Redox-responsive hyaluronic acid-based nanogels for the topical delivery of visual chromophore to retinal photoreceptors

Amine M. Laradji, ${ }^{1,2}$ Alexander V. Kolesnikov, ${ }^{1}$ Bedia B. Karakoçak, ${ }^{1,2}$ Vladimir J. Kefalov, ${ }^{1}$ and Nathan Ravi, ${ }^{1,2,3, *}$
${ }^{1}$ Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, United States
${ }^{2}$ Department of Veterans Affairs, St. Louis Medical Center, St. Louis, Missouri 63106, United States
${ }^{3}$ Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States

Scheme S1. Schematic diagram illustrating the working mechanism of HA-cys-CH selfassembly, covalent crosslinking, and decrosslinking.

Characterization

${ }^{1} \mathrm{H}$ NMR spectra were recorded by Varian Unity Inova spectrometer (400 MHz , Agilent Technologies, Santa Clara, CA, USA), using CDCl_{3} as a solvent. The size and zeta potential of the prepared nanogels at various stages were analyzed by Dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS (Malvern Instruments) equipped with a backscattering detector $\left(173^{\circ}\right)$. For both measurements, samples were dispersed in DI water, sonicated, and filtered through a prerinsed $0.22 \mu \mathrm{~m}$ filter. Nanogels morphology was examined using a JEOL JEM2100F Field-Emission Scanning Transmission Electron Microscope.
a)
$\left.\int^{\stackrel{\circ}{\dot{\circ}}}\right)^{\stackrel{\circ}{\circ}}$

c)

\qquad

Figure S1. ${ }^{1}$ HNMR spectra of a) cholesteryl chloroformate, b) cystamine-modified cholesterol (HA-cys), and c) hyaluronic acid-colesterol conjugate (HA-cys-CH)

b)

d)

Figure S2. Size and morphology of HA-cys-CH as characterized by: a) Bright field TEM image, b) DLS before and after crosslinking, c) 3D AFM height image, and d) Height profile extracted from the AFM image.

