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Abstract
A word equation with one variable in a free group is given as U = V , where both U and V are words
over the alphabet of generators of the free group and X, X−1, for a fixed variable X. An element
of the free group is a solution when substituting it for X yields a true equality (interpreted in the
free group) of left- and right-hand sides. It is known that the set of all solutions of a given word
equation with one variable is a finite union of sets of the form {αwiβ : i ∈ Z}, where α, w, β are
reduced words over the alphabet of generators, and a polynomial-time algorithm (of a high degree)
computing this set is known. We provide a cubic time algorithm for this problem, which also shows
that the set of solutions consists of at most a quadratic number of the above-mentioned sets. The
algorithm uses only simple tools of word combinatorics and group theory and is simple to state. Its
analysis is involved and focuses on the combinatorics of occurrences of powers of a word within a
larger word.
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1 Introduction

Word equations in the free group. A word equation is a formal equation U = V in which
both U, V contain letters from a fixed set (called alphabet) Σ and variables; a solution is
a substitution of variables by words over Σ such that this formal equation is turned into
an equality. We consider such equations in a free group, so the aforementioned equality is
interpreted as the equality in the free group generated by Σ; naturally, we allow the usage
of inverses of variables and generators in the equations. The satisfiability problem (of
word equation over the free group) is to decide, whether the input equation has a solution.
By solving the equation we mean to return an (explicit or effective) representation of all
solutions.

The first algorithm for the satisfiability problem was given by Makanin [27] and it is
an involved generalization of Makanin’s algorithm for the satisfiability of word equation
in the free monoid [26]; Razborov generalized the algorithm so that it solves word equations
in the free group [32]; the description is infinite and is known as Makanin-Razborov diagrams.
Makanin’s algorithm is very involved and known to be not primitively recursive [21], the
same applies to Razborov’s generalisation, which was the first step of solving Tarski’s
conjectures (on elementary equivalence and decidability of the theory of free groups) [20, 33].
A different approach based on Plandowski’s algorithm for the free monoid case [31] was later
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proposed [8], and an even simpler approach, which gives also a finite description of the solution
set, was given by Diekert, Plandowski and Jeż [9], it extends Jeż’s algorithm for the free
monoid case [16].

The problem of word equations in the free group was first investigated by Lyndon [25],
who considered the restricted variant of one-variable equations. He showed that the solution
set is a finite union of sets of the form

{w0w
i1
1 w2w

i2
3 · · ·wik2k−1w2k : i1, . . . , ik ∈ Z} , (1)

where w0, . . . , w2k are words over the generators of the free group, we call such sets k-
parametric. In fact, it was first shown using combinatorial arguments that a superset of
all solutions is of this form, and using algebraic methods the superset of all solutions is
transformed into the actual set of all solutions. As a result, k depends on the equation and
is a by-product of the algorithm rather than an explicitly given number. By using a more
refined, though purely combinatorial, argument Appel [1] showed that there exists a superset
of solutions that is a finite union of 1-parametric sets and that one can test for which values
such words are indeed solutions. In principle, the proof can be readily used as an algorithm,
but no reasonable bounds can be derived from it. Unfortunately, Appel’s proof contains an
error (see [5] for a discussion). A similar characterization was announced by Lorentz [23],
but the proof was not supplied. Chiswell and Remeslennikov [5] used a different approach,
based on geometric group theory, to show that the solution is a finite union of 1-parametric
sets. However, their argument does not give any algorithm for solving an equation. Gilman
and Myasnikov [12] gave a proof that the solution set is 4-parametric; their proof is based on
formal language theory and is considerably simpler and shorter than the other known ones,
however, it yields no algorithm.

A polynomial-time algorithm solving the one-variable word equations (in the free group)
was given by Bormotov, Gilman and Myasnikov [3]. In principle, their argument is similar to
Appel, though simpler (and without errors), and extra care is taken to guarantee that testing
takes polynomial time. The running time is high, though little effort was made to lower
the exponent, we believe that simple improvements and better analysis should yield O(n5)
running time of their algorithm.

It is known that already two-variable word equations (in the free group) do not always have
a parametrizable solution set [2], here a parametrizable set is a generalization of parametric
sets (1) in which the exponents using integer parameters can be nested and one exponent
may depend on different parameters. Moreover, no polynomial-time algorithm for two-
variable equations is known. Other restricted cases were also investigated, say the famous
Lyndon-Schützenberger Theorem was originally shown for the free group [24] and satisfiability
of quadratic word equations is known to be NP-complete [19] in the case of free group.

Our results and proof outline. We present an O(n2m) algorithm for solving equations
with one variable in a free group, where n is the length of the equation and m the number
of occurrences of the variable in it.

▶ Theorem 1. Given a word equation with one variable in a free group, with length n and
m occurrences of the variable, we can compute the set of all its solutions in time O(n2m).
The set of solutions is a union of O(n2) sets of the form {αwkβ : k ∈ Z}, where α,w, β are
words over the generators of the given free group.
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The running time is achieved in the RAM model, more specifically we require that operations
on logn-bits long integers (and byte-arrays) can be performed in O(1) time. If this is not
the case, then the running time increases by a multiplicative O(logn) factor. Note that
in Theorem 1 we allow w = ε, i.e. the set {αwkβ : k ∈ Z} from Theorem 1 may consist
of a single string.

The O(n2m) running time seems hard to improve: all known characterization of solution
set include Ω(n2) individual words that should be tested as solutions and natural testing
of a single solution is done in Θ(m) time, note that this does not take into account the
1-parametric sets that do depend on the parameter, which seem to be harder to be tested.

We use a previous characterization of the solution superset [3], from which it follows
that the main task is to compute, given words α, u, v, β, for which i, j ∈ Z the word αuivjβ

is a solution. Roughly speaking, the previous approaches [1, 3] argued that if αuivjβ is a
solution for a “large enough” i then αui

′
vjβ is a solution for each i′ ∈ Z; thus one has to

check some “small” is and one “large enough”; for each fixed i we substitute its value and
similarly argue that if j is “large enough” then each j′ yields a solution (the actual argument
is more subtle and symmetric in terms of i and j). We refine this approach: previously the
tested values of i and j did not depend on the actual equation, but only on its length. We
identify a small set of candidate pairs (i, j) based on the actual equation. To this end, we
substitute αuIvJβ to the equation, where I, J are integer variables, and intend to verify, for
which values (i, j) of variables (I, J) it is a solution. Such parametric candidates cannot be
tested as solutions (in particular because it could be that only for some values of I and J they
indeed are solutions), however, some operations can be performed on uI (or vJ), regardless
of the actual value substituted for I: say uIuIu−1u−I is equal to uI−1 (in a free group).
After performing all such possible operations we obtain a word with “parametric powers” of
u, v, i.e. powers, whose exponents depend on parameters I, J , note that the parameters are
the same for all powers in the parametric word, but the actual exponents in different powers
may be different. If there are only powers of u (or only powers of v) then using known tools
one can show that one of those exponents is (almost) 0. This yields a linear set of possible
is that should be tested. Ideally, we would like to say that a similar claim holds also when
parametric powers of both u and v are present. However, those powers can interact and
such an approach does not work directly. Instead, if I = i, J = j yields a solution, then
substituting I = i (as a mental experiment) either reduces the whole word to ε, in which
case each J = j yields a solution, or leaves only powers of v, in which case we can reiterate
the same approach, this time for powers of v. The former case gives a set of candidates for I,
the latter for J , technically those depend on the substituted i, but this dependency can be
removed by further analysis. A similar analysis can be made for substitution J = j, together
yielding a superset of all possible solutions, which are then individually tested.

Additional analysis is needed to bound the number of candidates that is obtained in
this way. To this end, we analyze the set of possible exponents of powers of u and v. In
particular, we show that initially all such exponents are of the form ±I+ c and ±J + c, which
allows for much better estimations: for the candidate solution to be different, the constants
in those expressions need to be different and to have a factor uI+c some c|u| letters from the
equation are “consumed” and easy calculations show that there are only O(

√
n) different

possible constants, which leads to O(
√
n) different candidates. One has to take special care

of α, β, as their introduction can yield a quadratic-size equation. To avoid this, we analyze
how powers of u in concatenations of words can be obtained.

In most cases, we reduce the problem in the free group to the problem in the free
monoid (with involution) and use standard tools of word combinatorics. However, this
requires some additional properties of words α, u, v, β. Those cannot be inferred from known
characterizations, and so known proofs are reproved and the additional claims are shown.

STACS 2021
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Connection to word equation in the free monoid. The connection between word equations
in the free group and free monoid is not perfectly clear. On one hand, the satisfiability of
the former can be reduced to the satisfiability of word equations over the free monoid (with
involution), this was implicitly done by Makanin [27] and explicitly by Diekert et al. [8] and
so generalizations of algorithms for the monoid case are used for the group case. However,
there is an intuition that the additional group structure should make the equations somehow
easier. This manifests for instance for quadratic equations (so the case when each variable
is used at most twice), for which an NP algorithm was given for the free-group case [19]
and no such result is known for the free monoid case. Furthermore, the whole first-order
theory of equations over the free group is decidable [20], while already one alternation of the
quantifiers make a similar theory for monoid undecidable (see [6] for an in-depth discussion
of undecidable and decidable fragments).

On the other hand, such general reductions increase the number of variables and so are
not suitable in the bounded number of variables case. In particular, a polynomial time
algorithm for the satisfiability of two-variable equations for the free monoid is known [10],
in contrast to the case of the free group (the set of solutions is still not parametrisable [13],
as in the case of the free group.).

Word equations in free monoid with restricted number of variables. Word equations
in the free monoid with restricted number variables were also considered. For one variable
a cubic-time algorithm is trivial and can be easily improved to quadratic-running time [7].
Eyono Obono, Goralcik and Maksimenko gave a first non-trivial algorithm running in time
O(n logn) [30]. This was improved by Dąbrowski and Plandowski [11] to O(n + m logn),
where m is the number of occurrences of the variable in the equation, and to O(n) by Jeż [15];
the last two algorithms work in the RAM model, i.e. they assume that operations on the
logn-bits long numbers can be performed in constant time. The properties of the solution
set were also investigated: all above algorithms essentially use the fact that the solution set
consists of at most one 1-parametric set and O(logn) other solutions [30]. Plandowski and
Laine showed that the solution set is either exactly a 1-parametric set or of size O(logm) [22]
and conjectured that in the latter case there are at most 3 solutions. This conjecture was
recently proved by Saarela and Nowotka [29] using novel techniques.

Word equations in the free monoid with two variables were also investigated. it was shown
by Hmelevskĭı [13] that there are equations whose solution set is not parametrizable. The first
polynomial-time algorithm (of a rather high degree) for satisfiability of such equations was
given by Charatonik and Pacholski [4], this was improved to O(n6) by Ille and Plandowski [14]
and later to O(n5) by Dąbrowski and Plandowski [10], the latter algorithm also returns
a description of all solutions. The computational complexity of word equations with three
variables is unknown, similarly, the computational complexity of satisfiability in the general
case of word equations in the free monoid remains unknown (it is NP-hard and in PSPACE).

2 Definitions and preliminaries

2.1 Notions
Monoids, monoids with involution. By Σ we denote an alphabet, which is endowed with
involution · : Σ → Σ, i.e. a function such that a ̸= a = a. The free monoid Σ∗ with
involution consists of all finite words over Σ and the involution uniquely extended from Σ
to Σ∗ by requiring that (uv) = v u, i.e. we think of it as of inverse in a group. We denote
the empty word by ε. Given a word uvw: u is its prefix, w suffix and v its subword; for a
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word w often w′ and w′′ will denote the prefix and suffix of w, this will be always written
explicitly. A word w = a1 · · · ak, where a1, . . . , ak ∈ Σ, has length |w| = k and w[i . . j]
denotes a subword ai · · · aj . For k ≥ 0 a word uk is a k-th power of u (or simply u-power),
by convention u−k denotes uk. A u-power prefix (suffix) of v is the longest u-power that
is prefix (suffix, respectively) of v, note that this may b a positive or negative power, or
ε. A single-step reduction replaces waav with wv, a reduction is a sequence of single-step
reductions. A word in a free monoid Σ∗ with involution is reduced if no reduction can be
performed on it. It is folklore knowledge that for w there exists exactly one reduced v such
that w reduces to v; we call such a v the normal form of w and denote it by nf(w); we write
w ≈ v when nf(w) = nf(v). We write u ∼ v to denote that u = u′v′ and v = v′u′ or v = v′u′

for some u′, v′. A reduced word w is cyclically reduced if it is not of the form w = ava for any
a ∈ Σ and w is primitive if there is no word v, such that w = vk for some natural number
k > 1.

Free group. Formally, the free group (over generators Σ) consists of all reduced words over
Σ with the operation w · v = nf(wv). We use all elements of Σ∗ to denote elements of the free
group, with w simply denoting nf(w). Note that in such a setting ≈ corresponds to equality
in free group. Note that the inverse w−1 of w is w and we will use this notation, as most
of the arguments are given for the monoid and not the free group.

Any equation in the free group is equivalent to an equation in which the right-hand side
is ε, as u ≈ v is equivalent to uv−1 ≈ ε, thus in the following we consider only equations
in such a form. Moreover, uv ≈ ε is equivalent to vu ≈ ε, which can be seen by multiplying
by v from the left and v−1 from the right; hence we can assume that the equation begins
with a variable. Let us fix the equation

Xp1u1X
p2u2 · · ·um−1X

pmum ≈ ε (2)

for the rest of the paper, each ui is a reduced word in Σ∗, every pi is 1 or −1 and there are no
expressions XεX nor XεX in the equation. Clearly, m is the number of occurrences of the
variable X in the equation, let n = m+

∑m
i=1 |ui| be the length of the equation. A reduced

word x ∈ Σ∗ is a solution when xp1u1x
p2 · · ·um−1x

pmum ≈ ε.

Integer expressions, parametric words. Let us fix two integer variables I, J for the remainder
of the paper. An integer expression is of the form nII + nJJ + nc, where nI , nJ , nc ∈ Z
are integers; an expression is constant when nI = nJ = 0 and non-constant otherwise. We
denote integer expressions with letters ϕ, ψ, note that all expressions that we consider are
in the same two variables I, J . A value ϕ(i, j) is defined in a natural way; we also use this
notation for substitutions of variables, say ϕ(I, k − I), which is defined in a natural way.
The integer expression ϕ depends on the variable I (J) if nI ≠ 0 (nJ ≠ 0) and it depends on
I + J if nI = nJ ̸= 0. If ϕ depends on exactly one variable then we write ϕ(i) to denote its
value.

An s-parametric power is of the form sϕ, where ϕ is an integer expression and s a word;
then s(i, j) denotes sϕ(i,j), this can be interpreted both as an element in the monoid and
in the free group. Unless explicitly stated, we consider only non-constant expressions ϕ
as exponents in parametric powers, this should remove the ambiguity that an s-power is
also an s-parametric power. A parametric word is of the form w = t0s

ϕ1
1 t1 · · · tk−1s

ϕk

k tk
(all arithmetic expressions ϕ1, . . . , ϕk are in the same two variables I, J) and w(i, j) denotes
t0s

ϕ1(i,j)
1 t1 · · · tk−1s

ϕk(i,j)
k tk. In most cases, we consider very simple parametric words, where

STACS 2021
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k ≤ 2 and both expressions depend on one variable only. We sometimes talk about equality
of parametric words (in a free group), formally w ≈ w′ if for each (i, j) ∈ Z2 it holds that
w(i, j) ≈ w′(i, j). We will use those only in very simple cases, say uI+1u−I+1 ≈ u2.

As we process sets of integer expressions (as well as parametric powers), we will often
represent them as sorted lists (with duplicates removed): we can use any linear order, say for
integer expressions the lexicographic order on triples (nI , nJ , nc) and for parametric powers
the lexicographic order on tuples (s, nI , nJ , nc), where tuple (s, nI , nJ , nc) corresponds to
a parametric power unII+nJJ+nc .

2.2 Data structure
Words appearing naturally in our proofs and algorithms are concatenations of a constant
number of subwords (or their involutions) of the input equation. We say that a word w is
k-represented, if w is given as w = (UU)[b1 . . e1] · · · (UU)[bk . . ek], where U = u1 · · ·um is the
concatenation of all words from the equation (2). A parametric word s0t

ϕ1
1 s1 · · · sℓ−1t

ϕℓ

ℓ sℓ is
k-represented, when s0, t1, s1, . . . , tℓ, sℓ are k0, . . . , k2ℓ represented and k =

∑2ℓ
i=0 ki.

We use standard data structures, like suffix arrays [17] and structures for answering
longest common prefix queries on them [18]. As a result, we can answer all basic queries (like
normal form, longest common prefix, power prefix, etc.) about words in the equation in O(1)
time; note that this is the place in which we essentially use that we can perform operations
on O(logn)-size numbers in O(1) time. As an example of usage, we can test whether a word
is a solution in O(m) time:

▶ Lemma 2. Given a word αuivjβ, where α, β, u, v are O(1)-represented, α, β are reduced
and u, v are cyclically reduced and primitive and i, j are a pair of integer numbers, we can
test whether αuivjβ is a solution of (2) in O(m) time.

2.3 Superset of solutions
The previous characterization [3] essentially showed that a solution is either a O(1)-represented
word or of the form uiu′v′′vj for some i, j ∈ Z and u′ is a prefix of u and v′′ is a suffix of v
for some well defined u, v. As we intend to analyze those solutions using word combinatorics,
it is useful to assume that u, v are cyclically reduced and primitive. Unfortunately, this cannot
be extracted directly from the previous characterization, so we repeat the previous arguments
taking some extra care.

▶ Lemma 3 (cf. [12, Lemma 15]). For a given equation (2), in O(n2) time one can compute
a superset of solutions of the form

S ∪
⋃

(αuIvJβ)∈W

⋃
i,j∈Z

{αuI(i)vJ(j)β}

where S is a set of O(1)-represented words with |S| = O(n2) and for each 0 ≤ i ≤ m − 1
there are numbers ℓi, ℓ′

i ≤ |ui| + |ui+1| such that W contains exactly ℓi · ℓ′
i parametric words

satisfying
α, β, are O(1)-represented, reduced and |α|, |β| ≤ |ui| + |ui+1|;
u, v are 2-represented, cyclically reduced, primitive and |u| = ℓi and |v| = ℓ′

i.

2.4 Maximal powers
We say that a word sp is a maximal power in a word t, if it is a subword of t and there is
no s nor s to its left and right in t; note that t need not to be reduced. For instance a3, a2

and (ab)2 are maximal powers in aaababaa. To streamline the analysis, we assume that s0

(called the trivial power) is a maximal power in any word t, even the empty one.
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If sp is a maximal power in a normal form of concatenation of several words nf(w1 · · ·wℓ),
then clearly sp can be partitioned into ℓ subwords such that the i-th of them comes from wi.
However, we show more: we can identify such a maximal power in each wi, that sp is (almost)
the normal form of concatenation of those maximal powers. This is beneficial: the number
of different maximal powers in a word is much smaller than the number of different powers
that are subwords.

▶ Lemma 4. Let w1, w2, . . . , wℓ be reduced and s be cyclically reduced. If sk is a maximal
power in nf(w1 · · ·wℓ) then for each 1 ≤ h ≤ ℓ there exists such a maximal power skh in
wh that |

∑ℓ
h=1 kh − k| < ℓ. Moreover, if sk is the s-power prefix (suffix) of nf(w1 · · ·wℓ)

then we can choose sk1 as the s-power prefix of w1 or a trivial power (skℓ as the s-power
suffix of wℓ or a trivial power, respectively); if sk = nf(w1 · · ·wℓ) then both conditions hold
simultaneously.

The proof of Lemma 4 in case of ℓ ≤ 2 is a simple case distinction. For larger ℓ, we
let w1,2 = nf(w1w2) and apply the induction assumption to w1,2w3, . . . , wℓ, the proof again
follows by simple combinatorics on words.

There cannot be too many different maximal powers of the same word s in a given word w:
different maximal powers sk1 , . . . , skp use together |s|k1 + · · · + |s|kp letters in w and when
k1, . . . , kp are pairwise different then this sum is Ω(p2|s|) and so p = O(

√
|w|/|s|); this can

be naturally generalized to a set of words W instead of a single word w.

▶ Lemma 5. Let s be cyclically reduced word. Let W be a set of words and k =
∑
w∈W |w|.

Suppose that sk1 , . . . , skp are pairwise disjoint subwords of words in W and that k1, . . . , kp
are pairwise different integers. Then p ≤

√
4k/|s| + 1 and if additionally k ≥ |s| then

p ≤
√

5k/|s|.

3 Restricting the superset of solutions

By Lemma 3, we know the form of possible solutions, and by Lemma 2 we can test a single
candidate solution in O(m) time. In particular, all solutions from the set S in Lemma 3
can be tested in O(n2m) time, as desired. The other solutions are instances of parametric
words the form αuIvJβ for well-defined α, u, v, β. The next step is to bound, for fixed
α, u, v, β, the set of values (i, j) such that αuIvJβ(i, j) could be a solution; this is the main
result of the paper.

Idea. Suppose we want to find out which words of the form ui are a solution of (2).
We substitute uI to the equation and treat its left-hand side as a parametric word w

depending on I. If substituting I = i leads to a trivial word, then it is known that some
u-power cancels within the neighboring u-powers (actually, a variant of this fact was used to
characterize the superset of solutions [25, 1, 3], and it is attributed already to Nielsen [28]),
more formally:

▶ Lemma 6 (cf. [3, Lemma 3]). Let ε ≈ s0u1s1u2 · · · sk−1uksk. Then there is ui which
reduces within ui−1si−1uisiui+1.

We want to use Lemma 6 to claim that some u-parametric powers need to reduce, however,
as there can be powers of u as constants, this makes the analysis problematic: as an example,
consider an equation auIuℓa ≈ ε, if I = i is a solution and we set s0 = a, u1 = ui, s1 = uℓa

(so that u1 corresponds to uI) then Lemma 6 guarantees that ui cancels within uℓ, i.e.
0 ≥ i ≥ −ℓ, even though I = −ℓ is the only solution. This is caused by u-powers next to

STACS 2021
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u-parametric power, which makes our application of the Lemma 6 nearly useless. To fix this,
in auiuℓa we set s0 = a, u1 = ui+ℓ, s1 = a, and then Lemma 6 yields i = −ℓ. On the level
of the parametric word this corresponds to considering auI+ℓa ≈ auIuℓa, i.e. we include
u-powers into the u-parametric power next to them.

This is formalized as follows: A parametric word w is u-reduced when u is cyclically
reduced, primitive and w does not have a subword of the form:

uϕ for a constant integer expression ϕ;

aa for some letter a (so w is reduced);

uϕuψ for some (non-constant) integer expressions ϕ, ψ;

uuϕ, uuϕ, uϕu, uϕu for some (non-constant) integer expression ϕ.
Note that we do not forbid subwords that are powers of u, we forbid parametric subwords
that are in fact subwords, i.e. have constant exponents.

Given a parametric word w we can u-reduce it to obtain a parametric word that is equal
(in the free group) and u-reduced by a simple greedy procedure, i.e. replacing a parametric
power with a constant integer expression as exponent with a power or reduction or joining
two u-powers into one (the running time for specific applications is analyzed separately
at appropriate places). When we replace, say uuϕ with uϕ+1, then we say that letters in u

were u-reduced to uϕ+1. Note that there are different u-reduced equivalent parametric words,
so the output of u-reduction is not unique, this has no effect on the algorithm, though.

If a parametric word w (with all exponents depending on one variable) is u-reduced then
from Lemma 6 we infer that w(i) ≈ ε implies |ϕ(i)| ≤ 3 for some parametric power uϕ in w:

▶ Lemma 7. Let w = w0u
ϕ1w1 · · ·uϕkwk be a u-reduced parametric word, where w0, . . . , wk

are words and ϕ1, . . . , ϕk are integer expressions, all depending on exactly one and same
variable. If w(i) ≈ ε then there is ϕℓ such that |ϕℓ(i)| ≤ 3. In particular, w(i) ≈ ε for each i
if and only if w = ε.

As ϕℓ in Lemma 7 is a non-constant integer expression then there are at most 7 values
of i such that |ϕℓ(i)| ≤ 3. Hence it is enough to find appropriate i values. Clearly, there
are at most m integer expressions in w (as this is the number of variables). We can give
better estimations, though: if the expression is not of the form kI then it “used” at least
|u| letters from the equation. So there are n/|u| different expressions and the ones of the
form kI; as |ki| ≤ 3 implies |i| ≤ 3, there are 7(1 + n/|u|) candidates for i in total. Lastly,
when the solution depends on two variables, it can be shown that all obtained parametric
powers have coefficient ±1, which allow even better estimations: a parametric power I + c

uses at least c|u| letters from the equation and so it can be shown that at most O(
√
n/|u|)

different integer expressions can be formed in such a case.
The actual solution is of the form αuIvJβ. Firstly, the presence of α, β make estimations

harder, as their letters can also be used in the u- and v-reductions. Secondly, there are two
parameters, which makes a simple usage of Lemma 7 impossible. However, if w(i, j) ≈ ε then
w(I, j) ≈ ε depends on one variable, so Lemma 7 is applicable to it. The analysis yields that
we can restrict the possible value of i or j or (i, j); note that this is non-obvious, as there are
infinitely many w(I, j)s. A similar analysis can be made for w(i, J), and combining those
two yields a set of pairs to be tested as well as O(1) individual is and js that should be
tested separately. But for a fixed i (j) we can substitute it to the equation and use Lemma 7
for J (I, respectively).
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3.1 Restricting the set of (i, j)
Fix some 0 ≤ i0 ≤ m − 1 and the corresponding ui0 , ui0+1 in the equation (2). Using
Lemma 3 we construct a parametric word αuIvJβ, with α, u, v, β depending on ui0 , ui0+1
as well as exponents pi0 , pi0+1, pi0+2. We substitute X = αuIvJβ to the equation (2),
obtaining a parametric word on the left-hand side. We are to find values (i, j) ∈ Z2 for
which the value of the obtained parametric word is equivalent to ε, thus we call such an (i, j)
a solution. We want to find a suitable set of pairs (i, j) and test each one individually, using
Lemma 2.

The analysis depends on the relation between u and v: i.e. whether u ∈ {v, v}, u ̸∼ v

or u ∼ v. We analyze particulate cases in Sections 3.1.1–3.1.3. The idea is the same in each
case, but technical details differ.

3.1.1 u ̸∼ v

Due to symmetry, we consider the case when |v| ≥ |u|, note that it could be that |u| = |v|.
We rotate the left-hand side of the equation so that it begins and ends with a parametric power:
we rotate αuIvJβw = ε to vJβwαuI = ε or βvJuIαw = ε to uIαwβvJ = ε, depending on the
form of the equation. The equation after the rotation is equisatisfiable to the previous one.

We call each parametric word beginning with vJ or uI and ending with uI or vJ and no
parametric power inside a fragment. The parametric word after the rotation is a concatenation
of m fragments. We use the name h-th fragment to refer to the one corresponding to uh
(so h-th from the left); let fh denote the word that is left from h-th fragment after removing
the leading and ending parametric power; note that fh is of one of the forms βuhα, βuhβ,
αuhα, αuhβ. For uI we call the preceding α the associated word, the same name is used
to β succeeding vJ , α succeeding uI and β preceding vJ . To simplify, we will call it a word
associated with the parametric power.

We now preprocess the equation, by replacing the left-hand side with an equivalent
parametric word (i.e. equal according to ≈). As a first step, we replace each fh with nf(fh).
Next, observe that if w is the power of u then uIwuI ≈ w and similarly vJw′vJ ≈ w′ for w′

being a power of v. In the second step we check each fragment separately, and if possible,
replace it as described above. For fragments that remained unchanged in the second step,
we use previous names, i.e. if h-th fragment vJ nf(fh)uI was not replaced then we still write
it as vJ nf(fh)uI and call it h-th fragment. A trivial fragment is a maximal subword obtained
as concatenations of words obtained due to replacements in the second step.

We now perform the u-reduction (note that the vJ is not touched) and afterwards
the v-reduction. Let the obtained equation be of the form

W ≈ ε , (3)

where W is a parametric word.

▶ Lemma 8. For u ̸∼ v we can perform the u-reduction and v-reduction after the preprocessing
in O(m) time; the obtained parametric word is u-reduced. No two parametric powers are
replaced by one during the u-reduction and v-reduction, in particular, for a given parametric
power uϕ (vψ) in (3) the ϕ (ψ) has a coefficient of the variable equal to ±1 and the only
letters that are u-reduced (v-reduced) to this power come either from the associated fragment
of uI or uI (vJ or vJ) and the letters from the adjacent trivial fragment (assuming that there
is an adjacent trivial fragment).
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Note that the claim that no two parametric powers are replaced by one is not obvious –
in principle, it could be that after the preprocessing a trivial fragment is a power of u (or
v) and then it is wholly u-reduced, which can lead to two adjacent parametric powers of u,
which are then replaced with one. However, this cannot happen, as such a trivial fragment
is of the form uk1vk2 · · · for some 0 < |k1|, |k2|, . . . and such a word cannot be a power of u
nor v when u ̸∼ v, as the subgroup generated by u, v is a free group.

We now estimate, how many different u-parametric expressions are there after the
reductions. When we want to distinguish between occurrences of parametric powers with
the same exponent (say, two occurrences of uI+1 counted separately) then we write about
parametric powers and when we want to treat it as one, then we talk about exponents.
We provide two estimations, one focuses on parametric powers and the other on exponents.

▶ Lemma 9. There is a set S of O(1) size of integer expressions such that there are O(n/|u|)
occurrences of u-parametric powers in W from (3) whose exponents are not in S and O(n/|v|)
occurrences of v-parametric powers whose exponents are not in S. The set S can be computed
and the parametric powers identified in O(m+ n/|u|) time.

The Lemma considers, whether the parametric power used some letters from the trivial
fragment or its associated fragment had uh of length at least |u|. If so, then it is in the
O(n/|u|) parametric powers, as one such power uses at least |u| letters of the input equation
(this requires some argument for the trivial fragments) and otherwise is can be shown that
there are only O(1) possible exponents: say, when we consider the longest suffix of nf(βuhα)
that is a u-power, where |uh| < |u|, then there is a constant number of possibilities how this
suffix is formed (fully within α, within nf(uhα), uses some letters of β) and in each case the
fact that |uh| < |u| means that there are only O(1) different uhs that can be used; note that
we need the primitivity of u here. Concerning the algorithm, note that we can distinguish
between these two cases during the preprocessing and mark the appropriate powers.

The next lemma provides a better estimation for the number of different exponents,
it essentially uses the fact that all exponents have coefficients at variables ±1: as there
are only two possible coefficients, we can focus on the constants. Now, to have a constant
|c|, we have to use a power uc from W and to have k different constants one has to use k
different powers and so from Lemma 5 we conclude that k = O(|W |/|u|). In general, W can
be of quadratic length, as we introduce m copies of α and β into it; the resulting bound
is too weak for our purposes. To improve the bound, we employ Lemma 4: consider that
when the u-power suffix of, say, βuhα, is uk then by Lemma 4 there are kα, ku, kβ such that
|k − kα − ku − kβ | ≤ 2 and uku , ukβ are maximal u-powers in uh, β and ukα is the u-power
suffix of α. Using Lemma 5, this yields that there are O(

√
n/|u|) different possible values

of ku (over all uh), O(
√

|β|/|u|) = O(
√

|ui0ui0+1|/|u|) of kβ and kα is fixed, so there are
at most O(

√
n/|u| ·

√
|ui0ui0+1|/|u|) = O(

√
n|ui0ui0+1|/|u|) possible values of k.

The actual argument is more involved, as it is also possible that the u-parametric power
includes letters from the trivial fragments, which requires some extra arguments, nevertheless
the general approach is similar.

▶ Lemma 10. After the u-reduction and v-reduction there are O(
√
n|ui0ui0+1|/|u|) different

integer expressions as exponents in parametric powers of u and O(
√
n|ui0ui0+1|/|v|) of v

in the equation. The (sorted) lists of such expressions can be computed in O(m + n/|u|)
and O(m+ n/|v|) time, respectively.

Concerning the algorithm and its running time, it is enough to list all exponents, remove
duplicates, and sort them.
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We can use Lemma 6 together with bounds on the number of different exponents in
parametric powers from Lemma 10 to limit the possible candidates (i, j) for a solution.
However, these bounds are either on i or on j. And as soon as we fix, say, J = j and
substitute it to W , the obtained parametric word W (I, j) (or W (i, J)) is more complex than
W , in particular, we do not have the bounds of Lemma 10 for it, so the set of possible
candidates for i for a given W (I, j) is linear, which is too much for the desired running time.

Instead, we analyze (as a mental experiment) W (I, j): Fix j ∈ Z such that W (i, j) ≈ ε for
some i. Compute W (I, j), u-reduce it, call the resulting parametric word WJ=j . If WJ=j = ε,
then clearly for each i the (i, j) is a solution of (3) (and vice-versa, see Lemma 7). It can
be shown that in this case for some vψ in WJ=j it holds that |ψ(j)| < 6: at least some
two u-parametric powers in W should be merged in WJ=j , in W they are separated by
a v-parametric power, say vψ. All letters of vψ(j) are u-reduced, then standard arguments
using periodicity show that |ψ(j)| < 6 so we can compute all candidates for such js and test
for each one whether indeed WJ=j = ε, this is formally stated in Lemma 12.

If WJ=j depends on I then from Lemma 7 for some of the (new) u-parametric powers uϕ
it holds that |ϕ(i)| < 6. Consider, how this ϕ was created. It could be that it is (almost)
unaffected by the second u-reduction and so it is (almost) one of the u-parametric powers
in W , see Lemma 13 for precise formulation and sketch of proof, in which case we can
use Lemma 10. Intuitively, uϕ is affected if the whole two parametric powers in W were
used to create uϕ. Then it can be shown that some v-parametric power vψ from W turned
into v-power vψ(j) satisfies |ψ(j)| < 6 and is u-reduced to uϕ, the argument is as before,
when WJ=j ≈ ε. Moreover, this occurrence of vψ also determines uϕ; hence the choice of ψ
determines O(1) candidates for j, uniquely identifies ϕ and i satisfies |ϕ(i)| < 6, i.e. there are
O(1) candidates for (i, j). Then Lemma 9 is applied to this vψ: if it is one of n/|v| occurrences
of v-parametric powers then we get O(1) candidates for (i, j) (for this ψ), so O(n/|v|) in
total, over all choices of such ψ. Otherwise, ψ it is one of O(1) integer expressions (Lemma 9)
and so j is from O(1)-size set and we can compute and consider WJ=j for each one of them
separately.

A similar analysis applies also to i ∈ Z substituted for I. The results are formalized
in the Lemma 11 below, its proof is spread across a couple of Lemmata.

▶ Lemma 11. Given equation (3) we can compute in O(mn/|u|) time sets SI , SJ , SZ,J ⊆ Z
and SI,J ⊆ Z2, where |SI | = O(

√
n|ui0ui0+1|/|u|), |SJ | = O(1), |SZ,J |, |SI,J | = O(n/|u|),

such that: if (i, j) is a solution of (3) then at least one of the following holds:
i ∈ SI or
j ∈ SJ or
j ∈ SZ,J and for each i′ the (i′, j) is a solution or
(i, j) ∈ SI,J .

Similarly, given equation (3) we can compute in O(mn/|v|) time sets S′
I , S

′
J , S

′
I,Z ⊆ Z and

S′
I,J ⊆ Z2, where |S′

I | = O(1), |S′
J | = O(

√
n|ui0ui0+1|/|v|) |S′

I,Z|, |S′
I,J | = O(n/|v|) such

that at if (i, j) is a solution of (3) then least one of the following holds:
i ∈ S′

I or;
i ∈ S′

I,Z and for each j′ ∈ Z the (i, j′) is a solution or;
j ∈ S′

J or;
(i, j) ∈ S′

I,J .

As noted above, the main distinction is whether the uϕ in WJ=j was “affected” or not
during the second u-reduction. Let us formalize this. Given an occurrence of a parametric
power uϕ in WJ=j consider the largest subword w of W such that each letter in w(I, j) is
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either reduced or u-reduced to this uϕ; note that this may depend on the order of reductions,
we fix an arbitrary order. We say that parametric powers in w are merged to uϕ. We extend
this notion also to the case when WJ=j = ε, in which case W = w and every parametric power
is merged to the same parametric power u0. A similar notion is defined also for parametric
powers of v. Note that a parametric power is not merged to two different parametric powers
uϕ and uϕ

′ .
We say that a u-parametric power uϕ in WJ=j was affected by substitution J = j if
more than one parametric power was merged to uϕ or
for the unique u-parametric power uϕ′ merged to uϕ there is a v-parametric power vψ′

such that |ψ′(j)| < 6 and there is no u-parametric power between uϕ
′ and vψ

′ .
The intuition behind the first condition is that when we merge two u-powers then we create
a completely new parametric power, for the second condition, when |ψ′(j)| < 6 then vψ

′(j)

no longer behaves like vψ′ and can either be wholly merged to a u-power or be canceled
by a trivial fragment, which can also lead to a large modification of the neighbouring u-
parametric power. Note that the second condition could be made more restrictive, but the
current formulation is good enough for our purposes.

We first investigate the case, when the parametric power was affected by a substitution.

▶ Lemma 12. In O(mn/|v|) time we can compute and sort sets SJ , SE,J , where |SJ | = O(1)
and |SE,J | = O(n/|v|), such that for each occurrence of a u-parametric power uϕ in WJ=j
affected by the substitution J = j either j ∈ SJ or (ϕ, j) ∈ SE,J .

Similarly, in time O(mn/|u|) we can compute and sort sets S′
I , SI,E, where |S′

I | = O(1)
and |SI,E | = O(n/|u|), such that for each occurrence of a v-parametric power vψ in WI=i
affected by the substitution I = i either i ∈ S′

I or (i, ψ) ∈ SI,E.

The sketch of the argument was given above Lemma 11. Concerning the running time,
the appropriate exponents are identified during the u-reduction and v-reduction, which are
performed in given times using the data structure.

We now consider the case when uϕ was not affected. Essentially, we claim that uϕ is
almost the same as some uϕ′ in W . The difference is that it can u-reduce letters from
v-parametric powers that become v-powers. However, as such v-power is not wholly merged
(as it is not affected), only its proper suffix or prefix can be u-reduced and by primitivity
and by case assumption u ̸∼ v and |v| ≥ |u|, this suffix is of length at most |v| + |u|.
Thus, while in principle there are infinitely many possibilities for vψ(j) when j ∈ Z, it
is enough to consider a constant number of different candidates (roughly: v2, v, ε, v, v2)
and we can procure all of them so that an analysis similar to the one in Lemma 10 can
be carried out: essentially we replace a fragment vJfhuI with 5 “fragments” vcfhu

I for
c ∈ {−2,−1, 0, 1, 2}. In this argument, we used the assumption that |v| ≥ |u| (the u-reduction
is of length at most |v| + |u| ≤ 2|v|), but it turns out that in the case v-parametric powers the
argument is even simpler: the v-reduced prefix of u-parametric power is of length at most 2|v|,
so the v-parametric power is modified by an additive O(1) summand.

▶ Lemma 13. We can compute and sort in O(m+ n/|u|) time a set of O(
√
n|ui0ui0+1|/|u|)

integer expressions E such that for every j if uϕ is a parametric power in WJ=j not affected
by substitution J = j then ϕ ∈ E.

A similar set of O(
√
n|ui0ui0+1|/|v|) integer expressions can be computed for the not

affected v-parametric powers after the second v-reduction in O(m+ n/|v|) time.

The algorithm works by simple grouping of the parametric powers after the u- and v-reductions,
the running times are obtained by appropriate usage of the data structure.
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Lemmata 9, 10, 12 and 13 are enough to prove Lemma 11, by a simple case distinction,
as described in text preceding Lemma 9.

What is left to show is how to compute candidate solutions, when one of I, J , say J , is
already fixed, as in the claim of Lemma 11. The analysis is similar as in the case of two
parameters, however, we cannot guarantee that after the u-reduction the coefficient at the
u-parametric powers are ±1. On the positive side, as there is only one integer variable, we
can apply Lemma 7 directly. The additional logarithmic in the running time is due to sorting,
which now cannot be done using counting sort, as the involved numbers may be large.

▶ Lemma 14. For any given j in O(m) time we can decide, whether for each i ∈ Z the αuivjβ
is a solution of (2) and if not then in O(m+ n logm/|u|) time compute a superset (of size
O(n/|u|)) of is such that αuivjβ is a solution.

A similar claim holds for any fixed i (with superset size O(n/|v|) and running time
O(m+ n logm/|v|)).

3.1.2 u ∈ {v, v}
When u ∈ {v, v} then uIvJ ≈ uI+J or uIvJ ≈ uI−J and we can replace the parameter
I + J (or I − J) with a single I. This case is subsumed by the case when we fix one of the
parameters (i.e. I or J), see Lemma 14.

3.1.3 u ∼ v

In this case either u = u′u′′ and v = u′′u′ or v = u′ u′′, for some u′, u′′. By substituting
v = v we reduce the latter case to the former. We consider the parametric solution αuIvJβ,
note that v ≈ u′′uu′′ and so αuIvJβ ≈ αuIu′′uJu′′β. From now on the approach is similar
as when u ̸∼ v. Most of the arguments are simpler, however, the extra technicality is that
after the u-reduction we can have u-parametric power of the form u±(I+J)+c. As a result,
we consider not only substitutions I = i and J = j, but also I + J = k, i.e. we substitute ϕ
with ϕ(I, k − I), which depends only on I. This requires some additional cases to consider
and makes some formulations longer, but everything follows in a similar way.

Overall, the main characterization is

▶ Lemma 15 (cf. Lemma 11). Given the equation (3) we can compute in O(mn/|u|) time sets
SI , SJ , SI+J , SI+J,Z ⊆ Z and SI,J ⊆ Z2, where |SI |, |SJ | = O(

√
n|ui0ui0+1|/|u|), |SI+J | =

O(1), |SI+J,Z|, |SI,J | = O(n/|u|) such that if (i, j) is a solution of (3) then at least one of
the following holds:

i ∈ SI or
j ∈ SJ or
i+ j ∈ SI+J or
i+ j ∈ SI+J,Z and for each i′ the (i′, (i+ j) − i′) is a solution or
(i, j) ∈ SI,J .

Similar sets corresponding to substitutions I = i and J = j can be computed in the same
time bounds.

The fourth possibility in Lemma 15 means that W (I, k − I) ≈ ε, which would yield an
infinite family of solutions {αuivk−iβ : i ∈ Z}. Additional combinatorial analysis yields that
this cannot happen (and we know this from the earlier characterisation of the solution set).

▶ Lemma 16. Consider a parametric word αuIvJβ for u ∼ v and the corresponding W ̸= ε

obtained after the substitution of X = αuIvJβ, as in (3). Then for every k it holds that
W (I, k − I) ̸≈ ε.
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3.2 Algorithm and running time
By Lemma 2 one solution of the form αuivjβ, for fixed α, u, i, v, j, β which are O(1)-
represented, can be tested in O(m) time. So it is enough to show that there are at most
O(n2) different candidates tested (we estimate other computation times as well). Lemma 3
yields that there are O(n2) candidate solutions (from the set S). Other solutions are obtained
in the following way: for two consecutive words ui0 , ui0+1 from the equation we have a family
of ℓi0 · ℓ′

i0
candidates of the form αuIvJβ, see Lemma 3, where ℓi0 = |u|, ℓ′

i0
= |v| and

ℓi0 , ℓ
′
i0

≤ |ui0 | + |ui0+1|; by Lemma 3 the total time, over all i0, spent on computing words
α, β, u, v is O(n2) time. We will often use the estimation (a similar one hold for ℓ′

i0
):

m∑
i0=1

ℓi0 ≤
m∑
i0=1

|ui0 | + |ui0+1| ≤ 2n . (4)

Suppose first that u ̸∼ v, then by Lemma 11 we can compute in time O(mn/ℓi0) sets SI ,
SJ , SJ,Z, SI,J , where |SI | = O

(√
n|ui0ui0+1|/li0

)
, |SJ | = O(1), |SZ,J |, |SI,J | = O(n/ℓi0),

such that for each solution (i, j) at least one of the following holds:
i1. i ∈ SI or
i2. j ∈ SJ or
i3. j ∈ SZ,J and (i′, j) is a solution for each i′ or
i4. (i, j) ∈ SI,J .
and in time O(mn/ℓ′

i0
) sets S′

J , S′
I , S′

I,Z, S′
I,J , where |S′

I | = O(1), |S′
J | = O(

√
n|ui0ui0+1|/ℓ′

i0
)

|S′
I,Z|, |S′

I,J | = O(n/ℓ′
i0

), such that for each solution (i, j) at least one of the following holds:
j1. j ∈ S′

J or
j2. i ∈ S′

I or
j3. i ∈ SI,Z and (i, j′) is a solution for each j′ or
j4. (i, j) ∈ S′

I,J .
As both of those characterization hold, we should describe how do we treat each of the 16
cases. Fortunately, for most of the cases the further action and analysis depends on one of
the cases alone.

If we are in the case i4 or j4 then we test each pair (i, j) ∈ SI,J ∪ S′
I,J separately. There

are (over all 0 ≤ i0 ≤ m− 1) at most (note that some of those solutions have u ∼ v, we will
estimate their running time separately, so now we overestimate the running time)

m−1∑
i0=0

ℓi0ℓ
′
i0

(
n

ℓi0
+ n

ℓ′
i0

)
= n

m−1∑
i0=0

ℓ′
i0 + ℓi0 ≤ 4n2 by (4) (5)

such solutions.
Concerning the time of establishing those sets, the largest is from Lemma 12 and it is

O(mn/ℓi0) (for SI,J) or O(mn/ℓ′
i0

) (for S′
I,J). So up to a constant it is:

m−1∑
i0=0

ℓi0ℓ
′
i0

(
mn

ℓi0
+ mn

ℓ′
i0

)
= mn

m−1∑
i0=0

(ℓi0 + ℓ′
i0) ≤ 2mn2 by (4) .

If we are in the case i3 then for each j ∈ SJ,Z we substitute J = j and test, whether
W (I, j) ≈ ε; by Lemma 7 this is equivalent to (i′, j) being a solution for each i′ ∈ Z. Each
such j yields a family of solutions of the required form { α︸︷︷︸

fixed

ui vjβ︸︷︷︸
fixed

: i ∈ Z} and there are

at most |SJ,Z| = O(n/ℓi0) such families. Over all 0 ≤ i0 ≤ m− 1 this yields at most (up to
a constant)

m−1∑
i0=0

ℓi0ℓ
′
i0

n

ℓ′
i0

= n

m−1∑
i0=0

ℓi0 ≤ 2n2 by (4) .
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Concerning the running time, note that testing whether W (I, j) ≈ ε takes O(m) time, see
Lemma 14, so it is enough to show that we test O(n2) such js. As |SZ,J | = O(n/ℓi0), the
calculations are as in (5). A similar analysis applies to SI,Z, i.e. case j3.

If we are in case i2 then for each j ∈ SJ we can compute, by Lemma 14, in time O(m)
whether each (i′, j) is a solution, note that the set is of the required form, as in the case
of j ∈ SZ,J , moreover the estimation on the number of such solution sets is not larger
than in the case of j ∈ SZ,J , as |SJ | = O(1) and |SZ,J | = O(n/ℓi0). Otherwise, again by
Lemma 14, we compute in time O(m + n/ℓi0 logm)) a set S of size |S| = O(n/ℓi0) such
that if (i, j) is a solution then i ∈ S. This yields |SJ | × |S| = O(n/ℓi0) candidate pairs,
which are individually tested, so the running time is O(mn/ℓi), note that this dominates
O(m + n logm/ℓi0) from Lemma 14. The estimation in (5) yields that there are at most
O(n2) such candidate pairs and the whole running time is O(mn2). A similar analysis applies
to i ∈ S′

I .
The only remaining option is that we are simultaneously in case i1 and j1, i.e. i ∈ SI and

j ∈ S′
J . As |SI | = O

(√
n|ui0ui0+1|/ℓi

)
and |S′

J | = O
(√

n|ui0ui0+1|/ℓ′
i

)
there are (over all

i0 and up to a constant) at most

m∑
i0=1

ℓi0ℓ
′
i0

√
n|ui0ui0+1|

ℓi0
·

√
n|ui0ui0+1|

ℓ′
i0

=
m∑
i0=1

n|ui0ui0+1| ≤ 2n2

such solutions tested.
The cases of u = v or u = v are done using Lemma 14, the bounds are the same as in

case of u ̸∼ v.
The case of u ∼ v is a bit more involved, let ℓi0 = |u|. By Lemma 15 we can compute in

time O(mn/|u|) sets SI , SJ , SI+J , SI+J,Z, SI,J and such that for each solution (i, j) either
1. i ∈ SI or
2. j ∈ SJ or
3. i+ j ∈ SI+J or
4. i+ j ∈ SI+J,Z and for each i′ the (i′, (i+ j) − i′) is a solution or
5. (i, j) ∈ SI,J .
The third case is dealt with as previously (for each i+ j we make a substitution I +J = i+ j,
check, whether the obtained equation is trivial and solve the corresponding equation), similarly
fourth (for each i+ j we substitute I + J = i+ j and check whether the obtained word is
ε; note that it can be shown that this never holds, see Lemma 16) and fifth (we substitute
I = i, J = j and test). So we are left only with the first two cases. Moreover, Lemma 15
also gives us a similar characterization resulting from a substitution I = i, again there are 5
cases and the last three of them are dealt with similarly, the first two give that there are sets
S′
J , S

′
I+J such that

1. j ∈ S′
J or

2. i+ j ∈ S′
I+J

and applied to substitution J = j again gives 5 cases, the last three of which are dealt with
and the first two yield that there are sets S′′

I , S
′′
I+J such that

1. i ∈ S′′
I or

2. i+ j ∈ S′′
I+J .

There are in total 8 cases (we choose one of two options for three substitutions), in each such a
case from the three choices some two (though not each two) allow to give O

(
n|ui0ui0+1|/ℓ2

i0

)
candidates for (i, j) : say if i ∈ SI , j ∈ S′

J and i+ j ∈ S′′
I+J then any two determine (i, j)

and when j ∈ SJ , j ∈ S′
J and i+ j ∈ S′′

I+J then j ∈ SJ ∩ S′
J and i+ j ∈ S′′

I+J . The rest of
the calculations is the same as in the case of u ̸∼ v.
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