Redox-responsive hyaluronic acid-based nanogels for the topical delivery of visual chromophore to retinal photoreceptors

Amine M. Laradji,^{1,2} Alexander V. Kolesnikov,¹ Bedia B. Karakoçak,^{1,2} Vladimir J. Kefalov,¹ and Nathan Ravi,^{1,2,3,*}

¹ Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, United States

² Department of Veterans Affairs, St. Louis Medical Center, St. Louis, Missouri 63106, United States

³ Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States

Characterization

¹H NMR spectra were recorded by Varian Unity Inova spectrometer (400 MHz, Agilent Technologies, Santa Clara, CA, USA), using CDCl₃ as a solvent. The size and zeta potential of the prepared nanogels at various stages were analyzed by Dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS (Malvern Instruments) equipped with a backscattering detector (173°). For both measurements, samples were dispersed in DI water, sonicated, and filtered through a prerinsed 0.22 μ m filter. Nanogels morphology was examined using a JEOL JEM-2100F Field-Emission Scanning Transmission Electron Microscope.

S3

Figure S1. ¹HNMR spectra of a) cholesteryl chloroformate, b) cystamine-modified cholesterol (HA-cys), and c) hyaluronic acid-colesterol conjugate (HA-cys-CH)

Figure S2. Size and morphology of HA-cys-CH as characterized by: a) Bright field TEM image, b) DLS before and after crosslinking, c) 3D AFM height image, and d) Height profile extracted from the AFM image.