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Abstract: Droplets with a core–shell structure formed from two immiscible liquids are used in various
industrial field owing to their useful physical and chemical characteristics. Efficient generation
of uniform core–shell droplets plays an important role in terms of productivity. In this study,
monodisperse core-shell droplets were efficiently generated using a flexural bolt-clamped Langevin-
type transducer and two micropore plates. Water and silicone oil were used as core and shell phases,
respectively, to form core–shell droplets in air. When the applied pressure of the core phase, the
applied pressure of the shell phase, and the vibration velocity in the micropore were 200 kPa, 150 kPa,
and 8.2 mm/s, respectively, the average diameter and coefficient of variation of the droplets were
207.7 µm and 1.6%, respectively. A production rate of 29,000 core–shell droplets per second was
achieved. This result shows that the developed device is effective for generating monodisperse
core–shell droplets.

Keywords: core-shell droplet; microfluidic device; ultrasonic transducer

1. Introduction

Droplets with core–shell structures formed from two immiscible liquids have useful
physical and chemical characteristics, such as protection of the core phase by the shell
phase, simultaneous use of two substances, and improved shell phase reactivity using the
core phase as a catalyst. Therefore, core–shell droplets are commonly used in industrial
fields such as medicine, cosmetics, and food. Many studies using core–shell droplets have
been reported [1–5], wherein it is necessary to manage each droplet that is generated. Thus,
the efficient generation of uniform core–shell droplets has an important role in terms of
productivity, and is a topic of considerable research interest [6–17].

A large number of core–shell droplets can be simultaneously generated by membrane
emulsification [6]. This method is categorized bulk method. However, this method cannot
control the generation of each droplet, and two-step emulsification is required.

A microfluidic device composed of glass capillaries is a typical device used for generat-
ing core–shell drop-lets [7–11]. The droplets are generated individually in the microchannel,
achieving a production rate of thousands of droplets per second.

Core–shell droplets have a complex structure and are more difficult to generate than
single droplets. Thus, an efficient core–shell droplet generation method is required.
Monodisperse single droplets have been efficiently generated using vibration-based
methods [18–22]. It is possible to generate tens of thousands of droplets per second, which
is the production rate of droplets required for core-shell droplet generation with high
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efficiency. Among the flow methods that generate droplets one by one, the vibration-based
method has high generation efficiency.

In the present study, monodisperse core–shell droplets were generated by a vibration
method. A core–shell droplet generation device using a bolt-clamped Langevin-type
flexural transducer and two micropore plates was designed.

2. Design and Fabrication
2.1. Droplets Generation Principle

The principle behind the droplet generation in this research is surface tension. Fluid
is converted into droplets by surface tension. This method used relies on electric power
to turn fluid into droplets with controlled size. In addition, production rate of droplets is
controlled using vibration [18–22].

First, the supplied fluid is ejected from the micropore to air. The ejected jet flow
breaks under the effect of surface tension and turns into droplets. When vibration is
not applied, uniform droplets are not generated. Conversely, when vibration is applied,
uniform droplets are generated. Vibration is applied vertically to the flow direction of the
jet flow. Uniform waves with the same period as the vibration are generated on the surface
of the jet flow. The driven frequency is equal to the number of droplets.

A double-structure jet flow is necessary for core–shell droplet generation. This double-
structure jet is a coaxial flow in which the core phase is covered by a shell phase, thereby
generating core–shell droplets as they exit the device.

2.2. Structure

Figures 1 and 2 show the schematic and photograph of the core–shell droplet genera-
tion device, respectively. The length of the device is 42.7 mm and the diameter is 18 mm. A
bolt-clamped Langevin-type ultrasonic transducer was used to obtain flexural vibration.
Piezoelectric elements (PZT) polarized in the thickness direction are sandwiched between
metal blocks.
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To discharge a double-structure jet flow, the device has a channel part at the tip of
the device.

As shown in Figure 3, the channel part is assembled to three plates: an upper plate, an
intermediate plate, and a lower plate. The intermediate plate is sandwiched between the
upper and lower plates to provide a shell phase flow path. The upper and lower micropore
diameters are 50 µm and 100 µm, respectively. The schematic of the upper micropore plate
for the core–shell droplet generation device is shown in Figure 4. The micropore plate is
6 mm in diameter and 0.5 mm thick. A schematic for the lower micropore plate for the
core–shell droplet generation device is shown in Figure 5. The micropore plate is 12 mm in
diameter and 0.5 mm thick. Figure 6 shows the cross section of the device. The core phase
supplied from the top of the device is injected into the shell phase supplied from the side
to generate the core–shell two phase flow.
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2.3. Vibration Characteristics

This device was designed using finite element method analysis, as shown in Figure 7.
The device was subjected to a first-order flexural vibration mode. The fixed part and the
vibration node are at the same position; this design prevents vibration damping.
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For alignment of the center of the upper and lower micropore plates, the micropores
were placed at the center of each micropore plate. The flexural vibration is effective for
oscillating the center of the micropore plate.

The relationship between frequency, admittance, and phase is shown in Figure 8. This
device was designed to provide first-order flexural vibration at 30 kHz. The resonance
frequency of the fabricated device was observed using a laser Doppler vibrometer at a
frequency of 29 kHz.
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Figure 9 shows the relationship between distance from the tip of the core–shell droplet
generation device and vibration velocity when the driving frequency and the voltage were
29 kHz and 100 Vp-p, respectively. Vibration nodes were observed at 9 and 33 mm; a
vibrational antinode was observed at 21 mm, which corresponds to the center of the device.
The results show that the device oscillated under a first-order flexural vibration mode.
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Figure 10 shows the relationship between the applied voltage and the vibration
velocity at the tip of the core–shell droplet generation device when the driving frequency
was 29 kHz.
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3. Results
3.1. System Configuration

Figure 11 shows the core–shell droplet generation experiment system. Core–shell
droplets were generated in air when water and silicone oil (1 mm2/s) were used as the core
and shell phases, respectively. Core and shell phase fluids were supplied separately by
applying pressure with a compressor and regulators. The vibration speed was controlled
by the voltage and drive frequency applied to the piezoelectric element using a function
generator and a high-speed bipolar power supply. The generated droplets were observed
with a high-speed camera. The droplet diameter was measured using the image analysis
software “WinROOF” (MITANI Corporation, Japan). One hundred droplets were measured
for each type of experimental data.
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was generated.

3.2. Experiments with Varying Voltage

Core–shell droplets were generated when the applied voltage was changed. The
applied pressures of the core and shell phases were 200 kPa and 150 kPa, respectively. The
driving frequency was 29 kHz.

Figure 12 shows photographs of the generated core–shell droplets in the air when
the applied voltages were 0, 6, 7, and 100 Vp-p. The vibration velocities of the micropore
were 0, 0.12, 0.13, and 8.2 mm/s. Figure 13 shows the relationship between vibration
velocity and the diameter of droplet. Table 1 shows the average droplet diameter when the
applied voltage was changed. Figure 13 and Table 1 shows that monodisperse droplets
were generated when the applied voltage was larger than 7 Vp-p.
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Table 1. Average droplet diameter when the applied voltage was changed.

Applied voltage [Vp-p] 0 6 7 100
Vibration velocity [mm/s] 0 0.12 0.13 8.2

Average droplet diameter [µm] 207.3 221.2 209.4 207.7
Coefficient of variation [%] 14 9.7 4.7 1.6

3.3. Experiments with Varying Pressure

Core–shell droplets were generated by changing the applied pressure. The applied
voltage was 100 Vp-p and the drive frequency was 29 kHz.

Figure 14 shows photographs of the generated core–shell droplets in air when the
applied pressure for the core phase was changed. Figure 15 shows the relationship between
vibration velocity and droplet diameter. Table 2 shows average droplet diameter when
the applied pressure for the core phase was changed. According to Table 2 monodisperse
droplets were generated when the applied pressure was between 170 kPa and 320 kPa.
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Table 2. Average droplet diameter when the applied pressure for the core phase was changed.

Applied pressure [kPa] 160 170 200 320 330
Average droplet diameter [µm] 209.8 205.4 207.7 209.7 202.8

Coefficient of variation [%] 10.4 1.6 1.6 1.4 10.3

4. Discussion

As shown in the experimental results, monodisperse core–shell droplets were gener-
ated by adjusting the applied voltage and the applied pressure. The voltage has a threshold
value at which core–shell droplets can be generated. Because the applied voltage is almost
proportional to the vibration velocity, the droplet generation requires a vibration velocity
higher than the specified value.

There is a range of applied pressures at which core–shell droplets can be generated.
The lower limit of the applied pressure is determined by the difference between the applied
pressure of the core and shell phases ∆P. It is expressed by Equation (1)

∆P = 2γ ⁄Rc > 2γ ⁄ Ro, (1)

where γ is the interfacial tension between the core and shell phases, Rc is the spherical
radius of the discharged core phase, and Ro is the radius of the lower micropore. When
Rc is smaller than Ro, monodisperse droplets can be generated. In these experiments, γ
was 41.6 mN/m and Ro was 0.05 mm. Therefore, ∆P was 16.6 kPa. When the applied
pressure of the core phase was 160 kPa (∆P = 10 kPa), generation of monodisperse droplets
was impossible. When the applied pressure of the core phase was 170 kPa (∆P = 20 kPa),
monodisperse droplets could be generated.

The upper limit of the applied pressure is determined by the core–shell phase flow
velocity vcs and the core phase flow velocity vc. The core–shell phase flow velocity is the
flow velocity of the coaxial flow composed of the core and shell phases discharged from
the lower micropore. The core phase flow velocity is the flow velocity of the core phase
discharged from the upper micropore. When vcs > vc, droplet generation is possible. In
Figure 16, the graph shows the relationship between the applied pressure of the core phase
and the flow velocity. When the applied pressure of the core phase was 320 kPa, vcs was
15.3 m/s, and vc was 14.4 m/s, monodisperse droplets could be generated. When the
applied pressure of the core phase was 330 kPa, vcs was 15.3 m/s, and vc was 15.3 m/s,
generation of monodisperse droplets was impossible.
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Figure 16. Relationship between applied pressure for core phase and flow velocity when the applied
pressure for shell phase was 150 kPa.

Core–shell droplets were collected by ejecting water into a beaker. Figure 17 shows
photographs of the collected core–shell droplets observed with an optical microscope. The
water used in the core phase was colored blue. The water in the beaker was colored orange.
Compared to the total number of generated droplets, fewer droplets were observed because
many of them collapsed under the high flow velocity when they hit the water surface.
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Figure 17. Relationship between applied pressure for core phase and flow velocity when the applied
pressure for shell phase was 150 kPa.

5. Conclusions

Core–shell droplets were generated using flexural vibration. A core–shell droplet
generation device was designed using a bolt-clamped Langevin-type flexural transducer
and two micropore plates. The droplets were generated in air using water and silicone
oil. A generation rate of 29,000 core–shell droplets per second was achieved. Monodis-
perse core–shell droplets were generated by adjusting the applied voltage and the applied
pressure. The conditions of core-shell droplet generation were evaluated. We have suc-
ceeded in generating highly efficient and monodisperse core-shell droplets by using the
ultrasonic transducer.
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