1	Association of dental occlusal support with the Prognostic Nutritional Index in patients with
2	esophageal cancer who underwent esophagectomy
3	
4	Reiko Yamanaka-Kohno, ¹ Yasuhiro Shirakawa, ² Mami Inoue-Minakuchi, ³ Aya Yokoi, ⁴ Misato Muro, ¹
5	Hirotaka Kosaki, ¹ Shunsuke Tanabe, ² Toshiyoshi Fujiwara, ² Manabu Morita ⁴
6	
7	1 Division of Hospital Dentistry, Central Clinical Department, Okayama University Hospital
8	2 Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine,
9	Dentistry and Pharmaceutical Sciences.
10	3 Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School
11	of Medicine, Dentistry and Pharmaceutical Sciences
12	4 Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and
13	Pharmaceutical Sciences
14	
15	Correspondence to: Yasuhiro Shirakawa
16	Correspondence to: Associate Professor Yasuhiro Shirakawa, MD, PHD, Department of
17	Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and
18	Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
19	E-mail: yasuwr@md.okayama-u.ac.jp

1 Authors' contributions:

2	Reiko Yamanaka-Kohno designed the study, obtained research funds, performed data collection, analysis
3	and interpretation of data, and wrote the initial draft of the manuscript. Yasuhiro Shirakawa, Shunsuke
4	Tanabe, and Toshiyoshi Fujiwara contributed to the analysis and interpretation of data from the
5	perspective of esophageal surgeons and assisted in the preparation of the manuscript. Mami Inoue-
6	Minakuchi and Aya Yokoi contributed to data collection, analysis and interpretation of data, and assisted
7	in the preparation of the manuscript. Misato Muro and Hirotaka Kosaki contributed to data collection.
8	Manabu Morita contributed to analysis and interpretation of the data from the perspective of a dentist,
9	epidemiologist, and statistician, and assisted in the preparation of the manuscript. All authors contributed
10	to interpretation and critically reviewed the manuscript. All authors approved the final version of the
11	manuscript, and agree to be accountable for all aspects of the work in ensuring that questions related to
12	the accuracy or integrity of any part of the work are appropriately investigated and resolved.
13	
14	
15	
16	
17	
18	
19	
20	

1 Abstract

2 Background	ł

- 3 The Prognostic Nutritional Index is useful for predicting surgical risk and overall survival based on
- 4 preoperative immunological and nutritional status in patients undergoing digestive organ cancer surgery.
- 5 The purpose of this study was to examine the association between the Prognostic Nutritional Index and
- 6 dental status in patients with esophageal cancer who underwent esophagectomy.
- 7 Methods
- 8 This retrospective case-control study included 73 patients who underwent resection of esophageal cancer
- 9 (69 males, 4 females; age 36-83). General and dental status were evaluated. The Prognostic Nutritional
- 10 Index was calculated based on the serum albumin concentration and the total lymphocyte count, and
- subjects were divided into two groups based on index scores: a higher group, characterized by scores ≥ 45
- 12 (n = 54); and a lower group, characterized by scores < 45 (n = 19). Univariate analysis and multiple
- 13 logistic regression analysis were used to compare between groups.
- 14 Results

15 Total protein, C-reactive protein, the number of sound and total decayed, missing and filled teeth, and the

- 16 rate of patients with poor dental occlusal support showed significant differences between the lower and
- 17 higher Prognostic Nutritional Index groups (p < 0.05). Stepwise logistic regression analysis by backward
- 18 selection approach showed that low total protein, few sound teeth and poor status of dental occlusal
- support were significantly associated with the lower Prognostic Nutritional Index (p = 0.007, 0.042 and
- 20 0.009, respectively).

- 1 Conclusion
- 2 Dental status, especially dental occlusal support and the number of sound teeth, showed a positive
- 3 relationship with the Prognostic Nutritional Index in esophageal cancer patients who underwent
- 4 esophagectomy.
- 5 Key Words: Esophageal cancer surgery, Prognostic factor, Nutrition
- 6

1 Introduction

2	Esophageal cancer is the eighth most common cancer worldwide and the sixth cancer-related
3	cause of death [1]. The global incidence rate and mortality of esophageal cancer are expected to increase
4	in the coming decades [2]. Esophageal cancer has a comparatively poor prognosis, with a 5-year survival
5	rate ranging from 11.4% to 79.7% depending on the stage of cancer progression, and an overall 5-year
6	survival of 43.7% at designated cancer care hospitals in Japan [3]. Although complete resection of
7	esophageal cancer is one of the favorable prognostic factors, esophagectomy has been identified as a
8	particularly complex surgical procedure due to the documented high rates of perioperative complications
9	and mortality [4].
10	Prediction of surgical risk and survival by evaluating preoperative status can be a useful
11	strategy to prevent postoperative complications and improve overall survival for patients with esophageal
12	cancer. Onodera's Prognostic Nutritional Index (PNI) was found to be one of the predictors of outcomes
13	after gastrectomy [5]. In 1984, Onodera et al. proposed a linear predictive model relating the risk of
14	operative complications, mortality, or both to nutritional status using the following equation: $PNI = 10 \times 10^{10}$
15	serum albumin level (Alb) (g/dl) + $0.005 \times \text{total lymphocyte count (TLC)/mm}^3$ in peripheral blood [5].
16	The PNI is simple to calculate, easy to interpret, and has been widely used to assess the preoperative
17	immunological and nutritional status of patients undergoing digestive surgery [6,7].
18	Previous studies demonstrated the relationship between nutritional status and occlusal support.
19	It has been reported that posterior natural tooth contact loss affected the intake of vitamins and dietary
20	fiber [8]. Moreover, a large-scale, cross-sectional survey showed that loss of occlusion of natural teeth

1	was a risk factor for malnutrition in community-dwelling frail elderly persons [9]. In addition,
2	Wakabayashi et al. reported that occlusal support is directly associated with dysphagia and indirectly with
3	malnutrition and activities of daily living via dysphagia in aged individuals needing long-term care [10].
4	Loss of posterior dental occlusion could be associated with decreased oral intake of vitamins and dietary
5	fiber, dysphagia, and malnutrition.
6	Given this background, we thought that the dental status of esophageal cancer patients could be
7	associated with the PNI. We hypothesized that dental status, especially occlusal support status, is
8	associated with the PNI in patients with esophageal cancer undergoing esophagectomy. The purpose of
9	this study was to examine the relationship between dental status and the PNI of patients with esophageal
10	cancer who underwent esophagectomy.
11	
12	Materials and Methods
13	Human rights statement
14	This retrospective, observational study was approved by the Ethics Committee of Okayama University
15	Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital
16	
	(No. Ken1907-014). All procedures followed were in accordance with the ethical standards of the
17	(No. Ken1907-014). All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki
17 18	
	responsible committee on human experimentation (institutional and national) and with the Helsinki

20 Subjects

1	A total of 73 patients who underwent esophageal cancer surgery (M/F: 68/5, 68.5±9.1 y) in
2	Okayama University Hospital from January to December 2012 were enrolled in this study. Our university
3	hospital has a Perioperative Management Center (PERIO) that consists of a multidisciplinary team
4	including dental staff who perform oral management in the perioperative period. All esophageal cancer
5	patients who underwent esophagectomy were under the management of this center; therefore, the detailed
6	dental records of esophageal cancer patients who underwent esophagectomy were available.
7	Data collection
8	All subjects underwent esophagectomy with PERIO management. The patients who underwent second-
9	stage surgery were excluded. Medical data, except blood data, and dental data were collected for all
10	subjects on the day of the first dental examination for perioperative oral management. The first dental
11	examination was performed before surgery. The data from blood tests performed immediately before
12	surgery were analyzed.
13	Parameters of general status
14	Age, sex, cancer stage, body mass index (BMI), drinking and smoking habits, presence or absence of
15	neoadjuvant chemotherapy and operative procedures were recorded. Operative procedures were divided
16	in 4 groups which were Right thoracotomy, Thoracoscopic surgery, Transhiatal esophagectomy and Left
17	thoracolaparotomy (lower esophagectomy). Drinking and smoking habits were divided into 2 categories,
18	"Yes" and "No". "Yes" included current and former drinkers and smokers. Never drinkers and never
19	smokers were assigned to "No". The following data were obtained from blood tests performed
20	immediately before surgery: total white blood cell (WBC)count, TLC, total protein (TP), Alb, and C-
21	reactive protein (CRP).

22 Parameters of dental status

1	The following dental status indicators were evaluated: numbers of present, sound, decayed (D), missing
2	(M), filled (F), and total decayed, missing, and filled (DMF) teeth [11], the Community Periodontal Index
3	(CPI) [12], and the number of functional tooth units (FTUs) [12-14]. The CPI was used to record
4	periodontal status. The scores of the CPI index are as follows: healthy periodontal conditions (Score 0);
5	gingival bleeding (Score 1); dental calculus and bleeding (Score 2); shallow periodontal pockets (4 to 5
6	mm) (Score 3); and deep periodontal pockets (6 mm or more) (Score 4). Periodontal status was divided
7	into 2 categories, "Healthy or mild periodontitis" (CPI 0,1,2) and "Moderate or severe periodontitis" (CPI
8	3, 4). Patients without teeth were assigned to "Healthy or mild periodontitis", because they had no
9	periodontal pockets and no periodontitis at the time. The number of FTUs was used to evaluate posterior
10	occlusal support without wisdom teeth, which is widely used for evaluating dental occlusal support [12-
11	14]. The number of FTUs was defined as the numbers of pairs of opposing posterior natural teeth and
12	artificial teeth that are implant-supported, fixed (bridge pontics), and removable prostheses. Dental
13	carious teeth with extensive coronal destruction, and missing teeth were regarded as non-functional. Two
14	opposing premolars were defined as one FTU, and two opposing molars were defined as two FTUs.
15	Therefore, the score ranged from 0 to 12, and a person with complete posterior occlusal support received
16	a score of 12; higher scores represented better posterior occlusal support, namely dental occlusal support.
17	The patients were divided into two groups by the number of FTUs, with 3 as a cut-off value; individuals
18	with ≤ 2 FTUs were defined as having poor dental occlusal support, because the frequency distribution of
19	FTUs was not a normal distribution by the Kolmogorov-Smirnov test ($p < 0.001$), and there were no
20	patients with $FTU = 3$.

1 PNI calculation and grouping into higher and lower levels

2	PNI was calculated according to Onodera's method: PNI = $10 \times Alb (g/dl) + 0.005 \times TLC (/mm^3)$ in
3	peripheral blood [5]. The patients were divided into two groups based on the previous studies: the higher
4	PNI group (PNI \ge 45, n = 54) and the lower PNI group (PNI < 45, n = 19) [15, 16, 17].
5	Statistical analyses
6	Parameters of medical and dental status were compared between the higher and lower PNI groups with
7	Mann-Whitney U test, Fisher's exact test, and the Chi-squared test. Logistic regression analysis with
8	stepwise regression manner by backward selection approach was used to determine the characteristics of
9	the PNI. In the stepwise method, all parameters were regarded as the independent variables at first, and
10	each parameter were removed from the model at $p < 0.10$ and added to the model at $p < 0.05.$ Results
11	were considered significant at $p < 0.05$. All statistical analyses were performed using SPSS for Windows
12	version 20 (SPSS Inc., Chicago, IL).
13	
14	Results
15	Characteristics of subjects in the lower and higher PNI groups
16	Nineteen of the 73 patients were in the lower PNI (< 45) group, and 54 patients were in the higher PNI (\geq
17	45) group. The characteristics of the subjects in the lower and higher PNI groups are shown in Table 1.
18	There were no significant differences between the groups in age, sex, cancer stage, BMI, drinking and
19	smoking habits, presence or absence of neoadjuvant chemotherapy and operative procedures. The WBC
20	count showed no significant difference, while TP and CRP showed significant differences between the

1 lower and higher PNI groups (p < 0.05) (Table 2).

2 Dental status and PNI

3	The dental status of subjects in the lower and higher PNI groups is shown in Table 3. The number of
4	sound teeth was significantly less in the lower PNI group than in the higher PNI group, whereas the
5	number of DMF teeth was significantly greater in the lower PNI group than in the higher PNI group. The
6	rate of patients with poor dental occlusal support was higher in the lower PNI group than in the higher
7	PNI group. There were no significant differences between the groups in numbers of present, D, M, and F
8	teeth, respectively, and in periodontal status.
9	Factors related to the PNI
10	In the stepwise logistic regression model by backward selection approach, low TP, few sound teeth and
11	poor dental occlusal support were significantly associated with lower PNI after adjusting for other
12	parameters (Table 4).
13	
14	Discussion
15	In this study, low TP, few sound teeth and poor dental occlusal support were found to be
16	significantly associated with the lower PNI on logistic regression analysis with stepwise method by

- 17 backward selection approach. This result supports our hypothesis that dental status, especially sound teeth
- 18 and dental occlusal support, is related to the PNI in patients with esophageal cancer who undergo
- 19 esophagectomy.
- 20

The most important finding of this study is that dental occlusal support showed a positive

1	relationship with the PNI in esophageal cancer patients who underwent esophagectomy. This finding is
2	novel and significant. A cross-sectional observational study reported that loss of posterior teeth occlusion
3	was independently associated with dysphagia risk, and maintaining and restoring posterior teeth occlusion
4	may be an effective measure to prevent dysphagia in older nursing home residents [17]. Although a causal
5	relationship between dental occlusal support and PNI remains unclear, we propose that dental occlusal
6	support may be clinically useful, as a potential risk factor for postoperative complications, particularly
7	pneumonia after esophagectomy. Furtherer studies are required to clarify the causal relationship between
8	maintaining or providing an appropriate dental prosthesis and prognosis.
9	Recently, the PNI has been increasingly recognized as the best prognostic score for predicting
10	surgical risk and overall survival in esophageal cancer patients among other prognostic scores, such as the
11	modified Glasgow Prognostic Score (mGPS), the Neutrophil Lymphocyte Ratio (NLR), the Platelet
12	Lymphocyte Ratio (PLR), and the Prognostic Index (PI) [16, 18, 19]. It is interesting that the PNI, which
13	has high accuracy in predicting the prognosis of patients with esophageal cancer, was associated with
14	dental occlusal support. This is the first study demonstrating a relationship between dental occlusal
15	support status and a prognostic factor in patients with esophageal cancer who underwent esophagectomy.
16	In this study, the number of FTUs was used as an indicator of dental occlusal support. Previous
17	studies reported a positive relationship between the number of FTUs and masticatory ability [20, 21].
18	Iwasaki et al. reported the temporal association of impaired dentition with decreases in selected nutrient
19	and food group intakes among older Japanese adults for five years using FTUs [22]. Moreover, a
20	systematic review reported that the number of FTUs was significantly associated with nutritional status in

1	elderly persons [23]. It was shown that well-nourished subjects had significantly more FTUs than
2	individuals at risk of malnutrition. Persons with more FTUs might have better nutritional status and PNI,
3	because they have better masticatory ability and more variety in their nutrient and food intakes.
4	Enhanced recovery after surgery (ERAS) programs pay attention to reducing the length of
5	hospital stay for patients undergoing digestive tract surgery [4, 24]. Oral nutrition is set as one goal of
6	ERAS programs. We sometimes experience that nutritional status clinically improves after appropriate
7	dental prostheses are provided for perioperative patients [25]. Dental occlusal support is indispensable for
8	swallowing and having a normal diet. The number of FTUs is an indicator for evaluating posterior
9	occlusal support that includes artificial teeth. Providing appropriate dental prostheses might accelerate
10	enhanced recovery after surgery, especially for patients without natural dental occlusal support.
11	Perioperative oral care intended to control dental infection can reduce postoperative pneumonia in
12	patients with esophageal cancer [26, 27]. We proposed another important role for dental intervention,
13	providing an appropriate dental prosthesis in addition to infection control in esophageal cancer patients
14	who undergo esophagectomy.
15	PNI was significantly associated with the number of sound teeth. There are no reports which
16	showed a relationship between number of sound teeth and systemic condition, to our knowledge. On the
17	other hand, there are several reports which showed the relationship between the numbers of present teeth
18	or missing teeth and cancer occurrence [28]. To evaluate the number of present teeth and missing teeth
19	might be relatively easy, because only judging whether tooth exist or not. As to evaluate the numbers of
20	sound or DMF teeth, diagnosis by dentists is essential and cumbersome, there might be few studies which

1	treated the numbers of sound or DMF teeth as parameters. The number of DMF teeth have almost
2	opposite meaning to the number of sound teeth, and presents dental caries experience in them life.
3	Although there are no evidence of relationship DMF and cancer incidence or survival rate of cancer, so
4	on, a positive association between caries experience and metabolic syndrome in Japanese adults were
5	reported recently [29]. In the future, studies which showed the relationship between caries experience or
6	the number of sound teeth and incidence or prognosis of cancer might increase gradually. Further studies
7	are required, and this study is the first report which showed a positive relationship between PNI and the
8	number of sound teeth in the esophageal cancer patients who underwent esophagectomy.
9	In addition to poor dental occlusal support and few sound teeth, low TP was associated with the
10	lower PNI after adjusting for potential confounders. PNI is a prognostic factor based on immunity and
11	nutrition used to predict surgical risk and overall survival in esophageal cancers patients, and it is
12	calculated using serum Alb and TLC. TP is mainly divided into Alb and globulin. Alb generally accounts
13	for more than half of TP, and TP is positively correlated with Alb. Thus, in the present study, the result
14	that low TP has a significantly correlation with the lower PNI appears reasonable. On the other hand,
15	CRP is an indicator of chronic inflammation. It was reported that an increasing CRP level was associated
16	with a decreasing survival rate and an increasing mortality rate in advanced cancer patients [30]. Since
17	there are clear dose-effect relationships between elevated CRP levels and outcomes, CRP is considered
18	useful for predicting prognoses in patients with advanced cancer. However, in this study, no significant
19	relationship between high CRP and lower PNI was identified from logistic regression analysis. This result
20	might have been affected by the fact that cancer stage in 60% of subjects ($n = 44/73$) was 0, I or II and

1 relatively early stages.

2	There are some limitations in this study. First, the subjects of this study were few, from only
3	one hospital, and only Japanese. Further studies are required to investigate the relationship between the
4	PNI and dental occlusal support. Second, a causal relationship between the PNI and dental occlusal
5	support cannot be deduced from this study because it was observational. Further interventional research is
6	necessary to clarify the causal relationship between providing an appropriate dental prosthesis and
7	nutritional status, prognosis, and incidence of postoperative complications in esophageal cancer patients
8	who underwent esophagectomy. If the nutritional status of esophageal cancer patients with poor dental
9	occlusion were to improve after providing appropriate dental prostheses in intervention studies, dental
10	treatment might give such patients a better prognosis. Finally, the relationship between actual prognosis
11	and dental occlusal support is not clear, because the PNI, which is a prognostic index, was used as an
12	objective variable in the present study. Further studies are required to clarify the relationship between
13	actual prognosis, including postoperative complications, weight loss, length of hospital stay, and overall
14	survival rate etc. and dental status.
15	Dental status, especially poor dental occlusal support and few sound teeth, was associated with
16	a lower PNI in the present study. This result suggests that poor dental occlusal support and few sound
17	teeth might be related to immunological and nutritional problems leading to higher surgical risk and lower
18	survival in patients with esophageal cancer undergoing esophagectomy.
19	

20 Acknowledgement

1		The authors are deeply grateful to the team members in Okayama University Hospital. The
2	autho	ors give a special thanks to Daisuke Ekuni DDS, Ph.D. (Department of Preventive Dentistry,
3	Okay	vama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences) for his advice
4	abou	t statistical analysis. This work was supported in part by the Japan Society for the Promotion of
5	Scier	nce (JSPS) through KAKENHI Grant-in-Aid for Scientific Research (C) (No. 16K11858 and
6	19K	10444) from JSPS.
7		
8	Cont	flicts of Interest
9		The authors declare that they have no conflict of interest to report.
10		
11	Refe	rences
12	1.	Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources,
13		methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-86.
14	2.	Malhotra GK, Yanala U, Ravipati A, et al. Global trends in esophageal cancer. J Surg Oncol.
15		2017;115:564-79.
16	3.	Foundation for Promotion of Cancer Research. 5-year Survival at the Designated Cancer Care
17		Hospitals (Diagnosed in 2008-2009). In: CANCER STATICTICS IN JAPAN-2018. Tokyo:
18		Center for Cancer Control and Information Services, National Cancer Center; 2018. pp.92.
19	4.	Low DE, Allum W, De Manzoni G, et al. Guidelines for Perioperative Care in Esophagectomy:
20		Enhanced Recovery After Surgery (ERAS [®]) Society Recommendations. World J Surg.

1 2019;43:299-330.

2	5.	Onodera T, Goseki N, Kosaki G. [Prognostic nutritional index in gastrointestinal surgery of
3		malnourished cancer patients]. Nihon Geka Gakkai Zasshi. 1984;85:1001-5.
4	6.	Hirahara N, Tajima Y, Fujii Y, et al. Preoperative Prognostic Nutritional Index Predicts Long-term
5		Outcome in Gastric Cancer: A Propensity Score-matched Analysis. Anticancer Res.
6		2018;38:4735-46.
7	7.	Okugawa Y, Toiyama Y, Oki S, et al. Feasibility of Assessing Prognostic Nutrition Index in
8		Patients With Rectal Cancer Who Receive Preoperative Chemoradiotherapy. JPEN J Parenter
9		Enteral Nutr. 2018;42:998-1007.
10	8.	Yoshida M, Kikutani T, Yoshikawa M, et al. Correlation between dental and nutritional status in
11		community-dwelling elderly Japanese. Geriatr Gerontol Int. 2011;11:315-9.
12	9.	Kikutani T, Yoshida M, Enoki H, et al. Relationship between nutrition status and dental occlusion
13		in community-dwelling frail elderly people. Geriatr Gerontol Int. 2013;13:50-4.
14	10.	Wakabayashi H, Matsushima M, Ichikawa H, et al. Occlusal Support, Dysphagia, Malnutrition,
15		and Activities of Daily Living in Aged Individuals Needing Long-Term Care: A Path Analysis. J
16		Nutr Health Aging. 2018;22:53-8.
17	11.	World Health Organization. Oral Health Survey: Basic Methods. 4th ed. Geneva, Switzerland:
18		World Health Organization; 1997.
19	12.	Ueno M, Yanagisawa T, Shinada K, et al. Masticatory ability and functional tooth units in
20		Japanese adults. J Oral Rehabil. 2008;35:337-44.

1	13.	Samnieng P, Ueno M, Shinada K, et al. Oral health status and chewing ability is related to mini-
2		nutritional assessment results in an older adult population in Thailand. J Nutr Gerontol Geriatr.
3		2011;30:291-304.
4	14.	Ueno M, Yanagisawa T, Shinada K, et al. Category of functional tooth units in relation to the
5		number of teeth and masticatory ability in Japanese adults. Clin Oral Investig. 2010;14:113-9.
6	15.	Jian-Hui C, Iskandar EA, Cai SI, et al. Significance of Onodera's prognostic nutritional index in
7		patients with colorectal cancer: a large cohort study in a single Chinese institution. Tumour Biol.
8		2015.
9	16.	Wen J, Bedford M, Begum R, et al. The value of inflammation based prognostic scores in patients
10		undergoing surgical resection for oesophageal and gastric carcinoma. J Surg Oncol.
11		2018;117:1697-707.
12	17.	Okabe Y, Takeuchi K, Izumi M, et al. Posterior teeth occlusion and dysphagia risk in older nursing
13		home residents: a cross-sectional observational study. J Oral Rehabil. 2017;44:89-95.
14	18.	Sakai M, Sohda M, Miyazaki T, et al. Association of Preoperative Nutritional Status with
15		Prognosis in Patients with Esophageal Cancer Undergoing Salvage Esophagectomy. Anticancer
16		Res. 2018;38:933-8.
17	19.	Matsumoto Y, Zhou Q, Kamimura K, et al. The Prognostic Nutrition Index Predicts the
18		Development of Hematological Toxicities in and the Prognosis of Esophageal Cancer Patients
19		Treated with Cisplatin Plus 5-Fluorouracil Chemotherapy. Nutr Cancer. 2018;70:447-52.
20	20.	Hildebrandt GH, Dominguez BL, Schork MA, et al. Functional units, chewing, swallowing, and

1		food avoidance among the elderly. J Prosthet Dent. 1997;77:588-95.
2	21.	Leake JL, Hawkins R, Locker D. Social and functional impact of reduced posterior dental units in
3		older adults. J Oral Rehabil. 1994;21:1-10.
4	22.	Iwasaki M, Yoshihara A, Ogawa H, et al. Longitudinal association of dentition status with dietary
5		intake in Japanese adults aged 75 to 80 years. J Oral Rehabil. 2016;43:737-44.
6	23.	Toniazzo MP, Amorim PS, Muniz F, et al. Relationship of nutritional status and oral health in
7		elderly: Systematic review with meta-analysis. Clin Nutr. 2018;37:824-30.
8	24.	Tang J, Humes DJ, Gemmil E, et al. Reduction in length of stay for patients undergoing
9		oesophageal and gastric resections with implementation of enhanced recovery packages. Ann R
10		Coll Surg Engl. 2013;95:323-8.
11	25.	Yamanaka R, Soga Y, Minakuchi M, et al. Occlusion and weight change in a patient after
12		esophagectomy: success derived from restoration of occlusal support. Int J Prosthodont.
13		2013;26:574-6.
14	26.	Soutome S, Yanamoto S, Funahara M, et al. Effect of perioperative oral care on prevention of
15		postoperative pneumonia associated with esophageal cancer surgery: A multicenter case-control
16		study with propensity score matching analysis. Medicine (Baltimore). 2017;96:e7436.
17	27.	Akutsu Y, Matsubara H, Shuto K, et al. Pre-operative dental brushing can reduce the risk of
18		postoperative pneumonia in esophageal cancer patients. Surgery. 2010;147:497-502.
19	28.	Chen QL, Zeng XT, Luo ZX, et al. Tooth loss is associated with increased risk of esophageal
20		cancer: evidence from a meta-analysis with dose-response analysis. Sci Rep. 2016;6:18900.

1	29.	Iwasaki T, Hirose A, Azuma T, et al. Associations between caries experience, dietary habits, and
2		metabolic syndrome in Japanese adults. J Oral Sci. 2019;61:300-6.
3	30.	Amano K, Maeda I, Morita T, et al. Clinical Implications of C-Reactive Protein as a Prognostic
4		Marker in Advanced Cancer Patients in Palliative Care Settings. J Pain Symptom Manage.
5		2016;51:860-7.
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

D	Lower PNI group	Higher PNI group	Total	Р
Parameter	(n = 19)	(n = 54)	(n = 73)	value [†]
	71.0	64.0	65.0	
Age (y)	(61.0, 74.0) [‡]	(60.0, 69.5)	(60.0, 71.5)	0.06
Sex (n)				0.60
Male/Female	17/2	51/3	68/5	0.60
Cancer stage (n)				
0, I and II	8	36	44	0.10
III and IV	11	18	29	
	21.1	21.4	21.1	0.92
BMI (kg/mm ²)	(17.6, 26.8)	(19.1, 25.1)	(18.9, 25.4)	0.83
Drinking habit (n)	16/2	40/5	(5)	0.42
Yes/No	16/3	49/5	65/8	0.42
Smoking habit (n)	10/1	51/2	69/4	1.00
Yes/No	18/1	51/3	69/4	1.00
Neoadjuvant chemotherapy (n)	10/0	25/20	25/29	0.70
Present/Absent	10/9	25/29	35/38	0.79
Operative procedures				
Right thoracotomy	5	10	15	
Thoracoscopic surgery	10	42	52	0.07
Transhiatal esophagectomy	3	1	4	0.07
Left thoracolaparotomy	1	1	2	
(lower esophagectomy)				

2 [†]Mann-Whitney U test or Fisher's exact test, [‡]Median (25%, 75%).

D. (Lower PNI group	Higher PNI group	Total	D 1 †	
	Parameter	(n = 19)	(n = 54)	(n = 73)	P value [†]	
	WBC (10 ³ /µl)	6.6 (4.3, 9.0) [‡]	5.6 (4.6, 7.3)	5.7 (4.5, 7.5)	0.481	
	TP (g/dl)	6.4 (5.9, 7.1)	6.8 (6.5, 7.1)	6.7 (6.4, 7.1)	0.029*	
	CRP (mg/dl)	0.60 (0.13, 1.72)	0.10 (0.05, 0.28)	0.15 (0.05, 0.53)	0.005**	
2	[†] Mann-Whitney U test,	[†] Mann-Whitney U test, [‡] Median (25%, 75%).				
3	*P < 0.05, **P < 0.01					
4						
5						
6						
7						
0						

	•				
	Lower PNI	Higher PNI	Total	Р	
Parameter	group $(n = 19)$	group (n = 54)	(n = 73)	value [†]	
Number of an example of the	22.0	21.0	21.0	0.354	
Number of present teeth	(13.0, 23.0)‡	(12.0, 27.0)	(13.0, 27.0)	0.554	
Number of sound teeth	4.0	4.0 8.0		0.025*	
Number of sound teem	(0.0-10.0)	(3.8, 16.0)	(1.5, 14.0)	0.025	
Number of D teeth	1.0	0.0	0.0	0.175	
Number of D teeth	(0.0, 5.0)	(0.0, 2.0)	(0.0, 2.0)	0.175	
Number of M teeth	9.0	7.0	7.0	0 3 1 3	
Number of Writeen	(6.0, 16.0)	(1.0, 16.8)	(2.0, 16.0)	0.313	
Number of F teeth	8.0	7.5	8.0	0.830	
Number of 1 ⁻ teeth	(3.0, 13.0)	(2.0, 13.0)	(2.5, 13.0)		
Number of DMF teeth	24.0	20.0	21.0	0.021*	
Number of Divit teetin	(19.0, 28.0)	(12.8, 25.0)	(15.0, 27.0)	0.021	
Dental occlusal support (n)					
Poor: FTUs 0-2	6	5	11	0.029*	
Good: FTUs 4-12	13	49	62		
Periodontal status (n)					
Healthy or mild periodontitis:	8	16	24		
No teeth or CPI 0,1, 2				0.236	
Moderate or severe periodontitis:	11	38	49		
CPI 3 or 4					

Table 3. Dental status of subjects in the lower and higher PNI groups

2 [†]Mann-Whitney U test or Fisher's exact test, [‡]Median (25%, 75%).

3 *P < 0.05

1 Table 4. Stepwise Logistic Regression Analysis by Backward Selection Approach with the Lower PNI (<

2	45) as	s the	Dependent	Variables
---	--------	-------	-----------	-----------

Factor	Odds Ratio	95% CI	P value
TP	0.189	0.056 - 0.631	0.007*
Number of sound teeth	0.899	0.811 - 0.996	0.042*
Dental occlusal support (poor)	9.363	1.769 - 49.565	0.009*

CI = confidence interval.

*P < 0.05