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Abstract
We describe a new method to remove short cycles on regular graphs while maintaining spectral
bounds (the nontrivial eigenvalues of the adjacency matrix), as long as the graphs have certain
combinatorial properties. These combinatorial properties are related to the number and distance
between short cycles and are known to happen with high probability in uniformly random regular
graphs.

Using this method we can show two results involving high girth spectral expander graphs. First,
we show that given d ⩾ 3 and n, there exists an explicit distribution of d-regular Θ(n)-vertex graphs
where with high probability its samples have girth Ω(logd−1 n) and are ϵ-near-Ramanujan; i.e., its
eigenvalues are bounded in magnitude by 2

√
d − 1 + ϵ (excluding the single trivial eigenvalue of d).

Then, for every constant d ⩾ 3 and ϵ > 0, we give a deterministic poly(n)-time algorithm that
outputs a d-regular graph on Θ(n)-vertices that is ϵ-near-Ramanujan and has girth Ω(

√
log n), based

on the work of [26].
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1 Introduction

Let’s consider d-regular graphs of n vertices. The study of short cycles and girth (defined as
the length of the shortest cycle of a graph) in such graphs dates back to at least the 1963
paper of Erdős and Sachs [10], who showed that there exists an infinite family with girth at
least (1 − on(1)) logd−1 n. On the converse side, a simple path counting argument known as
the “Moore bound” shows that this girth is upper bounded by (1 + on(1))2 logd−1 n. Though
simple, this is the best known upper bound. Given these bounds, it is common to call an
infinite family of d-regular n-vertex graphs high girth if their girth is Ω(logd−1 n).

The first explicit construction of high girth regular graphs is attributed to Margulis [23],
who gave a construction of graphs that achieve girth (1 − on(1)) 4

9 logd−1 n. A series of works
initiated by Lubotzky-Phillips-Sarnak [21] and then improved by several other people [24,
27, 19] culminated in the work of Dahan [9], who proves that for all large enough d there are
explicit d-regular n-vertex graphs of girth (1 − on(1)) 4

3 logd−1 n.
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55:2 Spectrum Preserving Short Cycle Removal on Regular Graphs

Another relevant problem consists of generating random distributions that produce regular
graphs with high girth. Results regarding the probabilistic aspects of certain structures
(like cycles) in graphs often give us tools to count the number of graphs that satisfy certain
conditions, like how many regular graphs have girth at least some value. The distribution
of short cycles in uniformly random regular graphs was first studied by Bollobás [7], who
proved, that for a fixed k the random variables representing the number of cycles of length
exactly k in a uniformly random d-regular graph are asymptotically independent Poisson
with mean (d − 1)k/2k. Subsequently, McKay-Wormald-Wysocka [25] gave a more precise
description of this by finding the asymptotic probability of a random d-regular graph having
a certain number of cycles of any length up to c logd−1 n, for c < 1/2. More recently, Linial
and Simkin [20] showed that a random greedy algorithm that is given d ⩾ 3, c ∈ (0, 1)
and an even n, produces a d-regular n-vertex graph with girth at least c logd−1 n with high
probability.

The literature of regular graphs with high girth is closely connected to the literature of
spectral expanders. Before defining this, let’s consider some notation.

▶ Definition 1. Let G be an n-vertex d-regular multigraph. We write λi = λi(G) for
the eigenvalues of its adjacency matrix AG, and we always assume they are ordered with
λ1 ⩾ λ2 ⩾ · · · ⩾ λn. A basic fact is that λ1 = d always; this is called the trivial eigenvalue
and corresponds to the all ones vector. We also write λ(G) = max{λ2, |λn|}.

Roughly, a graph with good spectral expansion properties is a graph that has small λ.
More formally, an infinite sequence (Gn) of d-regular graphs is called a family of expanders
if there is a constant δ > 0 such that λ(G) ⩽ (1 − δ)d for all n, or in other words, all
eigenvalues are strictly separated from the trivial eigenvalue. This terminology was first
introduced by [29] and later it was shown [1] that uniformly random d-regular graphs are
spectral expanders with high probability.

The celebrated Alon-Boppana bound shows that λ cannot be arbitrarily small:

▶ Theorem 2 ([1, 28, 11]). For any d-regular n-vertex graph G we have that λ2(G) ⩾
2
√

d − 1 − O(1/ log2 n).

Using some number-theoretic ideas, Lubotzky-Phillips-Sarnak [21], and independently
Margulis [24], proved this bound is essentially tight by showing the existence of infinite
families of d-regular graphs that meet the bound λ(G) ⩽ 2

√
d − 1, if d − 1 is an odd prime.

In light of this, Lubotzky-Phillips-Sarnak introduced the following definition:

▶ Definition 3 (Ramanujan graphs). A d-regular graph G is called Ramanujan whenever
λ(G) ⩽ 2

√
d − 1.

These results were improved by Morgenstern [27], who showed the same for all d where
d − 1 is a prime power.

It is still open whether there exist infinite families of Ramanujan graphs for all d. However,
if one relaxes this to only seek ϵ-near-Ramanujan graphs (graphs that satisfy λ ⩽ 2

√
d − 1+ϵ),

then the answer is positive. Friedman [12] proved that uniformly random d-regular n-vertex
graphs satisfy λ ⩽ 2

√
d − 1 + on(1) with high probability. This proof was recently simplified

by Bordenave [8].

▶ Theorem 4 ([12, 8]). Fix any d > 3 and ϵ > 0 and let G be a uniformly random d-regular
n-vertex graph. Then

Pr
[
λ(G) ⩽ 2

√
d − 1 + ϵ

]
⩾ 1 − on(1).

In fact [8], G achieves the subconstant ϵ = Õ(1/ log2 n) with probability at least 1−1/n.99.
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Recently, it was shown how to achieve a result like the above but deterministically [26].
We write a more precise statement of this below.

▶ Theorem 5 ([26]). Given any n, d ⩾ 3 and ϵ > 0, there is a deterministic polynomial-time
algorithm that constructs a d-regular N -vertex graph with the following properties:

N = n(1 + on(1));
λ(G) ⩽ 2

√
d − 1 + ϵ;

We refer the reader interested in a more thorough history of the literature of Ramanujan
graphs to the introduction of [26]. Also, for a comprehensive list of applications and
connections of Ramanujan graphs and expanders to computer science and mathematics,
see [14].

In this work we concern ourselves with bridging these two worlds, looking for families
of regular graphs that are both good spectral expanders and also have high girth. This
bridge can be seen in several of the aforementioned works. The explicit construction of high
girth regular graphs by Margulis [23] was a motivator to his work on Ramanujan graphs [24].
Additionally, the constructions of [21] and [27] produce graphs that are both Ramanujan
and have girth (1 − on(1)) 4

3 logd−1 n, according to the previously stated restrictions on d.
More recently, Alon-Ganguly-Srivastava [3] showed that for a given d such that d − 1 is

prime and α ∈ (0, 1/6), there is a construction of infinite families of graphs with girth at least
(1 − on(1))(2/3)α logd−1 n and λ at most (3/

√
2)

√
d − 1 with many eigenvalues localized on

small sets of size O(nα). Their motivation comes from the theory of quantum ergodicity in
graphs, which relates high-girth expanding graphs to delocalized eigenvectors. See [3] for
more on this. Our main result is based on some of the techniques of this work.

One other motivation to search for graphs with simultaneous good spectral expansion
and high girth is its application to the theory of error-correcting codes, particularly for Low
Density Parity Check or LDPC codes, originally introduced by Gallager [13]. The connection
with high girth regular graphs was first pointed out by Margulis in [23]. The property of
high-girth is desirable since the decoding of such codes relies on an iterative algorithm whose
performance is worse in the presence of short cycles. Additionally, using graphs with good
spectral properties to generate these codes heuristically seems to lead to good performance,
as pointed out by several works [30, 18, 22].

1.1 Our results
We can now state our results and put them in perspective. Let’s first introduce some useful
definitions and notation.

▶ Definition 6 (Bicycle-free at radius r). A multigraph is said to be bicycle-free at radius r if
the distance-r neighborhood of every vertex has at most one cycle.

▶ Definition 7 ((r, τ)-graph). Let r and τ be a positive integers. Then, we call a graph G a
(r, τ)-graph if it satisfies the following conditions:

G is bicycle-free at radius at least r;
The number of cycles of length at most r is at most τ .

Our main result is the following short cycle removal theorem:

▶ Theorem 8. There exists a deterministic polynomial-time algorithm fix that, given as
input a d-regular n-vertex (r, τ)-graph G satisfying r ⩽ (2/3) logd−1(n/τ) − 5 outputs a graph
fix(G) satisfying

STACS 2021



55:4 Spectrum Preserving Short Cycle Removal on Regular Graphs

fix(G) is a d-regular graph with n + O(τ · (d − 1)r/2+1) vertices;
λ(fix(G)) ⩽ max{λ(G), 2

√
d − 1} + Od(1/r);

fix(G) has girth at least r.
The key fact in our proof of this statement is a theorem proved by Kahale [15], originally

used to construct Ramanujan graphs with better expansion of sublinear sized subsets. See
also [3] and [2] for other applications of this technique. We will prove this theorem in
Section 2.

The preconditions of this theorem are not arbitrary. Even though random uniformly
n-vertex d-regular graphs have constant girth with high probability, they are bicycle-free at
radius Ω(logd−1 n) and the number of cycles of length at most c logd−1 n (for small enough
c) is o(n) with high probability. Recall that from Theorem 4 we also know that being
near-Ramanujan is also a property that occurs with high probability in random regular
graphs. So a statement like the above can be used to produce distributions over regular
graphs that have high girth and are near-Ramanujan with high probability. With this in
mind, we introduce the following definition:
▶ Definition 9 ((Λ, g)-good graphs). We call a graph G a (Λ, g)-good graph if λ(G) ⩽ Λ
and girth(G) ⩾ g.

Let µd(n) be a distribution over d-regular graphs with ∼ n vertices. We say µd(n) is (Λ,
g)-good if G ∼ µd(n) is (Λ, g)-good with probability at least 1 − on(1).

Additionally, we call the distribution explicit if sampling an element is doable in polynomial
time.

We shall prove the following using Theorem 8 in Appendix A:
▶ Theorem 10. Given d ⩾ 3 and n, let G be a uniformly random d-regular n-vertex graph.
For any c < 1/4 and ϵ > 0, fix(G) is a (2

√
d − 1 + ϵ, c logd−1 n)-good explicit distribution.

Recall that the upper bound on the girth of a regular graph is (1 + on(1))2 logd−1 n, so
this distribution has optimal girth up to a constant. Based on our proof of the above and
using some classic results about the number of d-regular n-vertex graphs, we can show a
lower bound on the number of (2

√
d − 1 + ϵ, c logd−1 n)-good graphs in some range.

▶ Corollary 11. Let d ⩾ 3, n be integers and ϵ > 0, c > 1/4 reals. The number of d-regular
graphs with number of vertices in [n, n + O(n3/8)], which are (2

√
d − 1 + ϵ, c logd−1 n)-good,

is at least

Ω
((

ddnd

ed(d!)2

)n/2)
.

We prove both of these results in Appendix A.
Finally, we show a slightly stronger version of result of [26] by plugging our short cycle

removal theorem into their construction.
▶ Theorem 12. Given any integer n and constants d ⩾ 3, ϵ > 0 and c, there is a deterministic
polynomial-time (in n) algorithm that constructs a d-regular N -vertex graph with the following
properties:

N = n(1 + on(1));
λ(G) ⩽ 2

√
d − 1 + ϵ;

G has girth at least c
√

log n.
Note that this only works for large enough n. Also, the running time from the theorem

above has an exponential dependency on d, ϵ and c. The proof of this statement as well as
the precise dependencies on these constants will be worked out in Appendix B.
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1.2 Models of random regular graphs
We will introduce some classic models of random regular graphs, which we will use throughout
the paper.

▶ Definition 13 (Gd(n)). Let Gd(n) denote the set of d-regular n-vertex graphs. We write
G ∼ Gd(n) to denote that G is sampled uniformly at random from Gd(n).

Sampling from Gd(n) is not easy a priori; the standard way to do so is using the
configuration model, which was originally defined by Bollobás [7].

▶ Definition 14 (Configuration model). Given integers n > d > 0 with nd even, the con-
figuration model produces a random n-vertex, d-regular undirected multigraph (with loops)
G. This multigraph is induced by a uniformly random matching on the set of “half-edges”,
[n] × [d] ∼= [nd] (where (v, i) ∈ [n] × [d] is thought of as half of the ith edge emanating
from vertex v). Given a matching, the multigraph G is formed by “attaching” the matched
half-edges.

This model corresponds exactly to the uniform distribution on not necessarily simple
d-regular n-vertex graphs. It also not hard to see that the conditional distribution of the
d-regular n-vertex configuration model when conditioned on it being a simple graph is exactly
the uniform distribution on Gd(n). The probability that the sampled graph is simple is Ωd(1).

The configuration model has the advantage that is easy to sample and to analyze. For
reference, the proof of Theorem 4 was done in terms of the configuration model and so the
theorem also applies to it.

2 Short cycles removal

In this section we prove Theorem 8. Recall that we are given a d-regular n-vertex (r, τ)-graph
G with the constraint specified in Theorem 8 and we wish to find some d-regular graph fix(G)
on ∼ n vertices such that λ(fix(G)) ⩽ λ(G) + or(1) and its girth is at least r.

Briefly, the algorithm that achieves this works by removing one edge per small cycle from
G, effectively breaking apart all such cycles, and then fixing the resulting off degree vertices
by adding d-ary trees in a certain way. We will now more carefully outline this method and
then proceed to fill in some details as well as show it works as desired.

Before starting, we introduce some notation which will be helpful.

▶ Definition 15 (Cycg(G)). Given a graph G, let Cycg(G) denote the collection of all cycles
in G of length at most g. Recall that if Cycg(G) is empty then G is said to have girth
exceeding g.

▶ Definition 16 (Bδ(S)). Given a set of vertices S in a graph G, let Bδ(S) denote the
collection of vertices in G within distance δ of S. We will occasionally abuse this notation
and write Bδ(v) instead of Bδ({v}) for a vertex v.

Let Ec be a set containing exactly one arbitrary edge per cycle in Cycr(G). Note that the
bicycle-freeness property implies Ec is a matching. Let Ht be a graph with the same vertex
set as G obtained by removing all edges in Ec from G. To prevent ambiguity, whenever we
pick something arbitrarily let’s suppose the algorithm fix uses the lexicographical order of
node labels as a tiebreaker. We also partition the endpoints of each edge as described in the
following definition:

STACS 2021



55:6 Spectrum Preserving Short Cycle Removal on Regular Graphs

▶ Definition 17 (Vi(E)). Given a matching E, we let V1(E) and V2(E) be two disjoint sets
of vertices constructed as follows: for all e = (u, v) ∈ E place u in V1(E) and v in V2(E) (so
each endpoint is in exactly one of the two sets).

Note that according to the above definition we have |V1(Ec)| = |V2(Ec)| = |Ec| ⩽ τ . For
ease of notation we also define:

▶ Definition 18 (ϕE(v)). Given a matching E and (u, v) ∈ E such that u ∈ V1(E) and
v ∈ V2(E), we denote by ϕE the function that maps endpoints to endpoints, so we have
ϕE(u) = v and ϕE(v) = u.

We will often abuse notation and drop the E from ϕE when it is clear from context.
Since we break apart each cycle in Cycr(G), we can conclude that Ht has girth greater

than r. However, note that in removing edges, Ht is no longer d-regular.
To fix this, consider the following object which we refer to as a d-regular tree of height h:

a finite rooted tree of height h where the root has d children but all other non-leaf vertices
have d − 1 children. This definition implies that every non-leaf vertex in a d-regular tree has
degree d.

We shall add two d-regular trees to Ht in order to fix the off degrees, while maintaining
the desired girth and bound on λ. The idea of using d-regular trees is based on the degree-
correction gadget used in [3] for their construction of high-girth near-Ramanujan graphs with
localized eigenvectors. As such, we will use some of the tools used in their proofs.

Let h be an integer parameter we shall fix later. Let T1 and T2 be two d-regular trees
of height h and let L1 and L2 be the sets of leaves of each one. Note that |L1| = |L2| =
d(d − 1)h−1 ≈ (d − 1)h. We shall add the two trees to Ht and then pair up elements of V1(Ec)
with elements of L1 (and analogously for V2(Ec) and L2) and merge the paired up vertices.
However, we have to deal with two potential issues:

|Li| ≠ |Vi(Ec)|, in which case we cannot get an exact pairing between these sets;
This procedure might result in the creation of small cycles (potentially even cycles of
length O(1)).

To expand on the latter point, we describe a potential problematic instance. Suppose we
can somehow pick h such that |Li| = |Vi(Ec)| and then arbitrarily pair up their elements.
Suppose there are two edges in EC corresponding to two cycles of constant length and denote
their endpoints by v1 ∈ V1(EC), v2 ∈ V2(EC) and u1 ∈ V1(EC), u2 ∈ V2(EC). If the distance
in T1 of v1 and u1 given by the pairing of V1(Ec) and L1 is small (constant, for example)
and the same applies to the distance in T2 of v2 and u2, then there is a cycle of small length
(constant, for example) in the graph resulting from adding the two trees to Ht.

To address this issue we remove some extra edges from G that are somehow “isolated”
and group them with edges from EC . The goal is to have the endpoints of any two edges in
EC be far apart in T1 and T2 distance, but close to some of the endpoints of the extra edges.
With this in mind, we set h = ⌈logd−1 τ⌉ + ⌈r/2⌉ + 1 so that |Li| ≈ τ · (d − 1)r/2+1, which is
close to the number of extra edges we want to remove. This choice will also be helpful later
when we analyze the spectral properties of the construction.

Formally, this leads us to the following proposition:

▶ Proposition 19. There is a set of edges Et of G such that the following is true for i ∈ {1, 2}:
|Vi(Et) ∪ Vi(Ec)| = d(d − 1)h−1;
for all distinct u, v ∈ Vi(Et) ∪ Vi(Ec), we have v /∈ Br(u) and u /∈ Br(v).

Additionally, we can find such a set in polynomial time.
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Proof. We will describe the efficient algorithm that does this.
We are going to incrementally grow our set Et, one edge at the time, until |Vi(Et) ∪

Vi(Ec)| = d(d−1)h−1, so suppose Et is initially an empty set. We start by, for all e = (u, v) ∈
Ec, marking all vertices in B1+r({v, u}). Note that we marked at most τ · (d(d − 1)r) ⩽
2τ(d − 1)r+1 vertices.

Notice that, since we marked all vertices at distance 1 + r from any vertex in Vi(Ec), we
can safely pick any unmarked vertex and an arbitrary neighbor and add that edge to Et.

We can now describe a procedure to add a single edge to Et:
Pick an unmarked vertex u and an arbitrary neighbor v of u;
Add (u, v) to Et;
Mark all vertices in B1+r({u, v}).

By the same reasoning as before, as long as we have an unmarked vertex, this procedure
works. If we repeat the above t times, we are left with at least n − 2τ(d − 1)r+1 − 2t(d − 1)r+1

unmarked vertices. We claim the procedure can be successfully repeated at least 2τ(d−1)r/2+2

times. In such a case, the number of unmarked vertices left is at least:

n − 2τ(d − 1)r+1 − 4τ(d − 1)r/2+2(d − 1)r+1 ⩾ n − 6τ(d − 1)3r/2+3,

which is always greater than 0 when r ⩽ 2
3 logd−1(n/τ) − 5. Hence, we always have at least

one unmarked vertex to pick throughout the procedure.
Note that the number of repetitions we require exactly matches the size of |Et| so we

need this to be exactly d(d − 1)h−1 − τ ⩽ 2τ(d − 1)r/2+2, which means our algorithm always
succeeds. ◀

We will state some simple properties of this construction that will be relevant later on.

▶ Fact 20. |Vi(Et)| ⩾ τ · (d − 1)⌈r/2⌉

Proof. We simply have: |Vi(Et)| = |Et| = d(d − 1)h−1 − τ ⩾ τ · (d − 1)⌈r/2⌉. ◀

▶ Fact 21. For all e ∈ Et, there is at most one cycle in Br(e) in G and if there is a cycle it
has length greater than r.

Proof. That there is at most one cycle in Br(e) is obvious since G is bicycle-free at radius r.
So, let’s suppose there is a cycle C in Br(e) with length less than or equal to r. Then, there
is at least one edge e′ ∈ C that is also in Ec, but in that case e′ ∈ Br(e), which contradicts
the definition of Et. ◀

We can now extend our definition of Ht. Let H be the graph obtained from G by removing
all edges in Ec and in Et.

Recall our plan to add T1 and T2, two d-regular trees of height h (recall h = ⌈logd−1 τ⌉ +
⌈r/2⌉ + 1), to H while pairing up elements of Li with endpoints of removed edges. We will
now describe a pairing process that achieves high girth (and later we will see how it also
achieves low λ).

First, consider a canonical ordering of L1 and L2 based on visit times from a breath-first
search, as illustrated in Figure 1 for d = 3. Given this ordering, the following is easy to see:

▶ Fact 22. The tree distance between two leaves with indices i and j is at least 2(1 +
logd−1((|i − j| + 1)/d)).

STACS 2021
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Proof. Let’s show that the lowest common ancestor of the two leaves is at least 1+logd−1((|i−
j| + 1)/d), this proves the claim since we need to travel this distance twice, from the ith
indexed leaf to the ancestor and then back to the jth indexed leaf. Let V0 be the set of
|i − j| + 1 leaves with indices between i and j. Let’s construct the smallest subtree that
includes V0 from bottom up and compute its height, which is an upper bound to the desired
lowest common ancestor. First, group elements of V0 in groups of at most d − 1 consecutive
indices and add one representative of each group to a set V1. Each group corresponds to
a node that parents all of its elements. There are at most |V0|/(d − 1) such groups, so
|V1| ⩽ |V0|/(d − 1). Repeat the same procedure until |Va| ⩽ 1, in which case a is an upper
bound to the height of the goal subtree, and by induction we have that |Vi+1| ⩽ |Vi|/(d − 1),
so a ⩾ logd−1 |V0|.

This is not quite right because if the last grouping corresponds to the root of the tree, we
need to group elements in d groups, because this is the degree of the root, so by accounting
for this we have a ⩾ 1 + logd−1(|V0|/d). ◀

Now, consider the following pairing of elements in L1 and V1(Et) ∪ V1(Ec): pick an
arbitrary element of V1(Ec) and pair it up with the first leaf of L1. Now pick (d − 1)⌈r/2⌉

distinct elements of V1(Et) and pair them up with the next leaves of L1. Repeat this
procedure, of pairing one element of V1(Ec) with (d − 1)⌈r/2⌉ elements of V1(Et) with a
contiguous block of leaves until we exhaust all elements of V1(Ec). Note that by Fact 20,
there always are enough elements in Et to perform this pairing. Pair up any remaining leaves
with the remaining elements of V1(Et) arbitrarily. Now repeat the same procedure but for
L2 and V2(Et) ∪ V2(Ec) with the same groupings (so the endpoints of an edge in either Et

or Ec are mapped to the same leaves of L1 and L2). This pairing procedure is pictured in
Figure 2 below.

1

2

3

4

5

6

Figure 1 Leaf ordering for d = 3.

...

...
...

...

Figure 2 Example pairing.

Let fix(G) be defined as the graph resulting from applying the method described in the
previous paragraph to fix the degrees of H. It is now obvious that fix(G) is a d-regular graph
and we only add |T1| + |T2| = O(τ · (d − 1)r/2+1) new vertices, so it has n + O(τ · (d − 1)r/2+1)
total vertices. We will now analyze the resulting girth and λ value and prove Theorem 8 in
the process.

2.1 Analyzing the girth of fix(G)

Here we prove that the girth of fix(G) is at least r. Let’s start by supposing, for the sake
of contradiction, that there is a cycle C of length less than r. We know that the girth of
H is more than r by definition, so C has to use an edge from T1 or T2. Without loss of
generality, let’s assume that C contains at least one edge from T1. Since T1 is a tree, C has
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to eventually exit T1 and use some edges from H, so in particular it uses some vertex v ∈ L1.
We will show that in this case C has length at least r, which is a contradiction. Thus, we
have to handle two cases: v ∈ V1(Ec) and v ∈ V1(Et).

Let us start with the v ∈ V1(Ec) case. Let’s follow C starting in v and show that to loop
back to v, C would require to traverse at least r edges. So, we start in v and go into T1 by
following the only edge in T1 that connects to v. Then, the cycle C has to use some edges
from T1 and finally exit through some other vertex in L1 before eventually looping back to v.
Suppose that u ∈ L1 is such a vertex. Due to our grouping of elements in Et with (d−1)⌈r/2⌉

elements in Ec, if u is in V1(Ec), we know that the tree indices of v and u differ by at least
(d − 1)⌈r/2⌉. Hence, plugging this into the bound from Fact 22, the tree distance between v

and u is at least r − 1, which would imply C has length at least r. So u has to be in V1(Et).
Continuing our traversal of C, we now exit T1 through u and need to loop back to v.

From our construction in Proposition 19 we know that the distance in H between v and u

is at least r, so any short path in fix(G) between these vertices has to go through T1 or T2.
Again, our Proposition 19 construction gives that the distance in H between v and any other
vertex in L1 is at least r, so such a short path will have to use some edges in T2.

Finally, we claim that the distance from u to any vertex w in L2 is at least r. If w ̸= ϕ(u),
we know from our Proposition 19 construction that the distance between u and w is at least
r. Otherwise, if there is a path P of length less than r from u to w, then the cycle P + uw

has length at most r and is in Br({u, w}), which contradicts Fact 21. In conclusion, it is not
possible to loop back to v using less than r steps, which concludes the proof of the v ∈ V1(Ec)
case.

The proof for the v ∈ V1(Et) case is already embedded in the previous proof, so we will
just sketch it. Using the same argument we start by following C into T1 and eventually
exiting through some vertex u ∈ V1(Et). As we saw before, the H distance between u and v

is at least r and the H distance between u and any other vertex in L1 or any vertex in L2 is
at least r, so we cannot loop back to v from u, which concludes the proof of this case.

2.2 Bounding λ(fix(G))
We finally analyze the spectrum of fix(G) by proving that λ(fix(G)) ⩽ λ(G) + Od(1/r). This
argument is similar to the proof in Section 4 of [3], but adapted to our construction.

First, observe that the adjacency matrix of fix(G), which we will denote by simply A, can
be written in the following way: A = AG −AEc

−AEt
+AT1 +AT2 , where AG is the adjacency

matrix of G defined on the vertex set of fix(G) (which is to say G with a few isolated vertices
from the added trees), AEc

is the adjacency matrix of the cycle edges removed, and so on.
Also, let VG be the set of vertices from G, V1 the set of vertices from T1 and V2 the set of
vertices from T2, so V = VG ∪ V1 ∪ V2. In this section we will prove λ(A) ⩽ λ(G) + Od(1/r).

Let g be any unit eigenvector of A orthogonal to the all ones vector, so
∑

v∈V g2
v = 1 and∑

v∈V gv = 0. We have that |
∑

v∈V1∪V2
gv| ⩽

√
2|Ti| by Cauchy-Schwarz (since this vector

is supported on only 2|Ti| entries), which in turn implies that |
∑

v∈VG
gv| ⩽

√
2|Ti|.

It suffices to show that |gT Ag| ⩽ λ(G) + Od(1/r). To do so, we shall analyze the
contributions of AG, AEc

, AEt
, AT1 and AT2 to |gT Ag|.

To bound the contribution of AT1 and AT2 , we use a lemma proved by Alon-Ganguly-
Srivastava:

▶ Lemma 23 ([3, Lemma. 4.1]). Let Wi be the set of non-leaf vertices of Ti. Then for any
vector f we have:

|fT ATi
f | ⩽ 2

√
d − 1

∑
w∈Wi

f2
w +

√
d − 1

∑
v∈Li

f2
v .
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Recall that the edges in Et ∪ Ec define a perfect matching between L1 and L2, so we
have the following:

|gT (AEc
+ AEt

)g| =

∣∣∣∣∣ ∑
uv∈Et∪Ec

2gugv

∣∣∣∣∣ ⩽ ∑
v∈L1∪L2

g2
v .

Finally, let gG be the projection of g to the subspace spanned by VG. Observe that
|gT AGg| = |gT

GAGgG|. Now, let 1G be the all ones vector supported on the set VG and g⊥
be a vector orthogonal to 1G such that gG = a1G + g⊥, for some constant a. We have that
1T

GgG = a1T
G1G, which implies

|a| =
∣∣∣∣
∑

v∈VG
(gG)v

n

∣∣∣∣ ⩽
√

2|Ti|
n

.

Now observe:

|gT
GAGgG| ⩽ |gT

⊥AGg⊥| + |(a1G)T AG(a1G)| ⩽ λ(G)
∑

v∈VG

g2
v + 2|Ti|d

n
.

Note that
∑

v∈VG
g2

v ⩽ 1. We claim that the term 2|Ti|d
n is Od(1/r). We have |Ti| =

O(τ · (d − 1)r/2+1) and we know from the problem constraints that r ⩽ (2/3) logd−1(n/τ) − 5
which implies τ · (d − 1)r/2+1/n ⩽ O((d − 1)−r) = Od(1/r).

We can now plug everything together and apply Lemma 23 to obtain:

|gT Ag| ⩽ λ(G) + (
√

d − 1 + 1)
∑

v∈L1∪L2

g2
v + Od(1/r).

We will conclude our proof by showing that
∑

v∈L1∪L2
g2

v is O(1/r). It should be clear
from the symmetry of our construction that we only need to prove

∑
v∈L1

g2
v = O(1/r), since

the same is analogous for L2.
The following lemma can be proved using a known method by Kahale [15, Lemma 5.1].

This statement is similar to one found in [2, Lemma 3.2] and its proof is also very similar.
For completeness, we present a self-contained proof of that based on the one from [2].

▶ Lemma 24. Let v be some vertex of V . Let l be a positive integer such that Bl(v) forms a
tree. Let Xi be the set of all vertices at distance exactly i from v in fix(G), so X0 = {v}. Let
f be any non zero eigenvector with eigenvalue |µ| ⩾ 2

√
d − 1. Then, for 1 ⩽ i ⩽ l:∑

u∈Xi

f2(u) ⩾
∑

u∈Xi−1

f2(u)

Proof. We will proceed by induction on i. First of all, let’s establish the i = 1 case. Note
that we have

∑
u∈X1

f(u) = µf(v).
By Cauchy-Schwarz we get d ·

∑
u∈X1

f2(u) ⩾ µ2f2(v), and using the fact that |µ| ⩾
2
√

d − 1 we obtain the desired:∑
u∈X1

f2(u) ⩾ µ2

d
f2(v) ⩾ f2(v).

Let’s now assume that the statement is true for i − 1 and prove that this implies it is
true for i. Let u be some vertex in Xi−1. Recall that Bl(v) is a tree and let u′ be its parent
in Xi−2 and w1, . . . wd−1 be its children in Xi. We have f(u′) +

∑d−1
i=1 f(wi) = µf(u). Note

that f(u′) =
√

d − 1f(u′)/
√

d − 1 and apply Cauchy-Schwarz to obtain:(
f2(u′)
d − 1 +

d−1∑
i=1

f2(wi)
)

(2d − 2) ⩾ µ2f2(u),
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which implies

f2(u′)
d − 1 +

d−1∑
i=1

f2(wi) ⩾
µ2

2d − 2f2(u) ⩾ 2f2(u),

where the last inequality follows from the fact that |µ| ⩾ 2
√

d − 1.
We can finally sum the above for all u ∈ Xi−1, noting that from the fact that Bl(v) is a

tree we know that each element in Xi−2 appears d − 1 times (as the parent of d − 1 vertices)
and each element in Xi appears once:∑

u∈Xi−2

f2(u) +
∑

u∈Xi

f2(u) ⩾ 2
∑

u∈Xi−1

f2(u).

We now apply the induction hypothesis and obtain the result:∑
u∈Xi

f2(u) ⩾ 2
∑

u∈Xi−1

f2(u) −
∑

u∈Xi−2

f2(u) ⩾
∑

u∈Xi−1

f2(u). ◀

Our plan is to pick the parameters l and v from Lemma 24 and use it to show that∑
v∈L1

g2
v = O(1/r). Let µ be the eigenvalue associated with g and suppose that |µ| >

2
√

d − 1, otherwise |µ| ⩽ λ(G), which would imply the result. Set v to be the root of T1. We
will show that if we pick l = h + ⌊r/2⌋, where h = ⌈logd−1 τ⌉ + ⌈r/2⌉ + 1 is the height of T1
and T2, then Bl(v) forms a tree.

Note that Bh(v) is exactly T1, so it obviously forms a tree. To observe what happens in
Bl(v) \ Bh(v), we first prove the following proposition, whose proof uses some of the ideas of
Section 2.1:

▶ Proposition 25. Let u be a vertex in L1. Let P(u) be the set of non-empty paths that start
in u and whose first step does not go into T1. Then, the shortest path in P(u) that ends in
any vertex in L1 has length at least r.

Proof. As in the previous girth proof, we have two cases, u ∈ V1(Ec) and u ∈ V1(Et). The
latter case is obvious from the proof in Section 2.1, since if u ∈ V1(Et) then the H distance
to any node in L1 is at least r (from Proposition 19) and the H distance to any node in L2
is also at least r (from Fact 21). So, suppose u ∈ V1(Ec).

Let’s follow the same proof strategy as before, so let P ∈ P(u) be the shortest path and
let’s follow P starting in u. Again, from Proposition 19 the H distance of u to any node
in L1 is at least r. However, u might reach ϕ(u) in a short number of steps (namely, if the
cycle corresponding to (u, ϕ(u)) is short). So, let’s follow P to ϕ(u) and into T2. We are now
in the exact same situation as in the setup of the proof in Section 2.1 (but starting in T2), so
the result follows. ◀

Let u be some vertex in L1. Let’s say a vertex w is at P-distance δ from u if the shortest
path P ∈ P(u) that ends in w has length δ. Additionally, let Sδ(u) be the set of vertices that
are at a P-distance of at most δ from u. From Proposition 25, we know that for all distinct
u, w ∈ L1, the sets S⌊r/2⌋(u) and S⌊r/2⌋(w) are disjoint. Thus, we have that for u ∈ L1 the
vertices in S⌊r/2⌋(u) form disjoint trees rooted at u, which shows that Bl(v) forms a tree.

We can now apply Lemma 24 and conclude that for all 1 ⩽ i ⩽ l, we have
∑

u∈Xi
g2

u ⩾∑
u∈Xi−1

g2
u. So the sequence (

∑
u∈Xi

g2
u)i is an increasing sequence. Note that Xh = L1, so∑

u∈Xh
g2

u =
∑

u∈L1
g2

u. Additionally, we know that the total sum of (
∑

u∈Xi
g2

u)i is at most
one (since g is a unit vector and the Xi are disjoint), so we have that ⌊r/2⌋ ·

∑
u∈Xh

g2
u ⩽∑l

i=h

∑
u∈Xi

g2
u ⩽ 1 and finally

∑
u∈L1

g2
u =

∑
u∈Xh

g2
u ⩽ 1/⌊r/2⌋ = O(1/r).

This concludes the proof of Theorem 8.
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3 Open problems

Can we improve Theorem 12 to obtain high girth?
Something like this could be proved by showing that when 2-lifting a graph with large
enough girth, with sufficiently high probability the girth of the resulting graph increases.
This would boost the girth of the graph generated by the first step of the construction of
[26] during the repeated 2-lift step. However, it is unclear if this can be done. Alternatively,
one could show that bicycle-freeness increases with good probability as we 2-lift, but this
is also unclear.
A different strategy would be to find a different way to derandomize Theorem 4 such
that the we can generate a starter graph of larger size. However, it is unclear if this
strategy could work since the tool used to derandomize this, namely (δ, k)-wise uniform
permutations (defined in Appendix C), cannot be improved to derandomize this to the
required extent.
Can we obtain Theorem 10 for higher values of c; for example, can we build a distribution
that is (2

√
d − 1 + ϵ, .99 logd−1 n)-good?

One promising strategy would be to show that the graphs produced by the distribution
described in [20], which were shown to have girth at least .99 logd−1 n with high probability,
are also near-Ramanujan with high probability. Numerical calculations seem to indicate
that the answer is positive, as pointed out in one of the open problems given in [20].
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A A near-Ramanujan graph distribution of girth Ω(logd−1 N)

Recall Theorem 4, which says that uniformly random d-regular graphs are near-Ramanujan.
We will combine this result with our machinery of Section 2 to show Theorem 10, namely
that there exists a distribution over graphs that is (2

√
d − 1 + ϵ, c logd−1 n)-good for any

ϵ > 0 and c < 1/4, which we will show is the distribution resulting from applying algorithm
fix to a sample of Gd(n).

First, we note that Gd has nice bicycle-freeness. We quote the relevant result from [8],
which we restate below:
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▶ Lemma 26 ([8, Lemma 9]). Let d ⩾ 3 and r be positive integers. Then G ∼ Gd(n) is
bicycle-free at radius r with probability 1 − O((d − 1)4r/n).

An obvious corollary of this is that for any constant c < 1/4, we have that G ∼ Gd(n) is
bicycle free at radius c logd−1 n with high probability.

To bound the number of short cycles in Gd(n) we use a classic result that very accurately
estimates the number of short cycles in random regular graphs.

▶ Lemma 27 ([25, Section 2]). Let G ∼ Gd(n) and Xi be the random variable that denotes
the number of cycles of length i in G. Let Ri = max{(d − 1)i/i, log n}. Then

Pr
[
Xi ⩽ Ri, for all 3 ⩽ i ⩽ 1/4 logd−1 n

]
= 1 − on(1).

Given the above, we obtain the following bound, for all c < 1/4:
c logd−1 n∑

i=1
max{(d − 1)i/i, log n} = O(nc).

So we obtain the following proposition:

▶ Proposition 28. For any c < 1/4 and any ϵ > 0, G ∼ Gd(n) is a (c logd−1 n, O(nc))-graph
and satisfies λ(G) ⩽ 2

√
d − 1 + ϵ with probability 1 − on(1).

Finally, we want to apply Theorem 8, so first we need to verify its preconditions. For
all c < 1/4 we have that (2/3) logd−1(n/nc) = (2/3)(1 − c) logd−1 n ⩾ c logd−1 n. Also note
that nc(d − 1)c/2 logd−1 n+1 = n3c/2 = O(n3/8), so when applying Theorem 8 the resulting
graph has n + O(n3/8) = n(1 + on(1)) vertices. Thus, we obtain Theorem 10.
▶ Remark 29. Recall that Gd(n) is the same as the conditional distribution of the d-regular
n-vertex configuration model when conditioned on it being a simple graph. Indeed, a graph
drawn from the d-regular n-vertex configuration model is simple with probability Ωd(1). A
result very similar to Lemma 27 also holds for the configuration model and thus the results
of this section also hold for the configuration model.

A.1 Counting near-Ramanujan graphs with high girth
We will briefly prove Corollary 11 using the result we just proved. For simplicity, we are
going to work with the configuration model, using the observation of Remark 29.

Our proof will use a classic result on the number of not necessarily simple d-regular
n-vertex graphs, which is the same as the number of graphs in the n-vertex d-regular
configuration model. It is easy to show [5] that for nd even, the number of such graphs is

∼

((
ddnd

ed(d!)2

)n/2)
.

Hence, the core claim we need to prove, is the following:

▶ Proposition 30. Let G1 and G2 be distinct graphs that follow the preconditions of Theorem 8.
Then fix(G1) and fix(G2) are also distinct.

This proposition implies that given any two good d-regular n-vertex graphs, applying fix
produces two distinct graphs. From our proof of Theorem 10 we also know that the result of
applying fix adds at most O(n3/8) vertices. Finally, since a (1 − on(1)) fraction of the graphs
are good an thus when we apply fix they result in (2

√
d − 1 + ϵ, c logd−1 n)-good graphs, the

result follows. For briefness, we will not give a detailed proof but only a sketch of the proof.
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Proof sketch of Proposition 30. Recall the H graph from the description of fix and let H1
be such graph corresponding to G1 and define H2 analogously. If H1 and H2 are distinct,
then fix(G1) and fix(G2) are also distinct. This follows from the fact that the vertices of the
two added trees will have to be matched up in an isomorphism between fix(G1) and fix(G2).

We claim that if G1 and G2 are distinct, then H1 and H2 are distinct. Let Si be the
set of vertices that were endpoints of edges removed from cycles in G1 and G2, respectively.
Note that there are at least two such vertices in Si and also we cannot remove multiple
edges adjacent to one vertex since this would imply the existence of two cycles in a small
neighborhood, breaking the bicycle-freeness assumption. We can ignore the other removed
edges since the local neighborhoods of edges removed from cycles are necessarily distinct
from the local neighborhoods of the other removed edges. Now, the edges removed from Gi

form a perfect matching on Si that adds exactly |Si|/2 cycles to Hi. Also, there is exactly
one perfect matching that adds |Si|/2 cycles to Hi to recover Gi. That means that there is
only one Gi that could have generated Hi, which implies the claim. ◀

B Explicit near-Ramanujan graphs of girth Ω(
√

log n)

In this section we prove Theorem 12, building on the construction in the proof of Theorem 5.
We note that the original construction has no guarantees on the girth of the constructed
graph other than a constant girth. We will briefly recap the main tools and ideas from the
paper.

B.1 Review of constructing explicit near-Ramanujan graphs
Given a d-regular n-vertex graph G = (V, E), let w ∈ {±1}E be an edge-signing of G. The
2-lift of G given w is defined as the following d-regular 2n-vertex graph G2 = (V2, E2):

V2 = V × {±1} E2 = {{(u, σ), (v, σ · w(u, v))} : (u, v) ∈ E, σ ∈ {±1}} .

It was observed in [6] that the spectrum of G2 is given by the union of the spectra of
G and G̃w, where the latter refers to the eigenvalues of the adjacency matrix of G signed
according to w, where each nonzero entry is w(u, v) for {u, v} ∈ E.

This connection between the spectrum of an edge-signing of a graph and a 2-lift gave rise
to the following theorem, which was proved in [26]. Below we write ρ(G) = max{|λi| : i ∈ [n]}
for the spectral radius of G.

▶ Theorem 31 ([26, Theorem 3.1]). Let G = (V, E) be an arbitrary d-regular n-vertex graph
(d ⩾ 3). Assume G is bicycle-free at radius r ≫ (log log n)2. Then for a uniformly random
edge-signing w, except with probability at most n−100 we have:

ρ(G̃w) ⩽ 2
√

d − 1 ·
(

1 + (log log n)4

r2

)
.

Furthermore, this can be derandomized: given a constant C there is a generator h :
{0, 1}s → {±1}E computable in time poly(NC log d), with seed length s = O(log(2C) +
log log n + C · log(d) · log(n)), such that for u ∈ {0, 1}s chosen uniformly at random, with
probability at most n−100 we have:

ρ(G̃h(u)) ⩽ 2
√

d − 1 ·
(

1 + (log log n)4

r2

)
+

√
d

C2 .

STACS 2021



55:16 Spectrum Preserving Short Cycle Removal on Regular Graphs

This theorem is a powerful tool that, combined with the above observation, allows one to
double the number of vertices in a near-Ramanujan graph while keeping it near-Ramanujan,
as long as the bicycle-freeness is good enough. It is easy to show that if G is bicycle-free
at radius r, then any 2-lift of G is also bicycle-free at radius r. So, the strategy employed
by [26] is to start with a graph with a smaller number of vertices that is bicycle-free at a big
enough radius and 2-lift it enough times until the graph has the required number of vertices.

To generate this starting graph, the authors first showed how out to weakly derandomize [8].
Formally, the following is proved:

▶ Theorem 32 ([26, Theorem 4.8]). For a large enough universal constant α and any integer
n > 0, given d, ϵ and c such that:

3 ⩽ d ⩽ α−1
√

log n, α3 ·
(

log log n

logd−1 n

)2
⩽ ϵ ⩽ 1, c < 1/4.

Let G be chosen from the d-regular n-vertex uniform configuration model. Then, except
with probability at most n−.99, the following hold:

G is bicycle-free at radius c logd−1 n;
λ(G) ⩽ 2

√
d − 1 · (1 + ϵ);

Furthermore, this can be derandomized: there is a generator h : {0, 1}s → Gd(n), with
seed length s = O(log2(n)/

√
ϵ) computable in time poly(nlog(n)/

√
ϵ), such that for u ∈ {0, 1}s

chosen uniformly at random, with probability at most n−.99 we have that the above statements
remain true for G = h(u).

Using these two theorems we can setup the construction of [26]. So, first assume we are
given n, d ⩾ 3 and ϵ > 0 and we wish to construct a d-regular graph G with n vertices with
λ(G) ⩽ 2

√
d − 1 + ϵ. The construction is now the following:

1. Use Theorem 32 to construct a d-regular graph G0 with a small number of vertices
n0 = n0(n). If we pick n0 to be 2O(

√
log n) then the generator seed length is O(log(n)/

√
ϵ)

and is computable in time poly(n1/
√

ϵ), so we can enumerate over all possible seeds
and find at least one that produces a graph that is bicycle-free at radius Ω(log(n0)) =
Ω(

√
log n) ≫ (log log n)2 and has λ(G0) ⩽ 2

√
d − 1 · (1 + ϵ) in poly(n) time.

2. Next, we can repeatedly apply Theorem 31 to double the number of vertices of G0,
by choosing C to be ∼ d1/4/

√
ϵ. We then enumerate over all seeds until we find one

that produces a good graph, which only requires poly(n) time. On each application the
bicycle-freeness radius is maintained (so we can keep applying Theorem 31) and the
number of vertices of doubles. After roughly log(n/n0) applications, the resulting graph
has n(1 + on(1)) vertices and λ(G) ⩽ 2

√
d − 1 · (1 + ϵ).

B.2 Improving the girth of the construction
We are finally ready to prove Theorem 12. We are going to apply a similar strategy as the
one from Appendix A. Instead of derandomizing Lemma 27 we are going to obtain a simpler
bound, which is good enough to obtain the desired. We note however, that Lemma 27 can
be derandomized and for completeness we show how to in Appendix C.

We start by proving the following lemma:

▶ Lemma 33. Let G be a d-regular n-vertex graph with λ(G) ⩾ 2
√

d − 1 and such that G is
bicycle-free at radius α logd−1 n, for α ⩽ 2. Then we can apply fix to G and obtain a graph
such that:
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fix(G) is d-regular and has n(1 + on(1)) vertices;
λ(fix(G)) ⩽ λ(G) + on(1);
fix(G) has girth (α/3) logd−1 n.

Before proving this lemma, we prove a core proposition in a slightly more generic way.

▶ Proposition 34. Let G be a d-regular graph that is bicycle-free at radius 2r, then

|Cycr(G)| ⩽ n/(d − 1)r.

Proof. Pick one vertex per cycle in Cycr(G) and place it in a set S. We claim that for every
distinct u, v ∈ S, Br(u) ∩ Br(v) = ∅. Suppose this wasn’t the case and suppose there is some
w such that w ∈ Br(u) ∩ Br(v), for some pair u, v. Note that B2r(w) includes the two length
r cycles that correspond to u and v, which contradicts bicycle-freeness in G.

Given the above, we have that the sets Br(u) for u ∈ S are pairwise disjoint and also we
know that |Br(u)| = d(d − 1)r−1. Hence we have:

|Cycr(G)| · d(d − 1)r−1 ⩽ n,

which implies the desired result. ◀

And we can prove the above lemma.

Proof of Lemma 33. By plugging G into Proposition 34 we can conclude that G is a
(α logd−1 n, n1−α/2)-graph. We wish to apply Theorem 8 so first recall its preconditions.
By definition λ(G) ⩾ 2

√
d − 1. However, the precondition on the radius of bicycle-freeness

does not hold, since (2/3) logd−1(n/n1−α/2) = (α/3) logd−1 n which is less than α logd−1 n.
If we instead use the fact that G is also trivially a ((α/3) logd−1 n, n1−α/2)-graph, then the
precondition is satisfied.

Thus, we can apply Theorem 8 and we obtain that fix(G) satisfies all the required
conditions, which concludes the proof. ◀

Given this lemma, we will modify the first step of the construction of [26] to produce a
graph G0 with girth c

√
log n. Note that, similarly to bicycle-freeness, the girth of a graph

can only increase when applying any 2-lift, so this strategy guarantees that after step 2 of
the construction, the final graph has the desired girth, which would imply Theorem 12.

First, when enumerating over all seeds to generate G0 in step 1, we look for one that
guarantees that G0 is bicycle-free at radius (1/5) logd−1 n0 (recall that by Theorem 32 a
1 − on(1) fraction of the seeds satisfy this). Next, we apply Lemma 33 and obtain fix(G0)
with girth (1/15) logd−1 n0 and the desired value of λ(G0). Let κ = 15c/ logd−1 2. We can
set n0 to 2κ

√
log n, in which case G0 has girth c

√
log n.

Note that the above only works as long as κ ⩽
√

log n, otherwise n0 > n. Also, from
Theorem 31 and Theorem 32, we need d ⩽ (log n)1/8/C and ϵ ≫

√
d(log log n)4/(log n) (the

details on how to obtain these can be found on [26]).
Finally, we can precisely determine the running time of this algorithm. From The-

orem 32, constructing G0 takes time poly(nlog(n0)/
√

ϵ
0 ) = poly(nlog(c/ logd−1(2))/

√
ϵ) and using

Theorem 31 with the appropriate choice of C takes time poly(nd1/4 log(d)/
√

ϵ).
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C Derandomizing the number of short cycles

To make the statement of this section more precise, we will first define a known derandomiz-
ation tool.

▶ Definition 35 ((δ, k)-wise uniform permutations). Let δ ∈ [0, 1] and k ∈ N+. Let [n]k denote
the set of all sequences of k distinct indices from [n]. A random permutation π ∈ Sn is
said to be (δ, k)-wise uniform if, for every sequence (i1, . . . , ik) ∈ [n]k, the distribution of
(π(i1), . . . , π(ik)) is δ-close in total variation distance from the uniform distribution on [n]k.
When δ = 0, we simply say that the permutation is (truly) k-wise uniform.

Kassabov [17] and Kaplan–Naor–Reingold [16] independently obtained a deterministic
construction of (δ, k)-wise uniform permutations with seed length O(k log n + log(1/δ)).

▶ Theorem 36 ([16, 17]). There is a deterministic algorithm that, given δ, k, and n, runs
in time poly(nk/δ) and outputs a multiset Π ⊆ Sn (closed under inverses) of cardinality
S = poly(nk/δ) (a power of 2) such that, for π ∼ Π chosen uniformly at random, π is a
(δ, k)-wise uniform permutation.

This theorem is required to obtain the generator mentioned in Theorem 32 and is the
reason why (δ, k)-wise uniform permutations are useful tools to apply here. We will also
need a convenient theorem of Alon and Lovett [4]:

▶ Theorem 37 ([4]). Let π ∈ Sn be a (δ, k)-wise uniform permutation. Then one can define
a (truly) k-wise uniform permutation π′ ∈ Sn such that the total variation distance between
π and π′ is O(δn4k).

We can now define a “derandomized” version of the configuration model, using this tool.

▶ Definition 38. Recall how the configuration model is defined by a perfect matching of a set
[nd] of “half-edges”.

Let’s denote this matching by M and define a way to generate it using random permuta-
tions. First a uniformly random permutation π ∈ Snd is chosen; then we set Mπ(j),π(j+1) =
Mπ(j+1),π(j) = 1 for each odd j ∈ [nd].

We can write the adjacency matrix A of G as the sum, over all i, i′ ∈ [d], of M(v,i),(v′,i′).
Hence

Av,v′ =
d∑

i,i′=1

∑
odd

j∈[nd]

(1[π(j) = (v, i)]·1[π(j+1) = (v′, i′)]+1[π(j) = (v′, i′)]·1[π(j+1) = (v, i)]).

The d-regular n-vertex (δ, k)-wise uniform configuration model is defined by using (δ, k)-
wise uniform permutations instead. Similarly, we define the d-regular n-vertex k-wise uniform
configuration model.

We can now describe the proposition we wish to prove.

▶ Proposition 39. Fix d ⩾ 3, n and k ⩾ c logd−1 n, where c < 1/4. Let G be drawn from the
d-regular n-vertex 4k-wise configuration model and Xi be the random variable that denotes
the number of cycles of length i in G. Let Ri = max{(d − 1)i/i, log n}. Then

Pr
[
Xi ⩽ Ri, for all 1 ⩽ i ⩽ 1/4 logd−1 n

]
= 1 − on(1).

By Theorem 37, these statements remain true in the (δ, 4k)-wise uniform versions of the
model, δ ⩽ 1/n16k+1.
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Proof. The proof follows almost directly from the proof of Lemma 27. First, note that Xi

can be written as a polynomial of degree at most i in the entries of G’s adjacency matrix,
by summing over the products of the edge indicators of all possible cycles of length i in G.
Thus, from our formula in Definition 38, it can be written as a polynomial of degree at most
2k in the permutation indicators 1[π(j) = (v, i)]. So we can compute E [Xi] assuming that
Xi is drawn from the fully uniform configuration model. Similarly, X2

i can be written as a
polynomial of degree at most 4k in the permutation indicators, so we can compute Var [Xi]
assuming that Xi is drawn from the fully uniform configuration model.

From [25] we have the following estimates, that only apply when (d − 1)2i−1 = o(n):

E [Xi] = (d − 1)i

2i
(1 + O(i(i + d)/n)) Var [Xi] = E [Xi] + O(i(i + d)/n)E [Xi]2 .

By applying Chebyshev’s inequality to each Xi, just like in [25], we get the desired
result. ◀

We can finally rewrite Theorem 32 in the language of the d-regular n-vertex (δ, k)-wise
uniform configuration model and tack on the result we just proved.

▶ Theorem 40. For a large enough universal constant α and any integer n > 0, fix
3 ⩽ d ⩽ α−1√

log n and c < 1/4, and let ε ⩽ 1 and k satisfy

ε ⩾ α3 ·
(

log log n

logd−1 n

)2
, k ⩾ α log(n)/

√
ε.

Let G be chosen from the d-regular n-vertex k-wise uniform configuration model. Then
except with probability at most 1/n.99, the following hold:

G is bicycle-free at radius c logd−1 n;
The total number of cycles of length at most c logd−1 n is O(nc);
λ(G) ⩽ 2

√
d − 1 · (1 + ε).

Finally, by Theorem 37, these statements remains true in the (δ, k)-wise uniform config-
uration model, δ ⩽ 1/n16k+1.
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