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Development/Plasticity/Repair

Naturalistic Language Input is Associated with Resting-State
Functional Connectivity in Infancy

Lucy S. King,1 M. Catalina Camacho,2 David F. Montez,3 Kathryn L. Humphreys,4 and Ian H. Gotlib1
1Department of Psychology, Stanford University, Stanford, California 94305, 2Division of Biology and Biomedical Science, Washington University in
St. Louis, St. Louis, Missouri 63110, 3Department of Neurology, Washington University in St. Louis, St. Louis, Missouri 63110, and 4Department of
Psychology and Human Development, Vanderbilt University, Nashville, Tennessee 37235

The quantity and quality of the language input that infants receive from their caregivers affects their future language abilities;
however, it is unclear how variation in this input relates to preverbal brain circuitry. The current study investigated the rela-
tion between naturalistic language input and the functional connectivity (FC) of language networks in human infancy using
resting-state functional magnetic resonance imaging (rsfMRI). We recorded the naturalistic language environments of five- to
eight-month-old male and female infants using the Linguistic ENvironment Analysis (LENA) system and measured the quan-
tity and consistency of their exposure to adult words (AWs) and adult–infant conversational turns (CTs). Infants completed
an rsfMRI scan during natural sleep, and we examined FC among regions of interest (ROIs) previously implicated in language
comprehension, including the auditory cortex, the left inferior frontal gyrus (IFG), and the bilateral superior temporal gyrus
(STG). Consistent with theory of the ontogeny of the cortical language network (Skeide and Friederici, 2016), we identified
two subnetworks posited to have distinct developmental trajectories: a posterior temporal network involving connections of
the auditory cortex and bilateral STG and a frontotemporal network involving connections of the left IFG. Independent of
socioeconomic status (SES), the quantity of CTs was uniquely associated with FC of these networks. Infants who engaged in a
larger number of CTs in daily life had lower connectivity in the posterior temporal language network. These results provide
evidence for the role of vocal interactions with caregivers, compared with overheard adult speech, in the function of language
networks in infancy.
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Significance Statement

Infants whose caregivers speak to them more develop better language skills. It is unclear, however, how real-word language
input is associated with preverbal brain circuitry. Resting-state functional magnetic resonance imaging (rsfMRI) during natu-
ral sleep can noninvasively measure patterns of brain activation in infancy. The present study finds that the quantity of vocal
interactions infants engage in with their caregivers in daily life correlates with the strength of resting-state functional connec-
tivity (FC) in regions of the brain implicated in language comprehension. These results provide evidence for the role of vocal
interactions with caregivers in the function of language networks in infancy. Interventions that focus on increasing vocal
interactions may be associated with infant brain function in a manner that ultimately enhances language abilities.

Introduction
How do children’s earliest experiences with language influence
brain development?

Observational and experimental research indicates that the
quantity and quality of language input that infants receive from
their caregivers affects their future language abilities (Weisleder
and Fernald, 2013; Ferjan Ramírez et al., 2019); however, it is
unclear how variation in naturalistic language input relates to
preverbal brain circuitry. Given rapid neurodevelopment in
infancy, maturational processes including synaptogenesis, axonal
growth, and myelination are responsive to early environmental
exposures (Tau and Peterson, 2010). These neurodevelopmental
events, involving increasing anatomic connectivity, are theorized
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to underlie the emergence of coordinated neuronal activity
between brain regions [i.e., functional connectivity (FC);
Cao et al., 2017; Grayson and Fair, 2017]. Resting-state func-
tional magnetic resonance imaging (rsfMRI), which meas-
ures the hemodynamics associated with spontaneous neural
activity (Biswal et al., 1995; Fox et al., 2005), can noninva-
sively measure differences in FC corresponding to variation
in naturalistic language input in infancy.

Language networks are more plastic in infancy but reflect
emerging adult-like organization. The ontogeny of the corti-
cal language circuit is theorized to involve two stages: the “bot-
tom-up” processing stage, which begins in utero and involves
connections of the bilateral superior temporal auditory system
facilitating word form detection and segmentation of prosodic
information, and the “top-down” processing stage, which begins
in early childhood and involves connections of the left inferior
frontal gyrus (IFG) that gradually refine to enable processing of
complex syntax (Skeide and Friederici, 2016). Thus, language
processing involves both primary sensory networks, which are
topologically mature in neonates, and higher-order cognitive
subnetworks, which synchronize (Gao et al., 2015; Wen et al.,
2019) and specialize (Skeide et al., 2014; Emerson et al., 2016)
across childhood. Despite the relative immaturity of their lan-
guage networks, sleeping infants exposed to speech sounds acti-
vate brain regions implicated in language processing in older
children and adults, including the IFG and superior temporal
gyrus (STG; Blasi et al., 2011). Neonates possess the white matter
tracts, including the arcuate fasciculus, that connect regions of
the mature language network (Sket et al., 2019).

Although exposure to language is experience expectant, the
nature of this exposure is experience dependent (Greenough et
al., 1987). Children’s language experiences vary widely (Romeo,
2019). Naturalistic observations indicate that each day young
children hear from 3000 to 30,000 adult words (AWs) and par-
ticipate in from 60 to over 1000 adult–child conversational turns
(CTs; Gilkerson et al., 2017). While some children experience
consistent language input across the day, others experience input
during circumscribed periods (King et al., 2020). Compared with
the amount of exposure to AWs, CTs are linked to greater gains
in language abilities (Gilkerson et al., 2018) and explain variation
in brain function and structure in children (Romeo et al., 2018a,
b; Merz et al., 2020). For example, preschool children who experi-
ence more CTs exhibit greater activation in Broca’s area during a
story-listening task and more coherent connectivity of the left ar-
cuate fasciculus (Romeo et al., 2018a,b). Thus, multiple dimen-
sions of language may differentially influence brain development.

The current study investigated the relation between natural-
istic language input and the FC of resting-state language
networks in infants. We recorded the naturalistic language
environments of five- to eight-month-old infants using the
Linguistic Environment Analysis (LENA) system (Gilkerson et
al., 2017) and measured the quantity and consistency of their
exposure to AWs and CTs in daily life. Infants completed an
rsfMRI scan during natural sleep and we examined FC among
brain regions involved in language comprehension, including
the auditory cortex, the IFG, and the bilateral STG. We antici-
pated that measures of adult–infant CTs (i.e., the quantity and
consistency of CTs) would be associated more strongly with FC
in language networks than would measures of overheard adult
speech (i.e., the quantity and consistency of AWs). Results sup-
porting this hypothesis would provide evidence for the role of
vocal interactions with caregivers, compared with overheard
adult speech, in the function of language networks in infancy.

Materials and Methods
Participants
Women and their infants were recruited from communities in the San
Francisco Bay Area to participate in the Brain and Behavior Infant
Experiences (BABIES) project (see Humphreys et al., 2018; King et al.,
2019; Camacho et al., 2020), an observational study of the association
between perinatal experiences and infant and toddler psychobiological
development. The sample for the current analyses included mother–
infant dyads who completed at least 8 h of recording of the language
environment (i.e., the LENA assessment) and provided usable rsfMRI
data when infants were ages five to eightmonths. We focused on infants
ages five to eight months for several reasons. First, we were interested in
examining brain function within the first year of life given that this pe-
riod is defined by rapid neurodevelopment and, therefore, enhanced
sensitivity to environmental input (Graham et al., 2015). Second,
whereas most infant fMRI studies have focused on newborns who have
minimal exposure to the postnatal environment (Azhari et al., 2020), we
were interested in examining the earliest associations of variation in the
postnatal environment with infant brain function. Infants ages five to
eight months have considerable exposure to the postnatal environment
and yet their brain development and exposure is limited compared with
older children. Third, infants ages five to eight months have reached im-
portant developmental milestones that allow us to investigate not only
their exposure to total adult speech but also their experience of linguistic
interactions with adults. Specifically, most infants of this age are not only
vocalizing or “babbling” (e.g., vowels, squeals) but are also engaging in
canonical babbling (i.e., producing the vowel-consanent syllables [e.g.,
“ma”] that are the building blocks of words; Oller et al., 1997).

Of the 151 dyads who participated in the BABIES project when
infants were age five to eight months, 99 completed the LENA assess-
ment (41 did not attempt to complete and 10 completed when infants
weremore than eightmonths), 51 of whom also provided usable infant
rsfMRI data (see below, MRI data preprocessing).

Procedure
The BABIES Project was approved by the Stanford Institutional Review
Board. Mothers provided informed written consent for themselves and
their infants and were compensated for their time. Participants included
in the current analyses were recruited either during their pregnancies (16–
35weeks of gestation) or when their infants were less than or equal to
sixmonths through online advertisements and flyers posted in the local
community. Participants recruited during pregnancy participated in addi-
tional sessions not included in the current analyses. All participants were
screened for inclusion/exclusion criteria through a phone interview.
When infants were approaching sixmonths, mother–infant dyads were
invited to attend a laboratory session. Inclusion criteria for this session
were that mothers had a singleton infant between five and eightmonths,
were�18 years, were fluent in English, and had no immediate plans to
leave the geographic area. Exclusion criteria included maternal bipolar dis-
order, maternal psychosis, maternal severe learning disabilities, severe
complications during birth, infant head trauma, infant premature birth
(,36weeks of gestation), infant congenital, genetic, or neurologic disor-
ders, and contraindication for infant MRI. At the laboratory session, dyads
participated in mother–infant interactions and mothers completed ques-
tionnaires and interviews. At the end of this session, a research coordina-
tor provided dyads with a LENA audio recording device and scheduled an
infant MRI brain scan session for the infant. The MRI scans were com-
pleted an average of 1.91weeks (SD=1.94) after the LENA assessment.

Code and data availability
All templates and scripts used in the MRI data processing are available at
https://github.com/babies-study/language_rest. Additional details about
the materials and methods, processed data in tabular format, statistical
analysis scripts for the associations among language input variables and
resting-state FC, and results of analyses probing the robustness of our
findings are available at https://github.com/lucysking/infant_rsfMRI.
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Measures
Language input and vocalizations
As described by King et al. (2019), we provided mother–infant dyads
with a LENA audio recording device and specialized infant clothing with
written and oral instructions that the infant wear the device from waking
to bedtime across at least one typical day at home. The reliability of the
LENA system for measuring language input has been extensively docu-
mented (Xu et al., 2008, 2014; Zimmerman et al., 2009; Oller et al.,
2010). Research comparing LENA counts of AWs, CTs, and child vocal-
izations to counts based on human transcription finds that the LENA is
reliable for children ages 2–48months and that reliability does not vary
as a function of age (correlations between LENA and human-based
measures ranged from 0.82 to 0.95, and differences between LENA and
human-based measures were uncorrelated with age). The LENA system
has also been validated in several languages in addition to English,
including Spanish, Chinese, French, and Swedish (Weisleder and
Fernald, 2013; Gilkerson et al., 2015; Canault et al., 2016; Schwarz et al.,
2017).

The LENA device records for up to 16 h. To be included in the cur-
rent analyses, families were required to have completed �8 h of record-
ing. We uploaded the recordings to the LENA Pro analysis software (Xu
et al., 2009), which yields counts of AWs (overheard “near and clear”
words spoken by adults in the infant’s vicinity), CTs (adult–infant or
infant–adult back-and-forth vocalizations separated by �5 s), and infant
vocalizations within each 5-min epoch in the day. Using these estimates,
we calculated the following measures:

1. To measure the quantity of AWs, CTs, and infant vocalizations, we
followed previous research testing the association between naturalis-
tic language input and the brain (Romeo et al., 2018a,b) to compute
the maximum hourly total of AWs, CTs, and infant vocalizations.

2. To measure the consistency of exposure to AWs and CTs, we calcu-
lated the proportion of 5-min epochs out of the total number of
5-min epochs in the recording in which �1 AW (AW consistency)
or�1 CT (CT consistency) was present.

Whereas the quantity of language input reflects the maximum level of
stimulation the infant receives, the consistency of language input reflects
the dependability of this stimulation throughout the day. Figure 1 presents
the distributions of CTs across the day for two infants: one exposed to
lower quantity but higher consistency, and one exposed to lower consis-
tency but higher quantity.

Covariates
Infant characteristics
We calculated infant gestational age at birth and corrected age at the
MRI session based on infants’ reported due date and birth date. Mothers
reported their infants’ birthweight (two mothers did not provide this in-
formation). To assess infant temperament, mothers completed the nega-
tive affectivity subscale (Cronbach’s a = 0.87) of the short form of the
Infant Behavior Questionnaire-Revised Short Form (IBQ-R-SF; Putnam
et al., 2014). One mother did not complete the IBQ-R-SF.

Maternal and family characteristics
Mothers reported their primary language, their number of previous
pregnancies (two mothers did not provide this information), whether
they were currently breastfeeding (five mothers did not respond to this
question), their education level, their annual household income in bins
ranging from 1 ($0–50,000) to 7 (.$150,000), and the number of people
in their household. We calculated family income-to-needs ratio by divid-
ing the annual household income (median point of each bin) by the
county-specific low-income threshold for the number of people in the
household (www.huduser.gov). To assess maternal crystallized English
verbal knowledge, we calculated total scores from mothers’ responses to the
Vocabulary section of the Shipley Institute of Living Scale–2 (Shipley et al.,
2009; Cronbach’s a = 0.90). To measure maternal short-term memory, we
calculated the total number of mothers’ correct responses in a forward and
backward Digit Span task (four mothers did not complete this task).

MRI data acquisition
As previously described (Camacho et al., 2020), dyads were provided
with an MRI prep kit including earplugs and audio-recordings of
MRI sounds to prepare infants for the MRI session. Dyads arrived at
the MRI session ;30min before the infant’s typical bedtime. For
scanning, infants were undressed, changed into a disposable diaper,
swaddled in a muslin cloth, and placed in in a MedVac Immobilizer.
Sound protection included earplugs paired with active noise cancel-
ling headphones playing white noise or Natus Medical neonatal
noise attenuators (miniMuffs). Infants were then soothed and fed
according to their typical bedtime routine. Once the infant had been
sleeping for 10min, the infant was transferred to the MRI scanner
bed. If the infant remained asleep during transition and for the next
5min, MRI acquisition was initiated. Acquisition was stopped if the
infant woke and was restarted after the infant had been sleeping
again for 10min. This process continued until all sequences were
collected, the infant’s mother wanted to stop scanning, or the infant
refused to soothe or sleep in the scanner room. A staff member
remained with the infant at all times in the scanner room. Of the
151 dyads who participated in the larger project, 101 attempted the
MRI scan visit, and 24 of these infants were unable to soothe to
sleep.

MR images were collected using a 3 Tesla GE MR750 Discovery
scanner equipped with a 32-channel NovaMedical head coil. High-reso-
lution T2-weighted (T2w) images were collected using a 3D fast spin
echo sequence (1.0 � 1.0 � 0.8 mm voxel, 204 sagittal slices, 256� 256
acquisition matrix, flip angle = 90°, FOV=256 mm, TR= 2502 ms,
TE= 91.4ms). Resting-state BOLD fMRI data (rsfMRI) were collected
using a T2p-weighted spiral in and out sequence (Glover, 2012) designed
to reduce dropout in orbitofrontal regions (3.4 � 3.4 � 3.0 mm voxel,
35 axial slices, 64� 64 acquisition matrix, flip angle = 80°, FOV=220
mm, TR=2500 ms, TE= 30 ms). Given the probability of the infant wak-
ing during the scan, rsfMRI data were collected in two runs of 6 min
each. If the infant remained asleep through the end of the first acquisi-
tion, a second acquisition was collected, resulting in 6–12min of data for
each infant (145–290 volumes). Data were visually inspected for artifacts
before data processing. At two points during the study, scan sessions
were moved to another identical scanner and scanning sequences were
harmonized between sites (15 infants on scanner one, four on scanner
two, 32 on scanner three). Thus, scanner is included as a covariate in all
primary analyses.
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Figure 1. Distinguishing the quantity versus the consistency of language input. The distri-
bution of CTs in each 5-min epoch of the day for two infants: one exposed to less numerous
but more consistent CTs (red); and one exposed to more numerous but less consistent CTs
(blue). Whereas higher quantities of CTs may reflect a more stimulating environment, more
consistent CTs may reflect a more dependable environment.
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MRI data preprocessing
Of the 77 infants who successfully slept during the MRI scan visit, six
infants woke up before the rsfMRI sequence was completed, two infants
were removed for too much motion (,5min of low motion data), two
were removed for image artifacts (one likely because of a corrupted data
file and one because of a large prefrontal distortion), and one infant was
removed because of an extreme outlying value in FC in the frontotempo-
ral network (i.e., beyond 3 SD from the mean). Of the 66 infants with us-
able rsfMRI data, 51 infants also had LENA recordings. MR image
processing was conducted in Python version 3.7 using the NiPype frame-
work (Gorgolewski et al., 2011).

T2w anatomical data
First, T2w images were corrected for nonuniform intensities (Tustison et
al., 2010); next, the brain was extracted using FSL’s brain extraction tool
(BET; Jenkinson et al., 2005), down-sampled to a 2 mm isotropic voxel
size, and registered to a sample-specific T2w anatomic template using
FSL’s FLIRT (Jenkinson et al., 2002). This template was created from ar-
tifact-free T2w images collected from these same infants analyzed here
using the ANTs template creation pipeline, which involves iterative dif-
feomorphic registrations before eventual averaging (Avants et al., 2011).

rsfMRI data
Resting-state fMRI were trimmed of the first four volumes, slice-time
corrected, and then rigidly aligned to the middle volume in the acquisi-
tion using FSL’s MCFLIRT (Jenkinson et al., 2002), which produced
frame-by-frame measurements of translation and rotation in each direc-
tion that were used in later de-noising (see below, Resting-state fMRI
noise characterization and removal). Next, rsfMRI were co-registered to
the down-sampled T2w (see above, T2w anatomical data), and the trans-
form from the T2w to template registration was applied to the rsfMRI,
warping it into the template space using FSL’s FLIRT (Jenkinson et al.,
2002). Registrations were visually inspected for accuracy and modified
as needed to correct alignment. Only one infant’s data required manual
alignment, and this infant was ultimately removed because of excessive
motion. Measurement noise from motion and global signals are both
known to dramatically influence BOLD signal and connectivity meas-
urements (Satterthwaite et al., 2012; Murphy and Fox, 2017); thus, we
took careful denoising steps (see below, Resting-state fMRI noise charac-
terization and removal) before temporally interpolating across volumes
with a frame-wise displacement (FD) greater than 0.5 (Power et al.,
2012) and finally bandpass filtering to retain signal fluctuations between
0.005 and 0.1Hz (Hallquist et al., 2013). The FD cutoff of 0.5 was deter-
mined based on the relation between FD and the change in average
whole brain signal (known as DVARS; Smyser et al., 2010) in our sam-
ple; DVARS spikes greater than 2 SD from mean DVARS within each
infant were associated with FD values of 0.5 and greater. Thus, “low-
motion” volumes were those with FD less than 0.5 and DVARS less than
2 SD from the mean. After bandpass filtering, interpolated volumes were
dropped before conducting connectivity analysis. Infants with less than
5min of usable data after these procedures were removed (n=2). We
did not conduct spatial smoothing of BOLD signal based on concerns
that BOLD signal would be incorrectly localized to white matter given
the small size of the infant brain and the locations of our regions of inter-
ests (ROIs; Baxter et al., 2019). Minimal smoothing kernels or no spatial
smoothing is standard in infant imaging (Fitzgibbon et al., 2019; Howell
et al., 2019).

Resting-state fMRI noise characterization and removal
Global signals
Global signals were characterized on the subject-specific and context-
specific level. To characterize subject-specific noise, BOLD signal from
outside the brain (“session noise”) and from white matter and cerebral
spinal fluid within the brain (“physiological noise”) were each isolated
by masking out the brain and gray matter, respectively. Noise volumes
were then smoothed with a 4 � 4 � 4 mm Gaussian kernel, filling the
removed brain areas with neighboring noise signal. For the session noise
volume, the kernel base was extended to 22 mm to avoid zeros in the
inner voxels of the brain (instead, these were near-zero values). To

characterize noise associated with the general procedural context (e.g.,
the scanner sequence and the scanning experience), runs of rsfMRI were
temporally averaged across all participants, producing voxel-level esti-
mates of procedural noise. These steps produced three voxel-specific and
time-specific regressors for each participant: session, physiological, and
procedural. Regression of global signal shifts connectivity correlations
from predominantly positive values to center at approximately zero
across the brain (Murphy et al., 2009; Murphy and Fox, 2017). Thus, the
negative correlations observed here should be interpreted as relatively
less connectivity rather than negative connectivity.

Motion
Derivatives were calculated from the six motion parameters (translation
and rotation in each of three directions) produced from rsfMRI rigid
realignment. Nonlinear influences of each of these 6 motion parameters
on BOLD signal were characterized by creating a Volterra series from
the motion derivatives and the square of the motion derivatives.
Specifically, each motion parameter was lagged six times, capturing a
“memory effect” of motion on the signal up to 15 s later. In total, this
procedure generated 42 motion regressors: six original parameters and
36 lagged derivatives. To determine which of the lagged parameters
exerted the strongest influence on BOLD signal (immediate vs later,
translational vs rotational, etc.), the partial contribution, operationalized
as the R2 fit for the model lost by removing each group from the regres-
sion, of each lagged motion parameter was computed for groups of three
(total of 24 partial contribution estimates), and was then ranked. The
fourth, fifth, and sixth lags provided the least contribution to the BOLD
signal; thus, the final motion nuisance regressors were limited to the first
three lags in addition to the original six motion parameters (24 parame-
ters in total).

Altogether, the final denoising step included regressing voxel-specific
session, physiological, and procedural signal as well as 24 motion regres-
sors, resulting in 28 regressors in total when including the constant. We
used these residuals in subsequent processing and analysis.

Resting-state fMRI network analysis
Language network region selection
ROIs were selected based on a recent review of the ontogeny of the corti-
cal language comprehension circuit (Skeide and Friederici, 2016) in
which the language network is subdivided into two developmental stages
corresponding to two subnetworks of functionally connected brain
regions. The bottom-up processing stage begins in utero, involving con-
nections between areas of the bilateral temporal cortices; in contrast, the
top-down stage begins in middle childhood, involving connections of
the IFG. The following nine ROIs were selected based on this subdivi-
sion: the left temporal pole, left superior temporal sulcus (STS), right
and left temporoparietal junction (TPJ), left auditory cortex, left frontal
operculum, and three regions of the left IFG (pars opercularis, pars tri-
angularis, and pars orbitalis). ROIs were manually delineated on the
T2w anatomic template derived from the sample based on anatomic
landmarks (see Table 1).

Estimation of language network FC
To estimate language network FC, we calculated pair-wise Pearson cor-
relations of mean signal between ROIs. We generated a group-level adja-
cency matrix using the plotting function in Nilearn (https://nilearn.
github.io/) showing the correlations and visually identified subnetworks
based on sets of intercorrelated ROIs. To confirm statistically that visual
designation of the subnetworks was appropriate, we also performed
modularity detection using an iterative Louvain community detection
approach. One hundred iterations of the Louvain algorithm (Brain
Connectivity Toolbox python implementation, g = 0.25) were applied to
the data (seeds 0–99), and connections that were placed within the same
module in a majority of these iterations (at least 51%) were designated as
part of the same module. We then extracted correlation coefficients for
each infant and calculated subnetwork connectivity values by taking the
mean of the correlation coefficients among the ROIs in each subnet-
work. Given that language networks are still developing in infancy, we
did not threshold correlation coefficients for our primary analyses;
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however, as a supplemental analysis, we calculated FC excluding coeffi-
cients ,0.1 and examined the similarity of findings across the two
approaches. We standardized final connectivity values using the Fisher r
to z transformation.

Statistical tests
Statistical tests were conducted in R version 4.0.0 (R Core Team, 2020).
First, we examined associations (Pearson’s correlations for numerical
variables, Spearman’s correlations for ordinal variables, Welch’s t tests
for mean comparisons between groups) among the language input and
infant vocalization variables (AW and CT quantity, AW and CT consis-
tency, infant vocalizations), infant characteristics, maternal and family
characteristics, and resting-state connectivity values. Next, we fit a series
of four multivariate multiple regression models to examine the associa-
tions of the quantity and consistency of language input with connectivity
values. Specifically, for each measure of language input, we fit a model in
which variables for connectivity in each identified network were the de-
pendent variables and the measure of language input was the statistical
predictor. We used the “Manova” function from the “car” package in R
(Fox andWeisberg, 2019) to calculate Pillai’s trace statistics to determine
whether the measure of language input explained significant variance in
connectivity jointly across the networks. We set the family-wise a to
0.05, adjusting for multiple comparisons using the Meff correction (i.e.,
four multivariate regressions testing the association between each of the
four measures of language input and FC across language networks;
Derringer, 2018), such that a measure of language input was determined
to be significantly associated with FC jointly across the networks when
p, 0.014. If the Pillai’s trace statistic was significant, we examined the
linear regression model for each network. For significant associations,
we quantified effect sizes using standardized b s, 95% confidence inter-
vals (CI), and % variance explained above and beyond covariates (DR2).
Finally, for significant associations, we used the “BayesFactor” package
in R (Morey, 2019) to compute Bayes factors to quantify the strength of
evidence in support of the alternative hypothesis (i.e., that the measure
of language input explains variance in connectivity) versus the null hy-
pothesis (i.e., that measure of language input does not explain variance
beyond an intercept only model).

We used a formal model fitting approach (Chambers, 1992) to deter-
mine the inclusion of covariates in our primary analyses. Specifically, we
iteratively added covariates (i.e., each of the measures of infant, mater-
nal, and family characteristics described above, Covariates) to a base
multivariate regression model in which estimates of connectivity in each
identified network were the dependent variables and scanner was the
single independent variable. To preserve model parsimony, only covari-
ates that were significantly associated with resting-state connectivity as
determined by the Pillai’s test statistic in the multivariate multiple
regression model were included. However, scanner was included as a
centered effect-coded covariate in all models regardless of statistical
significance.

Results
Sample characteristics
We present characteristics of the final sample in Table 2. We
present histograms showing the distributions of each measure of
language input in Figure 2. The 51 dyads included in the final
sample did not differ significantly from dyads not included with
respect to LENA metrics (AW quantity: t(95.74) = �1.47,
p= 0.145; CT quantity: t(95.85) = �1.33, p=0.187; AW consis-
tency: t(99.63) = �0.87, p=0.383; CT consistency: t(94.39) = �0.55,
p= 0.581); infant vocalizations: t(95.96) = �0.77, p=0.441), infant
characteristics (age at MRI scan: t(96.65) = �0.12, p= 0.908, gesta-
tional age at birth: t(100.71) = �0.43, p=0.670; birth weight:
t(101.54) = –0.146, p= 0.148; negative affectivity: t(104.53) = 0.05,
p= 0.960; sex: x 2(1) , 0.01, p=0.999), maternal characteristics
[maternal age: t(99.68) = 0.34, p= 0.785; number of previous preg-
nancies: t(96.51) = 0.05, p=0.962; income-to-needs ratio: t(118.71) =
�0.90, p= 0.445; primary language (English vs another lan-
guage): x 2(1) = 1.26, p= 0.261; education (more than or equal to
four-year college degree vs less than four-year college degree):
x 2(1) = 0.63, p=0.428; Hispanic or Latinx ethnicity: x 2(1) ,
0.01, p=0.992; or race (White vs person of color): x 2(1) = 0.25,
p= 0.615].

Identification of language networks
We display the group-level adjacency matrix showing the corre-
lations among the ROIs implicated in language comprehension
in Figure 3. We visually identified two language networks based
on two sets of ROIs that were positively intercorrelated.

Table 1. Anatomical landmarks and atlas references for each ROI

ROI Landmarks/references

Left temporal pole Anterior-most superior and middle temporal gyri gray matter
Left STS The posterior half of the STS, extending from the base of an

imaginary line draw from the posterior end of the Sylvian
fissure down/laterally to the mid-point of the temporal
lobe

Right TPJ Gray matter from both angular and supramarginal gyri
Left TPJ Gray matter from both angular and supramarginal gyri
Left IFG (opercularis) Guided by the Desikan–Killiany atlas (Desikan et al., 2006)
Left IFG (triangularis) Guided by the Desikan–Killiany atlas (Desikan et al., 2006).
Left IFG (orbitalis) Guided by the Desikan–Killiany atlas (Desikan et al., 2006).
Left auditory cortex The gray matter of Heschl’s gyrus
Left frontal operculum The segment of gray matter starting at the anterior-most sec-

tion of the insula to the edge of the left IFG pars orbitalis
ROI

Table 2. Sample characteristics

Variable Mean or N SD Range

Infant characteristics
Age at MRI session (months) 6.80 0.56 5.95–8.48
Gestational age at birth (weeks) 39.63 1.53 36.00–43.50
Birth weight (pounds) 7.73 1.04 5.56–10.00
Negative affectivity 3.15 0.74 1.63–4.79
Sex = male 25

Maternal and family characteristics
Age (years) 33.30 4.75 24.31–44.44
N previous pregnancies 1.00 1.32 0–7
Income-to-needs ratio 1.50 0.46 0.21–2.21
Working memory 17.09 4.55 7–27
English verbal knowledge 32.68 3.99 23–38
Currently breastfeeding target infant 39
Primary language = English 38
Education�4-year college degree 46
Hispanic or Latinx 8
White 33
Asian or Asian American 10
Black or African American 2
Native Hawaiian or Pacific Islander 1
Other race 5

Language input
AW quantity 3709.92 1600.40 593–7788
CT quantity 78.92 32.61 14–174
AW consistency 0.74 0.11 0.46–0.97
CT consistency 0.55 0.13 0.20–0.81
Infant vocalizations 271.59 102.03 86–520

Language network connectivity (z)
Posterior temporal 0.07 0.12 �0.13–0.39
Frontotemporal 0.15 0.09 �0.04–0.37

N= 51 mother–infant dyads were included in the primary analyses. Among mothers whose primary lan-
guage was not English, mothers reported their primary language use as follows: Spanish (n= 4), French
(n= 3), Mandarin (n= 1), Cantonese (n= 1), Danish (n= 1), Polish (n= 1), Hindi (n= 1), Tamil (n= 1).
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Consistent with the subdivision of cortical language comprehen-
sion proposed by Skeide and Friederici (2016), we identified a
posterior temporal language network comprising the left audi-
tory cortex, the bilateral TPJ, and the left STS, and a frontotem-
poral language network comprising the left temporal pole, the
left frontal operculum, and three regions of the IFG (orbitalis, tri-
angularis, opercularis). Distributions of FC estimates in the iden-
tified language networks are presented in Figure 4.

Results of Louvain community detection confirmed statisti-
cally our visual designation of the subnetworks was appropriate.
The modules detected were highly similar to the networks we
created based on visual clustering and a priori designations, with
the exception of the left frontal operculum, which was detected
as distinct from the other two subnetworks. Results of our primary
analyses presented below were highly similar and conclusions
were identical when we excluded the left frontal operculum.

Associations of covariates with language input and FC in
language networks
We present Pearson correlation coefficients of the associations
among measures of language input and infant vocalizations in
Figure 5. CT quantity was positively associated with CT consis-
tency, AW quantity, and infant vocalizations (p values, 0.030),
but was not significantly associated with AW consistency; CT
consistency was positively associated with AW quantity, AW
consistency, and infant vocalizations (p values, 0.027); AW
quantity was positively correlated with AW consistency at the
trend level (p= 0.065); neither AW quantity nor AW consistency
were associated with infant vocalizations.

Gestational age at birth, infant age at the LENA assessment,
infant sex, temperament, maternal primary language (English vs
another language), breastfeeding status, maternal age, maternal
education, income-to-needs ratio, maternal verbal knowledge
scores, and maternal short-term memory scores all were not

associated significantly with any of the meas-
ures of language input or infant vocaliza-
tions (r values , 60.20, t statistics ,
61.62); however, birth weight was signifi-
cantly positively associated with CT quan-
tity, CT consistency, and infant vocalizations
(r values= 0.32–0.35, p values , 0.028).
Finally, FD values were not associated with
any of the measures of language input or
infant vocalizations except AW consistency;
infants with greater postcensoring FD values
experienced lower AW consistency (r(49) = –
0.33, p= 0.018).

FD values, gestational age at birth, infant
corrected age at the MRI scan, infant sex,
birth weight, maternal primary language,
maternal age, income-to-needs ratio, mater-
nal verbal knowledge scores, and maternal
short-term memory scores all were not asso-
ciated significantly with connectivity in ei-
ther network (r values , 60.28, t statistics
, 61.50); however, maternal education was
negatively associated with connectivity in
the frontal network (Spearman’s r =–0.38,
p, 0.001).

Formal model fitting in which we entered
estimates of connectivity in the posterior
temporal and frontotemporal networks as
the dependent variables and tested each of
the infant, maternal, and family characteris-

tics as covariates indicated that none of these variables improved
model fit above and beyond the effect of scanner. Specifically,
neither the addition of infant gestational age at birth (Pillai’s
trace, F(2,46) = 0.47, p=0.626), infant corrected age at the MRI
scan (linear age: Pillai’s trace, F(2,46) = 1.07, p=0.350; quadratic
age: Pillai’s trace, F(2,46) = 1.94, p=0.110), infant sex (Pillai’s
trace, F(2,46) = 0.72, p=0.492), infant birth weight (Pillai’s trace,
F(2,44) = 0.67, p = 0.725), breastfeeding status (Pillai’s trace, F(2,46)
= 0.02, p = 0.720), maternal primary language (English vs
another language; Pillai’s trace, F(2,41) = 1.90, p=0.161), maternal
age (Pillai’s trace, F(2,46) = 1.42, p=0.251), family income-to-
needs ratio (Pillai’s trace, F(2,46) = 2.05, p= 0.140), maternal edu-
cation (Pillai’s trace, F(2,46) = 0.49, p=0.613), maternal verbal
knowledge (Pillai’s trace, F(2,46) = 1.58, p=0.216), nor maternal
short-term memory (Pillai’s trace, F(2,42) = 0.01, p=0.731), signif-
icantly improved model fit. Although the effect of the scanner on
which the rsfMRI data were acquired was not significantly asso-
ciated with FC across the posterior temporal and frontotemporal
networks (Pillai’s trace, F(4,48) = 1.64, p= 0.169), we retained the
variable in all analyses.

Associations between the consistency of language input and
FC in language networks
Neither the consistency of AWs (Pillai’s trace, F(2,46) = 0.09,
p= 0.916) nor the consistency of CTs (Pillai’s trace, F(2,46) = 0.74,
p= 0.484) were associated with FC across the posterior temporal
and frontotemporal networks (see Fig. 6). Findings were highly
similar when we examined associations between the quantity of
language input and FC using a threshold of,0.1 for correlations
among ROIs. The consistency of AWs was not associated with
FC across the posterior temporal and frontotemporal networks
(Pillai’s trace, F(2,46) = 0.02, p= 0.622), nor was the consistency of
CTs (Pillai’s trace, F(2,46) = 0.04 p= 0.355).

Figure 2. Distributions of each measure of language input.
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Associations between the quantity of
language input and FC in language
networks
The quantity of AWs was not associated with
FC across the posterior temporal and fronto-
temporal networks (Pillai’s trace, F(2,46) =
0.79, p=0.460; see Fig. 6); however, consist-
ent with our hypothesis, the quantity of CTs
was significantly associated with FC across
the networks (Pillai’s trace, F(2,46) = 4.75,
p= 0.013). Although CT quantity was not sig-
nificantly associated with connectivity in the
frontotemporal network, CT quantity was sig-
nificantly negatively associated with connec-
tivity in the posterior temporal network (b =
�0.35, SE=0.13, t(47) = �2.81, p=0.007, 95%
CI[�0.65, �0.11], DR2 = 0.14; see Fig. 6).
According to the Bayes factor, the alternative
hypothesis that CT quantity explained var-
iance in connectivity in the posterior temporal
network was 7.05 times more likely than the null hypothesis, indi-
cating positive evidence for the alternative hypothesis (Kass and
Raftery, 1995).

We conducted diagnostic tests to determine whether the signif-
icant association between the quantity of CTs and FC in the poste-
rior temporal network was robust to potential outliers. First, we
examined the distribution of Studentized residuals for the linear
regression model in which FC in the posterior temporal network
was entered as the dependent variable and the quantity of CTs and
scanner were entered as the independent variables. All Studentized
residuals were less than three, suggesting there were no extreme
cases. Second, we used the “outlierTest” function from the “car”
package in R (Fox and Weisberg, 2019) to run a Bonferroni cor-
rected outlier test for this model. The most extreme observa-
tion included in the model (Studentized residual = 2.49) was
not a significant outlier (Bonferroni p = 0.829).

Given previous findings of an association between socioeco-
nomic status (SES) and language abilities (Fernald et al., 2013),
we conducted additional analyses to determine whether the

association between CT quantity and FC was independent of
family income-to-needs ratio and maternal education. The effect
of CT quantity remained significant when covarying for these
variables (Pillai’s trace, F(2,44) = 4.79, p= 0.013); further, neither
variable moderated the association between CT quantity and FC.

Finally, findings were highly similar when we examined associ-
ations between the quantity of language input and FC using a
threshold of ,0.1 for correlations among ROIs. The quantity of
AWs was not significantly associated with FC across the posterior
temporal and the frontotemporal networks (Pillai’s trace, F(2,46) =
0.74, p=0.483); however, the quantity of CTs was significantly asso-
ciated with FC across these networks (Pillai’s trace, F(2,46) = 4.80
p=0.013) such that infants who engaged in more CTs had lower
FC in the posterior temporal network (b =�0.37, SE=0.14, t(47) =
�2.72, p=0.009, 95%CI[�0.65,�0.010]).

Associations between infant vocalizations and FC in
language networks
Given the strong positive correlation between CT quantity and
infant vocalizations, we conducted a separate multivariate

Figure 3. Identification of language networks in sleeping infants. ROIs were selected based on a review of the ontogeny of the cortical language network (Skeide and Friederici, 2016) and
are areas that have been identified as functionally specified for language comprehension. ROIs that were positively intercorrelated were grouped into two networks. The posterior temporal net-
work comprised the left auditory cortex, the bilateral TPJ, and the left STS. The frontotemporal network comprised the left temporal pole, regions of the IFG, and the left frontal operculum.

Figure 4. Distribution of FC in the posterior temporal and frontotemporal language networks. Connectivity values are
Fisher’s r to z transformed values estimated following regression of noise and mean signal computed across all subjects.
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regression model to test the association between infant vocaliza-
tions and FC in the language networks. The quantity of infant
vocalizations was associated with FC across the posterior tempo-
ral and frontotemporal networks (Pillai’s trace, F(2,46) = 3.24,
p=0.048). Specifically, infant vocalizations were not associated
with connectivity in the frontotemporal network but were nega-
tively associated with connectivity in the posterior temporal net-
work (b = �0.35, SE= 0.14, t(47) = �2.40, p=0.019, 95%CI
[�0.64, �0.06], DR2 = 0.11). The Bayes factor for the strength of
the evidence in support of the alternative hypothesis that infant
vocalizations explained variance in connectivity in the posterior
temporal network relative to an intercept only model was 2.18,
indicating weak evidence for the alternative hypothesis (Kass and
Raftery, 1995). Thus, although both CT quantity and infant
vocalizations were significantly negatively associated with con-
nectivity in the posterior temporal network, only CT quantity
explained meaningful variance in connectivity.

Discussion
We examined the relation between naturalistic language input and
the FC of language networks in five- to eight-month-old infants.
We passively recorded infants’ language environments, calculating
the quantity and consistency of AWs and adult–infant CTs in
daily life. Infants completed an rsfMRI scan during natural sleep
and we estimated FC among ROIs implicated in language compre-
hension. We first identified two subnetworks based on corre-
lations of activation among these ROIs: a posterior temporal
network comprising the left auditory cortex, left STS, and bilateral
posterior STG, and a frontotemporal network comprising regions
of the left IFG, the left frontal opercular cortex, and the left ante-
rior STG. We next examined the associations of measures of natu-
ralistic language input with FC in these language networks.
Among the four measures of language input, only the quantity of
CTs was associated with FC. Infants who engaged in more CTs
evidenced lower connectivity in the posterior language network
than did infants who engaged in fewer CTs.

Neural systems develop heterogeneously; previous research
using rsfMRI to examine neurodevelopment indicates that pri-
mary sensory networks develop first, followed by higher order
cognitive networks (Eyre et al., 2020). Our findings support a
model in which the cortical language circuit is subdivided
into two networks of functionally connected brain regions

corresponding to distinct developmental stages (Skeide and
Friederici, 2016). Whereas the posterior temporal network that
we identified comprises regions hypothesized to support bot-
tom-up processing of language input beginning in utero, the
frontotemporal network that we identified comprises regions
hypothesized to support top-down processing of lower-level lan-
guage representations beginning in the second year of life
(Skeide and Friederici, 2016). Although the top-down frontotem-
poral network develops later (Skeide et al., 2014), our results sug-
gest that this network exists in infancy. Emergence of this
network is likely supported by its structural connections, includ-
ing the arcuate fasciculus, that are present in neonates (Sket et
al., 2019).

Why was the quantity of CTs associated with FC in the poste-
rior temporal network but not in the frontotemporal network?
These two subnetworks likely have different developmental tra-
jectories, allowing for the possibility that language input affects
one more strongly than the other, based on the timing of expo-
sure. On the one hand, the posterior temporal network may be
especially sensitive to language input in the first months of life.
During CTs, infants may coactivate cells in this network as they
recruit the auditory cortex, STS, and STG to detect and catego-
rize words. Frequent coactivation of these cells could lead to
long-term potentiation (Segal, 2005). On the other hand, the
top-down processing network is posited to gradually develop
through the pruning of perisylvian neurons and the maturation
of white matter tracts including the arcuate fasciculus (Skeide
and Friederici, 2016). Associations between naturalistic language
input and FC in the frontotemporal network may emerge later in
development as children begin to understand complex sentences.

Whereas we found lower FC in the posterior temporal net-
work in infants who engaged in higher numbers of CTs, the only
other study to have examined the association between CTs and
fMRI measures reported higher connectivity in the left IFG in
relation to larger quantities of CTs (Romeo et al., 2018a).
However, Romeo et al. (2018a) did not use rsfMRI; instead,
they focused on responses to a language processing task in
preschoolers. Thus, our findings are best interpreted in the
context of research examining typical development of infant
rsfMRI networks. Unfortunately, resting-state network to-
pology in infancy is not well understood (Grayson and Fair,
2017). Although an investigation using spatial independent
components analysis (ICA) to identify whole-brain networks
found that the strength of connectivity within higher-order
cognitive networks, including a network labeled as “auditory/
language,” increased between the neonatal stage and one year,
connectivity within the primary sensory network decreased
across this period (Gao et al., 2015). A study focused on devel-
opment from four to ninemonths found that the strength of
connectivity decreased in all ICA-identified networks except
the default mode, including in the auditory and temporal net-
works (Damaraju et al., 2014). Taken together, these appa-
rently conflicting findings suggest that development of FC
differs across circuits and is nonlinear across the first year of
life. Rapid postnatal development may involve the preferential
strengthening of long-distance connections between brain
regions (see Grayson and Fair, 2017). Decreasing connectivity
in certain networks may reflect more efficient within-network
interactions as synapses that transmit less organized patterns
of activity are pruned and more distant connections are
formed (Tau and Peterson, 2010). Nonetheless, greater effi-
ciency in a network does not necessarily underlie observations
of lower FC (Poldrack, 2015).

Figure 5. Correlations among measures of naturalistic language input. Darker red squares
indicate more strongly positive correlation coefficients.
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Although our findings cannot be directly compared with stud-
ies of older children using different neuroimaging approaches,
they are consistent with the general finding that CTs, as opposed
to overheard adult speech, are uniquely associated with brain met-
rics (Romeo et al., 2018a,b; Merz et al., 2020). There are at least
two explanations for the apparent unique association of CTs with
FC in infancy. First, whereas overheard adult speech includes
speech directed toward other adults, CTs include caregivers’ initia-
tions of and responses to infant vocalizations. Therefore, CTs
likely involve a special speech register known as infant-directed
speech, which is defined by the slow and melodic cadence with
exaggerated pitch contours that caregivers tend to adopt when
interacting with infants (Fernald et al., 1989). Infants prefer
infant-directed speech to adult-directed speech (Byers-Heinlein et
al., 2020), and are better able to discriminate speech sounds
and segment words from infant-directed speech than from
adult-directed speech (Trainor and Desjardins, 2002;
Thiessen et al., 2005). Thus, CTs likely go hand-in-hand with
infant-directed speech, possibly leading to enhanced lan-
guage processing and, in turn, differential FC of the posterior
temporal language network.

A second explanation for the unique association of CTs with
FC is that CTs involve infant vocalizations. Infants who vocalize
more may elicit greater responsiveness from their caregivers,
leading to higher quantities of CTs. Thus, caregiver input
could explain minimal variation in the brain; instead, infants
who vocalize more could have differential FC of the posterior
temporal network regardless of the level of caregiver input.
Counter to this explanation, however, our findings suggest
that adult–infant vocal interactions, rather than infant vocal-
izations in isolation, explain variation in FC. Although infant
vocalizations were also negatively associated with FC in the
posterior language network, Bayes factors indicated that only
the association with CTs was meaningful. The dynamic

between caregivers and infants, involving infants’ active par-
ticipation combined with caregivers’ contingent responses,
may be most important for language learning and associated
brain function (Golinkoff et al., 2015).

It is important to consider the findings of this study in the
context of our approach to defining the language network. We
focused on a set of brain regions that have been identified as
functionally specialized for language processing to constrain our
analyses and conclusions. However, there are currently no con-
sensus criteria for defining the language network (Fedorenko
and Thompson-Schill, 2014). The ROIs we selected have also
been implicated in other types of processing (e.g., working mem-
ory; Kumar et al., 2016; Ghaleh et al., 2020). Further, other brain
regions that are involved in general purpose mental operations
(e.g., areas implicated in cognitive control) may support language
comprehension. Overall, any conclusions that are drawn about
the function of a brain network are tied to how that network is
defined (Fedorenko and Thompson-Schill, 2014).

The current study is limited by the correlational nature of the
analyses. Although there is experimental evidence that increasing
the amount of speech infants receive from their caregivers
improves language abilities (Ferjan Ramírez et al., 2019), future
research is needed to determine the effects of enhancing natural-
istic language input on brain development. In addition, the sam-
ple for the current study was Western and highly educated.
Unlike previous studies (Romeo et al., 2018a), we found no asso-
ciations with SES. Nonetheless, we observed wide variation in
language input within this restricted sample. Our findings must
be replicated in a larger and more diverse sample. Infant fMRI is
a burgeoning field, but less research has focused on infants
beyond the neonatal period (Azhari et al., 2020). This study high-
lights the feasibility and importance of building a program of
research focused on early postnatal experiences and infant neu-
rodevelopment throughout the first year of life.

Figure 6. Linear associations between measures of language input and FC in the posterior temporal and frontotemporal language networks. Results of a multivariate linear regression model
indicated that the quantity of CTs was associated with FC across the posterior temporal and frontotemporal networks. Infants who engaged in more CTs with adults in daily life had significantly
lower FC in the posterior temporal language network (DR2 = 0.14). None of the other multivariate regression models yielded statistically significant results.
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In conclusion, the current study provides evidence for the
role of vocal interactions with caregivers, compared with over-
heard adult speech, in the function of language networks in
infancy. The quantity of CTs was associated with patterns of neu-
ral activation in an early-developing posterior temporal language
network that is responsible for the bottom-up processing of lan-
guage stimulation. These findings extend those of previous stud-
ies that have identified associations between CTs and brain
structure and function in older children (Romeo et al., 2018a,b;
Merz et al., 2020), and suggest that rsfMRI is a useful method for
investigating experience-dependent differences in infants’ lan-
guage networks.
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