Supplementary Information

Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and TRPV1 channel

William R. Arnold^{1§}, Lauren N. Carnevale^{1§}, Zili Xie², Javier L. Baylon^{1,3,4,5,6}, Emad Tajkhorshid^{1,3,4,5,6}, Hongzhen Hu² and Aditi Das^{*,†,1,3,5,6}

[†]Department of Comparative Biosciences, ¹Department of Biochemistry, ²Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, ³Center for Biophysics and Quantitative Biology, ⁴Center for Macromolecular Modeling and Bioinformatics, ⁵Beckman Institute for Advanced Science and Technology, ⁶Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana IL 61801

Corresponding Author

* To whom correspondence should be addressed:

Aditi Das, Ph.D., University of Illinois Urbana-Champaign, 3836 VMBSB, 2001 South Lincoln Avenue, Urbana IL 61802, Phone: 217-244-0630. aditidas@illinois.edu

§ These authors have contributd equally to the manuscript

Table of Contents

Methods	4
Notes 1 and 2	9
Figures	
Supplementary Figure 1	
Supplementary Figure 2	
Supplementary Figure 3	
Supplementary Figure 4	
Supplementary Figure 5	
Supplementary Figure 6	
Supplementary Figure 7	
Supplementary Figure 8	
Supplementary Figure 9	
Supplementary Figure 10	
Supplementary Figure 11	
Supplementary Figure 12	
Supplementary Figure 13	
Supplementary Figure 14	
Supplementary Figure 15	
Supplementary Figure 16	
Supplementary Figure 17	
Supplementary Figure 18	
Supplementary Figure 19	
Supplementary Figure 20	
Supplementary Figure 21	
Supplementary Figure 22	
Supplementary Figure 23	
Supplementary Figure 24	
Supplementary Figure 25	
Supplementary Figure 26	
Supplementary Figure 27	
Supplementary Figure 28	
Supplementary Figure 29	
Supplementary Figure 30	
Supplementary Figure 31	

Supplementary Figure 32
Supplementary Figure 33
Supplementary Figure 34
Supplementary Figure 35
Supplementary Figure 36
Tables
Supplementary Table 1
Supplementary Table 2
Supplementary Table 3
Supplementary Table 4
Supplementary Table 5
Supplementary Table 6
Movies
Supplementary Movie 1
Supplementary Movie 2
Supplementary Movie 3
Supplementary Movie 4
References

Methods

Materials. Human CYP2J2 cDNA was obtained from OriGene (Catalog No. SC321730) and modified as published before¹. Ampicillin, arabinose, chloramphenicol, isopropyl β-D-1thiogalactopyranoside (IPTG), and Ni-NTA resin were obtained from Gold Biotechnology. δaminolevulinic acid was obtained from Frontier Scientific. NADPH and NADP⁺ were obtained from P212121.com. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-L serine (POPS) were purchased from Avanti Polar Lipids, Inc. AA, NADA, and NA5HT, SKF 525A (α-phenyl-α-propylbenzeneacetic acid, 2-(diethylamino)ethyl ester, monohydrochloride), AMG-9810 ((2E)-N-(2,3dihydro-1,4-benzodioxin-6-yl)-3-[4-(1,1-dimethylethyl)phenyl]-2-propenamide), capsaicin (N-[(4-hydroxy-3-methoxyphenyl)methyl]-6E-8-methyl-nonenamide), and CP55940 (*rac*-5-(1,1dimethylheptyl)-2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-phenol) were obtained from Cayman Chemical. AA for syntheses was obtained from NuChek. All other materials and reagents used were purchased from Sigma-Aldrich and Fisher Scientific.

Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). To measure IL-6, IL-10, IL-1 β , TNF- α , CYP2J9, CYP2J12, GAPDH, TRPV1, CB1, and CB2 mRNA, total RNA was isolated from BV2 microglial cells using the Direct-zol RNA Kit, according to the manufacturer's instructions (Zymo Research). One microgram of RNA and random primers were used to synthesize the first strand of cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosciences). Total cDNA reaction samples were diluted 5-fold in RNAse/DNase-free water and were used as templates for amplification of each gene using the 7500 Real Time PCR System (Applied Biosciences). In addition, corresponding primers purchased from Integrated DNA Technologies (Supplementary Table 1) and the Power SYBR green PCR Master Mix (Applied Biosciences) were utilized during each qPCR reaction. The mRNA levels of IL-6, IL-10, IL-1 β , TNF- α , CYP2J9, CYP2J12, TRPV1, CB1, and CB2 were

4

normalized to those of GAPDH, the internal control, and were analyzed using the $2^{-\Delta\Delta C_T}$ method.² Relative mRNA expression was calculated by taking the quotient of the treated sample (LPS + eVD) and LPS alone (IL-6, IL-10, IL-1 β , and TNF- α mRNA) or the quotient of LPS-treated and LPS-depleted samples (CYP2J9, CYP2J12, TRPV1, CB1, and CB2). Graphs show the relative mRNA expression of each sample for a given gene. The asterisks above each bar indicate the p-value associated with the standard deviation of each triplicate Δ CT value. P-values were calculated using a two-tailed t-test ($\alpha = 0.05$): 0.0332 (*), 0.0021(**), 0.0002 (***), and < 0.0001 (****).Primers used were designed as shown in Supplementary Table 1.

BV2 Anti-inflammatory and Cytotoxicity Assays (Griess assay, IL-6 ELISA, and MTT). Assays were performed as previously described³. BV2 cells were seeded in 24-well plates (200,000 cells/mL) and grown to 80-90% confluency. For eVD screening and dose response studies, media was replaced with serum-free media and the cells were pre-incubated with eVDs for 4 hours prior to stimulation with 25 ng/mL LPS (Sigma-Aldrich, USA). For epoxy-eVDs studies, BV2 were treated with the sEH inhibitor, t-AUCB (1 μ M), for 30 min prior to addition of epoxy-eVDs. For inhibition studies, CB1 antagonist, Rimonabant (1 μ M), CB2 inverse agonist, AM630 (1 μ M), TRPV1 antagonist, AMG 9810 (1 μ M), were pre-incubated 30 min before addition of eVDs (1 μ M) for 4 hrs. Media was collected after 24 hours and measured for NO levels (Griess assay) and IL-6 levels (ELISA) as previously described³. Cellular proliferation/cytotoxicity was assessed by testing the media with a commercially available MTT kit (Cayman Chemical Item No: #10009365).

BrdU Cell Proliferation Assay. The BV-2 cells were seeded at 20,000 cells/0.1 mL in a 96-well plate. For eVD screening and dose response studies, media was replaced with serum-free media and the cells were pre-incubated with eVDs for 4 hours prior to stimulation with 25 ng/mL LPS for an additional 24 hours (final well vol. 200 μ L). For epoxygenated metabolites, serum-media was replaced with media containing 1 μ M of sEH inhibitor (t-AUCB) for 30 min before adding epoVDs and LPS stimulation. Briefly, after a 21 h incubation, BrdU (1x) was added to the plate for 3 hours. Next, the media was aspirated and the BV-2 cells were fixed according to manufacturer's instruction (Millipore Sigma, Cat. No. 2750). BrdU incorporation was detected by the addition of anti-BrdU monoclonal antibody with Goat anti-mouse IgG peroxidase conjugate. Lastly, TMB substrate solution was added for 30 min at room temperature and stop solution was added. The positive wells were measured using a Biotek Synergy 2 microplate reader (Biotek Instruments, Winooski, VT, USA) at an absorbance wavelength of 450 nm.

Expression and purification of recombinant CYP2J2 in *E. coli.* Recombinant D34-CYP2J2 containing a His₅ tag was expressed and purified as previously performed^{1,4}. The D34-CYP2J2 is a 34-residue N-terminal truncation (residues 3-37) of CYP2J2 with a substitution of Leu2 for an Ala residue. These modifications have been previously shown to increase protein yield without affecting activity^{38, 45}.

Expression and purification of cytochrome P450 reductase. Expression of cytochrome P450 reductase (CPR) was performed as described previously¹.

Use of reactive oxygen species (ROS) scavengers. All *in vitro* metabolism data using recombinant proteins CYP2J2-CPR in nanodiscs were performed using ROS scavengers as previously described⁵.

CYP2J2-mediated metabolism of NADA and NA5HT. Metabolism of NADA and NA5HT was performed in a lipid reconstituted system as previously described^{5,6}. Briefly, 0.6 μM CYP2J2 and 0.6 μM CPR were incubated in a 20% POPS and 80% POPC reconstituted system in 0.5 mL of 0.1 M potassium phosphate buffer, pH 7.4 at 37° C with 100 μM NADA or NA5HT for 10 min. Reactions were initiated with 1 mM NADPH (final) and reacted for 60 min. Reactions were terminated by vortexing with 0.5 mL ethyl acetate. Adequate amount of NaCl_(s) was added to facilitate layer separation. Metabolites were extracted thrice by vortexing the reactions for 1 min with 0.5 mL ethyl acetate followed by centrifugation at 1,984 x g at 4° C for

5 minutes to separate the layers. The organic layers were dried under a stream of $N_{2(g)}$ and resuspended in 0.1 mL of acetonitrile for HPLC and LC-MS/MS analysis. For all other experiments, CYP2J2 was incorporated into Nanodiscs.

Incorporation of CYP2J2 into Nanodiscs. Nanodiscs (NDs) containing CYP2J2 were prepared in 20% POPS and 80% POPC Nanodiscs as previously described⁷. NDs were used for all experiments using *in vitro* CYP2J2 except for initial product determination.

Kinetics of NADA and NA5HT metabolism. The kinetics of NADA and NA5HT metabolism was determined using a CYP2J2- ND/CPR system as previous described⁷ with the following modifications. Reactions were performed with ROS scavengers as stated above. NADA and NA5HT (10-100 μ M in DMSO) were incubated with CYP2J2-ND/CPR in 0.5 mL of 0.1 M potassium phosphate buffer (pH 7.4) for 10 min. Reactions were initiated with the addition of 0.5 mM NADPH. The formation of epoxy-eVDs was determined to be linear up to 45 min, and so a 30-min reaction was utilized. Reactions were terminated upon the addition of 0.5 mL ethyl acetate and approximately 10 mg NaCl_(s) to facilitate layer separation. The products were extract thrice with ethyl acetate, dried under a stream of N_{2(g)}, and resuspended in 180-proof ethanol for LC-MS/MS quantification.

NADPH kinetics. The rate of NADPH oxidation by CYP2J2-ND/CPR was determined using UV-Vis spectroscopy as previously described⁸. The rate of the NADPH oxidation with CYP2J2-ND/CPR without substrates was considered the "baseline" rate.

AEA metabolism inhibition. AEA metabolism was determined as previously described⁶ with the following modifications. Reactions were performed in the presence of ROS scavengers as stated above and were terminated using 0.5 mL ethyl acetate and NaCl_(s). 25 μ M and 75 μ M of NADA or NA5HT were used to inhibit AEA metabolism. 40 μ M of AEA without inhibitor was

7

used as a control control to compare against our previous measurements for AEA metabolism⁶. The levels of AEA metabolism were similar to previously published and were used to assess saturation level $(v/V_{max})^6$. EET-EAs and epoxy-eVDs were simultaneously quantified using LC-MS/MS.

Ebastine competitive binding. Relative binding affinities of eVDs binding to CYP2J2 were determined using an ebastine competitive binding assay as previously described.⁷

LC-MS and LC-MS/MS analysis of CYP2J2 metabolites. CYP2J2 metabolism products were determined using HPLC Method 1. The Phenomenex column was used. LC-MS/MS detection was performed as previously described⁶.

Supplementary Note 1

Previously, NADA was found in the cerebellum and hippocampus/thalamus regions in bovine and rat brains⁹⁻¹¹, while NA5HT was identified in bovine brain extracts and in the intestine^{12,13}. The levels of NADA and NA5HT have been reported to be <1-10 pmol \cdot g⁻¹ in these brain tissues, which is lower than literature AEA levels (~20-80 pmol \cdot g⁻¹)¹⁴ and lower than our reported levels for AEA in rat brains (150 pmol \cdot g⁻¹) and pig brains (2800 pmol \cdot g⁻¹)³. AEA levels are known to rise postmortem due to denaturation of the enzymes that degrade AEA¹⁵. Additionally, during tissue extraction, NADA and NA5HT are subjected to potential oxidation of the headgroups and their levels are expected to be lower than AEA. Of note, two separate extraction methods were used to detect eVDs and AEA (see methods). AEA was not well detected using the methanol/C-18 cartridges and the eVDs quickly degraded during the acetate:hexane extraction. Therefore, we cannot simultaneously quantify AEA and eVDs in the same sample.

Supplementary Note 2

Estimate of NA5HT binding at the second site

We can definitively demonstrate that the eVDs bind to at least two sites in CYP2J2 from the kinetic curves; however, due to the solubility issues of the lipids, we cannot determine the kinetic parameters of their metabolism. Notwithstanding, we can obtain approximate values for the kinetic parameters of NA5HT based on a two-site binding equation using assumptions from other data (Equation 4). The assumptions are the following. (A) Negligible metabolism occurs at the unproductive site ($B_1 = 0$). (B) The EBS competitive binding and NADPH oxidation data represent the affinity at the first site and can be averaged to obtain $K_1 = 38 \,\mu$ M. (C) AEA potentiates the metabolism of 75 μ M NA5HT by almost 100-fold with an apparent V_{max} and K_m

of 5.46 \pm 1.91 nmol \cdot min⁻¹ \cdot nmol_{CYP2J2}⁻¹ and 53.7 \pm 35.7 μ M, respectively. The apparent V_{max} as AEA potentiates the metabolism of NA5HT may represent the V_{max} of NA5HT metabolism (i.e., $B_2 = 5,460 \text{ pmol} \cdot \text{min}^{-1} \cdot \text{nmol}_{CYP2J2}^{-1}$). Substituting these values into Equation 4, K_2 is determined to be 5.36 \pm 0.27 mM (Supplementary Figure 30). This demonstrates that the affinity of NA5HT for the second site is weak, which matches the observations of the data. There is not enough details in the NADA data to perform a similar analysis, but it is likely that NADA binds weakly to its second site as well.

Supplementary Figure 1. ¹H-NMR spectrum for NADA (400 Hz, CDCl₃). Peak at 4.12 ppm corresponds to residual ethyl acetate. Other peaks for ethyl acetate overlap with NADA peaks (ethyl acetate: 2.05 and 1.26 ppm in CDCl₃)

Supplementary Figure 2. ¹H-NMR spectrum for 14',15'-epoNADA (400 Hz, CDCl₃).

Supplementary Figure 3. ¹H-NMR spectrum for NA5HT (400 Hz, CDCl₃).

Supplementary Figure 4. ¹H-NMR spectrum for 14',15'-epoNA5HT (500 Hz, CDCl₃).

Supplementary Figure 5. MS/MS spectra of synthesized (**a**) 14',15'-epoNADA and (**b**) 14',15'-epoNA5HT standards along with fragmentation schemes. Data are obtained from LC-MS/MS analysis. Fragment m/z values are given with deviation from the calculated m/z values (\pm ppm) given in parentheses.

Supplementary Figure 6. *Effect of LPS in BV2 microglial cells on the relative mRNA expression of CYP2J12 and CYP2J9.* BV2 microglial cells seeded at 200,000 cells/well in a 24-well plate were treated with 100 ng/mL LPS for 3 hours. RT-qPCR detected the presence of CYP2J12 and CYP2J9 in BV2 cells. Data is from 3-pooled wells and is performed in technical replicates. Data is reported as the mean relative expression. Data can be found in the Source Data file.

Supplementary Figure 7. Fragmentation scheme of (a) NADA, (b) acyl oxygenation of NADA (14',15'-epoNADA shown as an example), and (c) NADA-HQ.

Supplementary Figure 8. *Mono-oxygenation of NADA by CYP2J2.* (a) LC-MS/MS chromatogram in positive ion mode. Mass range is \pm 5 ppm of the predicted product. (b-c) MS/MS spectra obtained from each corresponding product.

Supplementary Figure 9. *Mono-oxygenation of NADA by CYP2J2.* (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b-i) MS/MS spectra obtained from each corresponding product.

Supplementary Figure 10. *Di-oxygenation of NADA by CYP2J2.* (a) LC-MS/MS chromatogram in negative ion mode. Mass range is ± 5 ppm of the predicted product. (b) MS/MS spectrum obtained from PD9.

Supplementary Figure 11. *Hydroxyquinonization of NADA by CYP2J2.* (a) LC-MS/MS chromatogram in positive ion mode. Mass range is \pm 6 ppm of the predicted product. (b) MS/MS spectrum of PD11. (c) Absorbance spectrum of PD11 obtained by UV-Vis HPLC analysis. NADA and cannabidiol hydroxyquinone (CBDHQ) were analyzed using a similar method and their absorbance spectra are given for comparison. It is known that dopamine is oxidized to form 6-hydroxy-p-quinone,^{16,17} and therefore, NADA-6-hydroxy-*p*-quinone is likely the identity of PD11.

Supplementary Figure 12. Fragmentation scheme of (a) NA5HT, (b) acyl oxygenation of NA5HT (14',15'-epoNA5HT shown as an example), and (c) Headgroup oxygenation of NA5HT (structure of headgroup oxidation shown as an example and is not confirmed).

Supplementary Figure 13. *Mono-oxygenation of NA5HT by CYP2J2.* (a) LC-MS/MS chromatogram in positive ion mode. Mass range is \pm 5 ppm of the predicted product. (b-e) MS/MS spectra obtained from each corresponding product.

Supplementary Figure 14. *Mono-oxygenation of NA5HT by CYP2J2.* (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b-c) MS/MS spectra obtained from each corresponding product.

Supplementary Figure 15. *Di-oxygenation of NA5HT by CYP2J2.* (a) LC-MS/MS chromatogram in positive ion mode. Mass range is \pm 5 ppm of the predicted product. (b) MS/MS spectrum of PS5.

Supplementary Figure 16. *Di-oxygenation of NA5HT by CYP2J2.* (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b) MS/MS spectrum of PS5.

Supplementary Figure 17. *Quinonization of NA5HT by CYP2J2.* Quinonization was determined from the apparent oxygenation of the mono-oxygenation products (PS3 and PS4) indicated by a loss of 2 hydrogen atoms. (a) LC-MS/MS chromatogram in positive ion mode. Mass range is \pm 5 ppm of the predicted product. (b-c) MS/MS spectra obtained from the indicated product.

Supplementary Figure 18. *Quinonization of NA5HT by CYP2J2.* Quinonization was determined from the apparent oxygenation of the mono-oxygenation products (PS3 and PS4) indicated by a loss of 2 hydrogen atoms. (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b-c) MS/MS spectra obtained from the indicated product.

Capsaicin (CAP)

Supplementary Figure 19. Fragmentation scheme of capsaicin oxygenation.

Supplementary Figure 20. *LC-MS/MS analysis of capsaicin (CAP)*. (a) LC-MS/MS chromatogram in positive ion mode. Mass range is ± 5 ppm of the predicted product. (b) MS/MS spectrum of CAP in positive ion mode. (c) MS/MS spectrum of CAP in negative ion mode.

Supplementary Figure 21. *Demethylation of CAP by CYP2J2.* (a) LC-MS/MS chromatogram in positive ion mode. Mass range is ± 5 ppm of the predicted product. (b) MS/MS spectrum of PC1.

Supplementary Figure 22. *Demethylation of CAP by CYP2J2.* (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b) MS/MS spectrum of PC1.

Supplementary Figure 23. *Mono-oxygenation of CAP by CYP2J2.* (a) LC-MS/MS chromatogram in positive ion mode. Mass range is \pm 5 ppm of the predicted product. (b) MS/MS spectrum of PC3.

Supplementary Figure 24. *Mono-oxygenation of CAP by CYP2J2*. (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b-c) MS/MS spectra of indicated products.

Supplementary Figure 25. *Di-oxygenation of CAP by CYP2J2.* (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b) MS/MS spectrum of PC4.

Supplementary Figure 26. *Hydroxyquinonization of CAP by CYP2J2*. Hydroxyquinonization is determined by an oxidation of the demethylated CAP (PC1) indicated by the loss of two hydrogen atoms. (a) LC-MS/MS chromatogram in negative ion mode. Mass range is \pm 5 ppm of the predicted product. (b) MS/MS spectrum of PC5.

Supplementary Figure 27. *Biphasic NADPH oxidation in the presence of NA5HT*. NADPH oxidation as CYP2J2-ND metabolizes NA5HT was determined by the absorbance of NADPH at 340 nm. Data represents the SEM of three independent experiments. Representative spectra are shown. (a) NADPH oxidation rates with the indicated substrates. NA5HT shows biphasic NADPH oxidation kinetics. Phase I for all concentrations matches baseline rates (CPR and CYP2J2 without NA5HT). The Rates of Phase II are plotted in the figure. The K_m and V_{max} of Phase II are 27.3 ± 11.3 µM and 178 ± 28 nmol_{NADPH} · min⁻¹ · nmol_{CYP2J2}⁻¹, respectively. Ebastine (EBS) is monophasic and has kinetics parameters of $K_m = 18.9 \pm 9.5 \mu M$ and $V_{max} = 64.8 \pm 12.1 \text{ nmol}_{NADPH} \cdot \text{min}^{-1} \cdot \text{nmol}_{CYP2J2}^{-1}$. (b) Absorbance at 340 nm in the presence of the indicated amounts of NA5HT. Phase I rates are similar to those obtained with CPR and CYP2J2-ND alone. Phase II shows a decrease in NADPH as a function of NA5HT concentration. (c) Experiments were repeated with NA5HT and CPR only. Rate of NADPH oxidation is similar to the Phase II of 00 µM NA5HT as seen in (b). Data can be found in the Source Data file.

Supplementary Figure 28. 3D global fit of AEA inhibition by NADA as shown in Figure 3f. Rates are in $pmol_{EET-EAs} \cdot min^{-1} \cdot nmol_{CYP2J2}^{-1}$. Data can be found in the Source Data file.

Supplementary Figure 29. *Regioselectivity of AEA epoxidation in the presence of eVDs.* (**a-c**) Regioselectivity in the presence of NADA and (**d-f**) NA5HT at the indicated concentrations. Regioselectivity is shown as a percentage of the total EET-EAs. Control (Ctrl) refers to 40 μ M AEA samples without eVDs, which was ran along with each experiment. Data in (**c**) and (**f**) show the dependence of the regioselectivity change on the concentrations of the eVDs as a function of an increasing ratio of the eVD:AEA. Degree of change is defined as the change in percentage value compared to control. Data from the 25 μ M datasets are shown as dashed lines and the data from the 75 μ M datasets are shown as solid lines. Data represents the mean \pm SEM of 3 independent experiments. Statistical significance was determined by a two-tailed t-test with equal variance. *p < 0.05; **p < 0.01, ***p < 0.001. (**g**) Exact p values for the data. Yellow is p < 0.05, orange is p < 0.01, and red is p < 0.001. Data can be found in the Source Data file.

Supplementary Figure 30. NA5HT metabolism data fitted to a two-site (Equation 4) binding equation as detailed in the Results section. Data represents the mean \pm SEM of 3 independent experiments. Data can be found in the Source Data file.

Supplementary Figure 31. *MTT assay to determine cell viability.* BV2 microglial cells seeded at 200,000 cells/well in a 24-well plate were treated with 25 ng/mL LPS for 24 hours and an MTT cell proliferation assay was performed to determine cell viability. Viability was determined as a percent of the formazan absorbance at 570 nm compared to LPS treatment only (100%) in the presence of (a) NA5HT, (b) 14',15'-epoNA5HT, (c) NADA, and (d) 14',15'-epoNADA. Data represents the SEM of 3 independent experiments. Data can be found in the Source Data file.

Supplementary Figure 32. *Effects of eVDS and epoxy-eVDs on cell proliferation.* BV-2 microglial cells were pre-incubated with varying concentrations of **(a)** NA5HT and 14,15-epoNA5HT and **(b)** NADA and 14,15-epoNADA for 4 hours followed by LPS (25 ng/mL) stimulation for 24 hours. After 21 hours, BV-2 cell proliferation was measured using BrdU incorporation colorimetric ELISA assay. Values shown are the mean \pm SEM of experiments performed in triplicate (n = 3). *p < 0.05, **p < 0.01, and ***p < 0.001. **(c)** Tables for p-values of the data. Cells are highlighted as yellow p < 0.05, orange p < 0.01, and red p < 0.001. Data can be found in the Source Data file.

Supplementary Figure 33. *Relative mRNA Expression of CB1, CB2, and TRPV1 in LPS-treated BV2 microglial cells*. BV2 microglial cells seeded at 200,000 cells/well in a 24-well plate were treated with 25 ng/mL LPS for 24 hours. RT-qPCR detected the presence of TRPV1, CB1, and CB2 in BV2 cells. Data is from 3-pooled wells and is performed in technical replicates. Data is reported as the mean relative expression. Statistical analysis was performed using a two-tailed t-test ($\alpha = 0.05$). P-values: 0.0332 (*), 0.0021(**), 0.0002 (***), and < 0.0001 (****). Data can be found in the Source Data file.

Supplementary Figure 34. *TRPV1 activation by vanilloids*. Relative Ca²⁺ influx upon TRPV1 activation was measured using a Fura-2 AM fluorescence assay. The fluorescence intensity at 510 nm from the Ca²⁺-bound (excitation 340 nm) and Ca²⁺-free (excitation 380 nm) dye was measured over time at varying concentrations of ligands and are reported as a ratio (Fluorescence Ratio). Representative plots of (a) Capsaicin (CAP), (b) NADA, (c) 14',15'-epoNADA, and (d) 14',15'-epoNA5HT from 4-6 separate experiments (2 sets of triplicate on separate days) are shown. Data can be found in the Source Data file.

Supplementary Figure 35. *TRPV1-mediated* Ca^{2+} *influx agonized by CAP and antagonized by AMG-9810.* A Fura 2-AM fluorescence assay was used to determine TRPV1 binding in transfected HEK cells. 100% is defined as the *B_{max}* of CAP binding. (a) CAP agonism data. (b) Antagonism of TRPV1 by AMG-9810. 250 nM of CAP was used to activate TRPV1. Data in (a-b) is shown as the SEM of 4-6 experiments (2 sets of triplicate performed on separate days) and numbers above the data points represent the exact value of *n*. (c) HEK-TRPV1 cells were treated with 500 nM of reversible antagonist AMG-9810 30 min prior to stimulating with the indicated agonists. AMG-9810 prevented agonism of TRPV1 for all compounds. Data represents the SEM of 3 independent experiments. CAP was found to have an EC₅₀ of 6.88 ± 3.36 nM, in accordance with reported values¹⁸. Data can be found in the Source Data file.

Supplementary Figure 36. *PRESTO-Tango assays of CB1 and CB2 activation.* (a) Agonism of CB1. Data respresents the SEM of 3-6 separate experiments (2 sets of triplicates from separate days) Numbers above data points represent the exact value of *n*. (b) Agonism of CB2 by CP-55940. Data represents the SEM of 3 independent experiments. (c) Co-administration of eVDs and CP-55940 to determine eVD binding to CB1 and 2. CB1 and CB2 were stimulated with 50 nM of CP-55940 to determine antagonism by NADA (CB2), 14',15'-epoNADA (CB2), 14',15'-epoNA5HT (CB2), and NA5HT (CB1). 100% is defined as the *B_{max}* of CP-55940 binding. Data represents the SEM of 3 independent experiments. EC₅₀ values for CP55940 were 0.91 \pm 0.38 nM and 5.2 \pm 1.9 nM at CB1 and CB2, respectively and were similar to previously reported values ^{3,19,20}. Data can be found in the Source Data file.

Tables

Supplementary	7 Table 1.	Primers fo	or Ouan	titative F	Polymerase	Chain	Reaction
Suppremental.		1 1111010 10	X X uun		. or jinter abe	Cinain	louenon

Gene	Forward Primer $(5' \rightarrow 3')$	Reverse Primer $(5' \rightarrow 3')$	Reference
Cyp2j9	AACCGTTTCCCCAGTCAGTC	ATTGCACGCACTCTCTGTCA	21
Cyp2j12	ATGGAAGACAGCCAAGCACA	AGCCAGTGTGCTATCAGCTG	(designed in-house)
Il-6	CCAGAGATACAAAGAAATGATGG	ACTCCAGAAGACCAGAGGAAAT	22
<i>Il-10</i>	CATGGCCCAGAAATCAAGGA	GGAGAAATCGATGACAGCGC	22
Π-1β	AAATACCTGTGGCCTTGGGC	CTTGGGATCCACACTCTCCAG	10
Tnf-α	GCCACCACGCTCTTCTGCCT	GGCTGATGGTGTGGGTGAGG	10
Cnrl	TGAAGTCGATCTTAGACGGCC	GTGGTGATGGTACGGAAGGTA	23
Cnr2	TGAATGAGCAGACCGACA GG	AGAGATGTTTGCTGG GTGGC	23
Trpv1	TCGTCTACCTCGTGTTCTTGTTTG	CCAGATGTTCTTGCTCTCTTGTGC	24
Gapdh	TCACCACCATGGAGAAGGC	GCTAAGCAGTTGGTGGTGCA	25

Substrate	Product	Formulae	m/z (+)	Retention Times	Metabolite ID
			m/z (-)	(Min)	
NADA	Parent	$C_{28}H_{41}NO_3$	440.3159	55.4	
			438.3014		
	-0	$C_{28}H_{41}NO_4$	456.3108	41.6; 42.6; 44.6;	PD1-PD8
			151 20 52	45.6; 47.8; 49.0;	
			454.2963	49.6; 52.6	
	-O ₂	$C_{28}H_{41}NO_5$	472.3057	48.8	PD9 & PD10
			470.2912	53.0	
	-HQ	$C_{28}H_{39}NO_4$	454.2952	46.3	PD11
			452.2806		
NA5HT	Parent	$C_{30}H_{42}N_2O_2$	463.3319	55.6	
			461.3174		
	-0	$C_{30}H_{42}N_2O_3$	479.3268	42.4; 48.3; 52.4;	PS1-PS4
			477.3122	54.1	
	-O ₂	$C_{30}H_{42}N_2O_4$	495.3217	50.5	PS5
			493.3072		
	-Q	$C_{30}H_{40}N_2O_3$	477.3112	54.7	PS6 & PS7
			475.2969	56.8	
CAP	Parent	$C_{18}H_{27}NO_3$	306.2064	39.5	
			304.1918		
	-O-de-	$C_{17}H_{25}NO_3$	292.1907	36.7	PC1
	CH ₃		290.1762		
	-0	$C_{18}H_{27}NO_4$	322.2013	25.6	PC2 & PC3
			320.1867	26.6	
	-O ₂	$C_{18}H_{27}NO_5$	338.1962	20.3	PC4
			336.1816		
	-HQ	$C_{17}H_{23}NO_4$	306.1700	23.8	PC5
			304.1554		

Supplementary Table 2. LC-MS/MS metabolite identification

ł	AEA		
	Residue	Interaction energy	Error
		(kJ/mol)	(±kJ/mol)
	ARG321	-8.92481	3.47937
	ARG495	-4.72929	1.37637
	ARG484	-3.76565	5.08937
	ASN185	-3.6608	0.91729
	LEU215	-3.13021	0.90826
	HIS494	-3.10337	2.63799
	HIS181	-2.99208	1.25837
	SER493	-2.98903	1.15341
	PRO491	-2.91059	2.22862
	TRP322	-2.7051	1.87051
	VAL492	-2.34359	0.69187
	LEU212	-2.29354	0.802
	THR313	-2.29139	0.656
	LEU481	-2.25677	2.00732
	LEU496	-1.88488	0.98401
	SER480	-1.76965	1.92706
	THR219	-1.65714	0.72366
	ASP216	-1.53383	0.59384
	PHE483	-1.15568	1.16863
ľ	NADA		
	Residue	Interaction energy	Error
		(kJ/mol)	(±kJ/mol)
	ILE489	-3.25625	0.96471
	GLU222	-2.81904	7.20851
	THR114	-2.64145	1.26045
	ILE127	-2.4887	0.672
	THR488	-2.42929	1.62007
	PHE310	-2.33006	0.68078
	ASN231	-2.13378	1.40423
	ILE487	-2.12379	1.17521
	ARG117	-2.0808	1.03731
	MET400	-2.0443	0.97651
	ILE86	-1.86892	0.99568
	VAL380	-1.86384	0.53806
	ALA311	-1.75345	0.60574
	MET128	-1.71349	0.69304
	PRO381	-1.52613	0.65021

Supplementary Table 3. Binding interaction energies for AEA and NADA in Configuration 1.

LEU83	-1.51171	0.79452
GLN228	-1.16917	1.08287
GLU314	-1.15822	0.47136
THR315	-0.98946	0.40637

1	AEA		
	Residue	Interaction energy	Error
		(kJ/mol)	(±kJ/mol)
	ILE487	-5.89876	1.21444
	GLN228	-5.83744	2.55033
	GLY486	-4.4337	0.85385
	ILE489	-3.73012	1.80267
	THR488	-2.86717	1.23994
	LEU83	-2.66672	1.22142
	PRO381	-2.01531	0.5883
	MET400	-1.92187	0.59975
	ARG111	-1.86332	0.65592
	PHE61	-1.76106	0.70389
	PRO112	-1.56523	0.63967
	THR114	-1.38301	0.59581
	VAL380	-1.31937	0.42989
	LEU81	-1.29664	0.75077
	ILE86	-1.23497	0.69801
	ASN231	-1.23156	0.70985
	GLU82	-1.21236	0.75533
	ILE127	-0.93357	0.4817
	MET485	-0.90994	0.50495
ľ	NADA		
	Residue	Interaction energy	Error
		(kJ/mol)	(±kJ/mol)
	ASP307	-24.8669	9.39773
	PHE310	-5.45818	1.08501
	SER490	-4.84377	2.57133
	ILE489	-3.81991	1.27441
	ALA311	-2.55907	0.64457
	GLU222	-2.43978	6.04616
	THR315	-2.4274	0.79848
	GLU314	-1.99078	0.60895
	ILE127	-1.74117	0.56921
	VAL380	-1.56889	0.67457
	ILE376	-1.45199	0.64053
	ILE375	-1.40588	0.55081
	THR318	-1.24705	0.4895
	TRP251	-1.15856	0.49279
	PHE121	-1.06322	0.47599

Supplementary Table 4. Binding interaction energies for AEA and NADA in Configuration 2.

THR219	-0.99602	0.86035
PRO491	-0.87034	0.55172
LEU126	-0.76823	0.67118
ARG111	-0.72046	0.51937

AEA		
Residue	Interaction energy	Error
	(kJ/mol)	(±kJ/mol)
ARG321	-21.757	3.21232
TRP322	-4.69984	1.39869
PRO491	-4.12342	1.47182
ARG495	-3.77759	1.6088
VAL492	-3.66875	0.78594
SER493	-2.94951	0.78101
ASN185	-2.82361	0.97184
THR318	-2.74648	0.88867
LEU215	-2.29793	0.59603
LEU496	-2.1508	0.48536
THR219	-1.81981	0.54936
ASP216	-1.45737	0.6174
THR313	-1.44611	0.63856
HSD181	-1.23107	0.92312
LEU212	-1.22474	0.5249
SER317	-1.13683	0.42019
SER480	-1.12392	0.50546
SER490	-1.05437	0.5769
LEU325	-0.94713	0.42667
NA5HT		
Residue	Interaction energy	Error
	(kJ/mol)	(±kJ/mol)
GLU222	-5.78558	3.11688
THR488	-3.52051	2.94825
ILE489	-3.40178	1.07731
VAL380	-3.0252	0.61197
GLN228	-3.00795	2.10628
ARG117	-2.86239	1.37033
THR114	-2.8041	0.76497
ARG111	-2.58118	0.899
ILE127	-2.16936	0.67201
ASN231	-1.96704	0.91609
PRO112	-1.8457	0.72025
PHE310	-1.78344	0.73298
ALA311	-1.49405	0.50818
PRO381	-1.43143	0.66267
SER490	-1.38003	0.99802

Supplementary Table 5. Binding interaction energies for AEA and NA5HT in Configuration 1.

MET400	-1.26626	0.51045
ILE487	-1.22545	1.01001
THR315	-1.11141	0.64492
GLY486	-1.00512	0.58716

AEA		
Residue	Interaction energy	Error
	(kJ/mol)	(±kJ/mol)
GLN228	-6.5189	1.61495
ILE487	-6.4654	1.07545
GLY486	-5.05945	0.69118
ASN231	-3.30921	1.13293
THR488	-2.75129	0.70766
MET400	-2.60969	0.64574
LEU83	-2.51603	0.82828
ILE86	-2.41382	0.70615
ILE489	-2.06282	0.60377
PHE61	-1.61387	0.53751
GLU222	-1.59248	1.60739
LEU81	-1.54611	0.58844
SER490	-1.37099	0.95213
GLU82	-1.32141	0.53585
ALA88	-1.07485	0.34869
MET485	-1.04278	0.39769
ALA223	-1.02855	0.51492
THR114	-1.0283	0.63714
VAL232	-0.97153	0.50219
NA5HT		
Residue	Interaction energy	Error
	(kJ/mol)	(±kJ/mol)
ARG117	-4.62722	1.01273
PHE310	-4.25033	0.78785
ILE489	-3.79065	0.7503
PRO112	-3.53451	2.60917
ILE127	-3.16155	0.66233
VAL380	-3.0195	0.73603
ARG111	-2.8175	0.86368
ALA311	-2.54837	0.69605
GLU314	-2.41186	0.5614
THR315	-2.06731	0.79649
THR114	-1.5682	0.61104
ILE376	-1.48917	0.57733
THR318	-1.26557	0.42192
ILE375	-1.19388	0.4528
GLU222	-0.95049	0.97809

Supplementary Table 6. Binding interaction energies for AEA and NA5HT in Configuration 2.

VAL113	-0.87465	0.51344
SER490	-0.83479	0.43952
THR488	-0.62754	0.11655
PRO491	-0.60725	0.5804

Supplemental Movies

Supplementary Movie 1. *Molecular dynamics (MD) simulations of NADA and AEA in Configuration 1.* MD simulations were performed for 50 ns as described in the Methods section. In this configuration, AEA is bound in the PUFA binding pocket and NADA in the substrate access channel. Green spheres represent the 14' and 15' positions of NADA.

Supplementary Movie 2. *Molecular dynamics (MD) simulations of NADA and AEA in Configuration 2.* MD simulations were performed for 50 ns as described in the Methods section. In this configuration, AEA is bound at the entrance of the substrate access channel and stabilizes the binding of NADA near the heme. Green spheres represent the 14' and 15' positions of NADA.

Supplementary Movie 3. *Molecular dynamics (MD) simulations of NA5HT and AEA in Configuration 1.* MD simulations were performed for 50 ns as described in the Methods section. In this configuration, AEA is bound in the PUFA binding pocket and NA5HT in the substrate access channel. Green spheres represent the 14' and 15' positions of NA5HT.

Supplementary Movie 4. *Molecular dynamics (MD) simulations of NA5HT and AEA in Configuration 2.* MD simulations were performed for 50 ns as described in the Methods section. In this configuration, AEA is bound at the entrance of the substrate access channel and stabilizes the binding of NA5HT near the heme. Green spheres represent the 14' and 15' positions of NA5HT.

Supplementary References

- 1 McDougle, D. R., Palaria, A., Magnetta, E., Meling, D. D. & Das, A. Functional studies of N-terminally modified CYP2J2 epoxygenase in model lipid bilayers. *Protein Sci* 22, 964-979, doi:10.1002/pro.2280 (2013).
- 2 Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. *Nature protocols* **3**, 1101-1108 (2008).
- 3 McDougle, D. R. *et al.* Anti-inflammatory omega-3 endocannabinoid epoxides. *Proc Natl Acad Sci U S A* **114**, E6034-E6043, doi:10.1073/pnas.1610325114 (2017).
- 4 Zelasko, S., Palaria, A. & Das, A. Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems. *Protein Expres Purif* **92**, 77-87, doi:DOI 10.1016/j.pep.2013.07.017 (2013).
- 5 Arnold, W. R., Baylon, J. L., Tajkhorshid, E. & Das, A. Arachidonic Acid Metabolism by Human Cardiovascular CYP2J2 Is Modulated by Doxorubicin. *Biochemistry* **56**, 6700-6712, doi:10.1021/acs.biochem.7b01025 (2017).
- 6 Arnold, W. R., Weigle, A. T. & Das, A. Cross-talk of cannabinoid and endocannabinoid metabolism is mediated via human cardiac CYP2J2. *J Inorg Biochem* **184**, 88-99, doi:10.1016/j.jinorgbio.2018.03.016 (2018).
- 7 Arnold, W. R., Baylon, J. L., Tajkhorshid, E. & Das, A. Asymmetric Binding and Metabolism of Polyunsaturated Fatty Acids (PUFAs) by CYP2J2 Epoxygenase. *Biochemistry* **55**, 6969-6980, doi:10.1021/acs.biochem.6b01037 (2016).
- 8 Capdevila, J. H. *et al.* The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. *J Biol Chem* **271**, 22663-22671 (1996).
- 9 Hu, S. S. *et al.* The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. *Prostaglandins, leukotrienes, and essential fatty acids* 81, 291-301, doi:10.1016/j.plefa.2009.05.026 (2009).
- 10 Marinelli, S. *et al.* N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. *Neuropsychopharmacol* **32**, 298-308, doi:10.1038/sj.npp.1301118 (2007).
- 11 Huang, S. M. *et al.* An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. *Proc Natl Acad Sci U S A* **99**, 8400-8405, doi:10.1073/pnas.122196999

99/12/8400 [pii] (2002).

12 Siller, M. *et al.* Oxidation of endogenous N-arachidonoylserotonin by human cytochrome P450 2U1. *Journal of Biological Chemistry* **289**, 10476-10487, doi:10.1074/jbc.M114.550004

M114.550004 [pii] (2014).

13 Verhoeckx, K. C. *et al.* Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. *Biochim Biophys Acta* **1811**, 578-586, doi:10.1016/j.bbalip.2011.07.008

S1388-1981(11)00133-8 [pii] (2011).

14 Buczynski, M. W. & Parsons, L. H. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. *Br J Pharmacol* **160**, 423-442, doi:10.1111/j.1476-5381.2010.00787.x BPH787 [pii] (2010).

- 15 Schmid, P. C. *et al.* Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. *Febs Lett* **375**, 117-120 (1995).
- 16 Napolitano, A., Pezzella, A. & Prota, G. New reaction pathways of dopamine under oxidative stress conditions: nonenzymatic iron-assisted conversion to norepinephrine and the neurotoxins 6-hydroxydopamine and 6, 7-dihydroxytetrahydroisoquinoline. *Chem Res Toxicol* **12**, 1090-1097, doi:tx990079p [pii] (1999).
- 17 Napolitano, A., Crescenzi, O., Pezzella, A. & Prota, G. Generation of the neurotoxin 6hydroxydopamine by peroxidase/H2O2 oxidation of dopamine. *J Med Chem* **38**, 917-922 (1995).
- 18 Lam, P. M. *et al.* Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca(2+)](i), initiates neurotransmitter release and promotes delayed cell death. *Journal of neurochemistry* **102**, 801-811, doi:10.1111/j.1471-4159.2007.04569.x (2007).
- 19 Roy, J., Watson, J. E., Hong, I., Fan, T. M. & Das, A. Anti-Tumorigenic Properties of Omega-3 Endocannabinoid Epoxides. *J Med Chem*, doi:10.1021/acs.jmedchem.8b00243 (2018).
- 20 Pertwee, R. G. Pharmacology of cannabinoid receptor ligands. *Curr Med Chem* **6**, 635-664 (1999).
- 21 Graves, J. P. *et al.* Quantitative Polymerase Chain Reaction Analysis of the Mouse Cyp2j Subfamily: Tissue Distribution and Regulation. *Drug Metab Dispos* **43**, 1169-1180, doi:10.1124/dmd.115.064139 (2015).
- 22 Oh, D. Y. *et al.* GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Antiinflammatory and Insulin-Sensitizing Effects. *Cell* **142**, 687-698, doi:10.1016/j.cell.2010.07.041 (2010).
- 23 Zhang, M. *et al.* Modulation of the balance between cannabinoid CB1 and CB2 receptor activation during cerebral ischemic/reperfusion injury. *Neuroscience* **152**, 753-760, doi:10.1016/j.neuroscience.2008.01.022 (2008).
- 24 Phan, T. X., Ton, H. T., Chen, Y., Basha, M. E. & Ahern, G. P. Sex-dependent expression of TRPV1 in bladder arterioles. *Am J Physiol-Renal* **311**, F1063-F1073, doi:10.1152/ajprenal.00234.2016 (2016).
- 25 Yen, C. H. *et al.* Characterization of a new murine cell line of sarcomatoid hepatocellular carcinoma and its application for biomarker/therapy development. *Sci Rep* **7**, 3052, doi:10.1038/s41598-017-03164-3 (2017).