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Abstract 

Anemia, for which erythropoiesis-stimulating agents (ESAs) and iron supplements (ISs) are used as preventive 
measures, presents important difficulties for hemodialysis patients. Nevertheless, the number of physicians able 
to manage such medications appropriately is not keeping pace with the rapid increase of hemodialysis patients. 
Moreover, the high cost of ESAs imposes heavy burdens on medical insurance systems. An 
artificial-intelligence-supported anemia control system (AISACS) trained using administration direction data 
from experienced physicians has been developed by the authors. For the system, appropriate data selection and 
rectification techniques play important roles. Decision making related to ESAs poses a multi-class classification 
problem for which a two-step classification technique is introduced. Several validations have demonstrated that 
AISACS exhibits high performance with correct classification rates of 72%–87% and clinically appropriate 
classification rates of 92%-98%. 

Key words: anemia, artificial intelligence, chronic kidney disease, erythropoiesis-stimulating agents, 
hemodialysis, iron 

Introduction 
Anemia, a common complication associated with 

chronic kidney disease (CKD), is a risk factor for high 
mortality [1]. Erythropoiesis-stimulating agents 
(ESAs) and iron supplements (ISs) are usually 
administered during hemodialysis treatment to 
patients. Generally, patients with large hemoglobin 
(Hb) variations are likely to have complications and 
often need to be hospitalized, and vice versa [2]. 
Therefore, physicians are trying to stabilize patients’ 
Hb values within a certain range. However, doing so 
is very difficult because of complicated disorders such 
as altered iron metabolism, poor response to ESAs, 
and residual blood in dialysis equipment, which are 
mostly common problems for hemodialysis patients. 

Moreover, general situations such as concomitant 
diseases and differing backgrounds of patients in 
different countries [3,4] are also affecting the 
difficulty. Compounding these difficulties are 
economics concerns such as high costs of ESAs, which 
are heavily burdening medical insurance systems 
[5,6]. 

Although hemodialysis patients are becoming 
increasingly numerous worldwide, physicians who 
are able to manage and administer treatment 
appropriately are not being trained in sufficient 
numbers to keep pace with the increasing numbers of 
patients requiring hemodialysis treatment [6]. To 
reduce burdens on physicians and medical insurance 
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systems under these circumstances, effective 
decision-making support systems are urgently 
anticipated. Recently, artificial intelligence (AI) 
technologies have been used extensively in 
nephrology [7,8]. Several studies conducted to assess 
hemodialysis have predicted vital reactions including 
studies specifically examining anemia control [9–12]. 
Model predictive control (MPC) approach was 
utilized and extended for effective anemia control 
[10-12]. Systems using AI for predicting Hb values for 
hemodialysis patients were presented in the literature 
[13,14]. Anemia control model (ACM) achieved 
improved control accuracy and decreased patients’ 
need for ESAs [15,16]. 

Although anemia control assisted by AI 
technologies appears promising, a discrepancy 
persists between technologies and actual medical 
practice. Widely diverse health conditions of actual 
patients and various legal and economic constraints 
can cause many difficulties. As a result, available 
datasets including data of similar patients are usually 
not so large. Therefore, a different approach was 
adopted for AI learning in this study: the AI learns 
based on decisions of experienced physicians rather 
than data showing reactions of the patients’ living 
bodies, such as Hb values. From highly experienced 
physicians with work histories including blood 
examination, we gathered data of their dosage 
direction decisions for patients there. To enhance the 
learning process, we constructed procedures for the 
rectification of clinical data. Then we developed an 
artificial-intelligence-supported anemia control 
system (AISCAS). 

Materials and Methods 
Patients and datasets 

Ethics statement 
Clinical data were collected retrospectively from 

electronic health records. This study, which was 
conducted in accordance with the Declaration of 
Helsinki, was approved by the institutional review 
board (IRB) at Shigei Medical Research Hospital 
(#20161219-1) and Kobayashi Medical Clinic 
(#20190925), as a retrospective observational study. 
The endpoint of this study approved at IRBs was to 
construct a decision-making support system that can 
provide dosage directions that are equal to or better 
than those of physicians who control dosages to 
maintain Hb values within 10–12 g/dl: the criterion 
stated in the Japanese hemodialysis guideline. 

Clinical data collection 
Clinical data were collected at two hospitals 

where Japanese adult hemodialysis patients were 

receiving anemia control treatment by board-certified 
senior members of the Japanese Society for Dialysis 
Therapy. Data were collected at Shigei Medical 
Research Hospital (Hospital S) from January 2015 
through May 2019 and at Kobayashi Medical Clinic 
(Hospital K) from November 2018 through September 
2019. All clinical data were anonymized. At Hospital 
S, the S1 and S2 datasets were prepared. Dataset S1 was 
used for training the neural network; S2 was used for 
raw data validation. At Hospital K, dataset K1 was 
prepared and used for raw data validation. At both 
hospitals S and K, directions by physicians at every 
hemodialysis occasion, which are every one or two 
weeks depending on the hospitals, were recorded in 
the form of UP, DOWN, or STAY because dosages for 
administration were directed by an ampoule or 
syringe unit under hospital regulations. The 
hemodialysis patients were 350 per year at Hospital S 
and 90 per year at Hospital K. The cases of mortality 
were 35 per year at Hospital S and 10 per year at 
Hospital K. Four physicians were involved 
respectively at Hospital S and Hospital K, working 
under team controls at both hospitals. Hospital K was 
selected to examine the applicability of AISACS at 
smaller hospitals. 

The patient selection criteria were the following: 
maintenance hemodialysis, no concomitant 
inflammation (CRP<0.3 mg/dL), no infectious 
disease, and no present cancer. Moreover, the data 
collection period for each patient case was chosen to 
include as many UP and DOWN directions as 
possible in both training and validation groups. This 
period-selection criterion was used because data for 
maintenance hemodialysis patients in stable condition 
include larger numbers of STAY directions than either 
UP or DOWN directions, indicating that appropriate 
timings of UP and DOWN decisions are significant for 
patient care. 

As a result obtained from data selection criteria 
described above, dataset S1 with N=130, W=6080, and 
dataset S2 with N=81, W=1857 were prepared from 
Hospital S, where N and W respectively represent the 
number of patients and hemodialysis occasions. 
Dataset S1 was used for training the neural network, 
whereas S2 was used for raw data validation. Dataset 
K1 was prepared and used for raw data validation 
with N=16 and W= 298. Dataset K1 was even smaller 
than other datasets. It was not used for training: only 
for validation. 

Darbepoetin alfa and epoetin beta pegol were 
used as ESAs. The ISs were provided in the form of 
sodium ferrous citrate, ferrous fumarate, and 
saccharated ferric oxide (Supplementary Table 1). The 
target range was set as 10.0-12.0 g/dl at Hospital S 
according to the Japanese hemodialysis guideline. The 
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Hb values were controlled by physicians within target 
ranges of 74% in S1 and 73% in S2 (Supplementary 
Table 2). Also, ESA-resistant patients were excluded. 
Therefore, the mean administered dosages of 
darbepoetin alfa were 20.2±10.1 µg/week in S1, 
18.8±14.1 µg/week in S2 and 20.4±13.5 µg/week in K1. 
The mean administered dosages of epoetin beta pegol 
were 26.1±8.9 µg/week in S1, 36.0±15.7 µg/week in S2, 
with no use in K1 (Supplementary Table 3). 

Inputs and outputs for machine learning 
Four items of blood examination were regarded 

as neural network inputs: Hb; mean corpuscular 
volume (MCV); ferritin; and transferrin saturation 
(TSAT). These items, their trends, and histories of 
dosages for ESAs and ISs up until the previous 
administration occasion were used as input 
parameters. Finally, AISACS outputs probabilities for 
ternary directions in the form of UP, STAY, and 
DOWN in ESAs, and UP and STAY for binary 
directions in ISs, as shown in Figure 1. Ternary 
directions were not needed for ISs because the ISs 
were set to stop after 6 weeks, in accordance with 
hospital regulations. 

 

 
Figure 1. Inputs and outputs for machine learning. 

 

Data rectification 
One important difficulty in collecting 

administered dosage data is posed by “delayed 
decisions.” For each hemodialysis occasion, patients 
underwent blood examinations. Usually the 
physicians then examined the results and gave 
administration directions. However, not all the 
decisions were made on the same day of the 
examination because of the delays in delivering the 
examination results to physicians caused by 
mechanical troubles, working time restrictions, and 
other factors. In such cases, the decision events were 
actually recorded with a week delay after the blood 
examination results on which the decision was 
actually based. Such a non-essential difference 
between blood examination and decision dates 
confused the neural network training process 
considerably. Therefore, we performed data 

rectification by moving the UP and DOWN decision 
dates to the exact dates on which the blood 
examinations were actually performed. This 
rectification procedure was done automatically and 
was confirmed by three physicians. The procedure 
was applied only for S1 to be used for neural network 
training. 

Machine learning and validations 

Preliminary analyses 
Before starting a deep learning approach, we 

applied simpler approaches to examine the 
complexity of our classification problem. Figure 2 
portrays a principal component analysis (PCA) based 
on input data. From Fig. 2 using three principal 
components (PCs), it is apparent that almost all UP 
and DOWN decisions were readily classifiable using 
linear approaches, but UP and STAY, or STAY and 
DOWN are difficult to classify clearly using PCs. 
Moreover, several outliers exist, such as UP decisions 
located in the upper-right corner of Fig. 2(b). Based on 
these preliminary attempts, we decided to apply a 
deep learning approach, which is expected to work 
for such nonlinear, high-complexity classification 
problems. 

Machine learning setup 
Machine learning codes were written using 

Keras with a TensorFlow backend [17,18]. The blood 
examination intervals for Ferritin/TSAT are usually 
longer than that of Hb/MCV. Therefore, we used 
independent neural networks of two kinds for the two 
forms of medication. Indeed, Hb and MCV are 
examined every week, whereas Ferritin and TSAT are 
examined every month, which means that only a 
quarter of the dataset has actual measured values of 
Ferritin and TSAT to predict ISs. For this reason, 
whereas a dense neural network was used for ESAs, a 
recurrent neural network (RNN) [19] was used for ISs 
as a more effective method when fewer data are 
available. Considering the tradeoff between training 
data size and representation ability, a recursive layer 
with sequence size two was added to the dense neural 
network, so two successive timings are passed as 
inputs. Both networks used 10 hidden layers with L1 

regularization and drop-out techniques [20] to 
prevent overfitting phenomena. 

Validations 
We defined correct classification rates RTOTAL as: 

𝑅TOTAL =
number of correct decisions

number of input decision data 

which were the ratios by which AISACS gave the 
same directions on the same dates as those given by 
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physicians. We also defined RUP, RSTAY, and RDOWN by 
confining the decision to each class. Using these 
values, we performed the following validations of two 
types. 

“Leave one patient out” cross-validation (LOPO) 
• LOPO was performed by removing data of one 

patient from the dataset. The neural network 
was trained using the remaining N-1 patient data. 
Then the removed patient data were used to 
evaluate the performance of the trained neural 
network. After repeating these procedure N 
times, correct classification rates were calculated 
using N patients results. The S1 dataset was used 
for LOPO. 

Raw data validation (RDV) 
RDV was performed using S2 and K1. First, we 

trained the neural network using S1. Then the correct 
classification rates were calculated using S2 (RDV_S) 
and K1 (RDV_K). Training and validation processes 
are completely independent in RDV_S and RDV_K. 

Validations performed in this study are 
presented in Table 1 and are shown schematically in 
Fig. 3. 

Class-imbalanced training data 
Although we selected the clinical data period 

that includes plentiful UPs and DOWNs, the numbers 
of different directions included in the dataset are still 
markedly imbalanced. For example, in dataset S1, ESA 
directions by physicians comprised 344 UPs, 585 
DOWNs, and 5151 STAYs. Simple machine learning 
using such an imbalanced dataset led to AI always 
outputting the STAY direction to achieve the highest 
RTOTAL. However, the timings of UP and DOWN are 
much more important for the present problem. Such a 
discrepancy can usually be controlled by class 
weights, respectively strengthening and weakening 
the effects of minority and majority classes on the 
target functions. Although values of class weights are 

usually defined using the inverse ratios of quantities 
of data, class-imbalance was not improved sufficiently 
for AISACS. Therefore, they were further adjusted to 
strengthen minority classes by trial and error so that 
RUP, RSTAY, and RDOWN are approximately equal in S1. 

 

Table 1. Validations and datasets using S1 and S2 from Hospital S 
and K1 from Hospital K 

Name Validation procedure Dataset for training Dataset for validation 
LOPO Leave one patient out 

cross-validation 
S1 

RDV_S Raw data validation S1 S2 
RDV_K Raw data validation S1 K1 

 

Two-step classification for the ternary classification 
for ESAs 

Because the ESA administration belongs to 
ternary classification problems, three probability 
values of PUP, PSTAY, and PDOWN, respectively 
corresponding to UP, STAY, and DOWN directions, 
were computed as outputs from the neural network. 
The simplest method for classification is to adopt a 
direction that gives the highest probability value. 
However, such a simple algorithm does not seem to 
work for the present situation in which the timings of 
UP and DOWN are crucially important to appropriate 
anemia control. Therefore, we propose the following 
procedure for the ternary classification problem: First, 
we set a threshold value T. The direction is assigned 
as STAY if the probability of STAY was larger than T. 
Otherwise, UP or DOWN, which has a larger 
probability, is assigned, as portrayed in Fig. 4. We 
designate the union of UP and DOWN classes as 
NON-STAY in the following sections. 

Results 
Classification between STAY and NON-STAY 
directions 

As described in Preliminary analyses, assigning 
classification for ESA administration between STAY 

 

 
Figure 2. Classification by principal component analysis. 
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and NON-STAY directions is much more difficult 
than assigning classification between UP and DOWN 
directions. Therefore, we examined the classification 
ability of AISCAS by drawing receiver operating 
characteristic (ROC) curves for STAY and NON-STAY 
directions by changing the threshold T. Figure 5 
portrays ROC curves and area under curve (AUC) 
values for ESAs and ISs. Threshold T is varied from 0 
to 1. For ESAs, RDV_K shows lower AUC than 
RDV_S, which can be a consequence of the fact that 
AISCAS was trained using data from Hospital S. This 
point is discussed in the discussion section. 

Correct classification rates after fixing 
threshold T 

On actual situations in hospitals, a threshold 
value T discussed in Class-imbalanced training data 
should be decided. One possible strategy using the 
ROC curves is to choose T corresponding to the 
nearest point on the ROC curve from point (x, y) = (0, 
1) to achieve similar abilities for both STAY and 
NON-STAY. For dataset S1, this value appeared to be 
0.475 for ESAs and 0.470 for ISs, which we adopted 
also for validations and which gives the correct 
classification rates RTOTAL for LOPO, RDV_S, and 
RDV_K as 80%, 77%, and 72% for ESAs and 81%, 87%, 
and 80% for ISs. 

Examining incorrect classification cases 
To analyze reasons for incorrect classification 

cases, we reviewed them carefully one-by-one, which 
revealed some directions by AISACS that appeared to 
be appropriate from a medical perspective, even 
though they differed from the physician’s recorded 
directions. We defined these as “clinically 
appropriate” directions. Moreover, we found that a 
characteristic type exists in “clinically appropriate” 
directions, which we defined as a “before physician” 
direction. In “before physician” directions, AISACS 
gave the same UP or DOWN directions with 
physicians, but gave it a week or so earlier than the 
physician did. “Before physician” directions are 
calculable automatically by counting up to three 
earlier administration occasions than the physician. 
Although such “before physician” directions are 
counted as incorrect classifications in Correct 
classification rates after fixing threshold T, they portray 
an interesting feature of AISACS. Other “clinically 
appropriate” directions are the other portion in 
clinically appropriate directions judged by 
board-certified doctors. The rate of “before physician” 
in validations LOPO, RDV_S, and RDV_K were, 
respectively, 9%, 7%, and 8% for ESAs and 5%, 5%, 
and 5% for ISs. The rate of “clinically appropriate: 
other” directions were, respectively, 8%, 8%, and 15% 
for ESAs and 9%, 6%, and 10% for ISs. Ratios for 
“correct classification,” “clinically appropriate: before 
physician,” and “clinically appropriate: other” are 
shown respectively in Figs. 6 and 7. 

 

 
Figure 3. Leave one patient out (LOPO) cross-validation and raw data validations (RDV) procedures. 
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Figure 4. Flow chart of two-step classification for ESAs. 

 
Finally, gross rates of appropriate directions, 

which were the sum of “correct classification,” 
“clinically appropriate: before physician,” and 
“clinically appropriate: other,” in validations LOPO, 
RDV_S, and RDV_K were 97%, 92%, and 95% for 
ESAs and 95%, 98%, and 95% for ISs. 

Discussion 
Four features of AISACS are particularly 

important. The first feature is what AI learns: 
reactions of living bodies or decisions of experienced 
physicians. Systems for predicting future Hb values of 
maintenance hemodialysis patients using AI 
technology have been reported as described in 
Introduction. We adopted a different approach by 
which AI learns from experienced physicians’ dosage 
directions. Actually, experienced physicians do not 
calculate detailed values of vital reactions when 
deciding dosages. We selected five items of blood 
examination, their trends, and dosage histories as 
inputs by looking at the judgments reported by 

physicians. 
A second feature is proper data selection and 

rectification. For example, “delayed decisions” appear 
frequently in real datasets because of mechanical 
difficulties and working time restrictions. In such 
cases, the decision dates were recorded with a one or 
two week lag after the blood examination actually 
occurred. Such a nonessential difference between 
blood examination and actual decision dates confuse 
the training process of our neural network 
considerably. Therefore, we moved the dates of UP 
and DOWN directions to dates on which the decisions 
were actually based. Such a data rectification 
procedure functioned well to make the training 
process efficient, even though the training in this 
study was based on a small sample of data. Figure 8 
presents correct classification rates for ESAs in S1 
improved during AISACS development: in (a) with a 
few layers in a neural network with no weighting 
techniques, it almost always yields the STAY 
direction. Then, by a tuning of class weights, the 
correct classification rates RUP, RSTAY, and RDOWN 
became approximately equal to each other as 
portrayed in Fig. 8(b). By increasing the number of 
layers and by adding several means from (c)-(e) such 
as class weights, dosage histories reference and 
two-step classification, the correct classification rates, 
especially for UP and DOWN, were improved 
considerably. 

When comparing the AUCs in raw data 
validation using data from hospitals S and K (RDV_S 
vs. RDV_K), the AUC from RDV_S was found to be 
higher than that from RDV_K because AISACS was 
trained using the dataset from Hospital S. Apparently, 
AISACS has some affinity to physicians at Hospital S. 
However, the “clinically appropriate” rates for 
Hospital K were sufficient, which suggests that 
AISACS has a certain degree of flexibility. 

 

 
Figure 5. ROC curves and AUC values for ESAs and ISs. 
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Figure 6. Categorization of classification results by AISACS for ESAs with T=0.475. 

 
Figure 7. Categorization of classification results by AISACS for ISs with T=0.470. (Sentences here were returned to the end of Results.) 

 
Figure 8. Correct classification rates for ESAs in S1 during developing AISACS. 

 
A third feature is the multi-class classification for 

ESAs. The direction timings of UP and DOWN are 
crucially important for appropriate anemia control. 
Therefore, we set a threshold between STAY and 
NON-STAY directions using the ROC curve based on 
probabilities calculated using the neural network. 
Then, NON-STAY is classified to UP or DOWN 
simply by comparison of their probabilities. It is 
possible to tune the frequency of decision changes by 
adjusting the threshold value. For example, if the 
threshold were set at a higher value, then AISACS 
would give more frequent UPs and DOWNs. This 
feature might be useful when AISACS is applied at 
different hospitals. 

A fourth feature is that AISACS sometimes 
shows better timing than physicians for changing 
dosage directions as described in Examining incorrect 

classification cases. The appearance of “before 
physician” directions portrays an interesting feature 
of AISACS, which can contribute to helping 
physicians to see right timings to increase or decrease 
dosages. There is an additional interesting point here. 
As presented in Classification between STAY and 
NON-STAY directions, the AUC value from RDV_K for 
ESAs was quite lower than that from RDV_S, which 
might be attributable to AISACS learned decisions of 
physicians at Hospital S. However, many of the 
classification cases were regarded as clinically correct 
through multiple doctors’ reviews. Actually, on one 
hand, the AUC of RDV_K for ESAs is the lowest 
among four raw data validations. On the other hand, 
the “clinically appropriate decision” portion of it was 
the highest. 
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The present study has the following limitations. 
We conducted retrospective analysis for patients from 
only two hospitals, involving only Japanese patients 
with a small sample size. Moreover, we did not 
evaluate the cost of ESAs and irregular cases such as 
patients with conditions aggravated by other diseases. 
Considering the endpoint approved at IRBs for this 
study, it is difficult at the moment, to ascertain 
whether AISACS can give better directions than 
physicians, or not. A prospective, multi-center study 
is therefore needed, especially for confirmation of 
patient safety. In addition, stimulating patterns of 
darbepoetin alfa and epoetin beta pegol differ greatly 
and should be considered carefully. In the datasets 
used for this study, dosages of ESAs were adjusted by 
a syringe unit, for which adopting three discrete 
directions, UP, STAY, or DOWN was thought to be 
practically preferable. Moreover, the timings of 
changing directions, UP or DOWN, were not 
significantly different between darbepoetin alfa and 
epoetin beta pegol. For this reason, we considered 
both ESAs in the same dataset. In the next step with 
larger datasets, dosages of darbepoetin alfa and 
epoetin beta pegol are expected to be learned 
independently. 

Conclusions 
Preventing anemia is important to improve the 

prognosis and quality of life of hemodialysis patients. 
However, the pathophysiology associated with 
anemia is complicated. It requires a great deal of 
experience to control anemia cases adequately. The 
number of such physicians is insufficient. For this 
reason, we have constructed AISACS. The challenges 
and contributions to anemia control practices 
described in this paper are the following. 
• Not-so-large training dataset: We have 

constructed proper data selection and 
rectification procedures that play important roles 
in enhancing machine learning efficiency with 
small datasets. 

• Importance of appropriate timing of dosage 
changes: AISACS provides ternary directions for 
ESAs equipped with a threshold value to control 
NON-STAY and STAY decision tendencies. 

• Widely diverse health conditions of dialysis 
patients: Patients have several legal and 
economic constraints. A feature that is unique to 
AISACS is that it learns dosage directions from 
physicians using no prediction model based on 
biochemistry or physiology. 
In addition, an interesting feature of AISACS is 

that it sometimes produces “clinically appropriate” 
directions that are different from those of physicians, 

but which are nonetheless proper. Finally, AISACS 
has achieved a quite high gross rate of correct 
classification, which means giving the same direction 
with physicians on the same date, as 72%-87% and 
clinically appropriate classification, although it 
includes different decisions from those of physicians 
as 92%-98% through several validations. These results 
attest to AISACS’ promising possibilities for clinical 
applications after wider validation through a 
prospective, multi-center study. 
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