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 Supplementary Methods 

Genome-wide analysis suggests the importance of vascular processes and neuroinflammation in  
late-life antidepressant response 

 

1. Quality Control 

 Genotyping and Quality Control 

Endorsed by the Psychiatric Genomics Consortium, the PsychArray contains 265,000 tag SNPs from the Illumina 

HumanCore BeadChip, 245,000 markers from the HumanExome BeadChip and 50,000 SNPs which have previously 

been associated with common psychiatric disorders. 

From our initial sample of 453 patients, we excluded 91 individuals who were withdrawn for several reasons (see 

Supplementary Figure 1). Thirteen individuals were removed due to excessive heterozygosity based on an 

inbreeding coefficient greater than two standard deviations from the sample mean. We checked individuals for 

discordance between self-reported and genetic sex, during which one individual was excluded due to Y-

chromosome abnormalities. Lastly, one individual showed excessive relatedness (�̂� > 0.185, i.e., second cousins), 

and two individuals had excessive missing genotypes (more than 10%). Overall, we excluded 17 individuals who 

failed genetic quality control based on one or more criteria, resulting in a final sample of 345 individuals who 

entered imputation. 

Genetic ancestry was assessed using multidimensionality scaling in PLINK v.1.9.1 First, we pruned SNPs based on 

linkage disequilibrium (LD) using a 50 SNP window and shifting by five SNPs with an r2 threshold of 0.2. We also 

removed predefined high-LD regions.2 Outliers were defined as individuals' principal components 1 and 2 loadings 

beyond the six standard deviations from the centre of the ancestral cluster.3 Divergent individuals (i.e., discrepant 

between self-reported and genetic ancestry) that were visibly clustering well with other continental populations 

were reclassified appropriately (e.g., African-ancestry vs. European-ancestry, N=2); however, those with 

ambiguous ancestries were reclassified as "admixed" (N=5, see Supplementary Figures).  

 Imputation 

Per marker, we exclude variants based on violations of Hardy-Weinberg equilibrium at p < 10-7, low genotyping 

call rate < 95%, and low minor allele frequency < 1%. Whole-genome imputation was conducted using the genipe 

pipeline,4 which uses IMPUTE2 v2.25 in 5-Mb segments per chromosome after pre-phasing with SHAPEIT26 and 

the 1000 Genomes reference panel (Phase 3).7 We filtered for biallelic SNPs and retained those with an imputation 

score 0.7, completion rate > 90%, and a minor allele frequency ≥ 5%. Hard genotype calls were made using a 

probability threshold of 90%. We included 4,471,676 bi-allelic variants with a genotyping rate of 99.1% in 329 

individuals (307 European-ancestry, 22 African-ancestry). 

 

2. Secondary Analyses 

 Linear mixed-effects models 

For top-associated variants, we constructed linear mixed-effects models across the eight time-points of treatment. 

Our outcome of interest was the MADRS score at the end of treatment (week 12). We included fixed effects from 

age, sex, current depressive episode duration, baseline MADRS score, and additive SNP genotype (i.e., 0, 1, 2), as 

well as random effects from individual ID and site of recruitment (denoted below by "|").  
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𝑦𝑀𝐴𝐷𝑅𝑆 𝑒𝑛𝑑 =  𝛽0 +  𝛽1𝑎𝑔𝑒 +  𝛽2𝑠𝑒𝑥(𝑓𝑒𝑚𝑎𝑙𝑒) + 𝛽3𝑀𝐷𝐸 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +  𝛽4𝑀𝐴𝐷𝑅𝑆 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +  𝛽5𝑡𝑖𝑚𝑒

+  𝛽6𝑆𝑁𝑃𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +  𝛽7𝑡𝑖𝑚𝑒: 𝑆𝑁𝑃𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝛽8(1|𝐼𝐷) + 𝛽9(1|𝑆𝑖𝑡𝑒1) +  𝛽10(1|𝑆𝑖𝑡𝑒2) 

For each SNP model, we checked assumptions of homoscedasticity, normality, and linearity, as well as the 

presence of influential observations (see Supplementary Figures). Although we did not observe any violation of 

model assumptions, we observed three influential observations at weeks 2, 6, and 10 that, when removed, 

changed the standard error by 13%, 22%, and 20%, respectively. 

 Time-to remission analysis 

First, we obtained the Kaplan-Meier survival curve for the entire population, as well as stratified by the SNP. We 

used time-to remission as our 'failure event' and assumed that censoring time is independent of failure time. The 

estimated survival curves across SNP genotypes or alleles were compared curves using a Mantel-Haenszel, 𝜒2 test 

with one degree of freedom at an α=0.05. Subsequently, to assess the effects of baseline covariates on time-to 

remission, we fit a Cox proportional hazards regression. For this, we fit two models:  

Model 1:   𝜆𝑥(𝑡) =

𝜆0(𝑡)𝑒𝛽1𝑎𝑔𝑒+ + 𝛽2𝑠𝑒𝑥(𝑓𝑒𝑚𝑎𝑙𝑒)+ 𝛽3𝑆𝑖𝑡𝑒1+ 𝛽4𝑠𝑒𝑥(𝑆𝑖𝑡𝑒2)+𝛽5𝑀𝐷𝐸 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛+ 𝛽6𝑀𝐴𝐷𝑅𝑆 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝛽7𝑃𝐶1+𝛽8𝑃𝐶2 

Model 2:   𝜆𝑥(𝑡) =

𝜆0(𝑡)𝑒𝛽1𝑎𝑔𝑒+ + 𝛽2𝑠𝑒𝑥(𝑓𝑒𝑚𝑎𝑙𝑒)+ 𝛽3𝑆𝑖𝑡𝑒1+ 𝛽4𝑠𝑒𝑥(𝑆𝑖𝑡𝑒2)+𝛽5𝑀𝐷𝐸 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛+ 𝛽6𝑀𝐴𝐷𝑅𝑆 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒+𝛽7𝑃𝐶1+𝛽8𝑃𝐶2+𝛽9𝑆𝑁𝑃  

These two models were then compared using a likelihood ratio test (LRT, α=0.05) to assess whether the inclusion 

additive SNP genotypes in estimating the survival curves improves model fit. For the final Cox model (i.e., Model 

2), the overall model significance was assessed using an LRT compared to a model only including the intercept. 

Also, ANOVA was used to assess the significance of the individual coefficients. 

Given that the Cox regression assumes proportional hazards over time for validity, this assumption was tested for 

all predictors in the model by assessing predictor interaction with time. We obtained the Pearson product-

moment correlation (⍴) between the scaled Schoenfeld residuals and log(time) for all variables, including additive 

SNP genotype. In addition, we also considered the global test for all interactions. These tests were considered at 

α=0.05, which would indicate violators of the proportionality assumption. In addition, we plotted the scaled 

Schoenfeld residuals against transformed time with a smoothed line, including ± two standard deviations to 

inspect any non-proportional effects in the model across the exposure and covariates. Any observed systematic 

deviations from a horizontal line were interpreted as an indication of non-proportional hazards. Lastly, we 

explored model outlier using deviance residuals (±3 standard deviations) given their assumed normality.  

Overall, the model for rs6916777 did not violate the assumption of proportional hazards based on the global 

Schoenfeld test (χ2
(10)=11.58, p=0.31). For rs12597726, the global Schoenfeld test showed a significant deviations 

from proportional hazards (χ2
(10) =18.79, p=0.043) due to the violations of baseline MADRS score (χ2

(1)=6.4, p=0.01) 

and rs12597726 genotypes (χ2
(2)=6.82, p=0.03). However, upon closer graphical inspection, there appeared to be 

no observable issues with non-proportionality (see Supplementary Figures).  
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