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Abstract. Currently, meat and milk productions are significantly increasing especially in 
Asia. The supply of these products is vital to people’s health and well-being, whereas the 
efficiency of beef production appears to be still lower than other meat productions. 
Improvements in the quality and functionality of their livestock products, as well as their 
production efficiency, are required for further production. Animal biotechnologies have 
contributed to genetic improvement,   genetic diversity maintenance of domestic animals, etc. 
Basic animal biotechnologies, such as artificial insemination and embryo transfer, have been 
well established and applied as powerful tools for genetic improvement of livestock. In 
the applications of artificial insemination techniques ,  t h e  use of sexed semen has been 
now widely spread, and also efforts are also made in the development of the technology 
using a small amount of sperm. For embryo transfer, several types of vitrification 
technologies have been applied to improve pregnancy rates and contributed to the 
international/domestic supply of livestock embryos. Conventional animal biotechnologies, 
such as in vitro fertilization and intracellular sperm injection,  have been applied to not 
only livestock production and also human-assisted reproductive medicine. For in-vitro 
production of embryos in domestic animals, currently, oocytes have been collected from 
medium or large follicles (3-6 mm or larger in diameter) of ovaries. Although the oocytes 
derived from small follicles (less than 3 mm in diameter) exist more on the surface of 
ovaries, the developmental competence of the oocytes has been known to be significantly 
lower than those from medium follicles. If we could improve the competence of oocytes 
derived from small follicles significantly, we may be able to increase the number of female 
gamete resources for in vitro embryo production. Also, the development of techniques for 
producing transgenic and cloned animals has greatly contributed to the creation of 
pharmaceuticals and organs for xenotransplantation. Recently, furthermore, genome 
editing technologies, such as combined use of CRISPR/Cas9 and PiggyBac, have been 
developed and hav e  made it possible to correct specific parts of the genome and 
introduce mutations by homologous recombination. In this review, I would like to discuss 
the application and progress of the above biotechnologies, including our recent research 
results. 

 
1. Introduction 
Animal production is the largest user of land in the world, through grazing or consumption of fodder 
and feed grains [1]. Currently, meat and milk productions, as well as livestock counts, are 
significantly increasing especially in Asia [2]. Since livestock production requires a significantly 
large amount of natural resources and is responsible for about 14.5% of total anthropogenic 
greenhouse gas emissions [3], improving the genetic ability and production efficiency is very 



International Conference: Improving Tropical Animal Production for Food Security

IOP Conf. Series: Earth and Environmental Science 465 (2020) 012001

IOP Publishing

doi:10.1088/1755-1315/465/1/012001

2

 

important for sustainable livestock production and should be friendly to the global environment. 
Although the supply of these products is vital to people’s health and well-being, however, the 
efficiency of beef production appears to be still lower than other meat productions [2]. To 
produce 1 kg of meat, pork, poultry and milk productions require 6.4 kg, 3.3 kg and 0.7 kg of 
feed, respectively, while beef cattle require 25 kg [2]. Furthermore, improving fertility in dairy 
cows has been estimated to reduce methane emissions by 10-24% and nitrous oxide by 9-17% [3]. 
Improvements in the quality and functionality of their livestock products, as well as their production 
efficiency,  are required for reducing anthropogenic greenhouse gas emissions and sustainable 
livestock production. Since animal biotechnologies have contributed to the genetic improvement, 
genetic diversity maintenance of domestic animals, etc., the application and progress of the above 
biotechnologies, including our recent research results are discussed in the current review. 
 
2. Impact of basic animal technologies and the current innovation 
Basic animal technologies,  such as artificial insemination and embryo transfer,  have contributed t o  
i m p r o v i n g  livestock genetically as powerful tools.   Especially,   artificial insemination is the 
most powerful technique to provide the livestock industry for genetic improvement [4]. In Japan, 
the spread of artificial insemination and embryo transfer has boosted the milk yield of dairy cows by 
about 80% and 60%, respectively. Currently, timed artificial insemination, which is not required 
estrous detection, has already been very popular and its implementation rate is still gradually 
increasing [5]. The basic protocol of timed artificial insemination i s  the insertion o f  a  
progesterone or progestin-releasing device plus the intramuscular administration of estradiol at 
random days of the estrus cycle defined as day 0, device removal and intramuscular administration 
of prostaglandin,  estradiol and equine chorionic gonadotropin on day 8 and timed artificial 
insemination 48 h later [5]. Various modifications have been challenged in the duration of treatment 
with progesterone or progestin devices and the timing of administration of prostaglandin, for example; 
two days before device removal. Furthermore, use of sexed semen sorted by flow cytometry for a 
small difference in DNA content between X-chromosome and Y-chromosome allows 
predetermination of calf’s sex with close to 90% reliability and has benefits to both dairy and 
beef productions [6, 7], whereas usage of sexed semen for artificial insemination is much lower in 
the production of beef than dairy cattle. The conception rate appears to be still lower than the 
rate following artificial insemination with conventional semen [8-10] due to slower speed of sorting 
sperm as compared with the semen requirements of commercial dairy herds [11], although sexed 
semen has recently appli e d  successfully not only to heifers but also lactating cows [12]. 
Therefore, the further breakthrough has been required in the preparation of sexed semen. In this 
year, one of Japanese group published an interesting scientific paper [13], which demonstrated that 
both Toll-like receptors 7 (localized in the tail) and 8 (localized to the midpiece), TLR7/8, coding 
the X chromosome were expressed in approximately 50% of the epididymal spermatozoa and that 
ligand activation of TLR7/8 selectively suppressed the mobility of the X chromosome–bearing 
sperm (X-sperm) but not the Y-sperm without altering sperm viability or acrosome formation. 
They reported that following in vitro fertilization using the ligand-selected high-mobility sperm, 
90% of the embryos were XY male, whereas the TLR7/8-activated, slow mobility sperm 
produced embryos and pups that were 81% XX females [13].  

Following artificial insemination,   many spermatozoa a r e  phagocytized   [14]   by 
polymorphonuclear leukocytes recruited into the cervix and uterus during proestrus and estrus [15]. 
In many species (including cattle and pigs), seminal plasma has been demonstrated to reduce 
phagocytotic ingestion of sperm in the female reproductive tract and in vitro [16-20]. 
Supplementation with seminal plasma at artificial insemination has been demonstrated to 
improve preimplantation embryo development [21]. Furthermore, supplementation of semen 
extender with caffeine and calcium chloride for artificial insemination of fresh and frozen-thawed 
spermatozoa has been demonstrated to reduce the recruitment of uterine polymorphonuclear 
leukocytes and the activity of phagocytosis [22-24]. Since hen’s egg yolk protects sperm against 
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cold shock and preserves sperm functions and fertility following liquid or frozen preservation, the 
egg yolk has been supplemented in extenders for cryopreservation of boar spermatozoa [25] and 
directly deposited with sperm into the uterus [26]. We have demonstrated that the presence o f  
egg yolk stimulates t h e  phagocytotic activity of polymorphonuclear leukocytes in pigs but not in 
cattle [27]. Since sperm dosage of sexed semen for artificial insemination is usually relatively 
lower than that of conventional one, these treatments mentioned above may contribute to 
increasing the conception rate following timed artificial insemination with sexed semen. 

Reproductive technologies for genetic improvements, such as multiple ovulation and embryo 
transfer (MOET) and juvenile in vitro fertilization and embryo transfer (JIVET) have contributed 
to  accelerate genetic gain by increasing selection intensity and decreasing generation interval [28]. 
Especially in cattle, basic animal biotechnologies including embryo transfer, including 
superovulation, non-surgical embryo recovery, transfer, cryopreservation and in vitro production 
of embryos, have successfully developed, whereas improvement in cryopreservation of biopsied 
and in-vitro produced embryos will be required [29]. Techniques for embryo sexing based on 
detection Y chromosome-specific DNA sequence is currently the most reliable method [30]. As 
compared with PCR method, which has the risk of false positives due to DNA contamination during 
duplicate PCR procedures and/or electrophoresis, Loop-mediated isothermal amplification 
(LAMP) is a simple, rapid and novel DNA amplification method, which does not require special 
reagents or electrophoresis to detect the amplified DNA [30]. Recently, furthermore, non-surgical 
elongating conceptus transfer technique has also been developed and applied for sexing without 
specialized skills for biopsy [31]. 
 
3. Continuous development of conventional animal technologies 
Conventional animal biotechnologies, such as in vitro fertilization and intracellular sperm injection, 
have been applied to not only livestock production and also human-assisted reproductive medicine. 
In cattle, in vivo oocyte collection by transvaginal ultrasound-guided follicle aspiration (ovum pick-
up) and in vitro production of embryos are considered a reliable and cost-effective technique and 
have acquired a significant role in the breeding [32, 33]. In vitro maturation and fertilization 
technologies for embryo production in domestic animals have developed, the efficiency has been tried 
to improve by analyzing each condition during oocyte growth and maturation, fertilization and 
early development [32, 34-39]. In cattle, in vitro fertilization emerged as an alternative to 
superovulation and has become the technique of choice for embryo production, especially in Brazil 
[40]. In vitro embryo production overcame the main limitation of superovulation as a poor and 
inconsistent ovarian response to exogenous FSH stimulation commonly observed in most zebu 
breeds [41], the number of embryo production in vitro has been drastically increasing since 2002 in 
Brazil [40]. 

For in-vitro production of embryos, currently, oocytes have been collected from medium or 
large follicles (3-6 mm or larger in diameter) of ovaries in domestic animals [36, 42, 43]. 
Although the oocytes derived from small follicles (less than 3 mm in diameter) exist more on the 
surface of ovaries [44], both meiotic and developmental competences of the oocytes have been 
known to be significantly lower than those from medium follicles [45-47]. If we could improve the 
competence of oocytes derived from small follicles significantly, we may be able to increase the 
number of female gamete resources for in vitro embryo production. Levels of some cytoplasmic 
factors, such as transcript abundance of the MOS gene [47], cAMP and cGMP [48] or 
glutathione and metaphase-promoting factor [49] have also been demonstrated to differ between 
oocytes derived from small and medium follicles during culture for in vitro maturation. Recent 
research has demonstrated that the addition of factors secreted from not only oocytes, such as BMP15 
and GDF9 [50-52], but also surrounding cumulus cells, such as vascular endothelial growth 
factor [53, 54], during in vitro maturation enhanced the meiotic and developmental competences of 
small follicle-derived oocytes.  
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Several types of vitrification technologies have recently been applied to improve 
pregnancy rates and contributed to the international/domestic supply of livestock embryos [55-58]. In 
birds, however, cryobanking of germplasm had been limited to the use of semen, due to the 
morphology of female gamete (very large egg), preventing conservation of the W chromosome and 
mitochondrial DNA. Recently manipulation techniques of primordial germ cells including 
purification, cryopreservation, depletion, long-term culture, and transplantation were developed in 
chickens, the concept of a poultry primordial germ cells-bank has been proposed [59]. These cut-in-
edge animal biotechnologies will contribute to making a great breeding and sustainable new 
production system in the poultry industry. 
 
4. Current breakthrough in animal technologies 
Also, the development of techniques for producing transgenic and cloned animals has greatly 
contributed to the creation of pharmaceuticals and organs for xenotransplantation [60]. Recently, new 
efficient technologies to introduce foreign DNA or modify endogenous genes in oocytes, embryos 
and somatic cells, namely genome editing, such as use of CRISPR/Cas9 (to cut the target DNA at the 
region where we want) and PiggyBac transposon system (to transpose foreign DNA to the specific 
region), have been developed and has made it possible to correct specific parts of the genome and 
introduce mutations by homologous recombination [60, 61]. Since these technologies have been 
expected to reduce the risk in public health, such as preventing transmission of malaria and 
influenza [62] and have potential to functionally analyze new target molecules that could be used for 
therapeutic and vaccine purposes [63], genome editing technologies have been applied actively t o  
studies o n  human disease, xenotransplantation of humanized organs, mainly in pigs [60, 64]. 

Furthermore, Japanese scientists greatly recently have made spermatozoa and oocytes from 
both embryonic stem cells and induced pluripotent stem cells, and they succeeded in producing pups 
[65, 66]. The in vitro generation of germ cells from embryonic stem cells in mice has also recently 
been succeeded [67]. In cattle, efficient derivation of embryonic stem cells derived from blastocyst 
has been reported [68]. In humans, oogonia have been produced from induced pluripotent stem 
cells [69]. These breakthroughs in reproductive technologies have proposed an idea to shift largely 
paradigm, namely “in vitro breeding”, that accelerates genetic improvement by shortening the 
generational interval [70]. 
 
5. Conclusion 
Basic and conventional animal biotechnologies have developed to improve the efficiency and 
combined with those technologies to expand the application to not only animal production but also 
biomedical field. Furthermore, current new biotechnologies drastically make it possible to 
improve and create genetically domestic animals and quickly expand the utilization.  To accelerate 
sustainable animal production, which is  friendly with the current environment, further development 
and integration of cut-in-edge animal biotechnologies will be required. 
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