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—— Abstract

We study the complexity of the Distributed Constraint Satisfaction Problem (DCSP) on a synchron-
ous, anonymous network from a theoretical standpoint. In this setting, variables and constraints
are controlled by agents which communicate with each other by sending messages through fixed
communication channels. Our results endorse the well-known fact from classical CSPs that the
complexity of fixed-template computational problems depends on the template’s invariance under
certain operations. Specifically, we show that DCSP(T") is polynomial-time tractable if and only if T’
is invariant under symmetric polymorphisms of all arities. Otherwise, there are no algorithms that
solve DCSP(T") in finite time. We also show that the same condition holds for the search variant of
DCSP.

Collaterally, our results unveil a feature of the processes’ neighbourhood in a distributed network,
its iterated degree, which plays a major role in the analysis. We explore this notion establishing a
tight connection with the basic linear programming relaxation of a CSP.
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1 Introduction

The Constraint Satisfaction Problem (CSP) consists of a collection of variables and a collection
of constraints where each constraint specifies the valid combinations of values that can be
taken simultaneously by the variables in its scope. The goal is to decide if there exists an
assignment of the elements of a domain to the variables which satisfies all constraints. The
CSP is a very rich mathematical framework that is widely used both as a fruitful paradigm
for theoretical research, and as a powerful tool for applications in Al, such as scheduling and
planning [21, 17].

© Silvia Butti and Victor Dalmau; L

37 licensed under Creative Commons License CC-BY 4.0 V"
38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). m I_
Editors: Markus Blaser and Benjamin Monmege; Article No. 20; pp. 20:1-20:18 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:silvia.butti@upf.edu
https://sites.google.com/view/silviabutti/
https://orcid.org/0000-0002-0171-2021
mailto:victor.dalmau@upf.edu
https://www.upf.edu/web/victor-dalmau
https://orcid.org/0000-0002-9365-7372
https://doi.org/10.4230/LIPIcs.STACS.2021.20
https://arxiv.org/abs/2007.13594
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2

The Complexity of the Distributed Constraint Satisfaction Problem

While, in its full generality, the finite-domain CSP is known to be NP-complete, applying
specific restrictions on the instances can yield tractable subclasses of the problem. One
of the most studied approaches consists in requiring that, in each constraint, the set of
allowed combinations for its values be drawn from a prescribed set I', usually called the
constraint language or the template. Thanks to the proof of the CSP dichotomy conjecture
obtained separately in [9] and [28], which culminated a decades-long research program, it is
possible to determine the complexity (P or NP-complete) of each family of CSPs, CSP(T"),
which is obtained by fixing I'. This proof confirmed that the complexity of the constraint
satisfaction problem is deeply tied to certain algebraic properties of the constraint language.
Specifically, it depends on whether or not the constraint language is invariant under certain
operations known as its polymorphisms. The polymorphisms of a constraint language enforce
a symmetry on the space of solutions of a CSP instance that can possibly be exploited by an
algorithm. This connection with algebra is also present in our work.

We study the computational complexity of the distributed counterpart of CSP, which is
known as DCSP. This was introduced by Yokoo et al. [25] as a formal framework for the
study of cooperative distributed problem solving. In particular, we consider a deterministic,
synchronous, anonymous network of agents controlling variables and constraints, and we
study the complexity of message passing algorithms on this network. A number of practical
applications can be encoded in the DCSP model, for instance resource allocation tasks in
wireless networks, routing, networking, and mobile technologies (see for instance [10, 6]).

We notice that this framework is general enough to encompass some simple Graph Neural
Network architectures (see for example [20, 14]). In particular, when training a GNN to
classify graphs, it is customary that the GNN network ignores the node label when updating
its feature vector. This is, in fact, essential as otherwise there would be no way to apply the
network trained on a given graph to another one. However, whereas in all variants of GNNs
the computation is limited to a reduced number of operations over feature vectors, in the
DCSP model the computation at each node is governed by an arbitrary algorithm. GNNs
have a wide range of applications including molecule classification or image classification
(see [5] for example). Recently, GNNs have been deployed to solve CSPs [22].

While there are a variety of well-performing distributed algorithms for constraint satisfac-
tion and optimisation (see for instance [27, 19, 11]), the theoretical aspects of distributed
complexity are to date not well understood. In this paper we initiate the study of the
complexity of DCSP parametrized by the constraint language, obtaining a complete charac-
terization of its tractable classes. More specifically, building on the connection between the
CSP and algebra, we show that for any finite constraint language I', the decision problem for
DCSP(T) is tractable whenever I' is invariant under symmetric polymorphisms of all arities,
where an operation is symmetric if its result does not depend on the order of its arguments.
Otherwise, there are no message passing algorithms that solve DCSP(T"). Collaterally, we
show that the same holds for the search problem for DCSP.

Our work begins with the identification of a feature of the nodes in a distributed network,
its iterated degree, which plays a major role in how messages are transmitted in the network.
The iterated degree is an extension of the similar concept introduced in the study of the
isomorphism problem which turns out to have a variety of alternative characterizations in
terms of fractional isomorphisms, the Weisfeiler-Leman test, and definability with counting
logics (see [14]). It turns out that, due to the network anonymity, in every distributed
algorithm all equivalent agents (with respect to iterated degree) must necessarily behave
identically at each round. A similar phenomenon has been observed independently in the
context of GNNs in [20, 23] leading to further study in [3].
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We use this fact to show that, under the absence of symmetric polymorphisms of any
arity in T', it is always possible to construct two instances of DCSP(T"), one satisfiable and
the other unsatisfiable, that cannot be distinguished by any message passing algorithm in an
anonymous network.

On the other hand, invariance under symmetric polymorphisms is connected with the
basic linear programming relaxation of a CSP instance. More precisely, if I' has symmetric
polymorphisms of all arities then one can decide the satisfiability of every instance of CSP(T")
by checking whether its basic linear programming relaxation is feasible (see for instance
[4]). Whereas it is not clear how to directly use this fact to obtain a distributed algorithm
for DCSP(T"), it can be applied to establish a structure theorem that unveils a simple yet
surprising structure in the solution space of every satisfiable instance in DCSP(T"): it must
contain a solution that assigns the same value to all variables that have the same iterated
degree. The proof of the structure theorem uses the weighted majority algorithm, a weight
update method that is widely used in optimisation and machine learning applications (see
[2]). The structure theorem is key in the proof of the positive results as it allows to run an
adapted variant of the jpg-consistency algorithm [16] that overcomes the absence of unique
identifiers for the variables, by using instead their iterated degree.

This paper is organised as follows. In Section 2 we introduce some definitions and
technical concepts about the DCSP model. In Section 3 we present the basic LP relaxation
for CSPs and we show its connection to the symmetry on the solution space, culminating in
the statement of the structure theorem. Section 4 is dedicated to the proof of the dichotomy
theorem for the complexity of DCSP, with the hardness results in Section 4.1, the details
of the distributed algorithm for tractable languages in Section 4.2, and its extension to the
search problem in Section 4.3. Finally, in the Conclusion we discuss some directions into
which our work could be extended.

2 Preliminaries

Constraint Satisfaction Problems

An instance I of the finite-domain Constraint Satisfaction Problem (CSP) is a triple (X, D, C')
where X is a set of variables, D is a finite set called the domain, and C' is a set of constraints
where a constraint ¢ € C is a pair (s, R) where R C D* for k a positive integer, R is a relation
over D of arity k, and s is a tuple of k variables, known as the scope of c. We use arity(-)
to denote the arity of a relation, tuple, or constraint and we write = € ¢ for any variable x
in the scope of ¢. An assignment v : X — D is said to be satisfying if for all constraints
¢ = (s,R) € C we have v(s) € R, where v is applied to s coordinate-wise. Usually we denote
the number of variables by n and the number of constraints by m.

Let T be a set of relations over some finite domain D, and let CSP(T") denote the set of
CSP instances with all constraint relations lying in I'. In this context, I" is known as the
constraint language. Throughout this paper, we will assume that I' is always finite. Then,
the decision problem for CSP(T") is the problem of deciding whether a satisfying assignment
exists for an instance I € CSP(T'). The search problem for CSP(T") is the problem of deciding
whether a satisfying assignment exists and, if it does, to find one such assignment.

The Distributed Model

We consider the DCSP model of [25] with some small modifications. The basic idea is to
assign the task of solving a constraint satisfaction problem to a multi-agent system. In the
original model, which assumes that all constraints are binary [26, 27], the assumption is that
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each variable is controlled by an agent, and two agents can communicate with one another if
and only if they share a constraint. Here we deviate slightly from the original model to allow
for non-binary constraints and we assume that both variables and constraints are controlled
by distributed agents in the network. An instance of the Distributed Constraint Satisfaction
Problem (DCSP) is a tuple (A4, X, D, C, a), where X, D, and C are as in the classical CSP,
A is a finite set of agents, and a : X UC — A is a surjective function which assigns the
control of each variable z € X and each constraint ¢ € C' to an agent a(x), a(c) respectively.
For the purpose of this paper, we assume that there are exactly n + m agents, and therefore
each agent controls exactly one variable or one constraint. This can be done without loss
of generality since any agent controlling multiple nodes can simulate multiple agents, each
controlling a node. Under this assumption, there is a one-to-one correspondence between
instances of CSP and DCSP, and thus we shall switch freely between them.

Distributed Networks and Message Passing

We now present some fundamental concepts relating to the message-passing paradigm for
distributed networks. For a general introduction to distributed algorithms, we refer the
reader to [12]. A distributed system consists of a finite set of nodes or processes, which are
connected through communication channels to form a network. Any process in the network
can perform events of three kinds: send, receive and internal. Send and receive events are
self-explanatory, as they denote the sending or receiving of a message over a communication
channel. Any kind of local computation performed at the process level, as well as state
changes and decisions, are classified as internal events.

We assume a fully synchronous communication model, meaning that the send event
at a process a and the corresponding receive event at a process a’ can be considered de
facto as a unique event, with no time delay. As a whole, a synchronous system proceeds in
rounds, where at each round a process can perform some internal computation and then
send messages to and receive messages from its neighbours. A round needs to terminate
at every process before the next round begins. Note that while for simplicity we assume a
synchronous network, all our algorithms can be adapted to asynchronous systems by applying
a simple synchronizer. Nonetheless, we point out that our negative results rely on the network
operating in synchronous rounds.

We make the fundamental assumption that the network is anonymous, meaning that
variables, constraints and agents do not have IDs. For practical purposes, we still refer to
variables and constraints with names (such as x;, ¢;), however these cannot be communicated
through the channels. The assumption of anonymity can have various practical justifications:
the processes may actually lack the hardware to have an ID, or they may be unable to reveal
their ID due to security or privacy concerns. For instance, the basic architecture of GNNs
is anonymous. This is a very desirable property as it allows to deploy GNNs in different
networks than those in which they were trained.

We assume that all the processes run locally the same deterministic algorithm, therefore
IDs cannot be created and deadlocks cannot be broken by for instance flipping a random coin.
Hence, the lack of IDs makes the processes essentially indistinguishable from one another -
except, as we will see later, for the structure of their neighbourhood in the network.

Leader election is a procedure by which the processes in a network select a single process
to be the leader in a distributed way. If a leader is elected, then she can assign unique
identifiers to every process. Moreover, all the information about the instance can be gathered
to the leader, who can then solve the CSP locally. It is a well-known result that there does
not exist a terminating deterministic algorithm for electing a leader in an anonymous ring [1].
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Therefore, the assumptions of anonymity and determinism ensure that the DCSP model
is intrinsically different from the (centralised) CSP framework, and open up the way for
establishing novel, non-trivial complexity results. We remark that while considerable effort
has been put into characterizing under what conditions an anonymous network is able to elect
a leader [7, 24] or compute relations [8], our work focuses on characterizing the complexity
of the DCSP as parametrised by the constraint language. Therefore, all of our algorithms
work regardless of the topology of the network, and hence regardless of whether or not a
leader can be elected.

The encoding of a DCSP instance into the message passing framework is straightforward.
The processes correspond to the agents of the network, and there is a labelled communication
channel between a variable agent «(z) and a constraint agent «(c) if and only if = € ¢. More
formally, the Factor Graph [11] G of an instance I = (X, D, C) of CSP is the undirected
bipartite graph with vertex set X U C' and edge set {{z,c} | z € ¢}. Each edge in G that
is incident to a variable z and a constraint ¢ where ¢ = (s, R) has a label ¢, . = (S, R) for
S = {i| s[i] = x}, where for a tuple t, t[i] denotes the i*" entry of t.! Then, the message
passing network corresponds to the factor graph where every node (variable or constraint)
is replaced by their associated agent and every edge by a communication channel of the
same label. Note that between any two nodes there is at most one channel. If privacy is a
concern, we point out that labeling channels does not reveal any more information about
the processes than what is strictly necessary for the problem instance to be well defined.
Unless explicitly stated we only consider instances whose factor graph consists of a unique
connected component. It is easy to prove (see the full version for details) that in the case
that all relations are binary, the original model where only variables are controlled by agents
is equivalent to our model.

At the start of an algorithm, a process only has access to very limited information. All
processes know the total number n of variables in the CSP instance, the total number m
of constraints, the labels of the communication channels that they are incident to in the
network, and naturally whether they are controlling a variable or a constraint. During a run
of the algorithm a process can acquire further knowledge from the messages that it receives
from its neighbours. We assume that at any time each process is in one of a set of states,
a subset of which are terminating states. When it enters a terminating state, a process
performs no more send or internal events, and all receive events are disregarded. The local
algorithm is then a deterministic function which determines the process’ next state, and the
messages it will send to its neighbours. The output of such function only depends on the
process’ current knowledge, on its state, and on the global time. We allow processes to send
different messages through different channels. However, since processes can only distinguish
the channels based on their labels, identical messages must be sent through channels with
identical labels. Note that the power of the model would not decrease if only one message
was allowed to be passed through all the channels, since a process can simulate sending a
separate message through each channel by tagging each message with the label of the desired
channel and concatenating them in a unique string. This, however, comes at the cost of
increased message size. Moreover, if a process needs to broadcast multiple messages, these
can be concatenated into one. We say that an algorithm terminates when all processes are
in a terminating state.

! For mathematical clarity, we label edges with the relation itself. However, in algorithmic applications,
every relation can be substituted with a corresponding symbol.
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Figure 1 Both graphs depicted above are 3-regular and hence they have the same iterated degree
sequence. However, they are clearly not isomorphic, since the left graph is bipartite while the right
one is not.

We say that a distributed algorithm solves an instance I of DCSP if the algorithm
terminates and the terminating state of every process correctly states that I is satisfiable
if it is, and that it is not satisfiable otherwise. Moreover, we consider the search version of
DCSP, denoted DCSP-Search. In the search version, if the input instance I is satisfiable, the
terminating state of every variable process a(x) must additionally specify a value v(z) € D
such that v : X — D is a satisfying assignment. For every constraint language I', we denote
by DCSP(T") and DCSP-Search(I") the restrictions of DCSP and DCSP-Search, respectively,
to instances containing only constraint relations from I'.

In terms of algorithmic complexity, there are a number of measures that can be of interest.
Time complexity, which is our primary concern, corresponds to the total amount of time
required for the algorithm to terminate, including the time needed for internal events. This
is closely related to the number of rounds of the algorithm, which is another measure that
we are concerned with. Message complexity and bit complexity measure the total number of
messages and bits exchanged respectively. These can be bounded easily from the maximum
size of a message.

Iterated Degree and Degree Sequence

We present a number of concepts from graph theory that carry over to CSPs. Their adaptation
to DCSPs is straightforward in all cases. In an undirected graph G, the degree of a vertex v
is the number of edges incident at v. The zeroth iterated degree of v is equal to its degree.
For k > 1, the k'" iterated degree of v is the multiset of (k — 1) degrees of v’s neighbours
in G. The k*" iterated degree sequence of a graph is the multiset of k" iterated degrees of
its vertices.

» Example 2.1. In the context of graph theory the colour refinement algorithm, which
calculates the iterated degree sequence of a graph, is often used as a simple heuristic for the
graph isomorphism problem. If two graphs are isomorphic then they must have the same
iterated degree sequence, but the opposite is not true (see for example Figure 1). a

We extend the notion of iterated degree to CSPs as follows. Consider the labelled factor
graph G of an instance I described in the previous paragraph. In what follows it will be
convenient to allow instances I with a disconnected factor graph G. Let v be a node of Gy
and denote its neighbourhood in the factor graph by N(v). The (zeroth) degree, denoted
do(v), of a node in the factor graph is simply a symbol that distinguishes variables from
constraints: we set dp(z) = “@” for all x € X and dy(c) = “A” for all ¢ € C. The k" iterated
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degree? (k > 1) of a node v is defined as 6, (v) = {(lyw,0k—1(w)) | w € N(v)}. We write
v ~F 0 if 6, (v) = 0k (v'), and simply v ~g v’ if v ~% o/ for all k > 0. In this case, we say
that v and v’ are iterated degree equivalent. It can be shown (see the full version) that as k
increases, the partition induced by ~§ gets more refined, and indeed it reaches a fixed point
for some k < 2n where n = | X|. The notion of iterated degree is strikingly relevant in our
work as it captures what it means for two processes in a network to be indistinguishable.
This implies that no distributed algorithm can differentiate between two iterated degree
equivalent nodes, as we illustrate in the following result.

» Proposition 2.2. Let I = (A, X, D, C,«a) be an instance of DCSP(I") whose factor graph
is mot necessarily connected and consider two variables v,v' € Gy. Then, v ~5 v' if and only
if any terminating decision algorithm over I outputs the same decision at a(v) and a(v').
Furthermore, if v,v" € X and I is satisfiable, then any terminating search algorithm outputs
the same values v(v) = v(v') at a(v) and a(v’).

The following is a direct consequence of Proposition 2.2. We say that two instances I
and I’ have the same iterated degree sequence if there exists a bijection v between the nodes
of Gt and the nodes of G- such that for every k > 0 and every node v of Gy, the k*? degree
of v in T is equal to the k' degree of v(v) in I’. We note that in this case, if we construct
the (disconnected) instance I U I’ containing all the variables and constraints in I and I’,
then v ~s y(v) for every node v € G. Hence the result below follows.

» Corollary 2.3. Let I,I'’ € DCSP(T") have the same iterated degree sequence. Then with
both inputs any terminating decision algorithm will report the same decision.

Polymorphisms

Let R be a k-ary relation over a finite domain D. An f-ary polymorphism of R is an
operation f : D! — D such that the coordinate-wise application of f to any set of £
tuples from R gives a tuple in R. More precisely, for any t1,...,t; € R, we have that
(fea[1], ... te[1]), ..., f(t1[K], ..., te[k])) € R. We say that a function f is a polymorphism
of a constraint language I' if f is a polymorphism of all relations R € I'. Equivalently, we
say that I" is invariant under f. The set of polymorphisms of a constraint language I" will be
denoted by Pol(T"). There is a particular construction of a CSP instance that is closely related
to the clone of polymorphisms of the corresponding constraint language. Let I be a constraint
language over a finite domain D. For any positive integer r, the indicator problem of order
r for T' is the instance I = (X, D,C) € CSP(I') where X = D" and C contains for every
relation R € T" and for every t1,...,t, € R, the constraint (s, R) where s[i] = (t1[¢], ..., t,[7])
for every i € {1,...,arity(R)}. It follows easily that for every v : D" — D, v satisfies I if
and only if v is a polymorphism of T'.

An f-ary operation f is said to be symmetric if for all z1,...,z, and for all permutations
oof {1,...,£} we have that f(z1,...,2¢) = f(Zo(1), .- Zo(e))-

» Example 2.4. Consider the Boolean relation R = {(0,1),(1,0)}. It is easy to see that the
ternary minority operation f given by f(x,y,z) = 2 ® y @ z is a polymorphism of R. On
the other hand, one can show that R does not have symmetric polymorphisms of arity 2. In
particular, let t; = (0,1) and t2 = (1,0). Since a symmetric binary operation f needs to
satisfy f(0,1) = f(1,0), the coordinate-wise application of f to t1,ts would yield a reflexive
tuple, which cannot possibly belong to R. 1

2 We remark that the notions of degree and iterated degree are well-defined concepts in graph theory. We
borrow this terminology to refer to the analogous concepts in CSPs.
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Our work unveils a novel structure in the space of solutions of a CSP instance that is deeply
connected to the symmetry of its polymorphisms. In particular, Pol(I") containing symmetric
polymorphisms of all arities is equivalent to the existence of a satisfying assignment to every
satisfiable instance of CSP(T") that preserves the partition induced by ~gs. This is the main
result of the next section.

3 Basic Linear Programming relaxation

For any CSP instance I = (X, D,C) there is a LP relaxation (usually called basic LP
relazation, see for example [18]) denoted BLP(I), which is defined as follows. It has a variable
v(x,d) for each x € X and d € D, and a variable v(c, t) for each ¢ € C and t € R where R is
the constraint relation of ¢. All variables must take values in the range [0, 1]. The value of
v(z, d) is interpreted as the probability that v is assigned to d. Similarly, the value of v(c, t)
is interpreted as the probability that the scope of ¢ is assigned component-wise to the tuple t.
In this paper we only deal with a feasibility problem (that is, there is no objective function).
The variables are restricted by the following equations:

Z v(z,d)=1 forallze X (1)
deD
Z v(c,t) —v(sc[il,d) =0 forallce C,allie{1,...,arity(c)}, andalld e D (2)
teR,
tli]=d

where we denote the relation and scope of a constraint ¢ by R, and s, respectively. We say
that BLP decides CSP(T") if for every instance I € CSP(T'), I is satisfiable whenever BLP(I)
is feasible. We will use the following well-known result.

» Theorem 3.1 (see [18]). If T has symmetric polymorphisms of all arities, then BLP decides
CSP(T"). Moreover, if I € CSP(T') is satisfiable then it has a solution v such that for all x,a’
with v(x,d) = v(z',d) for all d € D, we have v(z) = v(z').

The following theorem reveals a useful structure inside the solutions of the BLP.

» Theorem 3.2. Let I = (X, D,C) be an instance of CSP(T') such that BLP(I) is feasible.
Then, BLP(I) has a feasible solution such that for every x,z’ € X with x ~5 ' and every
de D, v(x,d) =v(a',d).

Proof (Sketch). We start by rewriting the program in the form
Ive[0,1]Y Bv>b (3)

by replacing every equality a = b by the inequalities ¢ > b and —a > —b.

Let us use W and V to denote the rows and columns of B respectively. The main idea
of the proof is to apply the Multiplicative Weight Update (MWU) algorithm, a well-known
technique that is widely used in optimisation and machine learning. MWU was discovered
independently by researchers of different communities; for a survey of its different variants we
refer the reader to [2]. The version that is relevant to our paper is described in Algorithm 1.
Assuming that a feasible solution to (3) does exist, the algorithm only requires the existence
of an oracle which, given a probability W-vector p (i.e, a non-negative vector p such that
the sum of all its entries is 1), outputs a vector v which is a solution to the weaker problem

I7ve[0,1]Y p'Bv>p’b (4)

if one exists, or correctly states that no such vectors exist otherwise.
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Algorithm 1 Multiplicative Weight Update.

Initialisation: Fix n < 1, let p = max(o v maxyew |Bwv — b[w]|, and let w») be
a W-vector, whose entries, called weights, are initially set to 1.
fort=1,...,T do
Compute the probability vector p*) = ﬁw(t), where ®(t) = Zlfﬂ w®[j]
Let v(® be a solution satisfying (p(*)” Bv(Y) > (p®))Tb given by oracle O
Compute the losses £() = %(Bv(t) —b)
Compute the new weights w(t+t1) = w(®) (1 — 7£(1))
end

_ 1T (t)
return v:i= 5>, Vv

Under some technical conditions that provide an upper bound on the number of rounds T’
necessary to achieve a given approximation (see full version for details) it follows that when
T — oo MWU converges to a solution of BLP(/). Now consider an oracle O that, given a
W-vector p, returns the V-vector v where for every v € V, v[v] = 1 if p? B[v] is positive
and v[v] = 0 otherwise. Since v maximizes p? Bv under the restriction v € [0,1]" it follows
that v satisfies (4).

We note that ~s induces an equivalence relation on the variables of BLP(I) (namely,
v(z,d) is equivalent to v(z’,d") whenever x ~5 2’ and d = d’') which can be extended to an
equivalence relation ~y on the set V' of columns in B. Similarly, ~ induces an equivalence
relation ~y on the rows W of B in a natural way. Then our goal is to show that the
positions of ~y -equivalent entries in the output v := % Zthl v(®) are identical. This is done
by showing by induction the more general fact that at each iteration t of the algorithm, the
positions of all ~y-equivalent entries in v(*) are identical, and that for each of the W-vectors
(w®, p® and £)) the positions of all ~y-equivalent entries are identical as well. <

We finalize the section by presenting the theorem on the structure of the solution space of
CSP instances.

» Theorem 3.3. Let I be a finite constraint language. The following are equivalent:
1. T has symmetric polymorphisms of all arities.

2. For all satisfiable instances I = (X, D,C) € CSP(T") there exists a satisfying assignment
v: X — D such that for all pairs of variables x,2’ € X, if x ~5 a’ then v(z) = v(a').

Proof. (1) = (2). Let I be a satisfiable instance of CSP(I"), where I' has symmetric
polymorphisms of all arities. Consider the solution of BLP(I) given by Theorem 3.2 and
note that it satisfies v(x,d) = v(2’, d) for all x ~5 2’ and all d € D. Then, by Theorem 3.1,
T has a solution v which satisfies v(z) = v(a’) for all x ~s 2'.

(2) = (1). Let T satisfy (2) and let » > 1. We shall prove that I" has a symmetric
polymorphism of arity r. Let I = (X, D, C) be the indicator problem of order r. Recall that
every solution to I corresponds to an r-ary polymorphism of I'; and hence the indicator
problem is always satisfiable since for instance the projection to the first coordinate is a

polymorphism of I'. Let v be a solution of the indicator problem which satisfies condition (2).

It is easy to show by induction that for every tuple (¢1....,¢.) € D", every permutation o of
{1,...,r} and every k >0, (t1,...,t,) ~F (to(1)s - - - to(ry) Which implies that v(ty,...,t,) =
V(ta1)s -+ to@ry). We conclude that v is symmetric as required. <
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4 The Complexity of DCSP

The primary goal of this section is to prove the main theorem of this paper, namely, the
dichotomy theorem for tractability of DCSP(T"), which we now state.

» Theorem 4.1. DCSP(T") is solvable in polynomial time if and only if Pol(T") contains
symmetric polymorphisms of all arities. Otherwise, DCSP(T") cannot be solved in finite time.

We show hardness of constraint languages that do not have symmetric polymorphisms
of all arities in Section 4.1 and tractability of the remaining languages in Section 4.2. In
addition, in Section 4.3 we extend the decision algorithm so that, additionally, it also provides
a solution to the search problem. Hence we have:

» Theorem 4.2. DCSP-Search(T") is solvable in polynomial time if and only if Pol(T") contains
symmetric polymorphisms of all arities. Otherwise, DCSP-Search(I") cannot be solved in
finite time.

4.1 Intractable Languages

In this section we focus on intractable languages, that is, the hardness part of Theorem 4.1.

» Theorem 4.3. Let T be a constraint language on a finite domain D. If Pol(T') does not
contain symmetric operations of all arities, then there is no algorithm that solves DCSP(T)
in finite time.

Schematically, the proof goes as follows. Assume that I' does not have symmetric
polymorphisms of some arity r. Consider the relation U defined by the set of solutions of
the indicator problem of order r. It can be shown that if DCSP(T") is solvable in polynomial
(or finite) time then so is DCSP({U}). Then, we show that there always exist two instances
of DCSP({U}), one which is satisfiable and the other one which is not, that have the same
iterated degree sequence. Therefore, any algorithm will return the same output on both
instances, meaning that one of these outputs is wrong. Before embarking on the proof we
state the following useful combinatorial lemma.

» Lemma 4.4. Let 0 < k < d be positive integers. If n is a large enough multiple of k, then
there exists a collection S of n* k-element subsets of {0,1, ..., kn— 1} satisfying the following
properties:

(a) S contains every k-element subset of {0,...,d — 1}

(b) Every element of {0,1,...,kn — 1} appears in the same number of sets of S.

Proof of Theorem 4.3. Assume that Pol(I") does not contain symmetric polymorphisms of
arity r. Fix any arbitrary order t1,...,t|p|» on the tuples of D" and consider the relation U
defined as

{(f(t1),..., f(t;p|*)) | f is a polymorphism of I" of arity r}

This is, U is the set of solutions of the indicator problem of order r. It follows easily (see
full version) that if DCSP({U}) is not solvable in finite time then neither is DCSP(T"). In
particular, this follows from an adaptation of standard complexity reductions, given that U
is pp-definable from I' without using equality.

Partition D" into equivalence classes where two tuples t,t’ € D" are related, denoted
t = t/, if there exists some permutation o on {1,...,r} such that t'[;] = t[o(i)] for every
1€ {1,...,r}. We shall use DL to refer to the collection of classes and [t]= to refer to the
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class of tuple t. For every t € D", define k)_ to be the number of tuples in [t]=. Then we
can choose an integer n large enough such that for every t € D", n is a multiple of k)_, and
n satisfies Lemma 4.4 for k = kyj_ and d = ky)_ - |D|.

We are now ready to construct two instances I; and I of DCSP({U}), which are
indistinguishable with respect to their iterated degree sequence, but differ with regards to
satisfiability. The two instances have the same set of variables, defined to be U[t]; epr Vig =
where Vig_ = {v[ﬁc]E | 0 <@ < kpy_n} is a set of kyj_n distinct variables.

We start by constructing the constraints of the unsatisfiable instance I, which we will do
in two stages. First, for every class [t], let Si;)_ be the collection of nFe= sets of cardinality
kp)— given by Lemma 4.4, as before with d = kpj_ - [D| and k = kp)_. Note that each set in
Si¢)~ defines naturally a subset of V}yj_ so we shall abuse notation and assume that S)_ is a
collection of subsets of Vi

To simplify notation it will be convenient to use S as a shorthand for the indexed family
{Sg- | [t]= € DL}. Now let S be {Sy_ | [t]= € DL} satisfying Sy € Sp_ for every
[t]z € DZ. We associate to S the constraint (s,U) where the scope s is constructed as
follows. Before defining s we need some preparation. Recall that every coordinate of U, and

hence of s, is associated to a tuple t € D", so we can talk of the class [t]= to which each
coordinate belongs. In particular, there are kp;_ coordinates in s of class [t]=. Hence, by
fixing some arbitrary ordering we can use sft]z, i=1,..., k- to refer to the coordinates in

kig=n—1 to
[t]=

s of class [t]=. Then, informally, S};_ describes which variables from Uﬁ]z, s U
use in order to fill coordinates Sft];? i=1,...,kg_. Formally, for every [t]= € DL and each

i=1,... kg, sft] is assigned to the i*" element in Sit)— in increasing order.

We add such a constraint for each of the g)_cpr nPii= = n{PI") possible choices for S.
Therefore, after the first stage we have exactly n(IPI") constraints.

In the second stage we add more constraints which will yield the particular symmetry of
I;. Note that every permutation o on {1,...,r} induces a permutation ¢’ on the coordinates
of U in a natural way. Specifically, if coordinate i of U is associated to tuple t;, then o'(i) = j
where t; = (t;[0(1)],...,t;[o(r)]). Then, in the second stage, for each permutation ¢ on
{1,...,7} and for every constraint (s, U) added in the first stage we add the constraint (s’, U)
where for every 1 < i < |D|", s'[i] = s[o”(i)]. Therefore, after the second stage we have a
total of m = r!- n{P!") constraints as needed.

We now turn to Is. The constraints are constructed in a similar way, but instead of using
the family S in the first stage, we use a different family S’. In particular, for each class [t]=,
S [t]= is obtained by partitioning V}¢)_ in kj)_ blocks of consecutive elements, so that each
block has exactly n elements. Then, S';;_ contains the n¥e= sets that can be obtained by

selecting one element from each block. The second stage is done exactly as in I.
> Claim 4.5. I; and I; have the same iterated degree sequence.

Proof. Let [t]= € DL. First, we observe that in both instances after the first stage, every

variable of V}y)_ appears in the same number of constraints. More specifically, every variable

in V}y)_ appears in an n-fraction of the constraints added in stage 1. In the case of instance
I; this is due to the fact that Spy)_ satisfies condition (b) in Lemma 4.4 and in instance I,
this follows from the fact that Sft];
within each one of the blocks of size n. After the second stage (in both I; and I since the

second stage is common) every variable in V}yj_ still participates in an n-fraction of the total

contains all possible sets obtained by choosing an element

number of constraints. In addition, it follows easily that the positions of the scope in which

a variable in V}y)_ participates distribute evenly among the kg)_ positions associated to t.

That is, in both instances, we have that for every [t]= € DL, every variable x € V}j_, and
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m
nkig) =

position i of the scope, where m = r! - . Using this fact it is very easy to prove that
I; and I, have the same iterated degree sequence. Formally, one could show by induction
on k that for every [t]= € DL and z1,22 € Vg _, 5 (x1) = 0i2(x2) and that for any two
constraints ¢y, co in I; and I respectively 6" (¢1) = 0;2(c2). Here we are using d;'(-) and
6,?(-) to denote the k' degree of a node in the factor graphs of I; and I, respectively. <

every position ¢ associated to [t]= there are exactly constraints in which x appears at

WDl

> Claim 4.6. Instance I is unsatisfiable while instance I is satisfiable.

Proof. We start by showing that I; is not satisfiable. Assume by contradiction that I; has
a satisfying assignment v. For each class [t]=, consider the values given by v to the first d
variables v, ...,v4-1 in Vjgj_. Since d = kp_ - |D|, it follows by the pigeon-hole principle
that at least kg)_ of these variables are assigned by v to the same value of D. Let Sj)_ be
a subset of Vjy_ containing kpj_ of these variables (we know that this subset belongs to
Sit)— by condition (a) of Lemma 4.4). Now consider the constraint (s,U) in I; associated to
S :={Sy_ | [t]= € DL}, which belongs to I;. If v is a solution to I;, then the restriction of
v to s corresponds to an r-ary polymorphism of I'. But v assigns the same value to any two
related tuples t = t/, which implies that v is symmetric, a contradiction.

We now turn our focus to Is. Let f be any r-ary polymorphism of I' (for example the
ith (1 < i < r) projection operation defined as f(z1,...,7,) = x;). We shall construct a
solution v of I in the following way. Recall that in the definition of I, we have partitioned
the tuples of Vjj_ in kpj_ consecutive blocks. In the first stage, all the elements in each
block are placed in the same coordinate of U. So, if t1,...,t p|- are the tuples associated to
coordinates 1,...,|D|" and hence block 1,...,|D|" respectively, then we only need that all
variables in the it block are assigned to f(t;) to satisfy all constraints added in the first
stage. This assignment also satisfies the constraints added in the second stage, because if f
is an r-ary polymorphism of T, then for every permutation o on {1,...,r}, the operation
g(z1,...,2,) defined as f(zy(1),. .., ZTo(r)) is also a polymorphism of I'. <

To sum up, we constructed two instances I; and I, the latter of which is satisfiable while
the former is not, which have the same iterated degree sequence. It follows from Corollary 2.3
that any distributed algorithm will give the same output on both instances, meaning that
no algorithm can solve DCSP({U}). As anticipated at the beginning of the proof then it
follows that there are also no algorithms that solve DCSP(T"). <

4.2 Tractable Languages

In this section we turn our attention to the tractable case. In particular we shall show the
following:

» Theorem 4.7. Let T’ be a constraint language that is invariant under symmetric polymorph-
isms of all arities. Then there is an algorithm Alg that solves DCSP(T"). The total running
time, number of rounds, and mazimum message size of Alg are, respectively, O(n*mlogn),
O(n?), and O(mlogn) where n and m are the number of variables and constraints, respect-
wely, of the input instance.

Note that this implies the “if” part of Theorem 4.1. Alg is composed of two phases. In
the first phase, a distributed version of the colour refinement algorithm allows every process
to calculate its iterated degree. Then, thanks to Theorem 3.3 we can use the degree of a
variable as its ID for the second phase, implying that a distributed adapted version of the
Jjpg-consistency algorithm [16] where messages are tagged with a process’ iterated degree
solves the decision problem for T'.
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Distributed Colour Refinement

Let I = (A, X,D,C,a) be an instance of DCSP(T") and let n = |X| and m = |C|. There
is a very natural way to calculate an agent’s iterated degree in a distributed way, both for
variables and for constraints. This is a mere adaptation of the 1-dimensional Weisfeiler-Leman
algorithm, also known as colour refinement, an algorithm that partitions the vertices of a
graph into classes by iteratively distinguishing them on the basis of their degree (see for
example [15, 14]). The algorithm proceeds in rounds. At round & = 0, each agent «(v) for
v € X UC computes dg(v) and broadcasts it to all its neighbours. At round k > 0, each
agent a(v) knows the (k — 1) degrees of its neighbours which it had received in the previous
round, uses them to compute 0 (v), and broadcasts it to its neighbours. If k& = 2n then for
every x, 2’ € X satisfying @ ~§ 2’ we have that  ~; 2/, which implies that we can essentially
regard the k' iterated degree as the unique common ID for all variables that are iterated
degree equivalent. Then in 2n rounds each agent a(v) can compute d (v), where we use 00
as a shorthand for ds,. As we described it, the distributed colour refinement algorithm is
not particularly efficient in terms of message complexity. Although this is not necessary to
achieve polynomial time, we can reduce the space required to encode 0o (v).

» Lemma 4.8. Let spmax denote the size of the encoding of 00 (v). A modified version of the
distributed colour refinement algorithm that runs over O(n?) rounds achieves syax = O(logn).

The time at each round and the mazimum size of a message are both bounded above by
O(MSmaz)-

As we will see, the price of an increase in the number of rounds (from n to n?) is
compensated by the effect of sy, on both time complexity and the size of the messages.
The Distributed Consistency Algorithm

It is well known that if a constraint language I' has symmetric operations of all arities then
it satisfies the so-called bounded width property (see [4]). We avoid introducing the definition

of bounded width as it is not needed in our results and refer the reader to [4] for reference.

Then, it has been shown in [16] that if T" has bounded width and I € CSP(T") satisfies a
combinatorial condition called jpg-consistency, then I has a solution. Instead of stating
literally the result in [16] we shall state a weaker version that uses a different notion of
consistency, more suitable to the model of distributed computation introduced in the paper.

A set system S is a subset of X x D. We shall use S, to denote the set {d € D | (z,d) € S}.

A walk of length ¢ (in instance I) is any sequence zocy . . . ¢g—1x¢ where xg, . .., xy are variables,
o, - - -, Co—1 are constraints, and z;, x;41 € ¢; for every 0 <4 < £. Note that walks are precisely
the walks in the factor graph G (in the standard graph-theoretic sense) starting and finishing
in X.

Let S be a set system, p be a walk, and B C S, where x is the starting node of p. The
propagation of B via p under S, denoted B +g p, is the subset of D defined inductively on
the length ¢ of p as follows. If £ =0 then B +g p = B. Otherwise, p = p’co_12, where p' is a
path of length £ — 1 ending at 2y_1. Let ¢p—1 = (s, R). Then we define B +¢ p to contain all
e € D such that there exists d € B +g p’ and t € R such that for every 1 < i < arity(R),
t[7] satisfies the following conditions:

1. t[i] € Sy,
2. if s[i] = x¢y_1 then t[i] = d, and
3. if s[i] = x4 then t[i] = e.

We are now ready to state the result from [16] that we shall use.
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» Theorem 4.9 (follows from [16]). Let I be an instance of CSP(I") where I’ has bounded
width and let S be a set system such that Sy # O for every x € X and such that for every
walk p starting and finishing at the same node x and for every d € Sy, d belongs to {d} +g p.
Then I is satisfiable.

Our goal is to design a distributed algorithm that either correctly determines that an
instance I is unsatisfiable, or produces a set system S verifying the conditions of Theorem
4.9. This is not possible in general due to the fact that agents are anonymous and hence a
hypothetical algorithm that would generate a walk in a distributed way would be unable to
determine if the initial and end nodes are the same. However, thanks to the structure estab-
lished by Theorem 3.3, this difficulty can be overcome when I' has symmetric polymorphisms
of all arities because, essentially, the iterated degree of a node can act as its unique identifier.
To make this intuition precise we will need to introduce a few more definitions.

We say that a pair (x,d) € S is S-supported if for every walk p starting at 2 and finishing
at a node y with z ~s y, we have that {d} +g p contains d.

» Remark 4.10. We note that if (z,d) € S is not S-supported and p = zpcy ... ¢ is a walk
of minimal length among all walks witnessing that (z,d) is not S-supported then £ < n2!Pl.
Indeed if we let B; = {d} + zocp...x;, i =0,...,¢ then we have that (z;, B;) # (z;, B;) for
every 0 <14 < j </, since otherwise the shorter walk zqco, ..., s, ¢j,...,x, would contradict
the minimality of p. Since there are n choices for each x; and 2!P! choices for B;, the bound
follows. N

We say that a set system S is safe if for every solution v € I we have
v(z) =v(y) for all z,y € X with z ~5 y = v(z) € S, for all x € X.
Then, we have

» Lemma 4.11. Let S be a safe set system and let (x,d) € S be a pair that is not S-supported.
Then S\ {(z,d)} is safe.

Our distributed consistency algorithm (that is, the second phase of Alg) works as follows.
Every variable agent a(z) maintains a set S, C D in such a way that the set system S is
guaranteed to be safe at all times. As a result of an iterative process S is modified. We shall
use S’ to denote the content of S at the i*" iteration, where an iteration is, in turn, a loop
of T = 2n(2!P + 1) = O(n) consecutive rounds. The rationale behind this exact value will
be made clear later. Initially, SO is set to D for every x € X. At iteration i for i > 1, S*
is obtained by removing all the elements in S?~! that are not S*~'-supported. Then, in at
most n|D| = O(n) iterations we shall obtain a fixed point S°.

The key observation is that when I' has symmetric polymorphisms of all arities, the
satisfiability of I can be determined from S*. Indeed, if S2° = () for some z € X then we can
conclude from the fact that S°° is safe and Theorem 3.3 that I has no solution. Otherwise,
S5 satisfies the conditions of Theorem 4.9 and, hence, I is satisfiable.

It remains to see how to compute S**! from S?. In an initial preparation step for every
iteration, every variable agent a(z) sends S% to all its neighbours. To compute S**! the
algorithm proceeds in rounds. All the messages sent are sets containing triplets of the form
(000, d, B) where d € D, B C D, and 0 is the iterated degree of some variable z € X. It
follows from the fact that there are at most n possibilities for the degree of a variable that
the size of each message is O(nSmax)-

The agents controlling variables and constraints alternate. That is, variables perform
internal and send events at even rounds and receive messages at odd rounds, while constraints
perform internal and send events at odd rounds and receive messages at even rounds. More
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specifically, in round j = 0 of iteration i, every variable agent a(x) sends to its neighbours
the message M containing all triplets of the form (0o (z),d, {d}) with d € Si. At round 2j
for j > 0, a(x) computes M = My U---U M, where My, ..., M, are the messages it received
at the end of round 2j — 1. Subsequently, for every triplet (doo,d, B) € M with dop = doo ()
and d ¢ B, a(r) marks d as “not S’-supported”. Finally, it sends message M to all its
neighbours. This computation can be done in time O(rnsmax) = O(Mnsmax) provided that
each message is stored as an ordered array.

In round 2j + 1, every constraint agent «(c) computes from the messages M, (received
from each neighbour a(x) in the previous round) the set M7, which contains for every variable
y € ¢ and every (o0, d, B) in M,, the triplet (0o, d, B +g: p) where p =y, ¢, . Finally, it
sends to each neighbour a(x) the corresponding message M. Note that while a(c) doesn’t
know the address of a(z) specifically, knowing the label of the channel that connects them is
sufficient to calculate M/ correctly and send the message accordingly. Moreover, for given y
and x, a(c) can compute B +g: p in O(1) time as a(c) knows both S}, and S%. Hence, since
the arity of the relations is fixed (as I is fixed) the total running time at iteration 2j + 1 of a
constraint agent a(c) is O(NSmax)-

Now it is immediate to show by induction that for every j > 0, every z € X and c € C
with & € ¢ the message sent by a(z) to a(c) at the end of round 2j is precisely

{(6sc(y),d,{d} +p) |y € X,d € S}, p is a walk of length j of the form p =y,...,}
and the message sent by a(c) to a(z) at the end of round 25 + 1 is precisely
{00 (y),d, {d}+p) |y € X,d € S;,p is a walk of length j + 1 of the form p =vy,...,¢c,x}.

By Remark 4.10 only 2n2!P| = T' — 2n iterations are needed to identify all elements in
S that are not S®-supported. Hence, after exactly 7' — 2n rounds every variable agent ()
computes SiT! by removing all the elements in S* that are marked as “not S®-supported”. If
Sitl = (), then a(x) initiates a wave, which is propagated by all its neighbours, broadcasting
that an inconsistency was detected. In this case, in at most 2n additional rounds all agents
can correctly declare that I is unsatisfiable. Otherwise, a new iteration begins.

To sum up, the distributed consistency algorithm consists of O(n) iterations consisting,
each, of O(n) rounds where the total running time for internal events at a given round is
O(mnsmax) and the maximum size of each message transmitted is O(nsmax). Together with
the bounds given by Lemma 4.8 for the distributed colour refinement phase, this completes
the proof of Theorem 4.7.

4.3 The Search Algorithm

We conclude by presenting the proof of Theorem 4.2. The hardness part follows immediately
from Theorem 4.1 as the search problem is as difficult as the decision problem. For the

positive result we shall present an adaptation of the algorithm solving the decision version.

Let I be an instance of DCSP-Search(I') where ' contains symmetric polymorphisms of
all arities. In what follows we shall use intensively the fact that Pol(T") is closed under
composition. Let J C D be minimal with the property that f(D) = J for some unary
polymorphism f in Pol(T"). It is fairly standard to show that for every r > 0 there is a
r-ary symmetric operation g such that g(z,...,x) = x for every x € J. Indeed, let f satisfy
f(D) = J and let g be any r-ary symmetric polymorphism in Pol(T'). Then the unary
operation h defined by h(z) = fog(z,...,x) is a unary polymorphism of I'. By the choice
of f we have h(D) C J. We note that h(J) = J since otherwise h? would contradict the
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minimality of f. Consequently, h~! belongs to Pol(T") and, hence, the r-ary operation defined
as h~! o f o g satisfies the claim. This implies that if we enlarge the constraint language by
adding all singletons {d}, d € J, the resulting constraint language, which we shall denote by
I, still has symmetric polymorphisms of all arities. For convenience we also include D in I".

The algorithm has two phases. In the first phase it runs the decision algorithm to
determine whether the instance is satisfiable. As a byproduct, every variable agent «(z) has
computed its iterated degree d(x) and knows as well its rank in a prescribed ordering of all
variable degrees 6% ,...,d% , r < n. This (partial) order will be used to coordinate between
the agents. An i-agent, 1 <i < r is any agent a(z) with d.(x) = 6. We also assume a
fixed ordering on the elements in D. If the instance is unsatisfiable nothing else remains to
be done so from now on we shall assume that the instance is satisfiable.

In the second phase the algorithm searches for a solution. Every variable agent a(z)
maintains a set F,, C D with the property that there is a solution v that falls within F, i.e,
such that v(z) € F, for every x € X. Initially every agent a(x) sets F,, = D so it is only
necessary to make sure that this condition is preserved during the execution of the algorithm.
The second phase contains two nested loops. The outer loop has r iterations and the inner
loop consists of at most |D| iterations so that we shall use iteration (7, d) to indicate the run
of the algorithm at the ¢ = 1,...,r iteration of the outer loop and at the iteration d of the
inner loop.

At the beginning of iteration (i,d) every variable agent a(x) defines S, C D to be
Sy = {d} whenever a(z) is an i-agent and S, = F, elsewhere. Then it runs the distributed
consistency algorithm starting at S obtaining a fixed point S°°. We note that since all initial
sets Sy belong to IV and I contains symmetric polymorphisms of all arities then the obtained
fixed point S°° correctly determines whether there exists a solution v that falls within S.
Then every i-agent o(z) checks whether S° = (. In case of positive answer nothing else is
done and round (4, d) finishes. Otherwise, a(x) sets F, to {d} and starts a wave to indicate
to all processes that the i iteration of the outer loop is finished and that the next iteration
of the outer loop can start. When the r iterations of the outer loop have been completed the
set system F' contains only singletons. The assignment that sets every variable x € X to the
only element in F), is necessarily a solution. This concludes the proof of Theorem 4.2.

5 Conclusion

We analysed the complexity of the distributed constraint satisfaction problem on a syn-
chronous, anonymous network parametrised by the constraint language. We showed that,
depending on the polymorphisms of I', DCSP(I") is either solvable in polynomial time, or not
solvable altogether. A number of natural open questions arise in this context. For instance, it
is not clear whether asynchronous networks are strictly more powerful than their synchronous
counterpart. Moreover, it would be interesting to explore the role of allowing agents to make
random choices - provided this is not used to create and share unique IDs.

In the spirit of [13], one could consider characterizing the structural restrictions on
tractable distributed CSPs, or in other words, determining which classes of networks are
tractable in the DCSP framework, regardless of the constraint language. The starting point
for this analysis could be the work on fibrations by Boldi et al. (see for example [7, 8]).
In particular, we propose the question of establishing a connection between the universal
fibration of a graph and its iterated degree sequence.
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