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Abstract
We propose a new grammar-based language for defining information-extractors from documents
(text) that is built upon the well-studied framework of document spanners for extracting structured
data from text. While previously studied formalisms for document spanners are mainly based on
regular expressions, we use an extension of context-free grammars, called extraction grammars, to
define the new class of context-free spanners. Extraction grammars are simply context-free grammars
extended with variables that capture interval positions of the document, namely spans. While
regular expressions are efficient for tokenizing and tagging, context-free grammars are also efficient
for capturing structural properties. Indeed, we show that context-free spanners are strictly more
expressive than their regular counterparts. We reason about the expressive power of our new class
and present a pushdown-automata model that captures it. We show that extraction grammars can be
evaluated with polynomial data complexity. Nevertheless, as the degree of the polynomial depends
on the query, we present an enumeration algorithm for unambiguous extraction grammars that, after
quintic preprocessing, outputs the results sequentially, without repetitions, with a constant delay
between every two consecutive ones.
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1 Introduction

The abundance and availability of valuable textual resources in the last decades position text
analytics as a standard component in data-driven workflows. One of the core operations that
aims to facilitate the analysis and integration of textual content is Information Extraction (IE),
the extraction of structured data from text. IE arises in a large variety of domains, including
social media analysis [4], health-care analysis [43], customer relationship management [1],
information retrieval [45], and more.

Rules have always been a key component in various paradigms for IE, and their roles
have varied and evolved over the time. Systems such as Xlog [38] and IBM’s SystemT [27, 6]
use rules to extract relations from text (e.g., tokenizer, dictionary lookup, and part-of-speech
tagger) that are further manipulated with relational query languages. Other systems use
rules to generate features for machine-learning classifiers [26, 35].
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Figure 1 Extracted relation.

S → B ⊢x aAb ⊣y B

A → aAb ⊣x⊢y

B → aB bB ϵ

Figure 2 Production rules.

⊢x aa ⊣x⊢y bb ⊣y b
aa ⊢x aa ⊣x⊢y bb ⊣y b
aa ⊢x a ⊣x⊢y b ⊣y b

Figure 3 Ref-words.

Document Spanners. The framework of document spanners, presented by Fagin et al.,
provides a theoretical basis for investigating the principles of relational rule systems for
IE [11]. The research on document spanners has focused on their expressive power [11, 14,
34, 17, 32, 19] their computational complexity [2, 13, 18, 33], incompleteness [29, 33], and
other system aspects such as cleaning [12], dynamic complexity [20], distributivity [7] and an
annotated variant [8].

In the documents spanners framework, a document d is a string over a fixed finite
alphabet, and a spanner is a function that extracts from a document a relation over the
spans of d. A span x is a half-open interval of positions of d and it represents a substring
dx of d that is identified by these positions. A natural way to specify a spanner is by
a regex formula: a regular expression with embedded capture variables that are viewed
as relational attributes. For instance, the spanner that is given by the regex formula
(a ∨ b)∗ ⊢x aa∗ ⊣x⊢y bb∗ ⊣y (a ∨ b)∗ extracts from documents spans x and y that correspond,
respectively, with a non-empty substring of a’s followed by a non-empty substring of b’s. In
particular, it extracts from the document ababb the relation depicted in Figure 1.

The class of regular spanners is the class of spanners definable as the closure of regex
formulas under positive relational algebra operations: projection, natural join and union. The
class of regular spanners can be represented alternatively by finite state machines, namely
variable-set automata (vset-automata), which are nondeterministic finite-state automata that
can open and close variables (that, as in the case of regex formulas, play the role of the
attributes of the extracted relation). Core spanners [11] are obtained by extending the class
of regular spanners with string-equality selection on span variables. Although core spanners
can express strictly more than regular spanners, they are still quite limited as, e.g., there is
no core spanner that extracts all pairs x and y of spans having the same length [11].

To date, most research on spanners has been focused on the regular representation, that
is, regular expressions and finite state automata. While regular expressions are useful for
segmentation and tokenization, they are not useful in describing complex nested structures
(e.g., syntactic structure of a natural language sentence) and relations between different
parts of the text. Regular languages also fall short in dealing with tasks such as syntax
highlighting [30] and finding patterns in source code [39]. For all of the above mentioned
tasks we have context-free grammars. It is well known that context-free languages are strictly
more expressive than regular languages. Büchi [5] has showed that regular languages are
equivalent to monadic second order logic (over strings), and Lautemann et al. [25] have
showed that adding an existential quantification over a binary relation interpreted as a
matching is enough to express all context-free languages. This quantification, intuitively, is
what makes it possible to also express structural properties.

Contribution. In this work we propose a new grammar-based approach for defining the class
of context-free spanners. Context-free spanners are defined via extraction grammars which,
like regex formulas, incorporate capture variables that are viewed as relational attributes.
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Extraction grammars produce ref-words which are words over an extended alphabet that
consists of standard terminal symbols along with variable operations that denote opening
and closing of variables. The result of evaluating an extraction grammar on a document d is
defined via the ref-words that are produced by the grammar and equal to d after erasing the
variable operations. For example, the extraction grammar from Figure 2 produces also the
ref-words ⊢x a ⊣x⊢y b ⊣y abb and ab ⊢x a ⊣x⊢y b ⊣y b. Hence, it extracts from d := ababb
the two first tuples from the relation in Figure 1. In Figure 3 there are additional examples of
ref-words produced by this grammar. In general, the given grammar extracts from documents
the spans x and y that correspond, respectively, with a non-empty substring of a’s followed
by an equal-length substring of b’s. With a slight adaptation of Fagin et al. inexpressibility
proof [11, Theorem 4.21], it can show that this spanner is inexpressible by core spanners.

Indeed, we show that context-free spanners are strictly more expressive than regular
spanners and that the restricted class of regular extraction grammars captures the regular
spanners. We compare the expressiveness of context-free spanners against core and generalized
core spanners and show that context-free spanners are incomparable to any of these classes.
In addition to extraction grammars, we present a pushdown automata model that captures
the context-free spanners.

In term of evaluation of context-free spanners we can evaluate extraction grammars in
polynomial time in data complexity, where the spanner is regarded as fixed and the document
as input. However, as the degree of this polynomial depends on the query (in particular, on
the number of variables in the relation it extracts), we propose an enumeration algorithm for
unambiguous extraction grammars. Our algorithm outputs the results consecutively, after
quintic preprocessing, with constant delay between every two answers. In the first step of
the preprocessing stage we manipulate the extraction grammar so that it will be adjusted to
the input document. In the second step of the preprocessing we change it in a way that its
non-terminals include extra information on the variable operations. This extra information
enables us to skip sequences of productions that do not affect the output, hence obtaining
a delay that is independent of the input document and linear in the number of variables
associated with the spanner.

Related Work. Grammar-based parsers are widely used in IE systems [44, 37]. There are,
as well, several theoretical frameworks that use grammars for IE, one of which is Knuth’s
framework of attribute grammars [23, 24]. In this framework, the non-terminals of a grammar
are attached with attributes1 that pass semantic information up and down a parse-tree.
While both extraction grammars and attribute grammars extract information via grammars,
it seems as if the expressiveness of these formalisms is incomparable to extraction grammars.

The problem of enumerating words of context-free grammars arises in different contexts [41,
31]. Providing complexity guarantees on the enumeration is usually tricky and requires
assumptions either on the grammar or on the output. Mäkinen [28] has presented an
enumeration algorithm for regular grammars and for unambiguous context-free grammars
with additional restrictions (strongly prefix-free and length complete). Later, Dömösi [9] has
presented an enumeration algorithm for unambiguous context-free grammars that outputs,
with quadratic delay, only the words of a fixed length.

Organization. In Section 2, we present extraction grammars and extraction pushdown
automata. In Section 3, we discuss the expressive power of context-free spanners and their
evaluation. In Sections 4 and 5, we present our enumeration algorithm, and in Section 6 we
conclude.

1 The term “attributes” was previously used in the relational context; Here the meaning is different.
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2 Context-Free Spanners

In this section we present the class of context-free spanners by presenting two formalisms for
expressing them: extraction grammars and extraction pushdown automata.

2.1 Preliminaries
We start by presenting the formal setup based on notations and definitions used in previous
works on document spanners (e.g., [11, 18]).

Strings and Spans. We set an infinite set Vars of variables and fix a finite alphabet Σ that
is disjoint of Vars. In what follows we assume that our alphabet Σ consists of at least two
letters. A document d is a finite sequence over Σ whose length is denoted by |d|. A span
identifies a substring of d by specifying its bounding indices. Formally, if d = σ1 · · · σn where
σi ∈ Σ then a span of d has the form [i, j⟩ where 1 ≤ i ≤ j ≤ n + 1 and d[i,j⟩ denotes the
substring σi · · · σj−1. When i = j it holds that d[i,j⟩ equals the empty string, which we
denote by ϵ. We denote by Spans(d) the set of all possible spans of a document d.

Document Spanners. Let X ⊆ Vars be a finite set of variables and let d be a document.
An (X, d)-mapping assigns spans of d to variables in X. An (X, d)-relation is a finite set of
(X, d)-mappings. A document spanner (or spanner, for short) is a function associated with a
finite set X of variables that maps documents d into (X, d)-relations.

2.2 Extraction Grammars
The variable operations of a variable x ∈ Vars are ⊢x and ⊣x where, intuitively, ⊢x denotes
the opening of x, and ⊣x its closing. For a finite subset X ⊆ Vars, we define the set
ΓX := {⊢x, ⊣x x ∈ X}. That is, ΓX is the set that consists of all the variable operations of
all variables in X. We assume that Σ and ΓX are disjoint. We extend the classical definition
of context-free grammars [22] by treating the variable operations as special terminal symbols.
Formally, a context-free extraction grammar, or extraction grammar for short, is a tuple
G := (X, V, Σ, P, S) where

X ⊆ Vars is a finite set of variables,
V is a finite set of non-terminal symbols2,
Σ is a finite set of terminal symbols;
P is a finite set of production rules of the form A → α where A is a non-terminal and
α ∈ (V ∪ Σ ∪ ΓX)∗, and
S is a designated non-terminal symbol referred to as the start symbol.

We say that the extraction grammar G is associated with X.

▶ Example 1. In this and in the following examples we often denote the elements in V by
upper case alphabet letters from the beginning of the English alphabet (A, B, C, . . .). Let
Σ = {a, b}, and let us consider the grammar disjEqLen associated with the variables {x, y}
that is given by the following production rules:

S → B ⊢x A ⊣y B B ⊢y A ⊣x B

A → aAa aAb bAb bAa

2 Note that these are often referred to as variables, however, here we use the term “non-terminals” to
distinguish between these symbols and elements in Vars.
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A → ⊣x B ⊢y ⊣y B ⊢x

B → ϵ aB bB

Here and in what follows, we use the compact notation for production rules by writing
A → α1 · · · αn instead of the productions A → α1, · · · , A → αn. As we shall later see,
this grammar extracts pairs of disjoint spans with the same length. ⌟

While classical context-free grammars generate words, extraction grammars generate
words over the extended alphabet Σ ∪ ΓX . These words are referred to as ref-words [36].
Similarly to (classical) context-free grammars, the process of deriving ref-words is defined via
the notations ⇒, ⇒n, ⇒∗ that stand for one, n, and several (possibly zero) derivation steps,
respectively. To emphasize the grammar being discussed, we sometime use the grammar as
a subscript (e.g., ⇒∗

G). For the full definitions we refer the reader to Hopcroft et al. [22].
A non-terminal A is called useful if there is some derivation of the form S ⇒∗ αAβ ⇒∗ w

where w ∈ (Σ ∪ ΓX)∗. If A is not useful then it is called useless. For complexity analysis, we
define the size |G| of an extraction grammar G as the sum of the number of symbols at the
right-hand sides (i.e., to the right of →) of its rules.

2.3 Semantics of Extraction Grammars
Following Freydenberger [15] we define the semantics of extraction grammars using ref-words.
A ref-word r ∈ (Σ ∪ ΓX)∗ is valid (for X) if each variable of X is opened and then closed
exactly once, or more formally, for each x ∈ X the string r has precisely one occurrence of
⊢x, precisely one occurrence of ⊣x, and the former is before (i.e., to the left of) the latter.

▶ Example 2. The ref-word r1 := ⊢x aa ⊣y⊢x ab ⊣y is not valid for {x, y} whereas the
ref-words r2 := ⊢x aa ⊣x⊢y ab ⊣y and r3 := ⊢y a ⊣y⊢x a ⊣x ab are valid for {x, y}. ⌟

To connect ref-words to terminal strings and later to spanners, we define a morphism
clr : (Σ ∪ ΓX)∗ → Σ∗ by clr(σ) := σ for σ ∈ Σ, and clr(τ) := ϵ for τ ∈ ΓX . For d ∈ Σ∗,
let Ref(d) be the set of all valid ref-words r ∈ (Σ ∪ ΓX)∗ with clr(r) = d. By definition,
every r ∈ Ref(d) has a unique factorization r = r′

x · ⊢x · rx · ⊣x · r′′
x for each x ∈ X. With

these factorizations, we interpret r as a (X, d)-mapping µr by defining µr(x) := [i, j⟩, where
i := |clr(r′

x)| + 1 and j := i + |clr(rx)|. An alternative way of understanding µr = [i, j⟩ is
that i is chosen such that ⊢x occurs between the positions in r that are mapped to σi−1
and σi, and ⊣x occurs between the positions that are mapped to σj−1 and σj (assuming
that d = σ1 · · · σ|d|, and slightly abusing the notation to avoid a special distinction for the
non-existing positions σ0 and σ|d|+1).

▶ Example 3. Let d = aaab. The ref-word r2 from Example 2 is interpreted as the
({x, y}, d)-mapping µr2 defined by µr2(x) := [1, 3⟩ and µr2(y) := [3, 5⟩. ⌟

Extraction grammars define ref-languages which are sets of ref-words. The ref-language
R(G) of an extraction grammar G := (X, V, Σ, P, S) is defined by R(G) := {r ∈ (Σ ∪
ΓX)∗ S ⇒∗ r} . Note that we use R(G) instead of L(G) being used for standard grammars,
to emphasize that the produced language is a ref-language. (We also use L(G) when G is a
standard grammar.) To illustrate the definition let us consider the following example.

▶ Example 4. Both ref-words r1 and r2 from Example 2 are in R(disjEqLen) where
disjEqLen is the grammar described in Example 1. Producing both r1 and r2 starts
similarly with the sequence: S ⇒ B ⊢x A ⊣y B ⇒2 ⊢x A ⊣y ⇒ ⊢x aAb ⊣y ⇒ ⊢x aaAab ⊣y.
The derivation of r1 continues with ⇒ ⊢x aa ⊣y B ⊢x ab ⊣y ⇒ ⊢x aa ⊣y⊢x ab ⊣y whereas
that of r2 continues with ⇒ ⊢x aa ⊣x B ⊢y ab ⊣y ⇒ ⊢x aa ⊣x⊢y ab ⊣y. ⌟

ICDT 2021
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We denote by Ref(G) the set of all ref-words in R(G) that are valid for X. Finally, we define the
set Ref(G, d) of ref-words in Ref(G) that clr maps to d. That is, Ref(G, d) := Ref(G)∩Ref(d) .

The result of evaluating the spanner JGK on a document d is then defined as

JGK(d) := {µr r ∈ Ref(G, d)} .

▶ Example 5. Let us consider the document d := aaba. The grammar disjEqLen maps d
into a set of ({x, y}, d)-mappings, amongst are µr2 that is defined by µr2(x) := [1, 3⟩ and
µr2(y) := [3, 5⟩ and µr3 that is defined by µr3(x) := [2, 3⟩ and µr3(y) := [1, 2⟩. It can be
shown that the grammar disjEqLen maps every document d into all possible ({x, y}, d)-
mappings µ such that µ(x) and µ(y) are disjoint (i.e., do not overlap) and have the same
length (i.e., |dµ(x)| = |dµ(y)|). ⌟

A spanner S is said to be definable by an extraction grammar G if S(d) = JGK(d) for every
document d.

▶ Definition 6. A context-free spanner is a spanner definable by an extraction grammar.

2.4 Extraction Pushdown Automata
An extraction pushdown automaton, or extraction PDA, is associated with a finite set X ⊆ Vars
of variables and can be viewed as a standard pushdown automata over the extended alphabet
Σ ∪ ΓX . Formally, an extraction PDA is a tuple A := (X, Q, Σ, ∆, δ, q0, Z, F ) where X is a
finite set of variables; Q is a finite set of states; Σ is the input alphabet; ∆ is a finite set
which is called the stack alphabet; δ is a mapping Q ×

(
Σ ∪ {ϵ} ∪ ΓX

)
× ∆ → 2Q×∆∗ which is

called the transition function; q0 ∈ Q is the initial state; Z ∈ ∆ is the initial stack symbol;
and F ⊆ Q is the set of accepting states. Indeed, extraction PDAs run on ref-words (i.e.,
finite sequences over Σ ∪ ΓX), as opposed to classical PDAs whose input are words (i.e., finite
sequences over Σ). Similarly to classical PDAs, the computation of extraction PDAs can be
described using sequences of configurations: a configuration of A is a triple (q, w, γ) where q

is the state, w is the remaining input, and γ is the stack content such that the top of the
stack is the left end of γ and its bottom is the right end. We use the notation ⊢∗ similarly to
how it is used in the context of PDAs [21] and define the ref-language R(A):

R(A) := {r ∈ (Σ ∪ ΓX)∗ ∃α ∈ ∆∗, qf ∈ F : (q0, r, Z) ⊢∗ (qf , ϵ, α)} .

We denote the language of A by R(A) to emphasize that it is a ref-language, and denote by
Ref(A) the set of all ref-words in R(A) that are valid for X. The result of evaluating the
spanner JAK on a document d is then defined as

JAK(d) := {µr r ∈ Ref(A) ∩ Ref(d)} .

▶ Example 7. We define the extraction PDA that maps a document d into the set of
({x, y}, d)-mappings µ where µ(x) ends before µ(y) starts and their lengths are the same.
The stack alphabet consists of the bottom symbol ⊥ and C, and the transition function δ is
described in Figure 4 where a transition from state q to state q′ that is labeled with τ, A/ γ

denotes that the automaton moves from state q to state q′ upon reading τ with A at the top
of the stack, while replacing A with γ. We can extend the automaton in a symmetric way
such that it will represent the same spanner as that represented by the grammar disjEqLen
from Example 1. ⌟
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q0 qx qxy qy qf
⊢x,C/ C ⊣x,C/ C ⊢y,C/ C ⊣y,⊥/ ⊥

Σ,⊥/ ⊥ Σ,⊥/ ⊥Σ,C/ CC Σ,C/ C Σ,C/ ϵ

Figure 4 Transition function of Example 7.

S → B ⊢x A1 ⊣y B B ⊢y A2 ⊣x B

Ai → aAia aAib bAib bAia, i = 1, 2
A1 → ⊣x B ⊢y , A2 → ⊣y B ⊢x

B → ϵ aB bB

Figure 5 Productions of Example 9.

We say that a spanner S is definable by an extraction PDA A if for every document d
it holds that JAK(d) = S(d). Treating the variable operations as terminal symbols enables
us to use the equivalence of PDAs and context-free grammars and conclude the following
straightforward observation.

▶ Proposition 8. The class of spanners definable by extraction grammars is equal to the
class of spanners definable by extraction PDAs.

Thus, we have also an automata formalism for defining context-free spanners.

2.5 Functional Extraction Grammars
Freydenberger and Holldack [16] have presented the notion of functionality in the context of
regular spanners. We now extend it to extraction grammars. The intuition is that interpreting
an extraction grammar as a spanner disregards ref-words that are not valid. We call an
extraction grammar G functional if every ref-word in R(G) is valid.

▶ Example 9. The grammar disjEqLen in our running example is not functional. Indeed,
we saw in Example 4 that the ref-word r1, although it is not valid, is in R(disjEqLen). We
can, however, simply modify the grammar to obtain an equivalent functional one. Notice that
the problem arises due to the production rules S → B ⊢x A ⊣y B and S → B ⊢y A ⊣x B.
For the non-terminal A we have A ⇒∗ r1 where r1 contains both ⊣x and ⊢y, and we also have
A ⇒∗ r2 where r2 contains both ⊣y and ⊢x. To fix that, we can replace the non-terminal
A with two non-terminals, namely A1 and A2, and change the production rules so that for
every ref-word r, if A1 ⇒∗ r then r contains both ⊣x and ⊢y, and if A2 ⇒∗ r then r contains
both ⊣y and ⊢x. It can be shown that the grammar G whose production rules appear in
Figure 5 is functional and that JGK = JdisjEqLenK. ⌟

▶ Proposition 10. Every extraction grammar G can be converted into an equivalent
functional extraction grammar G′ in O(|G|2 +32k|G|) time where k is the number of variables
G is associated with.

Inspired by Chomsky’s hierarchy, we say that an extraction grammar is in Chomsky Normal
Form (CNF) if it is in CNF when viewed as a grammar over the extended alphabet Σ ∪ ΓX .
We remark that, in Proposition 10, G′ is in CNF.

2.6 Unambiguous Extraction Grammars
A grammar G is said to be unambiguous if every word it produces has a unique parse-tree.
We extend this definition to extraction grammars. An extraction grammar G is said to be
unambiguous if for every document d and every (X, d)-mapping µ ∈ JGK(d) it holds that
there is a unique ref-word r for which µr = µ and this ref-word has a unique parse-tree.
Unambiguous extraction grammars are less expressive than their ambiguous counterparts
as the Boolean case shows – unambiguous context-free grammars are less expressive than
ambiguous context-free grammars [22].

ICDT 2021
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▶ Example 11. The extraction grammar given in Example 9 is not unambiguous since it
produces the ref-words ⊢x⊣x⊢y⊣y and ⊢y⊣y⊢x⊣x that correspond to the same mapping. It
can be shown that replacing the derivation B → ϵ with B → a b results in an unambiguous
extraction grammar which is equivalent to disjEqLen on any document different than ϵ.
(Note however that this does not imply that the ref-languages both grammars produce are
equal.) ⌟

Our main enumeration algorithm for extraction grammars relies on unambiguity and the
following observation.

▶ Proposition 12. In Proposition 10, if G is unambiguous then so is G′.

3 Expressive Power and Evaluation

In this section we compare the expressiveness of context-free spanners compared to other
studied classes of spanners and discuss its evaluation shortly.

3.1 Regular Spanners
A variable-set automaton A (or vset-automaton, for short) is a tuple A := (X, Q, q0, qf , δ)
where X ⊆ Vars is a finite set of variables also referred to as Vars(A), Q is the set of states,
q0, qf ∈ Q are the initial and the final states, respectively, and δ : Q × (Σ ∪ {ϵ} ∪ ΓX) → 2Q is
the transition function. To define the semantics of A, we interpret A as a non-deterministic
finite state automaton over the alphabet Σ ∪ ΓX , and define R(A) as the set of all ref-words
r ∈ (Σ ∪ ΓX)∗ such that some path from q0 to qf is labeled with r. Like for regex formulas,
we define Ref(A, d) = R(A) ∩ Ref(d) and finally we define for every document d ∈ Σ∗:
JAK(d) := {µr r ∈ Ref(A, d)}. The class of regular spanners equals the class of spanners
that are expressible as a vset-automaton [11].

Inspired by Chomsky’s hierarchy, we say that an extraction grammar G is regular if
its productions are of the form A → σB and A → σ where A, B are non-terminals and
σ ∈ (Σ∪ΓX). We then have the following equivalence that is strongly based on the equivalence
of regular grammars and finite state automata.

▶ Proposition 13. The class of spanners definable by regular extraction grammars is equal
to the class of regular spanners.

3.2 (Generalized) Core Spanners
An alternative way to define regular spanners is based on the notion of regex formulas:
Formally, a regex formula is defined recursively by α := ∅ | ϵ | σ | α ∨ α | α · α | α∗ | ⊢x α ⊣x

where σ ∈ Σ and x ∈ Vars. We denote the set of variables whose variable operations occur
in α by Vars(α), and interpret each regex formula α as a generator of a ref-word language
R(α) over the extended alphabet Σ ∪ ΓVars(α). For every document d ∈ Σ∗, we define
Ref(α, d) = R(α) ∩ Ref(d), and the spanner JαK by JαK(d) := {µr r ∈ Ref(α, d)}. The class
of regular spanners is then defined as the closure of regex formulas under the relational
algebra operators: union, projection and natural join. (See full definitions in [11].)

In their efforts to capture the core of AQL which is IBM’s SystemT query language,
Fagin et al. [11] have presented the class of core spanners which is the closure of regex
formulas under the positive operators, i.e., union, natural join and projection, along with the
string equality selection that is defined as follows Let S be a spanner and let x, y ∈ Vars(S),
the string equality selection ζ=

x,yS is defined by Vars(ζ=
x,yS) = Vars(S) and, for all d ∈ Σ∗,
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ζ=
x,yS(d) is the set of all µ ∈ S(d) where dµ(x) = dµ(y). Note that unlike the join operator

that joins mappings that have identical spans in their shared variables, the selection operator
compares the substrings of d that are described by the spans, and does not distinguish
between different spans that span the same substrings.

The class of generalized core spanners is obtained by adding the difference operator. That
is, it is defined as the closure of regex formulas under union, natural join, projection, string
equality, and difference. We say that two classes S, S ′ of spanners are incomparable if both
S \ S ′ and S ′ \ S are not empty.

▶ Proposition 14. The classes of core spanners and generalized core spanners are each
incomparable with the class of context-free spanners.

We conclude the discussion by a straightforward result on closure properties.

▶ Proposition 15. The class of context-free spanners is closed under union and projection,
and not closed under natural join and difference.

3.3 Evaluating Context-Free Spanners
The evaluation problem of extraction grammars is that of computing JGK(d) where d is a
document and G is an extraction grammar. Our first observation is the following.

▶ Proposition 16. For every extraction grammar G and every document d it holds that
JGK(d) can be computed in O(|G|2 + |d|2k+3 k3 |G|) time where k is the number of variables
G is associated with.

The proof of this proposition is obtained by iterating through all valid ref-words and
using the Cocke-Younger-Kasami (CYK) parsing algorithm [22] to check whether the current
valid ref-word is produced by G. We can, alternatively, use Valiant’s parser [40] and obtain
O(|G|2 + |d|2k+ω kω |G|) where ω < 2.373 is the matrix multiplication exponent [42].

While the evaluation can be done in polynomial time in data complexity (where G is
regarded as fixed and d as input), the output size might be quite big. To be more precise,
for an extraction grammar G associated with k variables, the output might consist of up
to |d|2k mappings. Instead of outputting these mappings altogether, we can output them
sequentially (without repetitions) after some preprocessing.

Our main enumeration result is the following.

▶ Theorem 17. For every unambiguous extraction grammar G and every document d there
is an algorithm that outputs the mappings in JGK(d) with delay O(k) after O(|d|5|G|234k)
preprocessing where k is the number of variables G is associated with.

Our algorithm consists of two main stages: preprocessing and enumeration. In the prepro-
cessing stage, we manipulate the extraction grammar and do some precomputations which
are later exploited in the enumeration stage in which we output the results sequentially. We
remark that unambiguity is crucial for the enumeration stage as it allows to output the
mappings without repetition.

Through the lens of data complexity, our enumeration algorithm outputs the results
with constant delay after quintic preprocessing. That should be contrasted with regular
spanners for which there exists a constant delay enumeration algorithm whose preprocessing
is linear [2, 13]. In the following sections, we present the enumeration algorithm and discuss
its correctness but before we deal with the special case d := ϵ. In this case, JGK(d) is either
empty or contains exactly one mapping (since, by definition, the document ϵ has exactly
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7:10 Grammars for Document Spanners

one span, namely [1, 1⟩). Notice that JGK(d) is empty if and only if G does not produce a
ref-word that consists only of variable operations. To check this, it suffices to change the
production rules of G by replacing every occurrence of τ ∈ ΓX with ϵ, and checking whether
the new grammar produces ϵ. This can be done in linear time [21], which completes the
proof of this case. From now on it is assumed that d ̸= ϵ.

4 Preprocessing of the Enumeration Algorithm

Due to Propositions 10 and 12, we can assume that our unambiguous extraction grammar is
functional and in CNF. As this conversion requires O(32k|G|2), it can be counted as part of
our preprocessing.

The preprocessing stage consists of two steps: in the first we adjust the extraction
grammar to a given document and add subscripts to non-terminals to track this connection,
and in the second we use superscripts to capture extra information regarding the variable
operations.

4.1 Adjusting the Extraction Grammar to d

Let G := (X, V, Σ, P, S) be an extraction grammar in CNF, and let d := σ1 · · · , σn, n ≥ 1 be
a document. The goal of this step is to restrict G so that it will produce only the ref-words
which clr maps to d. To this end, we define the grammar Gd that is associated with the
same set X of variables as G, and is defined as follows:

The non-terminals are {Ai,j A ∈ V, 1 ≤ i ≤ j ≤ n} ∪ {Aϵ A ∈ V },
the terminals are Σ,
the initial non-terminal is S1,n, and
the production rules are defined as follows:

Ai,i → σi for any A → σi ∈ P ,
Aϵ → σ for any A → σ ∈ P with σ ∈ ΓX ,
Aϵ → BϵCϵ for any A → BC ∈ P ,
Ai,j → Bi,jCϵ for any 1 ≤ i ≤ j ≤ n and any A → BC ∈ P ,
Ai,j → BϵCi,j for any 1 ≤ i ≤ j ≤ n and any A → BC ∈ P ,
Ai,j → Bi,i′Ci′+1,j for any 1 ≤ i ≤ i′ < j ≤ n and A → BC ∈ P .

We eliminate useless non-terminals from Gd and by a slight abuse of notation refer to the
result as Gd from now on. The intuition behind this construction is that if the subscript of a
non-terminal is i, j then this non-terminal produces a ref-word that clr maps to σi · · · σj , and
if it is ϵ then it produces a ref-word that consists only of variable operations.

▶ Example 18. Figure 6 presents a possible parse-tree of a grammar Gd. ⌟

We establish the following connection between G and Gd.

▶ Lemma 19. For every extraction grammar G in CNF, every document d := σ1 · · · σn,
every non-terminal A of G, and every ref-word r ∈ (Σ ∪ ΓX)∗ with clr(r) = σi · · · σj the
following holds: A ⇒∗

G r if and only if Ai,j ⇒∗
Gd

r

This allows us to conclude the following straightforward corollary.

▶ Corollary 20. For every extraction grammar G in CNF and for every document d, it holds
that Ref(G, d) = L(Gd).
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We note that adjusting our extraction grammar to d is somewhat similar to the CYK
algorithm [22] and therefore it is valid on extraction grammars G in CNF. For a similar
reason, we obtain the following complexity which is cubic in |d|.

▶ Proposition 21. For every extraction grammar G in CNF and for every document d, it
holds that Gd can be constructed in O(|d|3|G|).

Can the complexity of the adjustment be improved? We leave this as an open question. We
note, however, that it might be possible to use similar ideas used by Earley’s algorithm [10]
to decrease the complexity of this step.

4.2 Constructing the Decorated Grammar

The goal of this step of the preprocessing is to encode the information on the produced
variable operations within the terminals and non-terminals. We obtain from Gd, constructed
in the previous step, a new grammar, namely decorGrmr(Gd), that produces decorated
words over the alphabet {(x, i, y) x, y ⊆ ΓX , 1 ≤ i ≤ n}. A terminal (x, i, y) indicates
that x and y are variable operations that occur right before and right after σi, respectively.
(Notice that x, y does not necessarily contain all of these variable operations as some of the
variable operations that appear, e.g., after i, can be contained in x′ in case (x′, i + 1, y′)
is the terminal that appears right after (x, i, y).) This information is propagated also to
the non-terminals such that a non-terminal with a superscript x, y indicates that x and y
are variable operations at the beginning and end, respectively, of the sub decorated word
produced by this non-terminal. Non-terminals with subscript ϵ are those that produce
sequences of variable operations.

To define decorGrmr(Gd), we need G to be functional. The following key observation
is used in the formal definition of decorGrmr(Gd) and is based on the functionality of G.

▶ Proposition 22. For every functional extraction grammar G and every non-terminal A of
G there is a set xA ⊆ ΓX of variable operations such that for every ref-word r where A ⇒∗ r
the variable operations that appear in r are exactly those in xA. Computing all sets xA can
be done in O(|G|).

In other words, for functional extraction grammars, the information on the variable operations
is stored implicitly in the non-terminals. The grammar decorGrmr(Gd) is defined in three
steps as we now describe.

Step 1. We set the following production rules for all subsets x, y, z, w ⊆ ΓX that are
pairwise disjoint:

A∅,∅
i,i → σi for every rule Ai,i → σi in Gd,

Aϵ → ϵ for every rule Aϵ → τ in Gd (with τ ∈ ΓX),
Aϵ → BϵCϵ for every rule Aϵ → BϵCϵ in Gd,
Ax,y∪xC

i,j → Bx,y
i,j Cϵ for every rule Ai,j → Bi,jCϵ in Gd and x ∩ xC = y ∩ xC = ∅,

Ax∪xB ,y
i,j → BϵC

x,y
i,j for every rule Ai,j → BϵCi,j in Gd and x ∩ xB = y ∩ xB = ∅,

Ax,w
i,j → Bx,y

i,i′ Cz,w
i′+1,j for every rule Ai,j → Bi,i′Ci′+1,j in Gd and pairwise disjoint

x, y, z, w,
with xB and xC defined as in Proposition 22.
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A1,2

B1,1

D1,1

Hϵ

⊢x

I1,1

σ1

Eϵ

Jϵ

⊣x

Kϵ

⊢y

C2,2

Fϵ

⊣y

G2,2

σ2

Figure 6 After the adjust-
ment to d.

A⊢x,∅
1,2

B
⊢x,⊣x⊢y
1,1

D⊢x,∅
1,1

I∅,∅
1,1

σ1

C
⊣y,∅
2,2

G∅,∅
2,2

σ2

Figure 7 Before
step 2 (iii).

A⊢x,∅
1,2

B
⊢x,⊣x⊢y
1,1

(⊢x,1,⊣x⊢y)

C
⊣y,∅
2,2

(⊣y,2,∅)

Figure 8 After
step 3.

S∅,∅
1,n

A∅,∅
1,1 B∅,∅

2,n

C∅,∅
2,2 ···

E∅,∅
n−2,n−2 F ∅,∅

n−1,n

G∅,⊢x⊣x
n−1,n−1 G∅,∅

n,n

Figure 9 Non-stable non-
terminals.

Step 2. We process the resulting grammar by three standard operations [22] in the following
order: (i) we eliminate useless non-terminals (i.e., those that do not produce a terminal string
or are not reachable from the initial non-terminal), (ii) we eliminate epsilon-productions, and
(iii) we eliminate unit productions (i.e., rules of the form A → B were A, B are non-terminals).
We elaborate on (iii) as it is important for the sequel. To eliminate unit productions we
compute for each non-terminal the set of non-terminals that are reachable from it by unit
productions only. That is, we say that a non-terminal B is reachable form non-terminal A if
there is a sequence of unit productions of the form A1 → A2, . . . , An−1 → An with A1 = A

and An = B. We then replace every production B → α which is not a unit production with
A → α, and after that discard all unit productions.

Step 3. The last step of the construction is adding a fresh start symbol S and adding
the production rules S → Sx,y

1,n for every non-terminal of the form Sx,y
1,n . We also replace

each production of the form Ax,y
i,i → σi with Ax,y

i,i → (x, i, y). This can be viewed as a
“syntactic sugar” since it is only intended to help us formulate easily the connection between
the grammar G and decorGrmr(Gd).

▶ Example 23. Figures 7 and 8 illustrate the different steps in the construction of the
decorated grammar decorGrmr(Gd). For simplicity, we present the superscripts as pairs
of sequences (each represent elements in the set) separated by commas “,”. ⌟

Note that by a simple induction it can be shown that the resulting grammar does no longer
contain non-terminals of the form Aϵ. We denote the resulting grammar and its set of
non-terminals by decorGrmr(Gd) and V dec, respectively.

The (X, d)-mapping µw that corresponds with w := (x1, 1, y1) · · · (xn, n, yn) (which
is a decorated word produced by decorGrmr(Gd)) is defined by µw(x) = [i, j⟩ where
⊢x∈ xi ∪ yi−1 and ⊣x∈ xj ∪ yj−1 with y0 = xn+1 = ∅. We say that a decorated word w is
valid if µw(x) is well-defined for every x ∈ X.

▶ Proposition 24. For every functional extraction grammar G in CNF and for every
document d, if G is unambiguous then decorGrmr(Gd) is unambiguous.

This allows us to establish the following connection between decorGrmr(Gd) and JGK(d).

▶ Lemma 25. For every functional unambiguous extraction grammar G in CNF and for
every document d, every decorated word produced by decorGrmr(Gd) is valid and

JGK(d) = {µw S ⇒∗
decorGrmr(Gd) w}.
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Finally, combining Proposition 24 and Lemma 25 leads to the following direct corollary.

▶ Corollary 26. For every functional unambiguous extraction grammar G in CNF and for
every document d, enumerating mappings in JGK(d) can be done by enumerating parse-trees
of decorated words in {w S ⇒∗

decorGrmr(Gd) w}.

To summarize the complexity of constructing decorGrmr(Gd) we have:

▶ Proposition 27. For every functional unambiguous extraction grammar G in CNF and
for every document d, decorGrmr(Gd) can be constructed in O(|Gd| 52k) = O(|d|3|G| 52k)
where k is the number of variables associated with G.

5 Enumeration Algorithm

Our enumeration algorithm builds recursively the parse-trees of the decorated grammar
decorGrmr(Gd). Before presenting it, we discuss some of the main ideas that allow us to
obtain a constant delay between every two consecutive outputs.

5.1 Stable non-terminals
The non-terminals of decorGrmr(Gd) are decorated with superscripts and subscripts that
give extra information that can be exploited in the process of the derivation.

▶ Example 28. Figure 10 presents a partial parse-tree (without the leaves and the first
production) for a decorated word in decorGrmr(Gd). Notice that the variable operations
that appear in the subtrees rooted in the non-terminal C

⊢x⊢y,⊣y

1,3 are only those indicated in
its superscript. That is, there are no variable operations that occur between positions 1, 2,
and no such between positions 2, 3. ⌟

Motivated by this, we say that a non-terminal Ax,y
i,j of decorGrmr(Gd) is stable if xA = x∪y.

▶ Lemma 29. For every functional extraction grammar G in CNF and for every document
d, the set of stable non-terminals of decorGrmr(Gd) is computable in O(|Gd|52k) where k

is the number of variables G is associated with.

Therefore, while constructing the parse-trees of decorGrmr(Gd) whenever we reach a
stable non-terminal we can stop since its subtree does not affect the mapping.

5.2 The Jump Function
If G is associated with k variables, there are exactly 2k variable operations in each ref-word
produced by G. Hence, we can bound the number of non-stable non-terminals in a parse-tree
of decorGrmr(Gd). Nevertheless, the depth of a non-stable non-terminal can be linear in
|d| as the following example suggests.

▶ Example 30. Consider the non-stable non-terminal F ∅,∅
n−1,n in the partial parse-tree in

Figure 9 of the decorated word (∅, 1, ∅) · · · (∅, n − 1, ⊢x⊣x)(∅, n, ∅). Observe that the depth
of this non-terminal is linear in n. ⌟

Since we want the delay of our algorithm to be independent of |d|, we skip parts of the
parse-tree in which no variable operation occurs. This idea somewhat resembles an idea that
was implemented by Amarilli et al. [2] in their constant delay enumeration algorithm for
regular spanners represented as vset-automata. There, they defined a function that “jumps”
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7:14 Grammars for Document Spanners

from one state to the other if the path from the former to the latter does not contain any
variable operation. We extend this idea to extraction grammars by defining the notion of
skippable productions. Intuitively, when we focus on a non-terminal in a parse-tree, the
corresponding mapping is affected by either the left subtree of this non-terminal, or by its
right subtree, or by the production applied on the non-terminal itself (or by any combination
of the above). If the mapping is affected exclusively by the left (right, respectively) subtree
then we can skip the production and move to check the left (right, respectively) subtree, and
do so recursively until we reach a production for which this is no longer the case.

Formally, a skippable production rule is of the form Ax,y
i,j → Bx,z

i,i′ Cz′,y
i′+1,j where (a) Ax,y

i,j

is non-stable, (b) z = z′ = ∅, and (c) exactly one of Bx,z
i,i′ , Cz′,y

i′+1,j is stable. Intuitively, (a)
assures that the parse-tree rooted in Ax,y

i,j affects the mapping, (b) assures that the production
applied on Ax,y

i,j does not affect the mapping and (c) assures that exactly one subtree of
Ax,y

i,j (either the one rooted at Bx,z
i,i′ if Cz′,y

i′+1,j is stable, or the one rooted at Cz′,y
i′+1,j if Bx,z

i,i′

is stable) affects the mapping. We then say that a skippable production rule ρ follows a
skippable production rule ρ′ if the non-stable non-terminal in the right-hand side of ρ′ is
the non-terminal in the left-hand side of ρ. The function jump : V dec → 2V dec is defined by
B ∈ jump(Ax,y

i,j ) if there is a sequence of skippable production rules ρ1, · · · , ρm such that:
ρι follows ρι−1 for every ι,
the left-hand side of ρ1 is Ax,y

i,j ,
the non-stable non-terminal in the right-hand side of ρm is B,
there is a production rule that is not skippable whose left-hand side is B.

▶ Example 31. In the decorated grammar whose (one of its) parse-tree appears in Figure 9
it holds that F ∅,∅

n−1,n ∈ jump(S∅,∅
1,n). ⌟

The acyclic nature of the decorated grammar (that is, the fact that a non-terminal cannot
be produced from itself) enables us to obtain the following upper bound for the computation
of the jump function.

▶ Lemma 32. For every functional unambiguous extraction grammar G in CNF and for
every document d, the jump function is computable in O(|d|534k|G|2) where k is the number
of variables G is associated with.

Lemmas 29 and 32 imply that we can find the non-stable non-terminals as well as compute
the jump function as part of the quintic preprocessing. It is important to note that if we
can reduce the complexity of computing the jump function to cubic then we can reduce the
whole preprocessing time to cubic.

5.3 The Algorithm
Our main enumeration algorithm is presented in Algorithm 1 and outputs (X, d)-mappings µ

represented as sets of pairs (⊢x, i), (⊣x, j) whenever µ(x) = [i, j⟩. The procedure applyProd
is called with a non-terminal Ax,y

i,j that is (a) non-stable and (b) appears at the left-hand
side of at least one rule that is not skippable. The iterator applyProd outputs with
constant delay all those pairs (β, map) for which there exists a not skippable rule of the form
Ax,y

i,j → Bx,z
i,i′ Cz′,y

i′+1,j such that the following hold:
map = {(τ, i′ + 1) τ ∈ z ∪ z′}, and
β is the concatenation of the non-stable terminals amongst Bx,z

i,i′ and Cz′,y
i′+1,j .

Notice that since Ax,y
i,j is non-stable and since Ax,y

i,j → Bx,z
i,i′ Cz′,y

i′+1,j is not skippable, it holds
that either z ̸= ∅ or z′ ̸= ∅ (or both). Thus, the returned map is not empty which implies
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S
⊢x⊢y,⊣z
1,6

A
⊢x⊢y,⊢z
1,4

C
⊢x⊢y,⊣y
1,3

G
⊢x⊢y,∅
1,2

I
⊢x⊢y,∅
1,1 J∅,∅

2,2

H
∅,⊣y
3,3

D∅,⊢z
4,4

B∅,⊣z
5,6

E∅,∅
5,5 F ⊣x,⊣z

6,6

Figure 10 decorGrmr(Gd) Parse tree.

Algorithm 1 Main enumeration algorithm.

procedure enumerate(α, map)
if α = ϵ then

output map
denote α by A · α′;
foreach B ∈ jump(A) do

foreach (β, map′) ∈ applyProd(B)
do

enumerate(β · α′, map ∪ map′);

that every call to this procedure adds information on the mapping, and thus the number of
calls is bounded. Notice also that β is the concatenation of the non-terminals among Bx,z

i,i′

and Cz′,y
i′+1,j that affect the mapping.

▶ Example 33. The procedure applyProd applied on S
⊢x⊢y,⊣z

1,6 from Figure 10 adds the
pair (⊢z, 5) to map; When applied on A

⊢x⊢y,⊢z

1,4 , it adds the pair (⊣y, 4) to map; When applied
on B∅,⊣z

5,6 , it adds the pair (⊣x, 6) to map. ⌟

The recursive procedure enumerate outputs the mapping as a set of pairs of the form
(γ, i) with γ ∈ ΓX a variable operation and 1 ≤ i ≤ n. The main enumeration algorithm calls
the recursive procedure enumerate with pairs (Sx,y

1,n , map) where Sx,y
1,n is a non-terminal in

decorGrmr(Gd), and map is the set containing pairs (τ, 1) for any τ ∈ x, and (τ, n + 1)
for any τ ∈ y. The recursive procedure enumerate gets a pair (α, map) as input where α

is a (possibly empty) sequence of non-stable non-terminals and map is a set of pairs of the
above form. It recursively constructs an output mapping by applying derivations on the
non-stable non-terminals (by calling applyProd) while skipping the skippable productions
(by using jump). We assume that enumerate has O(1) access to everything computed in
the preprocessing stage, that is, the grammar decorGrmr(Gd), the jump function, and
the sets of stable and non-stable non-terminals.

▶ Theorem 34. For every functional unambiguous extraction grammar G in CNF and for
every document d, the main enumerating algorithm described above enumerates the mappings
in JGK(d) (without repetitions) with delay of O(k) between each two consecutive mappings
where k is the number of variables G is associated with.

Had G been ambiguous, the complexity guarantees on the delay would not have held.
Finally, we remark that the proof of Theorem 17 follows from Corollary 25, Proposition 27,

Lemma 29, Lemma 32, and Theorem 34.

6 Conclusion

In this paper we propose a new grammar-based language for document spanners, namely
extraction grammars. We compare the expressiveness of context-free spanners with previously
studied classes of spanners and present a pushdown model for these spanners. We present
an enumeration algorithm for unambiguous grammars that outputs results with a constant
delay after quintic preprocessing in data complexity. We conclude by suggesting several
future research directions.
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To reach a full understanding of the expressiveness of context-free spanners, one should
characterize the string relations that can be expressed with context-free spanners. This
can be done by understanding the expressiveness of context-free grammars enriched with
string equality selection. We note that there are some similarities between recursive Datalog
over regex formulas [34] and extraction grammars. Yet, with the former we reach the full
expressiveness of polynomial time spanners (data complexity) whereas with the latter we
cannot express string equality. Understanding the connection between these two formalisms
better can be a step in understanding the expressive power of extraction grammars.

Regarding our enumeration complexity, it might be possible to decrease the preprocessing
complexity by using other techniques to compute the jump function. Another direction is to
find restricted classes of extraction grammars that are more expressive than regular spanners
yet allow linear time preprocessing (similarly to [2]).

It can be interesting to examine more carefully whether the techniques used here for
enumerating the derivations can be applied also for enumerating queries on trees, or enu-
merating queries beyond MSO on strings. This connects to a recent line of work on efficient
enumeration algorithms for monadic-second-order queries on trees [3]. Can our techniques
be used to obtain efficient evaluation for more expressive queries?
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