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Long runs of homozygosity are associated
with Alzheimer’s disease
Sonia Moreno-Grau1,2, Maria Victoria Fernández 3,4, Itziar de Rojas 1,2, Pablo Garcia-González 1, Isabel Hernández1,
Fabiana Farias 3,4, John P. Budde 3,4, Inés Quintela5, Laura Madrid 6, Antonio González-Pérez6, Laura Montrreal1,
Emilio Alarcón-Martín1, Montserrat Alegret1, Olalla Maroñas5, Juan Antonio Pineda7, Juan Macías7, The GR@ACE study
groupDEGESCO consortium, Marta Marquié 1,2, Sergi Valero1,2, Alba Benaque1, Jordi Clarimón2,8,
Maria Jesus Bullido 2,9,10, Guillermo García-Ribas11, Pau Pástor 12, Pascual Sánchez-Juan2,13, Victoria Álvarez14,15,
Gerard Piñol-Ripoll2,16, Jose María García-Alberca 17, José Luis Royo18, Emilio Franco-Macías19, Pablo Mir 2,20,
Miguel Calero 2,21,22, Miguel Medina 2,21, Alberto Rábano2,21,23, Jesús Ávila2,24, Carmen Antúnez25,
Luis Miguel Real 7,18, Adelina Orellana1, Ángel Carracedo5,26, María Eugenia Sáez6, Lluís Tárraga1,2, Mercè Boada 1,2,
Carlos Cruchaga3,4 and Agustín Ruiz 1,2, for the Alzheimer’s Disease Neuroimaging Initiative

Abstract
Long runs of homozygosity (ROH) are contiguous stretches of homozygous genotypes, which are a footprint of
inbreeding and recessive inheritance. The presence of recessive loci is suggested for Alzheimer’s disease (AD);
however, their search has been poorly assessed to date. To investigate homozygosity in AD, here we performed a fine-
scale ROH analysis using 10 independent cohorts of European ancestry (11,919 AD cases and 9181 controls.) We
detected an increase of homozygosity in AD cases compared to controls [βAVROH (CI 95%)= 0.070 (0.037–0.104); P=
3.91 × 10−5; βFROH (CI95%)= 0.043 (0.009–0.076); P= 0.013]. ROHs increasing the risk of AD (OR > 1) were significantly
overrepresented compared to ROHs increasing protection (p < 2.20 × 10−16). A significant ROH association with AD risk
was detected upstream the HS3ST1 locus (chr4:11,189,482‒11,305,456), (β (CI 95%)= 1.09 (0.48 ‒ 1.48), p value=
9.03 × 10−4), previously related to AD. Next, to search for recessive candidate variants in ROHs, we constructed a
homozygosity map of inbred AD cases extracted from an outbred population and explored ROH regions in whole-
exome sequencing data (N= 1449). We detected a candidate marker, rs117458494, mapped in the SPON1 locus, which
has been previously associated with amyloid metabolism. Here, we provide a research framework to look for recessive
variants in AD using outbred populations. Our results showed that AD cases have enriched homozygosity, suggesting
that recessive effects may explain a proportion of AD heritability.

Introduction
Alzheimer’s disease (AD) is a neurodegenerative dis-

order that is the leading cause of dementia worldwide1.

AD presents a strong genetic component. Autosomal
dominant mutations have been linked to familial early
onset AD (EOAD) (<65 years): mutations in presenilin 1
(PSEN1)2, presenilin 2 (PSEN2)3, and amyloid precursor
protein (APP)4. These findings lead to the role of amyloid
metabolism as disease-causing mechanism5. Despite that,
dominant causes account for a minority of both familial
and sporadic EOAD cases, suggesting that autosomal
recessive loci might cause most EOAD cases (∼90%)6.
However, only two recessive mutations in the APP gene
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(A673V and E693Δ) have been described to date7,8, and
this mode of inheritance for AD remains controversial.
The sporadic form of late-onset AD (LOAD) (>65 years)

has a polygenic background. Heritability estimation for
LOAD is, roughly, 70%6. Although, near to 40 loci has
been associated with LOAD risk9–12, genetic variance
captured by genome-wide strategies fall in a range of
7 –31%9,13, explaining a limited part of disease heritability.
Current genetic findings were made using an additive
mode of inheritance, which overlooks the relevance of
non-additive genetic components, i.e., the recessive
model. Despite the fact these components could explain a
fraction of disease heritability.
It is well known that inbreeding increases the incidence

of recessive diseases. The probability of detecting a
recessive locus increases in offspring of consanguineous
unions14, because the partners share alleles identical-by-
descent. This recent parental relatedness points to genu-
ine regions of autozygosity. Long runs of homozygosity
(ROHs)—long stretches of consecutive homozygous
genotypes (>1Mb)—are a recognized signature of reces-
sive inheritance and provide a measure of inbreeding in
studied populations. Thus far, they have been used for
homozygosity mapping15. Population history, e.g., histor-
ical bottlenecks or geographical isolation, also influences
homozygosity levels in individual genomes16,17.
An excess of homozygosity has been associated with the

risk of AD in individuals of Caribbean-Hispanic and
African-American ancestries18–20, suggesting the pre-
sence of inbreeding and potentially autosomal recessive
AD (arAD) cases nested in these populations. Conversely,
this association was not replicated for individuals of
European ancestry21,22. Several factors might explain
these inconsistencies, among them it has been estimated
that large sample sizes (12,000‒65,000) are required to
detect an excess of homozygosity in outbred popula-
tions23. Thus, previous studies might be underpowered.
The limited number of deeply characterized con-

sanguineous families, the difficulties in finding familial
information for sporadic AD individuals (mainly due to
the late onset of the disease) and the reduced size of
intragenerational pedigrees in western countries make the
search for recessive patterns of inheritance in AD com-
plex. Furthermore, follow-up of candidate ROHs in
sequencing data might be a necessary step in the definitive
mapping of an arAD locus, but it has been poorly assessed
to date.
Assessing the impact of homozygosity in the genetic

architecture of AD, and subsequent follow-up of homo-
zygous regions remains a challenge. To the best of our
knowledge, this is the largest genomic data set exploring
the influence of homozygosity in AD (n= 21,100). First,
we investigated whether AD individuals from a European
outbred population presented an excess of homozygosity

relative to controls. Next, we measured the degree of
inbreeding in AD cases. To prioritize regions with
potential recessive loci, we constructed a homozygosity
map of genomic regions overrepresented in detected
inbred AD cases. Finally, we performed further explora-
tion of several promising candidate ROHs using whole-
exome sequencing (WES) data.

Patients and methods
The overview of the proposed strategy for ROH detec-

tion and subsequent prioritization is depicted in Fig. 1.

Genotyping data
This study includes 10 independent genome-wide data

sets comprising a total sample of 21,100 unrelated indi-
viduals (11,921 AD cases and 9181 individual controls) of
European ancestry (Supplementary Table 1). The
recruitment and phenotyping, has been described
previously12.
Genotype-level data for each cohort was processed by

applying identical quality control and imputation proce-
dures, as previously reported12. Next, we generated a
merged data set combining imputed genotypes (MAF >
0.05; imputation quality R2 > 0.90) from available data
sets. We calculated identity-by-descendent (IBD) with
PLINK 1.9 to generate a cohort of unrelated individuals of
European ancestry (Supplementary Fig. 1). All possible
pairs had Pi-hat < 0.1875, a Z0 ≥ 0.75 and a Z1 ≤ 0.25.
Imputed markers with call rates >0.95 and MAF > 0.05 in
the merged data set were selected for ROH calling
(NSNPs= 2,678,325).

Runs of homozygosity (ROHs) exploration
1-Identification of individual ROHs
Individual ROH calling was conducted using the

observational genotype-counting approach implemented
in PLINK (v1.09) (https://www.cog-genomics.org/plink/1.9/),
as it outperforms additional methods in ROH detection
and it is applicable to outbred populations24. ROH
detection was performed for each individual study and
for the merged data set using imputed genotypes. We
used a sliding window of 50 SNPs of 5000 Kb in length to
scan the genome. In order to manage genomic regions
with a small number of genotyping errors and discrete
missingness, one heterozygote and five missing calls per
window were tolerated. These parameters were similar to
those described previously25. The minimal number of
SNPs in a ROH was set to 100 SNPs26,27. We empirically
explored two minimal length cut-offs to consider a ROH,
1Mb and 1.5 Mb. ROHs < 1.5 Mb might reflect LD pat-
terns of ancient origin rather than the consanguineous
cultural practices and genetic isolation captured with
ROHs > 1.5Mb28. SNPs were included in a ROH if >5%
of the sliding window was homozygous. The maximum
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distance between two consecutive SNPs was set to
1000 Kb apart, and SNP density to at least 1 SNP in
50 Kb.

2-Exploration of homozygosity parameters
To assess the data quality and genetic architecture of

detected ROHs (>1Mb and >1.5Mb) in each individual
study and in the whole dataset, we calculated: (a) the
mean of the total length of ROH or sum of ROH (SROH);
(b) the average ROH length (AVROH); (c) the number of
ROHs (NROH); and (d) ROH-based estimates of the
inbreeding coefficient, F, (FROH) per individual. AVROH
is the SROH divided by NROH per subject. FROH
represents the proportion of homozygous segments in the
autosomal genome per individual (Eq. 1). For individuals,
this would be the SROH detected divided by a factor of
3,020,190 Kb, the total autosomal genome length
according to the GRCh37.p13 assembly. We further
explored whether the effect of homozygosity parameters
was similar when: (1) ROH length was set to 1 or 1.5Mb;
and (2) the analysis was performed per data set or in the
final merged database. Results emerging from these

exploratory analyses are shown in Supplementary Figs. 2–3,
Supplementary Tables 2–3, and Supplementary Meth-
ods. According to them, we decided to conduct down-
stream analyses with ROH calling at 1.5 Mb in the
merged data.

FROH ¼ SROH Kbð Þ
Autosomal genome Kbð Þ ð1Þ

Copy number variants (CNV), particularly hemizygous
deletions, are known to cause spurious ROHs. However,
prior studies have demonstrated that the impact of per-
forming ROH calling with or without CNVs is only 0.3%
of the total ROH length28. To assess the impact of CNVs
deletions, we also conducted ROH calling after removing
common CNV deletions extracted from the Database of
Genomic Variants (DGV) (http://dgv.tcag.ca/)29. The
same exercise was conducted after removing CNVs
detected in GR@ACE dataset. Further description of CNV
calling is provided in Supplementary material.

GWAS data
21,102 individuals  

FROH > 0.0156
(2nd degree 
rela�ve)

1,722 Genes

2. Homozygosity 
Parameters 
SF3-SF4-SF5

> 0.1Mb
> 100 SNPs

1. Individual ROHs
≥ 1.5 Mb

≥ 100 SNPs 

≥ 2 SNPs
Beta > 0.03

5. 958 inbred AD 
cases; 5,087 

consensus ROHs
SF7

Minor Allele Frequency < 0.01

6a. Gene Based 
Strategy

Variants present in
ROHs

Gene-Based Analysis 
SKAT-O

32 Genes > 3 Variants 
in the model

Variants only present 
in AD individuals

Coding and flanking variants for candidate 
ROH regions

Homozygous variants

Minor Allele Frequency < 0.01

6b. Variant Filtering 
Strategy

807 ROHs; 1,722 Genes

High or Moderate 
Impact Variants

4.a. HP vs AD

P < 0.05

WES data
1,449 individuals

> 0.1Mb
> 3 SNPs

4.b. Consensus ROH 
vs AD

3. Consensus ROHs
21,190

1,006 ROH 
Non-AD loci

11 ROH 
in/near
AD loci

33 ROHs
32 Genes

795 ROH 
Non-AD loci

12 ROH 
in/near
AD loci

Fig. 1 Schematic of the stepwise for ROH prioritization. 1. Identification of ROH segments per individual; 2. Estimation of: homozygosity
parameters, and 3. Consensus ROHs; 4. Association analysis between: a) Homozygosity parameters and AD status, and b) Consensus ROH and AD
status; 5. Identification of inbred AD cases and ROH prioritization; 6. Exploration of selected ROH segments in WES data applying: a) Gene-based
strategy, and b) Variant filtering strategy.
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3-Identification of consensus ROHs
Consensus ROHs were defined as overlapping segments

between individual ROHs observed in different indivi-
duals, with DNA segment match of at least 95% for non-
missing SNP markers. Consensus ROH calling was per-
formed using PLINK 1.9. To prevent the detection of
false-positive ROHs, we extracted those consensus ROHs
with a length >100 Kb and >3 SNPs.

4-Analyses
4a-Association analysis between homozygosity para-
meters and AD risk To assess the quality of the data in
each individual study, we explored sample distribution for
each of four homozygosity parameters: NROH, SROH,
AVROH, and FROH. An exploratory analysis was
depicted with violin plots, which combine a box plot
with a kernel density plot, using the ggplot2 package from
R (Supplementary Figs. 4 and 5). The inverse rank normal
transformation was performed to generalize homozygos-
ity parameters using “rankNorm” option in the RNOmni
package in R. Transformed distributions are shown in
Supplementary Fig. 6. To test the association of homo-
zygosity parameters with AD status, we developed a
generalized linear model for a binominal outcome, using
R for individual-level data. We tested three models,
adjusting per: (1) cohort and the first four principal
components (PCs) resulting from ancestry analysis. See
Eq. 2; (2) cohort, PCs and age; (3) cohort, PCs, age and
gender. We also conducted a sensitivity analysis excluding
control individuals <60 years old (See the “Results”
section),

Z ¼ β1Homozygosity Parameterþ β2Cohort

þβ3PC1þ β4PC2þ β5PC3þ β5PC4þ e
ð2Þ

4b-Association analysis between consensus ROHs and
AD The association between the phenotype and con-
sensus ROHs was explored using a logistic model, for
ROHs in or near to previously identified AD loci
extracted from de Rojas et al.30 and non-AD ROHs.
The model was adjusted per cohort, and the first four
PCs as covariates for downstream analysis. Covariate
models adjusted for age and gender, in addition to
cohort and PCs, were also calculated. Regression-based
results were corrected for multiple testing using a
Bonferroni correction.
Next, we sought to estimate whether there was an
overrepresentation of risk (β > 0) or protective (β < 0)
consensus ROHs in our association results at different
levels of length and SNP number per consensus ROH. We
applied a binominal test using R.

5-The homozygosity map of inbred AD individuals
5a-Identificationn of inbred individuals We used FROH

to detect the subset of inbred individuals within our
dataset. FROH has been previously shown to better
correlate with the unobserved pedigree inbreeding23,31.
The cut-off between inbred and non-inbred individuals
was set to FROH > 0.015632, which corresponds to a
second-degree relation. It was assumed that there are no
different biological effects below 0.0156 than in the general
population33. The efficient capture of inbred individuals is
shown in Supplementary Fig. 7. Next, to explore whether
the frequency of consanguinity was higher in AD cases
than in controls, we calculated the odds ratio and chi
square p values using the epitools package in R.

5b-ROHs prioritization based on inbred AD cases
ROH detection was conducted in the subset of inbred AD
cases, applying similar criteria to those previously
described. Briefly, considering the long size of homozygous
tracts for inbred individuals, there is a higher probability of
finding a consensus ROH by chance within consanguineous
AD cases than in the general population. Hence, we applied
stringent criteria to define consensus ROHs. Consensus
ROHs from inbred AD cases with ROH lengths >100 Kb
and ROH> 100 SNPs were given priority for further
analysis. Shared overlapping regions between inbred AD
cases and the whole data set were also identified (See bash
code in Supplementary Code Material) and selected based
on their overrepresentation in AD cases relative to controls
(β > 0.03). Prioritized regions were then explored in
sequencing data. We also explored the overlapping of
these regions with previously identified AD loci30.

WES data
To meet the objective of exploring most promising

ROH candidates in the sequencing data, we used the
Knight-ADRC-NIA-LOAD (KANL) cohort34. We exclu-
ded autosomal dominant familial cases and sporadic AD
cases harboring well-known disease-causing mutations, as
they could explain disease status. Thus, this study com-
prised 986 AD cases and 463 control individuals of Eur-
opean ancestry (See Supplementary Table 1 and
Supplementary Fig. 1). Of these, 488 subjects presented
both GWAS and WES data available for this study.
Detailed descriptions of cohort characteristics and quality
control for WES data have been provided previously34.

6-Candidate gene prioritization strategies using WES
6a-Gene-based analysis To prioritize genes in consen-
sus ROH regions, we performed gene-based analysis (986
cases vs 463 controls) (Fig. 1). To generate variant sets,
variants were filtered out according to minor allele
frequency (MAF < 0.01) and functional impact. The allele
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frequency cut-off was established according to the Exome
Aggregation Consortium (ExAC), non-Finnish European
Exome Sequencing project (ESP), and 1000 G. Only those
variants predicted to have a high or moderate effect
according to SnpEff were included35. To compute p-
values per gene set, SKAT-O model was applied using R.
The models were adjusted to consider the impact of the
first two PCs and sex. Genes were filtered out from results
if the number of variants included in the model was ≤3.

6b-Variant filtering strategy for inbred AD cases with
WES and GWAS data available ROH segments emer-
ging from inbred AD cases are the most promising
candidates to harbor autosomal recessive variants. There-
fore, we deeply explored ROHs by applying a variant
filtering strategy. We explored 488 AD cases with
complementary GWAS and WES data. Because there is a
low likelihood to identify any novel or causative mutation
in available databases, variants with MAF > 0.01 were
excluded. All heterozygous variants were removed. Finally,
only the variants mapped in individual ROHs were selected.
To map genes within ROHs, we first extracted all the
variants located in ROH regions. Next, we individually
annotated each one.

Results
ROH parameters are associated with AD risk
We examined the typical characteristics of the four

ROH parameters (SROH, NROH, AVROH, FROH) in

21,100 unrelated European individuals from 10 indepen-
dent cohorts (Supplementary Tables 1–2 and Supple-
mentary Fig. 4). Relationships between the mean NROH
and SROH are shown in Fig. 2. The mean NROH was
14.6 ± 4.6, the AVROH was 2.11 ± 0.61Mb, and the
SROH was 31.9 ± 22.2Mb. These estimations are in
accordance with those observed in European indivi-
duals32, except for the NROH parameter, which was
higher than in the previous studies32.
Next, we tested the association of the four homozygosity

parameters with AD risk. We found that (i) higher
inbreeding coefficient (FROH) increased the risk of suffering
AD [βFROH (CI95%)= 0.043 (0.009–0.076); p value= 0.013]
(Table 1); (ii) AD patients presented higher average lengths
of ROHs compared to controls [βAVROH (CI95%)= 0.07
(0.037–0.104); p value= 3.91 × 10−5]; (iii) ROH number was
not associated with AD risk after adjusting for age [βNROH
(CI 95%)= 0.010 (−0.024–0.044); p value= 0.571] (Table 1).
Results per cohort are shown in Supplementary Table 4.
Notably, a sensitivity analysis conducted excluding: (1)
known deletions, i.e., hemizygous segments29; and, (2) dele-
tions identified in GR@ACE CNV study; provided compar-
able results (Supplementary Table 5). After excluding control
individuals <60yo, a stable and significant effect remains for
AVROH [βAVROH (CI 95%)= 0.07 (0.031–0.103); p value=
3.51 × 10−5] (Supplementary Table 5).

ROH analysis of AD risk using the whole data set
We identified 21,190 consensus ROHs in the merged

data set (N= 21,100). We observed a significant over-

A B

Fig. 2 Runs of homozygosity per cohort and per individual. A Mean number of ROHs versus mean total sum of ROHs in Mb for the 10 cohorts
explored. B Mean number of ROHs versus mean total sum of ROHs in Mb per individual explored. Red dashed lines represent the threshold for the
inbreeding coefficient of 0.0156 (second cousins’ offspring) and 0.0625 (first cousins’ offspring).
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representation of ROHs increasing the risk of suffering
AD (p value < 2.20 × 10−16) (Table 2). The same over-
representation of risk associations was detected after fil-
tering at several levels based on the length and number of
SNPs per consensus ROH (Table 2). When the test was
conducted with results adjusted for cohort, PCs, age, and
gender, the over-representation of risk associations
remained highly significant (p value < 2.20 × 10−16).
We then tested the association of 11 consensus ROH

(≥100 Kb and ≥3 SNPs) located in or near to previously
identified AD loci (N= 38)30, with AD status (Supple-
mentary Table 6). For these analyses, Bonferroni cor-
rected significance threshold of p= 1.32 × 10−3 was pre-
specified. We detected a strong association near to
HS3ST1 locus (consensus ROH length= 115.9 Kb;
chr4:11,189,482‒11,305,456), (45 AD cases vs 12 controls,
β (CI 95%)= 1.09 (0.48–1.48), p value= 9.03 × 10−4).
This region survived age and gender adjustments (Sup-
plementary Table 6), and was detected across 12 out of 16
datasets (Supplementary Table 7). The replication of this
specific locus with AD, using ROH methodology, provides
new insights of a potential recessive mechanism for this
dementia locus. Among other ROH regions in or near to
known AD loci (Supplementary Tables 6 and 10), we
highlighted a 237 Kb ROH upstream the APP gene (chr21:

26,903,551–27,141,292), by its known role in AD7,8,36;
detected in 38 AD cases vs 26 controls (26 vs 12 inbred
individuals, respectively). For non-previously associated
AD regions, none ROH (N= 1006) reached the sig-
nificance threshold (Bonferroni correction of p= 4.97 ×
10−5). Previous significant consensus ROH (chr8:
37835460–38143780) associated with AD in Europeans21

was not detected in this study, which is in line of results
from Sims et al.22, failing replication.
We then explored the genes located in significant risk

consensus ROHs (p value < 0.05) in gene-based analysis
from WES data as well (Fig. 1). A total of 33 ROHs
comprising 32 genes were analyzed (included > 3 SNPs in
the model; Bonferroni correction p value= 0.0015). The
NECAB1 locus (chr8:91,803,921-91,971,630) presented
the most significant signal (p= 0.01) (Supplementary
Table 8), but none loci reached the multiple test correc-
tion threshold.

Homozygosity mapping of AD using DNA segments
identified in inbred cases
We detected 1621 individuals (958 Cases and 663

Controls) presenting a FROH ≥ 0.0156 among the total
sample (N= 21,100) (Fig. 2) (Supplementary Table 9).
Interestingly, inbreeding over the second degree of

Table 1 Effect of genome-wide homozygosity measures in Alzheimer’s disease for the joint analysis.

Dataset Model 1 Model 2 Model 3

Beta (CI 95%) P value Beta (CI 95%) P value Beta (CI 95%) P value

FROH 0.051 (0.023–0.078) 3.25 × 10−4 0.044 (0.010–0.077) 0.011 0.043 (0.009–0.076) 0.013

AVROH 0.027 (0.000–0.055) 0.051 0.074 (0.040–0.106) 2.16 × 10−5 0.070 (0.037–0.104) 3.91 × 10−5

NROH 0.043 (0.015–0.071) 2.48 × 10−3 0.010 (−0.024–0.044) 0.559 0.010 (−0.024–0.044) 0.571

Model 1: adjusted per Cohort and PCs; Model 2: Adjusted by cohort, PCs, and age; Model 3: Adjusted by cohort, PCs, age and gender.
Results for the association of excess of homozygosity (FROH), average ROH lenght (AVROH), and number of ROH (NROH) with Alzheimer disease status.
OR, Odds ratio; with 95% confidence interval (CI 95%) and level of statistical significance (P value).
Association between homozygosity parameters and AD status, adjusted per Cohort, PCs, Age and Sex, was conducted in individuals with all available data; N= 19,253.

Table 2 Frequency of consensus ROHs with a potential risk or protective effect in Alzheimer’s disease.

N ROH Risk associations Protective associations P value Probability of success

Whole dataset 21190 11974 9216 < 2.2 × 10−16 0.56

Category A 1017 593 424 < 2.2 × 10−16 0.58

Category B 926 537 389 1.30 × 10−6 0.57

Category C 858 499 359 1.98 × 10−6 0.58

Category D 42 33 9 2.7 × 10−4 0.79

Whole dataset/map of inbreed AD cases 6636 3969 2667 < 2.2 × 10−16 0.60

Strategy A, ROHs > 100 kb; >3 SNPs.
Strategy B, ROHs > 100 kb; >25 SNPs.
Strategy C, ROHs > 100 kb; >50 SNPs.
Strategy D, ROHs > 100 kb; >3 SNPs, P < 0.05.

Moreno-Grau et al. Translational Psychiatry          (2021) 11:142 Page 6 of 12



consanguinity was associated with a higher risk of suf-
fering AD [OR (95%, CI)= 1.12 (1.01–1.25); p value =
0.027), which is in line with our previous results. This
supports the idea that an excess of consanguineous indi-
viduals is present in the AD population. Accordingly, the
search for recessive loci that play a role in AD can first be
assessed in consanguineous cases.
After ROH calling in inbred AD cases, we detected 5087

ROHs, and extracted those with ≥100 Kb and ≥100 SNPs.
We then selected only over-represented regions in AD
cases relative to controls in the general analysis (Fig. 1).
We prioritized 807 consensus homozygous segments
from inbred cases (8.6% of the total autosomal genome)
(Fig. 3 and Supplementary Table 10). Among them, 12
ROHs were in or near to a previously identified AD loci
(Supplementary Table 10).
After exploring genes in identified ROHs by gene-based

analysis from WES data, none of them remained asso-
ciated after multiple corrections (Ngenes tested= 1136; p
value= 3.47 × 10−5) (Supplementary Table 11). Our top
signal was detected in the FRY locus (p value= 0.001)
(Supplementary Table 11).
Considering that recessive variants are expected at very

low frequencies, even gene-based analysis would be
underpowered to detect significant associations. There-
fore, we decided to further prioritize loci by searching
homozygous mutations within selected consensus ROHs
from inbred AD subjects (Fig. 1). We identified seven AD
cases that had eight new (or extremely rare) homozygous

variants within long ROH segments (Table 3). All ROH
segments with homozygote variants were detected in
more than 6 cohorts. Two of these individuals were
consanguineous (FROH > 0.156). One had a missense var-
iant (rs140790046, c.926A > G) that encodes p.Asn309Ser
change within the MKX locus. Another carried a rare
variant (rs116644203) in the ZNF282 locus, which was in
an extremely large region of homozygosity (14.9Mb)
(Table 3). Furthermore, three additional homozygous
variants were detected: (i) a variant (rs117458494) in the
SPON1 locus, previously related with amyloid metabo-
lism37, and (ii) two potential causative variants, carried
only by this individual, within a previously identified AD
region (TP53INP/NDUFAF6)12. One (rs73263258-ESRP1;
in TP53INP/NDUFAF6 region) is a missense variant
(c.475G > A) that encodes p.Ala159Thr change (Table 3).
Further notes and functional effect predictions for these
variants are provided in Supplementary Table 12.

Discussion
This study represents the largest analysis of homo-

zygosity conducted for AD. Our estimates of homo-
zygosity provide a robust evidence supporting that
recessive allelic architecture might define a portion of AD
heritability.
Previous AD ROH studies in European populations

have shown negative results for the association of ROH
parameters with AD21,22. First studies had very modest
sample sizes (N < 3000, vs Npresent study= 21,100)21,22, and

rs140897155 
SYNE2/ESR2 

Fig. 3 Circos plot for the prioritized regions. Histogram for the effect of the 21,190 consensus ROHs identified in the whole sample is shown. Risk
ROH associations are shown in red; protective ROH associations are shown in green. Blue regions represent prioritized ROHs from consanguineous
AD cases. Orange segments represent prioritized regions harboring potential recessive variants.
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likely were underpowered. Then, these studies used a
ROH calling lengths set to 1Mb21,22. This generates
substantial inflation in the inbreeding coefficient (FROH)
and makes undetectable the enrichment in consanguinity
due to unspecific noise (Supplementary material). These
reasons might explain initial failures. We encourage other
groups to conduct ROH analysis in new unrelated
populations, but with large enough sample sizes and
redefining the ROH lengths at least to 1.5Mb, to better
capture the recessive component of AD.
At the present study we identified a study-wise sig-

nificant ROH association close to the HS3ST1 gene
(~200 Kb). Genetic markers near to this ROH (~300 kb)
have been previously associated with AD using additive
models38,39, and HS3ST1 locus was differentially expres-
sed in the brain of AD cases versus controls38. Our finding
reinforces the association of this region with AD, and
further suggests the role of recessiveness in explaining
underlying associations. High-resolution mapping across
this ROH could help to identify the causative mutation.
This study failed replication of previously detected ROH

at chr8:37835460–3814378021. Although, both studies
include TGEN cohort, overlapping to some extent, the
default technical parameters for ROH definition were
completely different (ROH calling: 1Mb vs 1.5Mb). We
assume that technical differences of the present study
respect to prior ones, might be critical points impacting
replication of ROH findings, in addition to other causes,
e.g. population-specific genetic patterns, or, even, random
chance.
A strength of the present study comes from our effort to

prioritize consensus ROHs according to the homozygosity
map of inbred AD individuals, performed by the first time
in AD, and our capacity to explore them in sequencing
data. This strategy lets us to find interesting candidate
recessive variants in: MKX and ZNF282 genes, identified
in two independent inbred AD cases; TP53INP1/NDU-
FAF6 genomic region, previously associated with AD12,40;
and SPON1 locus. The SPON1 locus deserves a further
explanation as it is directly related with APP metabolism,
a key player in AD physiopathology. APP cleavage
through β-secretases produces amyloid-beta (Aβ), which
later accumulates in AD brains5. SPON1 has been found
to bind to APP, inhibiting its α/β cleavage37, and to APOE
family of receptors41. Markers in this gene have been
related to dementia severity42 and with the rate of cog-
nitive decline43. Considering prior findings and the pre-
sent result, it would be biologically plausible that the
presence of recessive variants in APP7,8, or its biological
partners directly influences the amyloid cascade. Thus, we
believe that SPON1 could be considered an interesting
candidate, which deserves future resequencing efforts.
Our observations are subject to limitations that need to

be considered. Data sets used in this study wereTa
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genotyped using different platforms and shared a small
proportion of directly genotyped markers. Given that
lower SNP density could impact the accuracy of the
study32, high quality imputed markers were used (r2 >
0.90, MAF > 0.05). Second, to reduce dataset hetero-
geneity we use a set of European individuals; applied the
same GWAS quality control per study; generated a
merged dataset including common variants across data-
sets; and controlled all our analyses by cohort, to account
with potential confounding.
We assumed that differences in the ROH parameters

between the cases and controls are modest. In that sense,
we are not expecting a very large percentage of recessive
AD cases, but we expect a fraction, in the same way, that it
occurs for autosomal dominant forms (<1%). Considering
that, the reported findings are supporting the hypothesis
of this work, a group of recessive mutation may explain a
portion of AD cases. However, we suspect that the exis-
tence of a large non-allelic heterogeneity is preventing its
identification.
Our gene-based analysis strategy did not show sig-

nificant associations. With a decreasing allele frequency
and high locus heterogeneity, the power to detect genes of
interest also decreases. Despite our effort to include WES
data in the present study, the available sample size could
be underpowered.
The potential impact of CNV deletions on ROH analysis

must be taken into consideration. Thus, we assessed its
effect on our analyses, but no differences were found
before and after CNV exclusion (Supplementary Table 5),
which is in agreement with the previous studies25. Clonal
mosaicism, due to aging44, could also generate spurious
ROHs. At the present study an age-dependent increase in
the NROH was detected in the control group (Supple-
mentary Table 13), which partially disappeared after
excluding consensus ROHs associated with age (p < 0.05)
(See Supplementary Material, and Supplementary Table
13 and 14). We assumed that these DNA segments might
contain somatic alterations, confounding ROH associa-
tions. Among age-related ROH regions, we identified
some loci previously associated with AD, e.g., RORA,
CD2AP, HS3ST1, and amyloid-beta burden, e.g., GLIS345;
suggesting that some known AD regions could be affected
by this phenomenon. These findings deserve future
investigations. Despite the existence of ROH segments
associated to age and somatic mosaicism phenomena, our
most significant findings largely supported adjustments by
age. Therefore, we feel that the major observations of this
study are not affected by age-related instability of the
human genome.
In summary, we demonstrated the existence of an

inbreeding effect in AD and efficiently captured a fraction
of inbred individuals from outbred populations, providing
an improved strategy to look for recessive alleles, and to

conduct future large-scale homozygosity mapping studies
in AD. Furthermore, the exploration of complementary
sequencing data gave an added value to this research,
providing a subset of potential candidates harboring
recessive variants. In any case, the proposed candidates
would need confirmation in larger series. Greater efforts
and larger collections of individuals with GWAS and
sequencing data are needed to confirm the present
findings.
Our understanding of the dynamics of population

genomics in AD is far from complete, but ROH analyses
provide us with a means to go further and might be an
alternative strategy to uncover the genetic loci
underlying AD.
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