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22 Background: Information about the association of energy and iron-metabolising genes 

23 with endurance performance is scarce. The objective of this investigation was to 

24 compare the frequencies of polymorphic variations of genes involved in energy 

25 generation and iron metabolism in elite endurance athletes vs. non-athlete controls. 

26 Methods: Genotype frequencies in 123 male elite endurance athletes (75 professional 

27 road cyclists and 48 elite endurance runners) and 122 male non-athlete participants were 

28 compared by assessing four genetic polymorphisms: AMPD1 c.34C/T (rs17602729), 

29 PPARGC1A c.1444G/A (rs8192678) HFEH63D c.187C/G (rs1799945) and HFEC282Y 

30 c.845G/A (rs1800562). A weighted genotype score (w-TGS: from 0 to 100 arbitrary 

31 units; a.u.) was calculated by assigning a corresponding weight to each polymorphism. 

32 Results: In the non-athlete population, the mean w-TGS value was lower 

33 (39.962±14.654 a.u.) than in the group of elite endurance athletes (53.344±17.053 a.u). 

34 The binary logistic regression analysis showed that participants with a w-TGS>38.975 

35 a.u had an odds ratio of 1.481 (95%CI: 1.244-1.762; p<0.001) for achieving elite athlete 

36 status. Conclusions: The genotypic distribution of polymorphic variations involved in 

37 energy generation and iron metabolism was different in elite endurance athletes vs. 

38 controls. Thus, an optimal genetic profile in these genes might contribute to physical 

39 endurance in athlete status. 

40

41 Keywords: physical endurance; sports performance, sport; genetic profile; AMPD1 

42 protein; human HFE protein; human PPARGC1A protein.

43
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45 Novelty

46 1. Genetic profile in energy generation and iron-metabolising genes in elite endurance 

47 athletes is different than non-athlete´s.

48 2. There is an implication of an "optimal" genetic profile in the selected genes favouring 

49 endurance sporting performance. 

50
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68 1 Introduction

69 Endurance performance is related to a complex phenotype, influenced by a myriad of 

70 intrinsic and extrinsic factors (Lundby et al., 2017). Among the intrinsic factors, the 

71 likelihood of becoming an endurance athlete is influenced by the athlete’s skeletal 

72 muscle fibre composition, maximal cardiac output and oxygen uptake (VO2max) during 

73 exercise, metabolic efficiency and total haemoglobin mass (Joyner & Coyle, 2008). 

74 Interestingly, most of these traits are strongly influenced by genetics while some of 

75 them can be positively modified with endurance exercise training. Thus, the 

76 determinism of endurance athlete status is explained by the optimal combination of 

77 genetic predisposition and adequate physical conditioning (Eynon et al., 2013). 

78 It has been shown that at least 120 genetic markers are linked to elite athlete status 

79 (Ahmetov & Fedotovskaya, 2015) and almost all chromosomes contain at least one 

80 gene associated with sport performance. From these genetic markers of performance, 

81 more than 70 are associated with endurance-type sports activities although only about a 

82 dozen genes have shown positive associations with elite athlete status in three or more 

83 studies (Ahmetov et al., 2016; Ahmetov & Fedotovskaya, 2015; Ahmetov et al., 2009; 

84 Varillas Delgado et al., 2019).  Interestingly, most of the genetic variants associated 

85 with endurance performance codified proteins related to cellular metabolism (Ahmetov 

86 et al., 2009; Varillas Delgado et al., 2019) and muscle and cardiovascular function 

87 (Ahmetov & Fedotovskaya, 2015). 

88 Studies on genetic variants which influence elite endurance performance have shown 

89 that several genes associated with metabolic efficiency might entail an improvement in 

90 endurance capacity through decreased oxidative stress (Al-Khelaifi et al., 2018; 

91 Fikenzer et al., 2018; Lee et al., 2017; Petibois et al., 2002).  Nevertheless, the whole 
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92 metabolic genetic profile related to an elite endurance athlete’s status is not completely 

93 understood. The Adenosine Monophosphate Deaminase isoform 1 (AMPD1) is an 

94 important regulator of energy metabolism in the muscle fibre that shifts the equilibrium 

95 of the myokine reactions towards ATP production by converting AMP into inosine 

96 monophosphate (IMP) (Fedotovskaya et al., 2013; Gineviciene et al., 2014; 

97 Maciejewska-Skrendo et al., 2019). Previous investigations have found that carrying the 

98 T allele in one polymorphism in the AMPD1 gene (c.34C/T; rs17602729) might reduce 

99 the likelihood of being an elite endurance athlete (Cieszczyk et al., 2011; Gronek et al., 

100 2018) because it might be associated with a reduced VO2max and lower response to 

101 endurance training (Thomaes et al., 2011). Moreover, the peroxisome proliferator 

102 activated receptor γ coactivator 1α (PGC1α) is a transcriptional coactivator of the 

103 peroxisome proliferator-activated receptor (PPAR) family, which regulates the 

104 expression of several genes associated with substrate oxidation, mitochondrial 

105 biogenesis and muscle fibre conversion (Peplonska et al., 2017).  PGC1α is encoded by 

106 the PPARGC1A gene, and recent meta-analyses have shown that endurance athletes had 

107 a higher frequency of the Gly/Gly genotype in one common polymorphism (rs8192678) 

108 of the PPARGC1A gene, suggesting that this polymorphism might facilitate endurance 

109 performance (Chen et al., 2019; Petr et al., 2019; Tharabenjasin et al., 2019). Finally, 

110 genetics play a significant role in interindividual differences in serum iron parameters. 

111 The homeostatic iron regulator protein (HFE), codified by the HFE gene, regulates iron 

112 reabsorption (Grealy et al., 2015; Janssen & Swinkels, 2009; Ruiz et al., 2009). 

113 Individuals with C/G or GG genotypes in the c.187C/G variant (rs1799945) of this gene 

114 possessed higher circulating iron concentrations which ultimately produce a higher 

115 haemoglobin concentration (Barbara et al., 2016). A recent investigation has found that 
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116 the frequencies of the HFE CG/GG genotypes were higher in endurance athletes and 

117 were associated with greater VO2max in men athletes (Semenova et al., 2020).  

118 There is a consensus in the scientific community about the importance of the combined 

119 influence of several genetic variants, rather than the existence of one “endurance gene”, 

120 for excelling in endurance performance. The complex interaction of genetic variants 

121 (Pickering et al., 2019) might help to explain individual variations in human endurance 

122 performance and thus, the possession of an optimal polygenic profile seems necessary 

123 to succeed in endurance sports (Guth & Roth, 2013; Moran & Pitsiladis, 2017; 

124 Sarzynski et al., 2017). A previous investigation that calculated a potentially ‘perfect’ 

125 polygenic score in endurance athletes, by accounting the number of favourable alleles in 

126 seven candidate genes (including AMPD1, PPARGC1A and HFE), found that elite 

127 endurance athletes had a higher polygenic score than the control population (Ruiz et al., 

128 2009).  This outcome highlights the necessity of having several favourable alleles in 

129 candidate genes for achieving elite athlete status, at least in endurance exercise.

130 Thus, the scientific information that interrelates the influence of the AMPD1, 

131 PPARGC1A and HFE genes on endurance performance is scarce, and further 

132 confirmation is needed to clearly depict the requirement of possessing several 

133 favourable alleles in candidate genes to achieve elite athlete status in endurance exercise 

134 disciplines. The main objective of this study was to compare the frequencies of 

135 polymorphic variations of genes involved in energy generation and iron metabolism in 

136 elite endurance athletes vs. non-athlete controls.

137 2 Materials and methods

138 2.1 Study population
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139 The study involved 123 elite endurance athletes (75 professional road cyclists and 48 

140 elite endurance runners) and 122 men non-athlete participants (sedentary controls). All 

141 participants in the group of endurance athletes and sedentary controls were male. An 

142 analysis of the influence of liver-metabolising genes on elite athlete status has been 

143 published elsewhere with this same sample (Varillas Delgado et al., 2019). All the elite 

144 endurance athletes (25.8±4.2 years, range = 18-42 years) had tested negative for doping 

145 substances in controls made by the World Anti-doping Agency. The elite runners had a 

146 validated high level and elite sports records in endurance competitions: five athletes ran 

147 the marathon in less than 2h 10 min, 12 athletes ran the half-marathon in less than 1h 03 

148 min and the remaining 31 athletes participated in competitions of 10000 m and 5000 m 

149 recording times below 30 min and 14 min respectively. Some of the athletes achieved 

150 finalist positions in the marathon and the 10000 m in the European Championships, 

151 with gold and silver medals in the European Cross-Country Championship. The 

152 professional cyclists had participated in the Union Cycliste Internationale (UCI) World-

153 Tour events, including Grand Tours, classic cycle races, other one-day races or stage 

154 races (often in all of them). Ten of the cyclists reached one of the top five positions in 

155 the Grand Tours: Tour de France, Giro d´Italia and Vuelta a España. Both runners and 

156 cyclists were men, due to the small number of high-level women athletes in Spain who 

157 met the inclusion criteria. The sample of non-athlete controls was composed of healthy 

158 men matched by age to the athletes (27.9±5.1 years, range = 19-42 years); they were 

159 non-smokers and did not suffer from chronic or acute illnesses at the time of sampling. 

160 Informed consent was obtained from all the participants in the study. The study protocol 

161 was approved by the Committee of Institutional Ethics (University of Valladolid) and 

162 complied with the Declaration of Helsinki for Human Research of 1974 (last modified 

163 in 2000). Participants' rights and confidentiality were protected during the whole 
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164 experiment, and the genetic information was used only for the purposes included in this 

165 investigation.

166 2.2 Genotypes

167 2.2.1 Target genes

168 In this case-control investigation, the following functional single nucleotide 

169 polymorphisms (SNPs) were genotyped:

170 - c.34C/T polymorphism (p.Gln12X) of AMPD1 gene (location: 1p13) contributing to 

171 the appearance of a premature stop codon, which leads to some related metabolic 

172 muscle diseases due to the AMPD activity deficiency (Feng et al., 2017; Fischer et al., 

173 2005). Lack of the muscle-specific isoform of AMPD can cause a metabolic myopathy, 

174 with exercise-induced muscle symptoms such as early fatigue, cramps and/or myalgia 

175 (Gross, 1997). 

176 - c.1444G/A polymorphism (p.Gly482Ser) of PPARGC1A gene (location: 4p15.2) is a 

177 transcriptional coactivator of many different transcription factors and nuclear receptors. 

178 It can act through direct interaction with a transcription factor, control energy 

179 expenditure and regulate fat oxidation as well as non-oxidative glucose metabolism 

180 (Maciejewska-Skrendo et al., 2019). It is responsible for the induction of reactive 

181 oxygen species (ROS).  Because ROS have been implicated as contributors to both the 

182 onset and the progression of insulin resistance, this gene might play a role in the 

183 development of type 2 diabetes mellitus (T2DM) and obesity (Baar, 2004).

184 - c.187C/G polymorphism (p.His63Asp) of HFE gene (HFEH63D) (location: 6p21.3) 

185 causes a heterogenic metabolic syndrome which is due to the unchecked transfer of iron 

186 into the bloodstream and its toxic effects on parenchymatous organs (Barbara et al., 
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187 2016), inducing liver iron overload, are related to the risk of hepatocellular carcinoma in 

188 otherwise predisposed patients (Ropero et al., 2007) and a risk factor for nephropathy in 

189 type 2 diabetic patients (Moczulski et al., 2001).

190 - c.845G/A polymorphism (p.Cys282Tyr) of HFE gene (HFEC282Y) (location: 6p21.3), 

191 causes an excessively increased absorption of dietary iron and affects the normal 

192 activity of another protein, hepcidin, a negative regulator of iron homeostasis (Katsarou 

193 et al., 2019), causing liver cirrhosis and severe liver disease (Grosse et al., 2018; 

194 Juzenas et al., 2016) and is related to various tumour types; colorectal (Chen et al., 

195 2013) and breast (Liu et al., 2013).

196 2.2.2 Deoxyribonucleic acid (DNA) extraction and genotyping

197 - Nucleic acid purification

198 Genomic DNA was obtained from ethylenediaminetetraacetic acid (EDTA) anti-

199 coagulated blood samples according to standard phenol-chloroform procedures, 

200 followed by precipitation with ethanol.

201 - Genotyping

202 AMPD1, PPARGC1A and HFE genotyping were carried out by direct polymerase chain 

203 reaction (PCR) amplification and subsequent agarose gel electrophoresis in 2% agarose 

204 gel, followed by specific restriction fragment analysis, as previously described 

205 (Anderson et al., 2000; Steffensen et al., 1998; Su et al., 2008). All PCR reactions were 

206 carried out in 20µl of the total volume, with DNA concentrations between 125-250µgr. 

207 AMPD1 genotyping

208 The AMPD1 (c.34C/T) p.Gln12X was genotyped by PCR using an Eppendorf thermal 

209 cycler, using the forward primer 5´-CTTCATACAGCTGAAGAGACA-3´ and the 
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210 reverse primer 5´-GAATCCAGAAAAGCCATGAGC-3´. The PCR mixture and 

211 thermal-time profile were denatured at 94 °C for 5 min. The amplification step 

212 consisted of 30 cycles of 1 min at 94 °C, 1 min at 56 °C and 1 min at 72 °C, with a final 

213 extension of 5 min at 72 °C. After restriction enzyme digestion by NspI (ThermoFisher 

214 Scientific, USA), the restriction products were separated by electrophoresis on a 2% 

215 agarose gel.

216 PPARGC1A genotyping

217 The PPARGC1A (c.1444G>A) p.Gly482Ser was genotyped by PCR using an Eppendorf 

218 thermal cycler, using the forward primer 5’-CAAGTCCTCCAGTCCTCAC-3´ and the 

219 reverse primer 5’-GGGGTCTTTGAGAAAATAAGG-3’. The PCR mixture and 

220 thermal-time profile were denatured at 94 °C for 5 min. The amplification step 

221 consisted of 38 cycles of 45 s at 95 °C, 45 s at 60 °C and 45 s at 72 °C, with a final 

222 extension of 10 min at 72 °C. After digestion by MspI (ThermoFisher Scientific, USA), 

223 electrophoresis was carried out with separation of the restriction fragments in a 2 % 

224 agarose gel.

225 HFE genotyping

226 In the HFE gene we studied two polymorphisms: (c.187C/G) p.His63Asp (HFEH63D) 

227 and (c.845G/A) p.Cys282Tyr (HFEC282Y). For the His63Asp polymorphism, the forward 

228 primer 5´-ACATGGTTAAGGCCTGTTGC-3´ and reverse primer 5´-

229 GCCACATCTGGCTTGAAATT-3´ were used, and for p.Cys282Tyr polymorphism 

230 (HFEC282Y) forward primer 5´-CAATGGGGATGGGACCTACC-3´ and reverse 

231 primer 5´-GCTCTCATCAGTCACATACCCCAG-3´. The PCR mixture and thermal-

232 cycle profile were first denatured at 94 °C for 3 min. The amplification step consisted of 

233 40 cycles of 30 s at 94 °C, 30 s at 60 °C (for HFEH63D) and 30 s at 64 ºC (for HFEC282Y) 
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234 and 30 s at 72 °C, with a final extension of 8 min at 72 °C. After restriction enzyme 

235 digestion by BclI (ThermoFisher Scientific, USA) for HFEH63D and MspI 

236 (ThermoFisher Scientific, USA) for HFEC282Y, the restriction fragments were separated 

237 by electrophoresis on a 2% agarose gel.

238 2.3 Polygenic potential for endurance performance in the Spanish population 

239 The combined influence of the four polymorphisms studied was calculated using a 

240 weighted total genotype score (w-TGS). Initially, genotypes from each SNP were coded 

241 according to the number of alleles with potential benefits for endurance performance 

242 (Table 1; (Ruiz et al., 2009; Semenova et al., 2020)).  For this codification, we used an 

243 additive model (Williams & Folland, 2008) as follow: a score of 2 was assigned to the 

244 "optimal" or preferable endurance genotype (i.e., homozygosity for the allele previously 

245 associated to endurance performance), a score of 1 was assigned to heterozygote 

246 genotype, while a score of 0 was assigned to the less optimal genotype. Afterwards, 

247 these scores were weighted by using β-coefficients for each SNP (Table 1), based on the 

248 assumption that each SNP of interest have independent effects and contribute in an 

249 additive manner on endurance performance. To calculate the β-coefficient of each SNP, 

250 a multivariable regression analysis was conducted to assess the partial contribution of 

251 each SNP to the status of elite endurance athlete (coded as 1) or to control (coded as 0).  

252 The relative contribution of each SNP in relation to the status of elite endurance athlete 

253 was calculated as follows:  

254 SNP partial contribution = ([β-coefficient for SNP] / Σ [of all β-coefficient])

255 The score within each SNP (i.e., 2, 1 and 0) was then weighted by its partial 

256 contribution and a weighted genotype score was obtained for each SNP (w-GS).  

257 Afterwards, all w-GS were summed to obtain a unique w-TGS for each participant 
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258 (theoretical range: 0–8 a.u.).  Lastly, this value was transformed to a 0-100 a.u. scale to 

259 improve the comparison with previous investigations with a different number of SNP 

260 investigated (Ruiz et al., 2009; Varillas Delgado et al., 2019) using the following 

261 formulae:

262 w-TGS = ((w-GSAMPD1+w-GS PPARGC1A +w-GS HFEH63D +w-GS HFEC282Y) ×100)/8

263

264 With this approach, a w-TGS of 100 (a.u.) represents the "perfect” polygenic profile for 

265 endurance performance and a w-TGS of 0 a.u. would be the "worst" possible profile for 

266 endurance performance. 

267 2.4 Statistical analysis

268 Compliance of Hardy-Weinberg Equilibrium (HWE) in each SNP was tested using χ2 

269 tests. The statistical average and kurtosis were calculated using the Statistical Package 

270 for the Social Sciences (SPSS), v.21.0 for Windows (IBM Corp. Released 2012. IBM 

271 SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp). The probability of 

272 having an "optimal" endurance genotype for one to four polymorphisms between elite 

273 endurance athletes and non-athletics was calculated using the χ2 test with fixed α error 

274 of 0.05. The genotypic frequencies of the polymorphisms in AMDP1, PPARGC1A, 

275 HFEH63D and HFEC282Y variants were compared between elite endurance athletes and 

276 non-athletes, using a χ2 test with fixed α error of 0.05. The ability of w-TGS to correctly 

277 distinguish potential elite endurance athletes from non-athletes (0 = non-athlete, 1 = 

278 elite) was assessed using receiver operating characteristic (ROC) curves (Zweig & 

279 Campbell, 1993). With that purpose, the area under the ROC curve (AUC) was 

280 calculated with confidence intervals of 95% (95%CI). Finally, a binary logistic 
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281 regression model was used to study the relationship between w-TGS and the athletic 

282 status.

283 3 Results

284 3.1 Single SNP analysis

285 All the SNPs analysed met the HWE. In the AMPD1 variant, the group of endurance 

286 athletes showed a higher frequency in the “optimal” genotype (C/C 79.67%) when 

287 compared to the non-athlete group (C/C 66.39%; p=0.019). For PPARGC1A, the 

288 “optimal” genotype in elite endurance athletes (G/G 62.61%) was higher than in the 

289 non-athlete population (G/G 53.29%; p=0.011). In the HFEH63D, the distribution of the 

290 genotypes was different in elite endurance athletes and non-athletes (p<0.001). 

291 Specifically, a higher frequency in the “optimal” genotype was found in athletes (G/G 

292 6.51%) vs. non-athletes (G/G 0.00%; Table 2). However, there were no between-group 

293 differences in the genotype frequencies of the HFEC282Y gene (p=0.986; Table 2). In any 

294 case, there was no statistically significant differences in the genotypic distribution 

295 between elite endurance cyclists and elite endurance runners in any gene (data not 

296 shown). 

297 3.2 Weighted-total genotype score

298 The mean value of the w-TGS was lower in the control population (39.962±14.654 a.u., 

299 statistical kurtosis: -0.672±0.435) than in the group of elite endurance athletes 

300 (53.344±17.053 a.u., statistical kurtosis: -0.234±0.433; p<0.001). The distributions of 

301 frequency of individuals according to their w-TGS is represented in Figure 1. The w-

302 TGS distribution of elite endurance athletes was shifted right with respect to the 

303 distribution of non-athletes (p=0.001). ROC analysis showed significant discriminatory 
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304 accuracy of w-TGSs in the identification of elite endurance athletes (AUC=0.721; 

305 95%CI: 0.658-0.785; p<0.001) with a sensitivity of 0.837 and a specificity of 0.574 

306 (Figure 2). The corresponding w-TGS value at this point was 38.975 a.u. Binary logistic 

307 regression analysis showed that participants with a w-TGS higher than 38.975 a.u. had 

308 an odds ratio (OR) of 1.481 (95%CI: 1.244-1.762; p<0.001) of being elite endurance 

309 athletes, compared to those with a w-TGS below this cut-off value. 

310 4 Discussion

311 Previous research has been satisfactory in finding links between potential genetic 

312 markers associated with enhanced physiological functioning and elite endurance 

313 performance (Ahmetov & Fedotovskaya, 2015; Ruiz et al., 2009; Varillas Delgado et 

314 al., 2019). Interestingly, most of the genes previously associated with endurance 

315 performance codify proteins related to cellular metabolism and muscle and 

316 cardiovascular function. However, the information about the association of energy and 

317 iron-metabolising genes with elite endurance athlete status is unknown. This 

318 investigation represents the first attempt, using a polygenic model, to determine whether 

319 polymorphic variations in energy and iron-metabolising genes had a joint effect on the 

320 probability of becoming an elite endurance athlete. The main outcome of this 

321 investigation is that there is a significant ‘favourability’ in the genetic profile studied for 

322 elite endurance athletes versus non-athletes, which is represented in the single 

323 comparisons of the distribution of three out of the four genes studied (Table 2).  

324 However, the addition of all the genes investigated, estimated by the total genotype 

325 score, was even clearer to determine the polygenic influence of these genes on the 

326 endurance athlete status. Thus, these results suggest that there is an endurance-specific 

327 polygenic profile in energy metabolism and iron modulation variants that is more 

328 suitable for human endurance exercise performance.

Page 14 of 30

https://mc06.manuscriptcentral.com/apnm-pubs

Applied Physiology, Nutrition, and Metabolism



Draft

15

329 Although outstanding endurance exercise performance in sports such as cycling and 

330 running might be facilitated by an optimal polygenic profile in numerous key genes, the 

331 current analysis indicates that the influence of the genes investigated here is strong 

332 enough to differentiate elite athletes from non-athletes (Ahmetov et al., 2009). Perhaps, 

333 the clear differentiation between the group of elite endurance athletes and the control 

334 group in the genotypic distribution of the genes under investigation, and in the w-TGS, 

335 even with this low number of genes, is due to the high-performance status of endurance 

336 athletes. Elite athletes with a pure endurance-oriented phenotype and world-class 

337 performance, like the ones studied here, are seldom gathered together in 

338 genotype:phenotype association studies, and the majority of studies in the field have 

339 typically focused on endurance-related phenotype traits (Grealy et al., 2015; Yvert et al., 

340 2016). Of note, the results of the current investigation should not be translated to other 

341 forms of exercise and sports because the “optimum” genotype profile probably does 

342 differ between endurance- and more power-oriented or intermittent sports (Al-Khelaifi 

343 et al., 2018). 

344 The current analysis shows a higher w-TGS in elite endurance athletes than in non-

345 athlete controls. The cut-off value of 38.975 a.u. in the 0-100 w-TGS scale was effective 

346 to discriminate the likelihood of being an endurance athlete with respect to non-athletes. 

347 However, these results also suggest the unlikely nature of finding an individual with a 

348 polygenic profile equivalent to 100 w-TGS, even elite endurance athletes and in a w-

349 TGS made with only four genes. Interestingly, the Ruiz et al. study (2009) also found a 

350 difference in the w-TGS profile of Spanish elite endurance athletes (runners and 

351 cyclists) and non-athlete controls when investigating 7 different genes associated with 

352 performance. The current investigation is innovative because it confirms a more 

353 favourable w-TGS in elite endurance athletes, even when using a lower number of 
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354 genes, while it might be more accurate because eliminates some SNPs that have been 

355 discarded as influential for endurance performance (Del Coso et al., 2019).  In any case, 

356 the outcomes of this investigation confirms some of the findings by Ruiz et al. study 

357 (Ruiz et al., 2009) and clearly depict that elite endurance performance might be 

358 obtained without a w-TGS score close to 100 a.u. 

359 While previous investigations have found that the AMPD1 C allele may help athletes to 

360 attain elite status in sprint/power-based sports (Gineviciene et al., 2014; Thomaes et al., 

361 2011), the current investigation suggests that this allele might also benefit endurance 

362 performance. Interestingly, 79.7% of the elite endurance athletes were homozygous for 

363 the AMPD1 C allele. Although it has been found that heterozygosity in this 

364 polymorphism does not impede outstanding endurance performance (Rubio et al., 

365 2005), the results of the current analysis suggest that C/C homozygosity in the AMPD1 

366 gene might be the optimal genotype to excel in endurance sport (Grealy et al., 2015; 

367 Lucia et al., 2009; Rubio et al., 2005; Ruiz et al., 2009).

368 The distribution of the PPARGC1A genotype was different between elite athletes and 

369 the non-athlete population. However, a high proportion of non-athletes contained the 

370 optimal G/G genotype for this gene (Table 2). The importance of the G/G genotype in 

371 the PPARGC1A gene has been previously found when comparing samples of elite 

372 Turkish and Brazilian athletes with control populations (Guilherme et al., 2018; Tural et 

373 al., 2014) and its influence on performance has been associated with the induction of 

374 enhanced mitochondrial biogenesis associated with endurance training (Baar, 2004). 

375 However, the importance of this gene is not exclusive to endurance sports because a 

376 higher than expected proportion of the G/G genotypes was also present in strength 

377 based sports (Guilherme et al., 2018; Peplonska et al., 2017). The current analysis is 
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378 innovative because it interrelates the optimal PPARGC1A genotype with other genes 

379 associated with metabolism. This outcome suggests that, although the sole presence of 

380 the G/G genotype does not guarantee outstanding endurance performance, it might 

381 favour this phenotype in the presence of other optimal genetic profiles of genes key for 

382 performance. 

383 The tendency of endurance athletes to develop iron deficiency can trigger anaemia over 

384 time. For this reason, special care usually should be taken to avoid the mechanisms that 

385 cause this deficiency in elite athletes (Burden et al., 2015; Coates et al., 2017; 

386 Nikolaidis et al., 2018). The mutation of HFEH63D is associated with a higher capacity 

387 for iron absorption without causing hemochromatosis. However, the polymorphism 

388 HFEC282Y is more related to hemochromatosis (Chicharro et al., 2004; Zoller & Vogel, 

389 2004). In a study by Chicharro et al., (Chicharro et al., 2004) carried out with Spanish 

390 elite athletes, the frequency of G/G homozygotes for the HFEH63D variant was 3.7% in 

391 athletes and 3.1% in non-athletes, these frequencies being similar to our research (6.5% 

392 and 0.0% for athletes and non-athletes, respectively, Table 2). Low frequencies were 

393 also present in the G/A heterozygosity for HFEC282Y polymorphism with 3.1% in 

394 athletes and 4.5% in controls (Chicharro et al., 2004), comparable to the 7.3% and 7.4% 

395 found in our study. These results indicate that the proportion of elite endurance athletes 

396 with optimal genotype profiles for the HFE gene is low while heterozygosity in either 

397 HFEH63D or HFEC282Y polymorphic variants is more present in elite athletes than in the 

398 control population (Hermine et al., 2015). Accordingly, although the likelihood of 

399 having an optimal profile in the two polymorphisms of the HFE gene is minimal even in 

400 elite endurance athletes, heterozygosity might confer an intermediate phenotype in 

401 terms of iron absorption that might favour endurance performance.
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402 The current analysis presents some limitations that should be discussed to adequately 

403 understand the scope of the investigation. The relatively small sample of endurance 

404 athletes precludes us from drawing definite conclusions. Yet, due to the limited nature 

405 of the population under investigation, we believe this limitation is justifiable as there are 

406 hardly better endurance specialists in Spain. Numerous genetic variants that have not 

407 been included in the model are likely to appear in the foreseeable future, which can also 

408 explain individual variations in the potential for attaining elite endurance athletic status.  

409 In addition, this study has only focused on genetic data while it does not contain 

410 information that associates the genotype-phenotype in these athletes, which will need to 

411 be completed in subsequent research. Future research is also necessary in elite 

412 endurance women, as the influence of some polymorphisms might differ between sexes 

413 in Spanish Caucasian elite athletes. 

414 Conclusions 

415 The genotypic distribution of polymorphic variations involved in energy generation and 

416 iron metabolism was different in elite Spanish endurance athletes vs. controls. These 

417 results confirm the beneficial influence of an optimal genetic profile to obtain elite 

418 athlete status and widen the importance of genetics to become an elite endurance 

419 athlete. 
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1 TABLES

2 Table 1. Studied polymorphisms, score assigned to each genotype for the calculation of the total genotype score, and genotype frequencies in the 

3 Spanish population obtained from a public data base.  

Symbol Gene Polymorphism Genotype score β-coefficient Weighted genotype score
Iberian 

population
(%)

AMPD1 Adenosine monophosphate deaminase 1
c.34C>T 

(p.Gln12X)

0=TT
1=CT
2=CC

0.675
0=TT

1.0=CT
2.0=CC

0
28
72

PPARGC1A Peroxisome Proliferator Activated Receptor γ Coactivator α
c.1444G>A 

(p.Gly482Ser)

0=AA
1=GA
2=GG

0.383
0=AA

0.6=GA
1.2=GG

12
53
35

HFEH63D Hemochromatosis variant H63D
c.187C>G 

(p.His63Asp)

0=CC
1=GC
2=GG

1.425
0=CC

2.2=GC
4.4=GG

58
34
8

HFEC282Y Hemochromatosis variant C282Y
c.845G>A 

(p.Cys282Tyr)

0=GG
1=GA
2=AA

0.149
0=GG

0.2=GA
0.4=AA

92
8
0

4 Data for Spanish population have been obtained in www.ensembl.org.
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1 Table 2. Distribution of elite endurance athletes and non-athletes in the polymorphisms studied.

Elite endurance athletes (n=123)
n (%)

Non-athletes (n=122)
n (%)

p value
AMPD1 

rs17602729
T/T 0 (0.00%) 0 (0.00%)
C/T 25 (20.33%) 41 (33.61%)
C/C 98 (79.67%) 81 (66.39%)

0.019

PPARGC1A 
rs8192678

A/A 0 (0.00%) 8 (6.55%)
G/A 46 (37.39%) 49 (40.16%)
G/G 77 (62.61%) 65 (53.29%)

0.011

HFEH63D 
rs1799945

C/C 47 (38.21%) 88 (72.13%)
G/C 68 (55.28%) 34 (27.87%)
G/G 8 (6.51%) 0 (0.00%)

<0.001

HFEC282Y 
rs1800562

G/G 114 (92.68%) 113 (92.62%)
G/A 9 (7.32%) 9 (7.38%)
A/A 0 (0.00%) 0 (0.00%)

0.986

2  
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1 FIGURE CAPTIONS

2 Figure 1. Distribution of individuals according to their weighted total genotype score in 

3 elite endurance athletes and in non-athlete control population.

4 (*) The distribution is different from the distribution of non-athletes at p<0.001. 

5 Figure 2. ROC curve summarizing the ability of the weighted total genotype score to 

6 distinguish potential elite endurance athletes from non-athletes.
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Figure 1. Distribution of individuals according to their weighted total genotype score in elite endurance 
athletes and in non-athlete control population. 

(*) The distribution is different from the distribution of non-athletes at p<0.001. 
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Figure 2. ROC curve summarizing the ability of the weighted total genotype score to distinguish potential 
elite endurance athletes from non-athletes. 
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