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Behavioral/Cognitive

Hippocampus Guides Adaptive Learning during Dynamic
Social Interactions

Oriel FeldmanHall,1,2 David F. Montez,3 Elizabeth A. Phelps,4 Lila Davachi,5 and Vishnu P. Murty6
1Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island 02912, 2Carney Institute of Brain
Science, Brown University, Providence, Rhode Island 02912, 3Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
63110, 4Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, 5Department of Psychology, Columbia University, New
York, New York 10027, and 6Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122

How do we evaluate whether someone will make a good friend or collaborative peer? A hallmark of human cognition is the
ability to make adaptive decisions based on information garnered from limited prior experiences. Using an interactive social
task measuring adaptive choice (deciding who to reengage or avoid) in male and female participants, we find the hippocam-
pus supports value-based social choices following single-shot learning. These adaptive choices elicited a suppression signal in
the hippocampus, revealing sensitivity for the subjective perception of a person and how well they treat you during choice.
The extent to which the hippocampus was suppressed was associated with flexibly interacting with prior generous individuals
and avoiding selfish individuals. Further, we found that hippocampal signals during decision-making were related to subse-
quent memory for a person and the offer they made before. Consistent with the hippocampus leveraging previously executed
choices to solidify a reliable neural signature for future adaptive behavior, we also observed a later hippocampal enhance-
ment. These findings highlight the hippocampus playing a multifaceted role in socially adaptive learning.
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Significance Statement

Adaptively navigating social interactions requires an integration of prior experiences with information gleaned from the cur-
rent environment. While most research has focused on striatal-based feedback learning, open questions remain regarding the
role of hippocampal-based episodic memory systems. Here, we show that during social decisions based on prior experience,
hippocampal suppression signals were sensitive to adaptive choice, while hippocampal enhancements was related to subse-
quent memory for the original social interaction. These findings highlight the hippocampus playing a multifaceted role in
socially adaptive learning.

Introduction
Humans expertly navigate through dynamic social worlds de-
spite the sheer amount of information they are bombarded with.
Although another’s motivations are largely hidden from us, we
can make socially adaptive decisions, such as who to cooperate
with or trust (FeldmanHall and Shenhav, 2019). Such success
requires an efficient integration of prior experiences with

information gleaned from the current environment. Classic
models of decision-making suggest that through repeated experi-
ence, humans incrementally fine-tune their behavior using pre-
diction errors (Montague and Berns, 2002; King-Casas et al.,
2008; Gläscher et al., 2009, 2010), which enables us to learn who
to approach and who to avoid. However, we can also learn and
make adaptive decisions from relatively limited experience.
Indeed, a hallmark of human cognition is that complex concepts
can be learned from a single experience (Lake et al., 2015).

A growing body of research shows that individuals routinely
make judgements based on limited prior experience. Even
briefly glancing at a person’s face can provide enough informa-
tion to judge whether that person can be trusted (Engell et al.,
2007; Mende-Siedlecki et al., 2013; Todorov and Mende-
Siedlecki, 2013). Thus, even when information is dynamic and
multidimensional, and involves moral qualities, humans are
highly adept at encoding relevant information from a single
brief exposure. Less is known, however, about how people
retrieve this information to adaptively decide whether to
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reengage or avoid a particular individual. Our group showed
that intact detailed, episodic memories of the prior exchange
may be a necessary requirement (Murty et al., 2016; Schaper et
al., 2019). This suggests that making flexibly adaptive choices
from limited experience necessitates the recollection of contex-
tual details from the original social encounter.

Despite this behavioral evidence, the neural mechanisms that
instantiate socially adaptive single-shot learning remain unknown.
There are two competing theories (Ghiglieri et al., 2011; Woolley
et al., 2013). On the one hand, value-based learning is canonically
considered to be in the domain of the striatum, for both multitrial
nonsocial learning (O’Doherty et al., 2003; Hare et al., 2008;
Diederen et al., 2016; Bornstein and Norman, 2017) and social
learning (Hackel et al., 2015). On the other hand, the hippocam-
pus, a region known for its central role in long-term episodic
memory (Davachi, 2006; Eichenbaum et al., 2007) may instead be
recruited, which would mirror the functional role of this region in
memory retrieval, spatial learning, and cognitive maps (Schapiro
et al., 2013, 2016; Kaplan et al., 2017a,b; Nau et al., 2018; Omer et
al., 2018). Indeed, prior research shows that the hippocampus pri-
oritizes the encoding of valuable everyday items and the contexts
in which they are encountered (Wittmann et al., 2005; Adcock et
al., 2006; Murty and Adcock, 2014).

By focusing on the hippocampus and striatum, we can iden-
tify the role of these distinct learning systems during the instan-
tiation of an adaptive social choice informed by a single prior
social interaction. We hypothesized that the hippocampus would
play an outsized role in supporting socially adaptive choices
from just one learning episode. We collected fMRI data during a
social decision-making task (Murty et al., 2016), in which partici-
pants first played an interactive game where a series of people
either offered fair or unfair monetary splits in a Dictator
Game (DG; Fig. 1A). After a delay, subjects indicated which
of these people they would prefer to interact with in a subse-
quent Dictator Game. Finally, participants completed a sur-
prise memory test to probe whether individuals’ episodic
memory for the initial exposure was intact. This design
allowed us to test whether such adaptive decisions to reen-
gage with fair individuals and avoid unfair individuals
recruits a hippocampal-dependent learning system rather
than a striatal-dependent learning system.

Materials and Methods
Subjects
We scanned 28 healthy, right-handed participants to yield a sample of at
least 20 participants after removing participants for lack of behavioral
variance. Sample size was determined by existing work using the same
paradigm and behavioral analysis pipeline (Murty et al., 2016). Eight
participants were excluded from analyses because of computer malfunc-
tions during retrieval (N= 2); failure to show any variability in choice
behavior (same choice selected throughout the task; N= 5); and failure
to believe that they were playing with other real partners during the task
(N= 1). This led to a final sample of 20 participants (median age = 23
years; age range = 18–34 years; 10 females). Participants provided written
consent, and the experiment was approved by the New York University
Committee on Activities Involving Human Subjects. All subjects were
paid $25/h and could make up to an additional $10 based on their deci-
sions during the task.

Stimuli set
The stimuli used in the DG and subsequent Decision Task, were taken
from pictures of white male faces approximately between the ages of 18
and 24 years (http://iilab.utep.edu/stimuli.htm). Each stimulus featured
a unique, emotionally neutral face. To determine whether the stimuli
were matched in attractiveness, dominance, and trustworthiness, an in-
dependent group (N= 30) rated each stimulus on Amazon Mechanical
Turk. This task consisted of 179 faces and were rated along the dimen-
sions of “Attractiveness,” “Approachability,” and “Overall Positive or
Negative Feeling.” From this task, we selected 120 faces that were the
most neutral of these three dimensions.

Tasks
As detailed in previous work (Murty et al., 2016), subjects completed
four tasks (Fig. 1). While in the scanner, participants first played the re-
cipient in a DG, receiving varied monetary splits of $10 from trial-
unique Dictators. The Dictator could divide the $10 however he saw fit,
and subjects were required to accept the split. Monetary splits ranged
from highly unfair ($0.10–$1.50 of $10) to relatively fair ($3.6–$5 of
$10). Following the offer, participants were then asked how they felt
about the split (on a 3-point scale; 1 = good to 3= bad). Subjects inter-
acted with 60 unique color images of Dictators (30 fair offers, 30 unfair
offers).

After the DG, subjects completed a distractor task, a 6 min task com-
posed of easily solvable math problems. After this short delay, subjects
completed the Decision Task in which they could select a partner for a
subsequent DG. On each trial, a face and a schematic gray face were pre-
sented side by side (Fig. 1A). Subjects were tasked with deciding whether

Figure 1. Task structure and behavioral results. A, All subjects completed three tasks. The first two tasks (encoding and decision phases) occurred in the scanner, while the surprise memory
task happened outside of the scanner. In the decision task pictured here, subjects could select who they would like to play with in a subsequent Dictator Game. B, Proportion of decisions to
select a partner in the Dictator game are broken down by no memory, memory for only the face, or memory for both the face and associated offer. Here adaptive behavior is defined as the
ability to reapproach fair players more often than unfair players, independent of their baseline propensity. Bars in green indicate fair offers while orange bars indicate unfair offers.
ppp, 0.001.

FeldmanHall et al. · Hippocampus and Adaptive Social Decision-Making J. Neurosci., February 10, 2021 • 41(6):1340–1348 • 1341

http://iilab.utep.edu/stimuli.htm


they would like to play with that person or a new person who would be
chosen at random (indicated by selecting the schematic gray face). Every
trial contained a trial-unique face such that either the face was previously
seen during the first DG or it was an entirely novel face. Faces were
selected randomly without replacement from the 60 faces presented dur-
ing the first DG and 30 never before seen faces. Each trial was presented
for 4 s, during which participants could make decisions any time while
the face was visible. Once a decision was made, subjects did not play
with the target player or receive additional feedback about that player’s
behavior. Each trial was followed by the presentation of a jittered fixation
cross lasting between 2–6 s (average= 4 s). Trial order was pseudor-
andomized across participants such that no more than three trials of the
same condition (fair, unfair, novel) would appear in a row.

Outside of the scanner, subjects were given a surprise memory test in
which we measured item memory (whether subjects recognized each
face) and associative memory (memory for both the face and how much
money the Dictator offered). We only tested memory for faces appearing
in the Dictator Phase, not novel faces from the decision phase. Each trial
consisted of either a face presented during the initial DG or an entirely
new face, alongside a Likert scale of how confident they were that they
had seen the face before during encoding (face memory: 1 =high confi-
dence old, 2 = low confidence old, 3 = not sure, 4 = low confidence new,
or 5 =high confidence new). To probe episodic memory for the offers
previously made by each player, if subjects responded with a 1–3 for
item memory, they had to indicate the monetary split associated with
that person using a 5-point Likert scale ($0–$5, with $1 increments).
After the experiment, subjects were funnel debriefed in a manner that
effectively probes true believability of the task. Subjects answered on a 6-
point Likert scale whether they had any doubt as to the veracity of the
paradigm (1= completely believed, 6 = did not believe). This allowed us
to exclude subjects (N= 1) who indicated any disbelief that they were
playing with real players.

fMRI acquisition and preprocessing
Functional imaging was performed using a Siemens Allegra 3 T head-
only scanner located at the Center for Brain Imaging at New York
University. Functional data were collected using an echoplanar pulse
sequence (36 interleaved slices; TR=2000 ms; TE=30 ms; flip
angle = 78°; FOV = 192 mm, voxel size= 3 mm isotropic). Slices were
positioned ventrally to provide full coverage of the anterior temporal
lobes and prefrontal cortex; this resulted in omission of the most dorsal
parts of the superior parietal cortex. A high resolution T1-weighted ana-
tomic scan [magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence, 1 mm isotropic] was also obtained for each sub-
ject after the decision task.

Functional MRI data were preprocessed using a pipeline designed to
minimize the effects of head motion (Hallquist et al., 2013). This
included simultaneous 4 d slice-timing and head motion correction,
skull stripping, intensity thresholding, coregistration to the MPRAGE,
nonlinear warping to MNI space, spatial smoothing with a 6 mm
FWHM kernel, nuisance regression based on head motion (translation/
rotation and their first derivative), and non-gray matter signal, and
high-pass filtering (100 s). To account for magnetic equilibrium, the first
four volumes of the functional scan were discarded.

Experimental design and statistical analyses
Behavioral analysis. We first tested whether players showed subjec-

tive responses that were congruent with the Dictator’s offer during the
DG. For each participant, we ran a regression with individual self-
reported feelings of the offer as the dependent variable and offer value as
the independent variable. To test for significance, we submitted r-to-z-
transformed scores to one-sample t tests. Next, we tested whether indi-
viduals were more likely to approach Dictators that offered them more
or less money during the DG. For each participant, we ran a general lin-
ear model (GLM), as implemented by the MATLAB “glmfit” function
with participants’ choice behavior during the decision task as the de-
pendent variable, and offer amounts as the independent variable. To
investigate the influence of different types of memory on choice behavior
during the decision task, we ran an ANOVA where the dependent

variable was choice, and within-subject predictors were value outcome
and memory (Face and Offer memory). Outcome was split into binary
categories of high/fair ($3.6–$5.00) offers and low/unfair offers ($0.10–
$1.50) offers. We note that in social situations low values are often yoked
to unfair offers (e.g., $0.10 of $10), and high values to fair offers, such
that it is difficult to dissociate high reward from fair or equitable out-
comes. Memory was split into the following three categories: no mem-
ory, face memory, face 1 offer memory. Evidence of a significant
ANOVA effect was followed by post hoc t tests to specify the nature of
the interaction. Trials in which participants had the opportunity of
selecting the novel face stimuli were not included in these behavioral
analyses.

fMRI first-level and group analysis. Imaging analysis focused on the
data from the decision task. Data were modeled using the following three
regressors of interest: adaptive choice, maladaptive choice, and novel
choice. The adaptive choice regressor modeled trials in which partici-
pants decided either to reengage with players who made fair offers or to
avoid engaging with players who made unfair offers in the DG. The mal-
adaptive choice regressor modeled trials in which participants decided
either to reengage players who made unfair offers or to avoid engaging
with players who made fair offers in the DG. The novel choice regressor
modeled all trials in which participants made choices about novel players
either by selecting to play or to avoid them.

Given that prior research regarding the nature of the hemodynamic
response function (HRF) in the hippocampus does not always follow a
canonical shape during memory retrieval, we opted to estimate voxel-
specific responses for each condition. This was performed by imple-
menting the 3dDeconvolve function as implemented in AFNI, model-
ing each regressor over a 20 TR time period using 10-parameter sine
series expansion. In addition to our regressors of interest described
above, each individual’s first-level model also included a seventh-order
Legendre polynomial basis set to account for low-frequency drifts in
the data. Preliminary analyses using a traditional temporal window of
13 TRs revealed that responses in the hippocampus failed to reach
baseline at 26 s, despite other regional responses—for example, in the
visual cortex—reaching baseline in the same time frame. Thus, to fully
characterize the hemodynamic response in the hippocampus and pro-
vide a more complete and accurate representation of our data, we used
an extended time period of 20 TRs.

We additionally performed a separate GLM to look at whether
responses during the decision task represent individual performance
during a later memory test. We implemented three regressors of interest
representing (1) trials in which participants subsequently had memory
for the Dictator and the offer made; (2) trials in which participants either
had memory only for the Dictator but not the offer, or, no memory at
all; and (3) trials in which decisions were made about Novel players. The
same modeling procedures and inclusion of nuisance regressors were
used as detailed in the GLM described above. We should note that for
this analysis we were somewhat underpowered, as the mean number of
trials in which participants had memory for the Dictator and their offer
was 7.7 with a range of 1–19 trials.

Group-level analyses were conducted using a multilevel model
implemented in the AFNI 3dMVM with each individual’s voxel-specific
HRF as an input, which tested for interactions between condition (i.e.,
adaptive, maladaptive) and time (i.e., each TR). We used 3dClustSim to
identify significant clusters with the option to simulate noise using the
spatial autocorrelation function given by a mixed-model run on noise
estimates on first-level data. Height extant thresholds were set at a height
level of p, 0.001 and a corrected a level of p= 0.01 (two tailed; using
third-nearest neighbor clustering). We first estimated significance within
a regions-of-interest mask, which included bilateral hippocampus
(defined in the Automated Anatomical Labeling Atlas), as well as the
regions within the striatum known to participate in affective and

Table 1. Item memory performance for faces appearing in the dictator game

Condition Proportion indicated remembered

Fair Mean (SE) = 0.63 (0.04)
Unfair Mean (SE) = 0.62 (0.04)
Novel foils (false alarms) Mean (SE) = 0.41 (0.05)
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cognitive processes (defined by the Oxford-GSK-Imanova structural
striatal atlas). This yielded a cluster of seven voxels; thus, any clusters
consisting of seven or more voxels within our regions of interest (ROIs)
were deemed significant. Notably, the definitions of the striatum include
the entire ventral striatum and anterior and middle portions of the cau-
date. Additionally, we ran a whole-brain analysis that yielded a mini-
mum cluster of 21 voxels.

Investigating differences in brain activation using a TR p condition
interaction with a multilevel model cannot specify the direction of the
effect. To characterize the direction of this interaction, post hoc analyses
were run to unpack the nature of the clusters showing significant inter-
actions at or above threshold within our region of interest. First, we plot-
ted the entire estimated hemodynamic response function for the
adaptive and maladaptive regressors, and identified time points where
there were significant differences by running a t test on each individual
TR. These post hoc tests were corrected for multiple comparisons using a
false discovery rate reported at q, 0.1.

To further unpack the behavioral relevance of these differences while
controlling for multiple comparisons, we isolated TRs that revealed peak
differences between adaptive and maladaptive trials in both the positive
(adaptive . maladaptive) and negative (maladaptive . adaptive) direc-
tions. We then independently compared activation at these TRs against
the novel hemodynamic response to gain better traction of the hippo-
campal signal. Critically, novel stimuli were not included in the original
analysis when identifying the significant clusters and could thus serve as
independent comparison stimuli to decipher the nature of the interac-
tions (i.e., these t tests are statistically independent from prior analyses).
Finally, we computed a neural difference score of adaptive versus malad-
aptive from these two time points in an across-subject analysis to mea-
sure the effect on adaptive choice behavior (i.e., an independent
statistical analysis).

Results
Behavioral findings
Confirming that participants were sensitive to the offers made by
Dictators, a linear regression revealed that subjects reported feel-
ing more positive about fair versus unfair offers from Dictators
in the DG (b = 0.83 (0.01); t= 24.63; p, 0.001). During the de-
cision phase, there were no significant differences in reaction
time (RT) when individuals were making decisions in response
to a fair Dictator [mean (SE) = 1.71 (0.12)], unfair Dictator
[mean (SE) = 1.70 (1.11)], or novel Dictator [mean (SE) = 1.73
(0.11); p values. 0.40]. A linear regression revealed, however,
that participants were more likely to reengage with Dictators that
gave them fair versus unfair offers during the previous DG [b =
0.24 (0.08); t=3.17; p=0.005], indicating that, on the whole, sub-
jects were making decisions that were adaptive and likely to ben-
efit them in the future. Participants also made these adaptive
decisions more slowly [i.e., selecting fair Dictators, avoiding
unfair Dictators, 1.85 (0.10)] than maladaptive decisions [i.e.,
select unfair Dictators, avoid fair Dictators, 1.78 (0.10); t(19) =
3.84, p, 0.001]—which dovetails with recent work revealing
that the hippocampus is involved in deliberating over valued
options (Bakkour et al., 2019). Table 1 provides descriptive statis-
tics of our item memory test. While there was significant item

memory for faces encountered during the original dictator game
(p, 0.001), there were no significant differences in itemmemory
across fair and unfair [fair: mean (SE) = 0.63 (0.04); unfair: mean
(SE) = 0.62 (0.04); t(19) = 0.78, p=0.44]. For associative memory,
there was evidence of significantly greater associative memory
for unfair versus fair Dictators [fair: mean (SE) = 0.10 (0.02);
unfair: mean (SE) = 0.33 (0.03); t(19) = 5.43, p, 0.001].

An ANOVA testing for interactions between memory and
choice revealed that adaptive choices were dependent on an indi-
vidual’s memory of their prior experience with each Dictator
(p, 0.001; Fig. 1B, Table 2). Post hoc t tests revealed that subjects
did not show any differences in their tendency to approach fair
and unfair Dictators when they did not have memory for the
Dictator (no memory; t(19) = �0.14; p= 0.99) or when they only
had memory for the Dictator but not how much the Dictator
offered (face memory; t(19) = 0.58; p= 0.57). However, when indi-
viduals had intact memory for the Dictator and how much they
previously offered, they decided to reengage with fair players far
more often than unfair players (face 1 offer memory; t(19) =
4.05; p= 0.001). This finding was driven by exhibiting stronger
associative memories for unfair (lower) offers compared with
fair (higher) offers (t(19) =�5.13, p, 0.001).

Neuroimaging results
We first identified regions showing significant differences when
individuals made adaptive versus maladaptive choices when
encountering dictators. Significant differences were found in the
right hippocampus (p, 0.01, small-volume corrected; MNI
space: [x, y, z] = [33, �30, �9], k=16; Fig. 2A) as well as a net-
work of regions including the middle frontal gyrus, insula, and
fusiform gyrus (p, 0.01, whole-brain corrected). Full time
courses for regions showing significant differences outside of the
hippocampus are depicted in Figure 3. Critically, we observed no
significant activations within our striatal ROI using the same
time course analysis that identified the hippocampal cluster—
even when using a very liberal threshold of p, 0.01 uncorrected.
Similarly, no clusters were identified using a canonical HRF (i.e.,
a double-gamma HRF) at a liberal threshold of p, 0.01.

Post hoc analyses of the right hippocampus cluster revealed a
complex time course in which there were three discrete phases
comprised of six TRs (time course series broken into three
phases of equal TR length; Fig. 2B). In the early phase (TR 0–5),
hippocampal activation did not differ across conditions. During
the middle phase (TR 6–11), hippocampal activation for adaptive
choice was suppressed compared with maladaptive choices (i.e.,
adaptive suppression). During the late phase (TR 12–17), hippo-
campal activation for adaptive choice was enhanced compared
with maladaptive choices (i.e., hippocampal enhancement during
adaptive choice). These findings suggest that there are two puta-
tive neural signals—a hippocampal suppression (maladaptive .
adaptive) followed by a hippocampal enhancement (adaptive .
maladaptive)—that support adaptive choice. Notably, the sup-
pression signals were unique to the hippocampus and were not

Table 2. Tests for differences between selecting fair or unfair dictators as a function of having intact episodic memory, item memory, or no memory

t df Significance (two tailed)

Select fair dictator with source memory . select fair dictator w/out memory 3.817 15 0.002
Select unfair dictator with source memory . select unfair dictator w/out memory –0.702 19 0.491
Select fair dictator with item memory . select fair dictator w/out memory 0.616 19 0.545
Select unfair dictator with item memory . select unfair dictator w/out memory –0.035 19 0.973
Select fair dictator with source memory . select fair dictator w/ item memory 3.956 15 0.001
Select unfair dictator with source memory . select unfair dictator w/ item memory –0.718 19 0.481
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Figure 2. The hippocampus indexes adaptive decisions. A, Right hippocampus activity supports adaptive, compared with maladaptive, social decisions. B, Time course series of BOLD signal
in the right hippocampus, plotted separately for adaptive and maladaptive choices. C, As a control region, we plotted time course series of BOLD signals in bilateral calcarine sulcus, separately
for adaptive and maladaptive choices. pp, 0.10, ppp, 0.05.

Figure 3. Regions outside of the hippocampus indexing adaptive decisions. Hemodynamic response functions of regions outside of the hippocampus showing differences between adaptive
and maladaptive trials. Data plots are for visualization purposes only and do not include post hoc tests.

Figure 4. Brain–behavior correlations reveal that hippocampal suppression leads to adaptive choice. Only during adaptive suppression did we observe a relationship between hippocampal
BOLD activity and the likelihood of making an adaptive choice: dampened hippocampal responses correlated with increasing adaptive behavior. pp, 0.05; n.s., not significant.
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apparent in any regions identified in the comparison of adaptive to
maladaptive trials (Fig. 3). Notably, post hoc analysis did not reveal
any differences in the hippocampus as a function of the condition
(fair, unfair) on the concurrent or previous trial, suggesting that our
late signals were not a function of the content of the subsequent trial.

To gain more traction on the nature of these adaptive sup-
pression and enhancement signals evoked in the hippocampus,

we conducted additional post hoc analyses on TRs showing peak
hippocampal suppression for adaptive choices (i.e., TR=10, mal-
adaptive . adaptive; Fig. 2B) and peak hippocampal enhance-
ment for adaptive choices (i.e., TR=12, adaptive. maladaptive;
Fig. 2B). We first tested whether these adaptive suppression and
enhancement signals predicted individual differences in adaptive
decision-making. Adaptive choice was defined as the b -value in
a regression between participants’ propensity to approach players
depending on how fair or unfair their offers were during the
Dictator Game. We found that the attenuated hippocampal
BOLD response during the middle suppression phase correlated
with a greater likelihood of making adaptive choices (TR = 10;
r(19) = �0.51, p = 0.02; Fig. 3, left). There was no significant
relationship between the later hippocampal enhancements
and adaptive choice (TR = 12, r(19) = �0.19, p = 0.61; Fig. 4A,
right). However, the direct comparison between suppression
and enhancement phases was not significant (p. 0.2). A
similar coupling between hippocampal responses and adapt-
ive behavior was observed at other time points as well,
revealing a significant enhancement and suppression signal
in the hippocampus (Table 3).

To test whether the adaptive suppression and enhancement
signals showed properties reflecting more general memory
retrieval, we compared these responses to when partici-
pants responded to novel players they had never seen
before (i.e., novel choice), which allowed us to uniquely
identify signals specifically linked to memory (previously
encountered players) versus encoding for future adaptive
choice (novel players). During the adaptive enhancement
phase, there was a significant increase in hippocampal acti-
vation during adaptive choice compared with novel choice
(TR = 12; estimated time series of the HRF: t(19) = 3.71,
p = 0.002; Fig. 5A), and no differences comparing maladap-
tive choice and novel choice (t(19) = �1.14, p = 0.27), sug-
gesting that memory-like responses only emerged when
individuals made adaptive choices. In contrast, during the
adaptive suppression phase, there were no significant sys-
tematic differences in hippocampal activation during ei-
ther adaptive or maladaptive choice compared with novel
choice (TR = 10, p values. 0.15). A similar trending pat-
tern between hippocampal responses to adaptive versus
maladaptive behavior was also observed at other time
points, revealing a significant suppression in the hippo-
campus, while all TRs showing enhancements were unre-
lated to adaptive behavior (Table 3).

While these findings suggest that memory-related processes
are important when enacting a choice that benefits oneself, docu-
menting an early hippocampal signal would provide converging
evidence that the relationship between the hippocampus and
adaptive choice is robust. Accordingly, we explored hippocampal

Table 3. Post hoc analyses for all TRs showing significant differences in the hippocampus for adaptive versus maladaptive trials

Contrast

TR

9 10 12 13 14

Adaptive . baseline mean (SE) �1.0 (4.1) �2.1 (3.7) 4.6 (2.8) 4.2 (2.1) �0.3 (2.4)
Maladaptive . baseline mean (SE) 5.5 (5.2) 2.9 (4.1) �5.9 (3.2) �5.7 (3.3) �5.2 (3.1)
Adaptive vs. maladaptive t test (p value) �2.5 (0.02) �2.6 (0.02) 4.1 (0.001) 3.5 (0.002) 2.5 (0.02)
Adaptive vs novel t test (p value) �1.9 (0.06) �1.3 (0.19) 3.7 (0.002) 3.1 (0.006) 1.0 (0.34)
Maladaptive vs novel t test (p value) 1.15 (0.26) 1.48 (0.15) �1.14 (0.26) �1.09 (0.29) �1.28 (0.22)
[Adapt . maladapt] ; adaptive behavior r value (p value) �0.39 (0.09) �0.5 (0.02) �0.12 (0.61) �0.1 (0.68) �0.14 (0.54)

Reported values include the mean b -parameters for each condition against baseline, t tests between adaptive and maladaptive trials, t tests between adaptive/maladaptive versus novel trials, and regressions between
b -parameters of adaptive. maladaptive and adaptive behavioral responses. For t tests, positive values represent relative enhancement signals and negative values represent relative suppression signals.

Figure 5. Memory sensitivity in the hippocampus. A, During the time period when the
hippocampus showed enhancement (TR = 12), we observed an increase in hippocampal
BOLD activation in response to adaptive versus novel choices, with no significant difference
when the hippocampus showed suppression (TR = 10). This revealed a discrete memory sig-
nal associated with late-onset enhanced hippocampal activity. Data from the novel condition
are presented in both graphs and were plotted separately to avoid circular analyses: compari-
sons are only made for each condition contrasted against novel trials, rather than compari-
sons between adaptive and maladaptive trials. B, Visualization of the entire HRF in the
hippocampus for novel, adaptive, and maladaptive trials. ppp, 0.01; n.s., not significant.
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signals during choice when individuals had
memory for Dictators and their offers versus tri-
als in which a Dictator might be remembered but
their offer was not, or when there was no mem-
ory for the Dictator at all. This analysis of subse-
quent memory during the choice period revealed
a significant cluster in the right hippocampus
(p, 0.01, small-volume corrected; [x, y, z] = [36,
�18, �15], k=21; Fig. 6A), the left middle fron-
tal gyrus (p, 0.01, whole-brain corrected; [x, y,
z] = [�47, 19, 37], k= 21; Fig. 6B) and right mid-
dle occipital gyrus (p, 0.01, whole-brain cor-
rected; [x, y, z] = [25, �97, 10], k=236 1; Fig.
6B). Within the hippocampal cluster, peak differ-
ences occurred at TR= 5, revealing greater activa-
tion when individuals had intact memory for
Dictators and their offers compared with mem-
ory for the Dictator alone or no memory at all.
We should note, however, that this analysis
should be interpreted with caution, as there were
relatively few trials in which participants had
memory for the Dictator and their offer [mean
number of trials (range) = 7.7 (1–19)].

Discussion
Based on recent work showing that episodic
memory supports adaptive choice during single-
shot learning (Murty et al., 2016), we tested the
hypothesis that the hippocampus plays a critical
role in guiding choice when decisions are based
on limited previous social exposure. We observed that adaptive
choices, selecting partners who treated you well in the past and
avoiding those who treated you poorly, relies on a trace signal in
the hippocampus evocative of repetition suppression seen during
episodic memory (Köhler et al., 2005; Kumaran and Maguire,
2007; Chen et al., 2011; Howard et al., 2011). Since there was no
evidence of striatal involvement during either adaptive or malad-
aptive choice, this provides evidence that hippocampal, rather
than striatal, signals are associated with socially adaptive value-
based learning.

Our results indicate that while early hippocampal responses
(TRs 0–5) do not discriminate between adaptive and maladaptive
choices, they do index subsequent memory. In contrast, middle
(TRs 6–11) and later (TRs 12–17) hippocampal responses are
sensitive to adaptive versus maladaptive choices. Specifically, we
observed a suppression signal across subjects during the middle
phase of the hippocampal time series response, which was associ-
ated with an individual’s capacity to make socially adaptive
choices during single-shot learning. In other words, deciding to
reengage with someone who treated you well and avoid someone
who treated you poorly was linked to the degree to which the hip-
pocampus was suppressed. Prior research illustrates that repetition
suppression in the hippocampus scales with memory strength
(Gonsalves et al., 2005), which may be especially sensitive to mem-
ories for associations between discrete elements of an episode
(Köhler et al., 2005; Howard et al., 2011)—such as players who
made generous or selfish offers in our paradigm. Notably, the hip-
pocampus did not distinguish between adaptive and novel trials
during TR=10, which challenges our interpretation that this sup-
pression response reflects associative memory retrieval. However,
our task structure cannot tease apart whether subjects are using

retrieval strategies (i.e., recall to reject, generalization) or are newly
encoding novel faces.

Accordingly, our findings that adaptive choices first show a
repetition suppression signal, suggests that hippocampal sensitiv-
ity for the subjective perception of a person and how well they
treat you may also be invoked during the choice itself
(Desimone, 1996). The adaptive decision to play with good peo-
ple and avoid bad people seems to be supported by the hippo-
campus indexing the relationship between the previous person
encountered and the outcome of that particular exchange, which
parallels prior work that intact episodic memory is needed to
make these adaptive choices (Murty et al., 2016). In line with
this, we also found that the right hippocampus was more active
during decision-making trials when there was intact memory for
the Dictators and their offers. Thus, when deciding, it is likely
that the hippocampus exhibits both a signal supporting the cur-
rent adaptive choice, as well as a detailed episodic memory of the
original social exchange. However, it is impossible to explicitly
probe episodic memory during decision-making, which leaves
open the possibility that the hippocampus is not only represent-
ing consciously accessible memories, but implicit memories as
well. If this were the case, the ability of the hippocampus to dis-
tinguish between individuals who should be approached versus
avoided may be due in part to the absence of any conscious
memory, which may help explain the fact that subjects reported
intact episodic memory for a fraction of the dictators, and yet
still managed to behave in an adaptive manner.

Together, these findings add to a literature illustrating that the
hippocampus plays a larger role than just encoding episodic
memory per se (Shohamy and Turk-Browne, 2013; Gerraty et al.,
2014; Davidow et al., 2016). Prior work has elegantly demon-
strated that by implicitly spreading value to never before experi-
enced choice options (Wimmer and Shohamy, 2012), and by
reactivating prior feedback-based learning experiences (Bornstein

Figure 6. The hippocampus indexes successful subsequent memory. A, Right hippocampus activity differenti-
ates between decisions in which individuals exhibit successful memory for dictators and their offers, compared
with trials in which only the Dictator was remembered or participants reported having no memory at all. BOLD
time course series in the hippocampus were plotted by performance during the subsequent memory test (right).
B, Hemodynamic response functions of regions outside of the hippocampus showing differences between subse-
quent memory for visualization purposes only. pp, 0.10, ppp, 0.05.
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et al., 2017; Bornstein and Norman, 2017; Bakkour et al., 2019),
the hippocampus interacts with the striatum to encode value.
Here, we extend these findings by revealing that the ability to
make socially adaptive choices with limited prior experience also
relies on the hippocampus rather than the striatum. We interpret
our hippocampal findings at TR=10 to reflect processes directly
related to decision-making as this signal was related to adaptive
behavior both within and across participants and did not directly
relate to subsequent source memory. However, given the lack of
ability to assess causality in neuroimaging data and the late emer-
gence of this signal, we cannot discredit that this signal may
reflect postencoding processes that we did not capture in our be-
havioral measures.

After this initial suppression of the hippocampus, we further
observed a late enhancement signal within the hippocampus, a
signal exhibited well after the decision was executed (TR. 11).
In this stage of the time series, the responses to adaptive deci-
sions were not associated with individual differences in decision-
making across subjects, suggesting that this signal did not
directly contribute to choice. However, we did find that this hip-
pocampal enhancement signal, unlike the suppression signal, dif-
ferentiated between subjects making adaptive choices for a
previously encountered person versus making choices about a
never before seen stranger, signifying the existence of a discrete
memory-related signal. Together, our data suggest that the hip-
pocampus is likely involved in multiple aspects of the memory
and decision-making process. This is best evidenced by the ob-
servation that at TR 5 the hippocampus predicts subsequent re-
trieval of source memory—which could theoretically reflect
reconsolidation—but at TR 10 there is no observed effect directly
related to memory (i.e., no differentiation between old and new
faces or relationships to subsequent memory).

Although speculative, it is possible that a late-onset enhance-
ment signal may not directly relate to the current choice, but
may instead represent a postchoice strengthening of memory
traces for future choices. This would allow the hippocampus to
play a critical role in actively reinforcing the memory of the per-
son (and whether that person was associated with good or bad
outcomes) so that subsequent decisions made in similar contexts
are easier to deploy. This would fit with research illustrating that
enhanced activity in the hippocampus occurs when individuals
successfully encode, integrate, or update associative memories
(Spaniol et al., 2009; Bridge and Voss, 2014). Moreover, prior
evidence demonstrates that the simple act of choosing strength-
ens the associative memories relating to the choice (Murty et al.,
2015, 2019) and can even enhance the value of the selected
option when the choice is inconsequential (Sharot et al., 2010)—
which would indicate that the hippocampus plays a dynamic role
during social learning. Future work can help to elucidate how
current adaptive choices and their associated memories influence
subsequent choice, and to identify whether the hippocampus is
indexing an increase in value for the selected partner or a devalu-
ing of the unselected partner (or perhaps a combination of both).

Together, our findings reveal that hippocampal responses ex-
hibit a suppression signal that both differentiated between adapt-
ive and maladaptive decisions on a trial-by-trial basis, while also
being associated with the propensity to implement adaptive
behavior across participants. If we consider these findings along-
side theoretical work implicating the hippocampus in episodic
simulation (Schacter et al., 2008, 2017; Gaesser et al., 2013) and
model-based choice (Chersi and Pezzulo, 2012; Doll et al., 2012),
it is possible that retrieving a trace memory of past experiences is
akin to processes that also evoke cognitive maps of the decision

space. For example, episodic simulation enables individuals to
use past events to construct plausible future events (e.g., I prob-
ably will meet this person again), which in turn can help a person
decide what is the best option to take (e.g., I should trust him
next time).

Within the framework of model-based decision-making, it
has also been proposed that the hippocampus generates repre-
sentations of the contingencies of a task—cognitive maps that
include rich information about previous experiences—which
can then be used to make adaptive choices (Doll et al., 2015).
Dovetailing with this, recent work illustrates that lesioning the hip-
pocampus leads to a decrease in model-based choices (Vikbladh et
al., 2019). Although model-based learning is mostly probed using
trial-by-trial learning paradigms, the reliance on a rich, cognitive
map of the decision space need not be unique to multishot learning
and may actually be more prominent when decisions are informed
by limited prior experience. Indeed, our findings that the hippo-
campus supports episodic memory retrieval and value-based choice
hints that single-shot learning likely also leverages the retrieval of
episodic memories to bolster a rich cognitive map of the future deci-
sion space, a finding that would be consistent with the view that
computations in the hippocampus support multiple types of learn-
ing and decision-making (Shohamy and Turk-Browne, 2013; Doll
et al., 2015). Future work can help bridge the current findings with
the broader literature on both statistical and single-shot learning to
explicitly probe the role of the hippocampus during model-based
choice.
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