Supplementary Materials

Are Prescription Misuse and Illicit Drug Use Etiologically Distinct? A Genetically-Informed Analysis of Opioids and Stimulants

Genevieve F. Dash¹, Nicholas G. Martin²,

Arpana Agrawal³, Michael T. Lynskey⁴, & Wendy S. Slutske¹

¹Department of Psychological Sciences, University of Missouri, Columbia, MO, USA

² Queensland Institute of Medical Research- Berghofer, Brisbane, QLD, Australia

³ School of Medicine, Washington University in St. Louis, St. Louis, MO, USA

⁴ Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK

Contents

Description on analytic approach. *Biometric models in men and women*. Table S1. *Twin correlations of prescription misuse and illicit use in men and women* Table S2. *Twin correlations between three forms of stimulant drug use in men and women* Table S3. *Variation in opioid use propensity attributable to attributable to additive genetic (a²), shared environmental (c²), and unique environmental (e²) factors in men and women* Table S4. *Variation in stimulant use propensity attributable to additive genetic (a²), shared environmental (c²), and unique environmental (e²) factors in men and women* Figure S1. *Prevalence of disaggregated illicit opioid and stimulant use in the full sample, men, and women*

Figure S2. Variation in opioid and stimulant use propensity attributable to additive genetic (a^2) , shared environmental (c^2) , and unique environmental (e^2) factors in men (a) and women (b)

Biometric Models in Men and Women

Analyses were conducted in Mplus Version 8 (Muthén & Muthén, 2017). Univariate biometric models were fit for 1) prescription opioid misuse, 2) illicit opioid use, 3) prescription stimulant misuse, and 4) illicit stimulant use. Models estimated twin correlations and partitioned the variation in drug (mis)use liability into additive genetic (A; i.e., aggregate effects of genes), shared environmental (C; i.e., influence that makes twins similar), and unique (nonshared) environmental (E; i.e., influence that makes twins different) variance components. Thresholds (prevalences) were allowed to differ across sex. Sex differences were examined within biometric models. Quantitative sex differences (i.e., differences in the proportion of A, C, and E) were examined by constraining parameter estimates for men and women to be equal; qualitative sex differences (i.e., different genetic or environmental source of liability), were tested by constraining the genetic correlation or the shared environmental correlation for opposite-sex twin pairs to 0.5 (i.e., the genetic correlation for same-sex twin pairs) and 1 (i.e., the shared environmental correlation assumed across zygosity), respectively. Significant deterioration in model fit compared to an unconstrained model would indicate the presence of sex differences.

Twin correlations of prescription misuse and illicit use in men and women

		Opioi	ds	Stimulants				
		Univariate (Correlations	Univariate Correlations				
Zygosity	Sex	Prescription Misuse	Illicit Use	Prescription Misuse	Illicit Use			
		r [95% CI]	r [95% CI]	r [95% CI]	r [95% CI]			
MZ	М	.22 [.01, .48]	.31 [.12, .48]*	.73 [.55, .84]**	.82 [. 69, .92]**			
IVIZ	F	.47 [.30, .66]**	.86 [.55, .97]**	.80 [.67, .88]**	.73 [.58, .83]**			
DZ	Μ	.19 [.01, .48]	.30 [.16, .47]**	.51 [.28, .73]*	.49 [.39, .67]**			
	F	.25 [.14, .43]**	.85 [.62, .96]**	.41 [.33, .48]**	.57 [.42, .72]**			
OS		.16 [.00, .35]	.50 [.36, .71]**	.14 [.00, .30]	.27 [.00, .47]			
		Bivariate C	Bivariate Correlations					
		Prescription and Illie	cit Opioid (Mis)Use	Prescription and Illicit	Stimulant (Mis)Use			
Zygosity	Sex	Within-Twin	Cross-Twin	Within-Twin	Cross-Twin			
		r [95% CI]	r [95% CI]	r [95% CI]	r [95% CI]			
MZ	М	.53 [.18, .73]**	.51 [.32, .69]**	.87 [.78, .92]**	.69 [.51, .80]**			
	F	.52 [.00, .75]	.43 [07, .70]	.88 [.82, .93]**	.66 [.55, .76]**			
D7	Μ	.74 [.28, .91]**	.38 [.07, .60]*	.92 [.83, .96]**	.48 [.06, .63]**			
DZ	F	.57 [.21, .77]**	.18 [09, .42]	.85 [.76, .90]**	.42 [.19, .54]**			
OS	(M)	.51 [06, .81]*	.19 [.01 , .31]* ^a	.90 [.77, .94]**	.15 [-21, .37] ^a			
	(F)	.36 [.19, .52]**	11 [28, .06] ^b	.91 [.78, .96]**	.24 [05, .44] ^b			
		Prescription Opioid a	nd Stimulant Misuse	Illicit Opioid and Stimulant Use				
Zygosity	Sex	Within-Twin	Cross-Twin	Within-Twin	Cross-Twin			
		<i>r</i> [95% CI]	<i>r</i> [95% CI]	<i>r</i> [95% CI]	<i>r</i> [95% CI]			
MZ	Μ	.41 [.17, .55]**	.32 [.10, .45]**	.67 [.53, .76]**	.61 [.45, .76]**			
IVIZ	F	.33 [.16, .47]**	.29 [.11, .45]**	.74 [.62, .84]**	.61 [.38, .76]**			
D7	Μ	.57 [.29, .71]**	.21[06, .52]	.61 [.28, .88]**	.22 [17, .47]			
DL	F	.31 [.15, .49]**	.06 [12, .24]	.80 [.66, .85]**	.67 [.40, 80]**			
OS	(M)	.42 [.22, .60]**	.24 [14, .50] ^a	.71 [.57, .79]**	.21 [.13 , .33]* ^a			
	(F)	.50 [08, .69]	23 [50, .10] ^b	.18 [.00, .34]	.26 [23, .61] ^b			

Note. OS=dizygotic opposite sex pairs; ^a male twin prescription misuse correlated with female twin illicit use, ^b male twin illicit use correlated with female twin prescription misuse; **p<.001, *p<.01.

	Ecstasy Use						Methamphetamine Use				
Zyg		Sex	ex Within-Twin Cross-Trait		Cross-Twin Cross-Trait		Within-Twin Cross-Trait		Cross-Twin Cross-Trait		
		r [95% CI]		<i>r</i> [95% CI]		r [95% CI]		<i>r</i> [95% CI]			
	М7	М	.87 [.78, .92]**		.69 [.53, .81]**	ase	.86 [.79, .91]**	use	.65 [.42, .79]**		
isus	IVIZ	F	.87 [.81, .92]**	Mist	.66 [.53, .76]**	Mist	.84 [.76, .89]**	Mis	.65 [.40, .78]**		
DZ DZ DZ Zyg	סק	М	.91 [.83, .96]**		.49 [.24, .68]**	tion	.82 [.71, .90]**	tion	.18 [18, .47]		
	DZ	F	.85 [.77, .91]**	scrip	.42 [.22, .56]**	scrip	.76 [.61, .85]**	scrip	.00 [23, .24]		
	00	(M)	.90 [.81.95]**	Pre	.15 [11, .37]	Pre	.73 [.49, 85]**	Pre	.36 [.01, .66]		
	05	(F)	.91 [.79, .96]**		.25 [.01, .46]*		.59 [.22, .83]**		.07 [32, .37]		
	Zyg	g Sex Cross-Twin Within-Trait			Within-Twin Cross-Trait		Cross-Twin Within-Trait		Cross-Twin Cross-Trait		
		r [95% CI]		<i>r</i> [95% CI]		<i>r</i> [95% CI]	<i>r</i> [95% CI]				
٥	M .82 [.66, .91]**		.83 [.75, .89]**		.64 [.27, .86]**		.72 [.54, .84]**				
		F	.73 [.62, .83]**	Jse	.83 [.75, .88]**	Jse	.71 [.31, .88]**		.67 [.44, .80]**		
y Us	DZ	Μ	.50 [.38, .72]**	eth U	.80 [.68, .88]**	eth U	.32 [.10, .47]**	tasy	.30 [02, .60]		
cstas		F	.57 [.40, .71]**	Me	.74 [.61, .83]**	Me	.36 [.16, .45]**	Ecst	.17 [1147]		
й OS	OS	5 (M) .28 [.04, .47] *		.77 [.59., 86]**	.77 [.59., 86]**		.14 [.00, .36]				
		(F)			.58 [.22, 97]**				.04 [32, 39]		

Twin correlations between three forms of stimulant drug use in men and women

Note. CI=confidence interval, zyg=zygosity; MZ=monozygotic, DZ=dizygotic; OS=dizygotic opposite sex, M=male twin, F=female twin; $**p \le .001$, $*p \le .05$.

Variation in opioid use propensity attributable to attributable to additive genetic (a^2), *shared environmental* (c^2), *and unique environmental* (e^2) *factors in men and women*

		Men				Women	Model Fit				
	-	rg	a^2	c^2	e^2	a^2	c^2	e^2	χ^2	df	р
Model		Prescription Misuse									
	Estimate	.48	.06	.16	.78	.43	.04	.54	25.15	27	.57
1a. ACE free, r_g DZO free	95% CI	.00, .50	.00, .53	.00, .49	.51, 1.00	.02, .65	.00, .46	.34, .70			
20 ACE free x DZO fixed	Estimate	.50	.08	.14	.78	.44	.03	.53	25.98	28	.57
2a. ACE free, r_g DZO fixed	95% CI	fixed	.00, .44	.00, .39	.56, .99	.07, .61	.00, .45	.38, .70			
	Estimate	.41	.37	.04	.59	.37	.04	.59	27.68	29	.54
3a. ACE fixed, r_g DZO free	95% CI	.00, .50	.06, .50	.00, .36	.48, .73	.06, .50	.00, .36	.48, .73			
As ACE fixed a DZO fixed	Estimate	0.50	.40	.01	.59	.40	.01	.59	27.92	30	.57
4a. ACE lixed, r_g DZO lixed	95% CI	fixed	.12, .51	.00, .36	.50, .73	.12, .51	.00, .36	.50, .73			
Model					Illic	it Use					
	Estimate	.29	.02	.29	.69	.04	.83	.14	26.17	27	.51
1b. ACE free, r_g DZO free	95% CI	.10, .48	.00, .36	.16, .54	.46, .82	.00, .39	.56, .96	.01, .37			
2h ACE free r DZO fixed	Estimate	.50	.03	.28	.69	.00	.86	.14	25.90	28	.58
2D. ACE free, rg DZO fixed	95% CI	fixed	.00, .69	.15, .54	.35, .84	.00, .52	.56, .96	.02, .40			
	Estimate	.16	.00	.71	.29	.00	.71	.29	35.38	29	.19
3b. ACE fixed, r_g DZO free	95% CI	.16, .21	.00, .00	.53, .81	.19, .46	.00, .00	.53, .81	.19, .46			
the ACE fixed a DZO fixed	Estimate	0.50	.00	.71	.29	.00	.71	.29	37.19	30	.17
40. ACE fixed, r_g DZO fixed	95% CI	fixed	.00, .04	.53, .81	.16, .45	.00, .04	.53, .81	.16, .45			

Note. All models include age as a covariate; bold indicates significant parameter estimate; bolded model=preferred solution; DZO=opposite-sex dizygotic twins; CI=confidence interval; r_g =correlation between genetic influences in opposite sex twin pairs; values may not add to 1 due to rounding error.

Variation in stimulant use propensity attributable to additive genetic (a^2) *, shared environmental* (c^2) *, and unique environmental* (e^2) *factors in men and women*

				Men			Women		Mod	lel Fit	
		rg	a^2	c^2	e^2	a^2	c^2	e^2	χ^2	df	р
Model					Prescript	ion Misuse					
1_{0} ACE from r DZO from	Estimate	.15	.46	.28	.27	.80	.01	.20	20.75	27	.80
Ta. ACE nee, 1g DZO nee	95% CI	.00, .50	.02, .82	.00, .72	.16, .45	.66, .89	.00, .23	.12, .31			
2a ACE free r DZO fixed	Estimate	.50	.24	.46	.30	.80	.00	.20	20.95	28	.82
2a. ACE fiee, Ig DZO fixed	95% CI	fixed	.00, .76	.00, .75	.17, .52	.67, .89	.00, .00	.10, .31			
2a ACE fixed r DZO free	Estimate	.18	.78	.01	.21	.78	.01	.21	22.12	29	.82
Sa. ACE lixed, Ig DZO liee	95% CI	.00, .50	.57, .87	.00, .26	.14, .30	.57, .87	.00, .26	.14, .30			
4a ACE fixed a D70 fixed	Estimate	0.50	.78	.00	.22	.78	.00	.22	24.80	30	.73
4a. ACE lixed, rg DZO lixed	95% CI	fixed	.68, .84	.00, .00	.16, .32	.68, .84	.00, .00	.16, .32			
Model					Illic	it Use					
1h ACE free r DZO free	Estimate	.00	.65	.17	.18	.31	.42	.27	26.73	27	.48
ID. ACE fiee, Ig DZO fiee	95% CI	nc	.17, .89	.00, .62	.08, .33	.00, .67	.08, .69	.18, .39			
2h ACE free r DZO fixed	Estimate	.50	.83	.00	.18	.29	.44	.28	27.62	28	.48
20. ACE free, fg DZO fixed	95% CI	fixed	.62, .94	.00, .75	.08, .31	.00, .69	.03, .67	.17, .39			
2h ACE fixed x DZO free	Estimate	.00	.48	.29	.23	.48	.29	.23	28.30	29	.50
5D. ACE lixed, rg DZO liree	95% CI	nc	.29, .69	.10, .45	.15, .31	.29, .69	.10, .45	.15, .31			
th ACE fixed & DZO fixed	Estimate	0.50	.58	.19	.24	.58	.19	.24	33.20	30	.31
40. ACE fixed, fg DZO fixed	95% CI	fixed	.29, .80	.00, .42	.16, .32	.29, .80	.00, .42	.16, .32			

Note. Bold indicates significant parameter estimate; bolded model=preferred solution; DZO=opposite-sex dizygotic twins; CI=confidence interval; r_g =correlation between genetic influences in opposite sex twin pairs; nc=not calculable (estimate reached boundary condition); values may not add to 1 due to rounding error.

Figures

Figure S1

Prevalence of disaggregated illicit opioid and stimulant use in the full sample, men, and women

Note. Groups are mutually exclusive.

Figure S2

Variation in opioid and stimulant use propensity attributable to additive genetic (a²), shared environmental (c²), and unique environmental (e²) factors in men (a) and women (b)

