability in the data, which are presented as mean + SEM of the three data groups.
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conformation represents an “induced fit,” induced by K* ions them-
selves. In KirBacl.l WT, the apparent K, for K*-dependent conver-
sion from the dynamic, low-FRET, nonselective conformations to the
constrained, high-FRET, K-selective conformation is low (<1 mM),
such that under any physiological condition, the latter conformation
will predominate. However, the SF is surrounded by other structural
elements, and changes in these elements could change this equilib-
rium, and hence change apparent selectivity.

In the present study, therefore, we examined mutations in
the second transmembrane helix in KirBacl.l (Cheng et al.,
2009; Kuo et al., 2003) as models in which to probe this issue.
We generated several mutants at position 1131 in the TM2 domain,
which is equivalent to S165 in Kir2.1 and S177 in Kir3.2. While
tolerant of amino acid changes, this residue is also critical for
maintenance of K* selectivity (Bichet et al., 2006; Bichet et al.,
2004; Yi et al., 2001), but with no clear explanation of why. Our
data show that the relative K*/Na* selectivity is significantly
reduced in mutant KirBacl.1 I131x and, in parallel, that the [K*]-
sensitivity of the constrained, high-FRET state and the [K*]-
dependence of conformational dynamics are reduced, while the
Na-sensitivity of the low-FRET state is increased, in KirBac I131M.
K*-selective permeation was partially restored to I131G mutant
channels specifically, by introduction of a second (F71N) mutation
on the face of TMI in contact with TM2. This suggests that ap-
propriate structural configuration between TM1 and TM2 con-
tributes to achieving the K-selective SF conformation (Figs. 5 and
8), as well as channel activation (Amani et al., 2020).

Implications for other channels

In demonstrating parallel shifts of ion selectivity and of the ion
dependence of SF conformation, the present results provide a
simple explanation for how mutation of residues that are outside
the K channel SF, and which do not contact permeant ions, can
nevertheless reduce ion selectivity and increase sodium per-
meability. As part of the structural framework around the SF,
these residues control the intrinsic stability of the constrained
K-selective filter conformation relative to dynamic dilated, non-
selective conformations, such that mutating these residues shifts
the equilibrium toward the latter. Due to the technical complexity
of appropriate model systems, we have so far been unable to test
the generality of this finding, and our results are so far restricted
to one position in KirBacl.l but, if replicated in other model
channels, our findings will have significant implications for un-
derstanding ion selectivity in cation channel superfamily mem-
bers in general. Loss of K* selectivity due to mutations outside the
SF of multiple K channels, including KirBacl.l [1131M], KcsA
[M96V] and [E71A], or Kir3.2 [S177W] mutant channels, as well as
prokaryotic K* selective transporters lacking the TxGYG sequence,
such as TrkH and KtrB, in which only the first glycine residue in
each P-loop is conserved (Cao et al., 2011; MikuSevié et al., 2019;
Vieira-Pires et al., 2013), raise the possibility that control of K*
selectivity might involve more structural and environmental
features (such as surrounding ions) than generally appreciated.
Solid-state NMR studies have demonstrated conformational flex-
ibility of the SF in the nonselective NaK channel (Lange et al,,
2006; Bhate et al, 2010), and crystal structures of the HCN
channel, which contains a GYG-containing SF yet is physiologically
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nonselective, reveal a considerably wider outer mouth of the
pore than in K-selective K channel structures (Lee and
MacKinnon, 2017). It is mere speculation, but perhaps even
HCN channel SFs could adopt a K-selective conformation but
are precluded from doing so by structural differences in SF-
supporting elements that act to shift the [K*] dependence be-
yond the physiological range.
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Figure S1. The 1131G mutant is more permeable to protons. (A) Schematic diagram of K-driven 8Rb* assays with external pH values varying from 7 to 9.
(B) Relative counts of 8Rb* uptake after 10 min for KirBacl.1 WT (gray bars) and KirBac1.11131G (blue bars) with increasing pH (7-9), normalized to counts at

pH 7. All data are represented as mean + SEM of at least n = 3 experiments.
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Figure S2. The 1131M-labeled tandem dimer retains functionality. As for the WT-labeled tandem dimer (Wang et al., 2016, 2019), the 1131M-labeled
tandem dimer in position T120C is functional in Na* and K*. All data are represented as mean + SEM of at least n = 3 experiments.
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Figure S3. Low K*-dependent kinetics of SF in KirBacl.1 WT and 1131M. Concatenated smFRET trajectories of WT (gray) and 1131M (green) in 150 mM
NaCl with zero K*, 0.5 mM K*, 5 mM K*, and 100 mM Na* + 50 mM K*, as indicated, together with three state idealizations (red) corresponding to low, middle,

and high FRET states.
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Figure S4. Low Na*-dependent kinetics of SF in KirBacl.1 WT and 1131M. Concatenated smFRET trajectories of WT (gray) and 1131M (green) in 150 mM
KCl with zero Na*, 0.05 mM Na*, 0.5 mM Na*, or 5 mM Na*, as indicated, together with three state idealizations (red) corresponding to low, middle, and high
FRET states.
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Provided online are two tables. Table S1 lists the number of individual molecules and identified transitions for idealized smFRET
records. Table S2 lists individual rate constants for the three-state model.
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