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Abstract
We study synchronizing partial DFAs, which extend the classical concept of synchronizing com-
plete DFAs and are a special case of synchronizing unambiguous NFAs. A partial DFA is called
synchronizing if it has a word (called a reset word) whose action brings a non-empty subset of states
to a unique state and is undefined for all other states. While in the general case the problem of
checking whether a partial DFA is synchronizing is PSPACE-complete, we show that in the strongly
connected case this problem can be efficiently reduced to the same problem for a complete DFA.
Using combinatorial, algebraic, and formal languages methods, we develop techniques that relate
main synchronization problems for strongly connected partial DFAs with the same problems for
complete DFAs. In particular, this includes the Černý and the rank conjectures, the problem of
finding a reset word, and upper bounds on the length of the shortest reset words of literal automata
of finite prefix codes. We conclude that solving fundamental synchronization problems is equally hard
in both models, as an essential improvement of the results for one model implies an improvement for
the other.
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1 Introduction

Synchronization is a concept in various domains of computer science which consists in
regaining control over a system by applying (or observing) a specific set of input instructions.
These instructions are usually required to lead the system to a fixed state no matter in which
state it was at the beginning. This idea has been studied for automata (deterministic [8, 36],
non-deterministic [17], unambiguous [2], weighted and timed [10], partially observable [22],
register [1], nested word [9]), parts orienting in manufacturing [13, 23], testing of reactive
systems [30], variable length codes [5], and Markov Decision Processes [11, 12].
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12:2 Synchronizing Strongly Connected Partial DFAs

In this paper, we study the synchronization of partial DFAs, which are a generalization of
complete DFAs and a special case of unambiguous NFAs. We are motivated by applications
of this model and its connections with others, as well as the need for new techniques applied
to partial DFAs. The problems for strongly connected partial DFAs are a motivation for
further development and generalization of the methods applied for complete DFAs, since, as
we show, these models are closely related. We also hope that our methods will serve as a
step toward studying a wider class of strongly connected unambiguous NFAs.

1.1 Observing a reactive system
Consider a finite-state reactive system modeled by a partial DFA (by partial we mean that for
some states there can be no outgoing transitions corresponding to some letters). The observer
knows the structure of the DFA but does not know its current state. At every step, the DFA
reads a letter (also known to the observer) and transits to another state. The observer wants
to eventually learn the actual state of the DFA. Since the DFA is deterministic, once a state
is known, it will be known forever.

In this setting, the actual state is known if and only if the system reads a reset word –
a word which transits a non-empty set of states to a single state and is undefined for all
other states. The presence of undefined transitions indicates that certain actions cannot be
performed from certain states, which can be essential for synchronization.

For several identical systems running in parallel and receiving the same input (but possibly
starting from different states), the presence of a reset word guarantees that all systems end
up in the same state. This idea can be used in robotics, where a sequence of passive obstacles
is used for orienting a large number of arbitrarily rotated parts arriving simultaneously on a
conveyor belt ([13, 23], see also [36] for an illustrative example).

Reactive systems (such as Web servers, communication protocols, operating systems and
processors) are systems developed to run without termination and interact through visible
events, so it is natural to assume that the system can return to any state from any other state
(NFAs with this property are called strongly connected). The probabilistic version of the
described problem for strongly connected partial DFAs has been considered in the context of
ε-machines [34]. In particular, the observer knows the state of an ε-machine precisely if and
only if a reset word for the underlying partial DFA was applied. Some experimental results
on finding shortest reset words for partial DFAs were recently presented in [31].

1.2 Synchronizing automata
There exist several definitions that generalize the notion of a synchronizing complete DFA to
larger classes of NFAs. In this subsection, we describe the notion which preserves most of
the properties of the complete DFAs case, and in 1.5 we briefly describe alternative notions.

An NFA is called unambiguous if for every two states p, q and every word w, there is at
most one path from p to q labeled by w [2]. In the strongly connected case, this is equivalent
to a more classical definition of an unambiguous automaton with chosen initial and final
states, if there is a unique initial state and a unique final state. An unambiguous NFA is
called synchronizing if there exist two non-empty subsets C, R of its states and a word w

(called a reset word) such that its action maps every state in C exactly to the whole set R,
and is undefined for all states outside C [2]. For partial DFAs, the set R has size one [5],
and, for complete DFAs, the set C is also the whole set of states [36].

Partial DFAs are a natural intermediate class between unambiguous NFAs and complete
DFAs. The bounds on the length of shortest reset words in strongly connected partial
DFAs have not been studied before. The famous Černý conjecture, which is one of the most
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longstanding open problems in automata theory, states that for an n-state complete DFA
we can always find a reset word of length at most (n − 1)2, unless there are no reset words.
The best known upper bound is cubic in n [32, 33], and the problem of deciding whether a
complete DFA is synchronizing is solvable in time quadratic in n [36]. For an n-state strongly
connected unambiguous NFA the best known upper bound on the length of a shortest reset
word is n5, and the existence of a reset word is verifiable in time O(n5) [28]. The same upper
bound holds for the length of the shortest mortal words in strongly connected unambiguous
NFAs [21], whereas partial DFAs admit a tight quadratic bound [26].

1.3 Synchronizing codes
A variable length code X (which we call a code) is a set of finite words over a finite alphabet
Σ, such that no word over Σ can be written as a concatenation of codewords of X in two
different ways. Such codes (especially Huffman codes [16]) are widely used for lossless data
compression. Since the lengths of codewords can be different, one transmission error can
spoil the whole decoding process, causing a major data loss. Also, in general, decoding a
part of a message (e.g., a segment of a compressed video stream) is not possible without
decoding the whole message.

These issues can be addressed by using synchronizing codes. A code X is called syn-
chronizing if there exists a synchronizing word w ∈ X∗ such that for every uwv ∈ X∗ we
have uw, wv ∈ X∗. The occurrence of the word ww thus stops error propagation and allows
parallel decoding of the two parts of the message. More generally, each appearance of the
word ww in a coded message allows running decoding independently from the position after
the first w.

A code is called prefix if none of its codewords is a prefix of another codeword. Such codes
allow obtaining the correct partition of a message into codewords one by one by going from
left to right. Even if a code is synchronizing, there are no guarantees that a synchronizing
word will appear in a message. Codes where every long enough concatenation of codewords
is synchronizing are called uniformly synchronizing [5, 7]. A prefix code is called maximal if
it is not a subset of another prefix code. All non-trivial uniformly synchronizing finite prefix
codes are non-maximal [5].

1.4 Automata for X∗

A code recognized by an NFA as a language is called recognizable. In particular, every finite
code is recognizable. To argue about synchronization properties of a recognizable code X,
special NFAs recognizing X∗ are studied. These NFAs have a unique initial and final state
r such that the set of words labeling paths from r to itself coincides with X∗, thus they
are also strongly connected. Provided a recognizable code X, an NFA with the described
properties can be chosen to be unambiguous [5]. Moreover, this NFA can be chosen to be a
partial (respectively, a complete) DFA if and only if X is a recognizable prefix (respectively,
recognizable maximal prefix) code [5].

For such an unambiguous NFA with the properties as above, X is synchronizing if and
only if the NFA is synchronizing, and the length of a shortest synchronizing word for X is
at most the length of a shortest reset word of the NFA plus twice its number of states [5,
Chapter 4].

Finite prefix codes admit a direct construction of partial DFAs with the described
properties, called literal automata. Let X be a finite prefix code over an alphabet Σ. The
literal automaton AX = (Q, Σ, δ) is constructed as follows. The set of states Q is the set of all
proper prefixes of the words in X, the transition function is defined as follows: δ(q, x) = qx
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12:4 Synchronizing Strongly Connected Partial DFAs

if qx /∈ X and qx is a proper prefix of a word in X, δ(q, x) = ε if qx ∈ X, and δ(q, x) = ⊥
otherwise. The state corresponding to the empty prefix ε is called the root state. The height
of a literal automaton is the length of a longest path of its transitions without repetition of
states; equivalently, this is the length of the longest word in X minus one. Note that the
number of states of AX is at most the total length of all codewords of X, which allows to
directly transfer upper bounds from literal automata to finite prefix codes. An example of a
literal automaton is shown in Fig. 1(right). The literal automaton of a prefix code can be
used as a decoder for this code by adding output labels to the transitions [5].

1.5 Carefully synchronizing DFAs
For general NFAs, synchronizability can be generalized to Di-directability for i = 1, 2, 3 [17].
As discussed in [38, Section 6.3], for partial DFAs the notions of D1- and D3-directing words
both coincide with carefully synchronizing words. These are words sending every state of a
partial DFA to the same state, not using any undefined transitions at all. A D2-directing
word for a partial DFA is either carefully synchronizing or mortal (undefined for every state).
The definitions of carefully synchronizing and D2-directing words are different from our
definition of synchronizing words.

A carefully synchronizing word can be applied to a partial DFA at any moment without
the risk of using an undefined transition. This comes at a high cost: even for strongly
connected partial DFAs, the shortest carefully synchronizing words can have exponential
length [38, Proposition 9], and the problem of checking the existence of such a word is
PSPACE-complete [38, Theorem 12], in contrast with the case of complete DFAs. On the
contrary, the notion of a synchronizing partial DFA preserves most of the properties of
a synchronizing complete DFA, at least in the strongly connected case. Note that every
carefully synchronizing word is synchronizing, but the converse is not true.

While for complete DFAs the property of being strongly connected is not essential for
many synchronization properties [36], the situation changes dramatically for partial DFAs.
Partial DFAs, which are not strongly connected, can have exponentially long shortest reset
words, and the problem of checking the existence of a reset word is PSPACE-complete [3].
Thus, strong connectivity is indeed necessary to obtain good bounds and algorithms. As
explained above, for reactive systems and prefix codes this requirement comes naturally.

1.6 Our contribution and organization of the paper
We prove a number of results for strongly connected partial DFAs connected with the Černý
conjecture and its generalizations. Where possible, we look up for methods that allow relating
the partial case with the complete case, instead of directly reproving known results in this
more general setting. In this way, we do not have to go into the existing proofs, and future
findings concerning the complete case should be often immediately transferable to the partial
case.

We start from basic properties and introduce more advanced techniques along with their
applications. First, we investigate the rank conjecture, which is a generalization of the Černý
conjecture from the case of synchronizing automata to the case of all automata. We show that
the rank conjecture for complete DFAs implies it also for partial DFAs (Theorem 10). For
this, we introduce our first basic tool called fixing automaton, which is a complete automaton
obtained from a partial one and sharing some properties. Our result shows a general way
for transferring upper bounds from the case of complete DFAs to partial DFAs, e.g., we
immediately get that the rank conjecture holds for partial Eulerian automata (Corollary 11).
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To connect the Černý conjecture for the cases of complete and partial DFAs, we need
more involved techniques, since the construction developed for the rank conjecture does not
preserve the property of being synchronizing. We introduce a collecting automaton, which
extends the concept of the fixing automaton. We use it to show that all upper bounds on the
length of the shortest reset words, up to a subquadratic additive component, are equivalent
for partial and complete DFAs (Theorem 17). We also use it to prove that the problems of
determining synchronizability and finding a reset word of a strongly connected partial DFA
can be effectively reduced to the same problem for a complete DFA (Section 3.5). This also
means that possible improvements of the complexity of the best-known algorithms for these
problems for complete DFAs should directly apply to partial DFAs.

As discussed in 1.3 and 1.4, one of the main motivations for studying synchronization
of strongly connected partial DFAs is a direct correspondence with synchronization of
recognizable prefix codes. An important special case is when the prefix code is finite. We
investigate it by studying literal automata of finite prefix codes and obtain stronger upper
bounds than those for the general case of strongly connected partial (or complete) DFAs.
We show that the length of the shortest reset words for literal automata of finite prefix codes
is at most O(n log3 n), where n is the number of states of the automaton (Corollary 23).
This upper bound is the same as the best known for maximal prefix codes (which becomes
now a special case), but it is not transferred directly, as key statements do not hold in the
same way for non-maximal prefix codes. To prove it, we first show that literal automata
of finite prefix codes admit a word of linear length whose action sends all the states to a
non-empty subset of small size (Theorem 22). It establishes a natural combinatorial property
of finite prefix codes and constitutes the most involved proof in this paper. Once we show the
existence of such a word, we use one more construction called the induced automaton, which
is a generalization of linear algebraic techniques to the case of partial DFAs (Section 3.7).
This particular construction extends the existing techniques originally developed for complete
DFAs but simultaneously comes with a new simpler and more general proof.

Finally, we show that the lower bounds for strongly connected partial DFAs are asymp-
totically the same even if we ensure the existence of undefined transitions (Section 4). In
other words, undefined transitions do not help in general, as we cannot significantly improve
upper bounds for such automata without doing that for the complete case.

2 Preliminaries

A partial deterministic finite automaton A (which we call partial automaton throughout the
paper) is a triple (Q, Σ, δ), where Q is a set of states, Σ is an input alphabet, and δ is partial
function Q × Σ → Q called the transition function. Note that the automata we consider do
not have any initial or final states. We extend δ to a partial function Q × Σ∗ → Q as usual:
we set δ(q, wa) = δ(δ(q, w), a) for w ∈ Σ∗ and a ∈ Σ. For a state q ∈ Q and a word w ∈ Σ∗,
if the action δ(q, w) is undefined, then we write δ(q, w) = ⊥. Note that if δ(q, w) = ⊥ for a
word w ∈ Σ∗, then δ(q, wu) = ⊥ for every word u ∈ Σ∗. An automaton is complete if all its
transitions are defined, and it is incomplete otherwise. An automaton is strongly connected if
for every two states p, q ∈ Q there is a word w ∈ Σ∗ such that δ(p, w) = q.

By Σi we denote the set of all words over Σ of length exactly i and by Σ≤i the set of
all words over Σ of length at most i. For two sets of words W1, W2 ∈ Σ∗, by W1W2 we
denote their product {w1w2 ∈ Σ∗ | w1 ∈ W1, w2 ∈ W2}. The empty word is denoted by ε.
Throughout the paper, by n we always denote the number of states |Q|.

Given S ⊆ Q, the image of S under the action of w is δ(S, w) = {δ(q, w) | q ∈ S, δ(q, w) ̸=
⊥}. The preimage of S under the action of w is δ−1(S, w) = {q ∈ Q | δ(q, w) ∈ S}. Since
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12:6 Synchronizing Strongly Connected Partial DFAs

A is deterministic, for disjoint subsets S, T ⊆ Q, their preimages under the action of every
word w ∈ Σ∗ are also disjoint.

The rank of a word w is the size of the image of Q under the action of this word, i.e.,
|δ(Q, w)|. In contrast with complete automata, partial automata may admit words of rank
zero; these words are called mortal. Words of non-zero rank are called non-mortal. A word
of rank 1 is called reset, and if the automaton admits such a word then it is synchronizing.
The reset threshold rt(A ) is the length of the shortest reset words of A .

We say that a word w compresses a subset S ⊆ Q, if |δ(S, w)| < |S| but δ(S, w) ̸= ∅.
A subset that admits a compressing word is called compressible. There are two ways to
compress a subset S ⊆ Q with |S| ≥ 2. One possibility is the pair compression, which is the
same as in the case of a complete automaton, i.e., mapping at least two states p, q ∈ S to
the same state (but not to ⊥). The other possibility is to map at least one state from S to
⊥, but not all states from S to ⊥. Sometimes, a subset can be compressed in both ways
simultaneously.

q1 q2 q3

q4q5q6

a a

a

aa

a

b b

b

b

q1

q2

q3

q4 q5

a6

a

b

a b

a

b

a, b

a

Figure 1 Left: a strongly connected partial 6-state binary automaton; right: the literal automaton
of the prefix code {abaaa, abaab, abab, abba}.

An example of a strongly connected partial automaton is shown in Fig. 1 (left). We
have two undefined transitions: δ(q3, b) = δ(q6, b) = ⊥. The unique shortest reset word is
bab: δ(Q, b) = {q1, q2, q5}, δ(Q, ba) = {q2, q3, q6}, and δ(Q, bab) = {q2}. However, in contrast
with the case of a complete automaton, the preimage δ−1({q2}, bab) = {q1, q4} is not Q.

3 Upper Bounds

3.1 Inseparability Equivalence
Let A = (Q, Σ, δ) be a partial automaton. We define the inseparability relation ≡ on Q.
Two states are separable if they can be separated by mapping exactly one of them to ⊥,
leaving the other one.

▶ Definition 1. The inseparability equivalence ≡ on Q is defined as follows:

p ≡ q if and only if ∀u∈Σ∗ (δ(p, u) ∈ Q ⇔ δ(q, u) ∈ Q) .

The same relation is considered in [5, Section 1.4] if all states of the partial automaton are
final. Also, if we replace ⊥ with a unique final state, then ≡ is the well-known Myhill-Nerode
congruence on words in a complete automaton. Under a different terminology, it also appears
in the context of ε-machines, where non-equivalent states are called topologically distinct [34].
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For a subset S ⊆ Q, let κ(S) be the number of equivalence classes that have a non-empty
intersection with S. In the automaton from Fig. 1(left) we have three equivalence classes,
where q1 ≡ q4, q2 ≡ q5, and q3 ≡ q6.

Our first auxiliary lemma states that a subset S ⊆ Q that intersects at least two
equivalence classes can be compressed and the number of intersected classes can be decreased
with a short word. This is done by mapping to ⊥ all the states of S from at least one
equivalence class, but not the whole set S. A linear upper bound can be inferred from a
standard analysis of the corresponding Myhill-Nerode congruence (e.g., [35]), but we will
need a more precise bound in terms of κ(S).

▶ Lemma 2. Let A = (Q, Σ, δ) be a partial automaton, and let S ⊆ Q be a subset such that
κ(S) ≥ 2. Then there is a word w ∈ Σ∗ of length at most κ(Q) − κ(S) + 1 ≤ n − |S| + 1 and
such that 1 ≤ κ(δ(S, w)) < κ(S).

By an iterative application of Lemma 2, we can easily compress any subset of states to a
subset of a single equivalence class.

▶ Corollary 3. Let A = (Q, Σ, δ) be a partial automaton, and let S ⊆ Q be a non-empty
subset. There is a word w of length at most (κ(S) − 1)(κ(Q) − κ(S)/2) such that δ(S, w) is
non-empty and is contained in one inseparability class.

3.2 Fixing Automaton
The other possibility of compressing a subset in a partial automaton is the classical pair
compression. This is the only way for compressing a subset with all states in one equivalence
class, which is always the case in a complete automaton.

Our next tool to deal with this way of compression is the fixing automaton. This is a
complete automaton obtained from a partial one, defined as follows.

▶ Definition 4 (Fixing automaton). For a partial automaton A (Q, Σ, δ), the fixing automaton
is the complete automaton A F = (Q, Σ, δF) such that the states are fixed instead of having
an undefined transition: for every q ∈ Q and a ∈ Σ, we have δF(q, a) = q if δ(q, a) = ⊥, and
δF(q, a) = δ(q, a) otherwise.

We list some useful properties of the fixing automaton.

▶ Lemma 5. Let A = (Q, Σ, δ) be a partial automaton, let S ⊆ Q, and let w ∈ Σ∗. We
have δ(S, w) ⊆ δF(S, w). Moreover, if for every state q ∈ S we have δ(q, w) ̸= ⊥, then
δ(S, w) = δF(S, w).

▶ Lemma 6. Let A = (Q, Σ, δ) be a partial automaton and let S ⊆ Q be a non-empty
subset. For every word w ∈ Σ∗, there exists a word w′ ∈ Σ∗ of length |w′| ≤ |w| such that
∅ ̸= δ(S, w′) ⊆ δF(S, w). In particular, if w has rank r in A F, then w′ has rank 1 ≤ r′ ≤ r

in A .

▶ Corollary 7. The minimal non-zero rank of a partial automaton A is at most the minimal
rank of A F.

In the general case of a partial automaton, it can happen that we cannot compress some
subset S even if there exists a word of non-zero rank smaller than |S|. This is the reason
why the shortest words of the minimal non-zero rank can be exponentially long and why
deciding if there is a word of a given rank is PSPACE-complete [3].
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12:8 Synchronizing Strongly Connected Partial DFAs

However, in the case of a strongly connected partial automaton, as well as for a complete
automaton, every non-mortal word can be extended to a word of the minimal non-zero rank.
This is a fundamental difference that allows constructing compressing words iteratively. Note
that the fixing automaton of a strongly connected partial one is also strongly connected.

▶ Lemma 8. Let A = (Q, Σ, δ) be a strongly connected partial automaton, and let r be the
minimal non-zero rank over all words. For every non-empty subset S ⊆ Q, there exists a
non-mortal word w such that |δ(S, w)| ≤ r.

3.3 Rank Conjecture

The rank conjecture (sometimes called Černý-Pin conjecture) is a well-known generalization
of the Černý conjecture to non-synchronizing automata (e.g., [25]). The rank conjecture is
a weaker version of the conjecture originally stated by Pin that was not restricted to the
minimal rank and turned out to be false [18]. Some further results on the rank conjecture
for strongly connected complete automata are provided in [20].

▶ Conjecture 9 (The rank conjecture). For an n-state complete automaton where r is the
minimal rank over all words, there exists a word of rank r and of length at most (n − r)2.

For partial automata, the rank conjecture is analogous with the exception that r is the
minimal non-zero rank.

▶ Theorem 10. Let A = (Q, Σ, δ) be a strongly connected partial automaton. If the rank
conjecture holds for the fixing automaton A F, then it also holds for A .

Proof. Let r be the minimal rank in A F over all words. From the conjecture and by Lemma 6,
there exists a word w′ of length at most (n − r)2 and such that ∅ ≠ δ(Q, w′) ⊆ δF(Q, w).

Let r′ ≤ r be the minimal rank of A . For every s = r, r − 1, . . . , r′ + 1, we inductively
construct a word of non-zero rank less than s, of length at most (n − (s − 1))2, and such
that w′ is its prefix. Let w′v be a word of rank at most s and of length at most (n − s)2,
and let S = δ(Q, w′v). Suppose that κ(S) = 1. Since s is not the minimal rank of A ,
by Lemma 8, S must be compressible. Since its states are inseparable, there must be
two distinct states p, q ∈ S and a word u such that δ(q, u) = δ(p, u) ̸= ⊥. But (from
Lemma 5) {p, q} ⊆ δ(Q, w′v) ⊆ δF(Q, w′v) ⊆ δF(Q, wv), thus δF(Q, wv) is compressible
in A F, which contradicts that w has the minimal rank in A F. Hence κ(S) ≥ 2, and by
Lemma 2, δ(Q, w′v) can be compressed with a word u of length at most n − s + 1. We have
|w′vu| ≤ (n − s)2 + n − s + 1 ≤ (n − (s − 1))2, which proves the induction step. ◀

The theorem implies that, in the strongly connected case, the rank conjecture is true for
complete automata if and only if it is true for partial automata. For instance, we immediately
get the result for the class of Eulerian automata. A partial automaton is Eulerian if it is
strongly connected and the numbers of outgoing and incoming transitions are the same at every
state, i.e., for every q ∈ Q, we have |{a ∈ Σ | δ(q, a) ∈ Q}| = |{(p, a) ∈ Q × Σ | δ(p, a) = q}|.
The following corollary follows from the facts that the rank conjecture holds for complete
Eulerian automata [20] and that the fixing automaton of a partial Eulerian automaton is
also Eulerian.

▶ Corollary 11. The rank conjecture is true for partial Eulerian automata.
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3.4 Collecting Automaton
The fixing automaton allows relating the behavior of words in a partial and a complete
automaton, but its main disadvantage is that it is not necessarily synchronizing. Therefore,
we will need one more tool, called collecting automaton. It is an extension of the fixing
automaton by an additional letter that allows a quick synchronization into one inseparability
class, while it does not affect the length of a shortest synchronizing word for any particular
inseparability class.

By A /≡ = (QA /≡ , Σ, δA /≡), we denote the quotient automaton by the inseparability
relation. A /≡ is also a partial automaton, and if A is strongly connected, then so is A /≡.
By [p] ∈ QA /≡ , we denote the class of a state p ∈ Q of the original automaton A .

A collecting tree of A is a tree T with the set of vertices QA /≡ and directed edges
labeled by letters from Σ in the following way: (a) Edges are labeled by letters from Σ and
correspond to transitions in A /≡: each edge ([p], [p′], a) is such that δA /≡([p], a) = [p′]. (b)
There is a root [r] such that the tree is directed toward it. See Fig. 2 in Appendix for an
example. Equivalently, it can be seen as a specific partial automaton being a subautomaton
of A /≡ whose underlying digraph is a tree directed toward one state. An automaton can
have many collecting trees, even for the same [r], and every strongly connected automaton
has a collecting tree for every class [r].

{q1, q4} {q2, q5} {q3, q6}
a a

q1 q2 q3

q4q5q6

a, γ a, γ

a

a, γa, γ

a

b b b, γ

b

bb, γ

Figure 2 Left: a collecting tree with root [q3] = {q3, q6}; right: the corresponding collecting
automaton of the example from Fig. 1(left).

▶ Definition 12 (Collecting automaton). Let A = (Q, Σ, δ) be a strongly connected partial
automaton and let T be one of its collecting trees with a root [r]. The collecting automaton
A C(T ) = (Q, Σ ∪ {γ}, δC(T )) is defined as follows:

The transition function δC(T ) on Σ is defined as in the fixing automaton A F.
γ /∈ Σ is a fresh letter. Its action is defined according to the edges in T : Let q1 ∈ Q\ [r] be
a state. Since T is a tree directed toward [r], there is exactly one edge outgoing from [q1],
say ([q1], [q2], a) ∈ T for some [q2] ∈ QA /≡ and a ∈ Σ. We set δC(T )(q1, γ) = δ(q1, a).
Finally, the transition of γ on each state in [r] is the identity.

A collecting automaton is always strongly connected, as it contains all transitions of the
fixing automaton. We prove several properties connecting partial automata and their collect-
ing complete automata. They are preliminary steps toward relating the Černý conjecture for
strongly connected partial and complete automata.

▶ Lemma 13. Let A = (Q, Σ, δ) be a strongly connected partial automaton, and let T be
one of its collecting trees with a root [r]. If there is a word over Σ ∪ {γ} synchronizing [r] in
A C(T ) = (Q, Σ ∪ {γ}, δC(T )), then there is such a word over Σ that is not longer.
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▶ Lemma 14. Let A = (Q, Σ, δ) be a strongly connected partial automaton and let T be
one of its collecting trees. Then A is synchronizing if and only if the collecting automaton
A C(T ) = (Q, Σ ∪ {γ}, δC(T )) is synchronizing.

This also means that the choice of T does not matter: A = (Q, Σ, δ) is synchronizing if and
only if all A C(T ) are synchronizing.

3.5 Algorithmic Issues
Checking if a strongly connected partial automaton is synchronizing and finding a minimum-
rank word can be done similarly as for a complete automaton, by a suitable generalization
of the well-known Eppstein algorithm [13, Algorithm 1]. The same algorithm for checking
synchronizability, under different terminology, was described in the context of ε-machines [34].

▶ Proposition 15. Checking if a given strongly connected partial automaton with n states
over an alphabet Σ is synchronizing can be done in O(|Σ|n2) time and O(n2 + |Σ|n) space.
Finding a word of the minimum rank can be done in O(|Σ|n3) time and O(n2 + |Σ|n) space.

Furthermore, the problem of checking the synchronizability of a strongly connected partial
automaton can be reduced in smaller time to the case of a complete automaton.

▶ Theorem 16. Given a strongly connected partial automaton, in O(|Σ|n log n) time, we
can construct a complete automaton that is synchronizing if and only if the given partial
automaton is synchronizing.

Proof. We can compute all inseparability classes in O(|Σ|n log n) time. This is done by the
Hopcroft minimization algorithm [15], if we interpret the partial DFA as a language-accepting
DFA with an arbitrary initial state and the sink state ⊥ that is its only final state.

Having computed the classes, we can construct a collecting automaton for an arbitrary
collecting tree. Note that it can be done in O(|Σ|n) time by a breadth-first search from a
class [r]. The desired property follows from Lemma 14. ◀

3.6 Černý Conjecture
The famous Černý conjecture is the rank conjecture for r = 1. Let C(n) be the maximum
length of the shortest reset words of all n-state synchronizing complete automata. It is well
known that C(n) ≥ (n − 1)2 [8]. The Černý conjecture states that C(n) = (n − 1)2, but the
best proved upper bound is cubic [32, 33].

Let CP(n) be the maximal length of the shortest reset words of all n-state synchronizing
strongly connected partial automata. We show that if the Černý conjecture is true (or
another upper bound holds), then a slightly weaker upper bound holds for synchronizing
strongly connected partial automata.

To prove the following theorem, we combine several techniques, in particular, the insepar-
ability equivalence, the collecting automaton, and an algebraic upper bound on the reset
threshold of a complete automaton with a word of small rank [4].

▶ Theorem 17.

CP(n) ≤ C(n) + O(n4/3).
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Proof. Let A = (Q, Σ, δ) be a synchronizing partial automaton with n states. Let T be a
collecting tree of A with a root class [r] containing the smallest number of states. We consider
the collecting automaton A C(T ) = (Q, Σ∪{γ}, δC(T )). By Lemma 14, A C(T ) is synchronizing.
We have two cases, depending on the number κ(Q) of inseparability classes of A .

First, suppose that κ(Q) ≤ n2/3. Then, by Corollary 3 (for S = Q), there is a word v of
length at most (κ(Q) − 1)κ(Q)/2 < n4/3 such that δ(Q, v) is non-empty and is contained in
one equivalence class, say [p]. Since A is strongly connected, there is a word up→r of length
at most n − 1 whose action maps [p] into [r]. Let w′ be a reset word for A C(T ) of length at
most C(n). In particular, w′ synchronizes [r], so by Lemma 13, we get a word w of length
at most C(n) that synchronizes [r] in A . Then, vup→rw is a reset word for A of length at
most n4/3 + n − 1 + C(n).

In the second case, we have κ(Q) > n2/3. Then the size of [r], which has been chosen
to have the smallest size, has at most n1/3 states. Note that γn−1 is a word of rank at
most n1/3. Then we can apply Corollary 20 (cf. [4, Theorem 2]) for A C(T ) with this word,
obtaining that the reset threshold of A C(T ) is upper bounded by (n − 1) + 2(n − 1)C(n1/3).
Using the well-known general cubic upper bound n3/6 on the reset threshold of a complete
automaton (e.g., [25]), we get that there is a reset word w′ for A C(T ) of length at most
(n − 1) + 2(n − 1)n/6. Now, we return to A . By Corollary 3 (for S = Q), we get a word v of
length at most (n − 1)n/2 such that δ(Q, u) is non-empty and is contained in one equivalence
class [p]. As in the first case, there is a word up→r of length at most n − 1 whose action
maps [p] into [r]. By Lemma 13, from w′ we obtain a word w that synchronizes [r] and is no
longer than (n − 1) + 2(n − 1)n/6. Finally, vup→rw is a reset word for A of length at most
(n − 1)n/2 + (n − 1) + (n − 1) + 2(n − 1)n/6 ≤ (n − 1)2 for n ≥ 18.

From both cases, we conclude that rt(A ) ≤ C(n) + O(n4/3). ◀

From Theorem 17, it follows that all upper bounds on the reset threshold of a complete
automaton transfer to upper bounds for partial automata, up to a subquadratic component.
Thus CP(n) ≤ 0.1654n3+O(n2) [32]. It can be also seen from the proof that if we have a better
general upper bound on C(n), we get a smaller additional term, e.g., if C(n) ∈ O(n2), then
CP(n) = C(n) + O(n), so the additional term is at most linear. The additional component
is likely not needed, but it is difficult to completely get rid of it in general, as for that
we could not lengthen by any means the reset word assumed for a complete automaton.
However, it is easy to omit it when reproving particular bounds for complete automata, both
combinatorial [25] and based on avoiding words [32, 33]. We conjecture that CP(n) = C(n)
for all n.

3.7 Induced Automaton
We develop an algebraic technique applied to partial automata. It will allow us deriving
upper bounds on reset thresholds, in particular, in the cases when there exists a short word
of a small rank, which is the case of the literal automaton of a prefix code. We base on the
results from [4] for complete automata and generalize them to be applied to partial automata.
The existing linear algebraic proofs for complete automata do not work for partial ones,
because the matrices of transitions may not have a constant sum of the entries in each row.

We need to introduce a few definitions from linear algebra for automata (see, e.g., [4, 19,
24, 33]). Let A = (Q, Σ, δ) be a partial DFA. Without loss of generality we assume that
Q = {1, . . . , n}. By Rn, we denote the real n-dimensional linear space of row vectors. For
a vector v ∈ Rn and an i ∈ Q, we denote the vector’s value at the i-th position by v(i).
Similarly, for a matrix M , we denote its value in an i-th row and a j-th column by M(i, j).
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A vector g is non-negative if g(i) ≥ 0 for all i, and it is non-zero if g(i) ̸= 0 for some i.
For a word w ∈ Σ∗, by M(w) we denote the n × n matrix of the transformation of w in δ:
M(w)(p, q) = 1 if δ(p, w) = q, and M(w)(p, q) = 0 otherwise. Note that if δ(p, w) = ⊥, then
we have M(w)(p, q) = 0 for all q ∈ Q. The usual scalar product of two vectors u, v is denoted
by u ⊙ v. The linear subspace spanned by a set of vectors V is denoted by span(V ).

Given a transition function δ (which defines matrices M(w)), call a set of words W ⊆ Σ∗

complete for a subspace V ⊆ Rn with respect to a vector g ∈ V , if V ⊆ span({gM(w) | w ∈
W}). A set of words W ⊆ Σ∗ is complete for a subspace V ⊆ Rn if for every non-negative non-
zero vector g ∈ V , W is complete for V with respect to g. Let χ(p) denote the characteristic
(unitary) vector of {p}. For a subset S ⊆ Q, we define V(S) = span({χ(p) | p ∈ S}) ⊆ Rn.

For example, consider the automaton from Fig. 1(left). Let V = V({q1, q2, q5}) and let
W = {ab, aab}a≤5. Let g ∈ V be a non-negative non-zero vector, and let i be such that
g(i) ̸= 0. If i = 1 then let u = ab, and otherwise let u = aab; then gM(u) has exactly one
non-zero entry. Then, for each j ∈ {1, 2, 5}, the vector gM(uaj′) for some j′ has the unique
non-zero entry at qj . These vectors generate V , thus W is complete for V with respect to g.

The induced automaton of a partial one is another partial automaton acting on a subset
of states R ⊆ Q. It is built from two sets of words. Let W1 be a set of words such that
R =

⋃
w∈W1

δ(Q, w). For each state in R, there is some state mapped to it by a word from W1.
The second set W2 is any non-empty set of words that enriches its transitions. The induced
automaton is A restricted to R with alphabet W2W1. Note that its transition function is
well defined, which is ensured by the fact that every word of the form w2w1 ∈ W2W1 has the
action mapping every state q ∈ Q into R or to ⊥.

▶ Definition 18 (Induced automaton). Let W1, W2 ⊆ Σ∗ be non-empty and R = {δ(q, w) |
q ∈ Q, w ∈ W1, δ(q, w) ̸= ⊥}. If R is non-empty, we define the induced automaton
A I(W1,W2) = (R, W2W1, δA I(W1,W2)), where the transition function is defined in compliance
with the actions of words in A , i.e., δA I(W1,W2)(q, w) = δ(q, w) for all q ∈ R and w ∈ W2W1.

We can analyze an induced automaton as a separate one, and synchronize the whole
automaton using it, which is particularly profitable when R is small. Following our previous
example, for Fig. 1(left) with W1 = {b} and W2 = {ab, aab}a≤5 we obtain the induced
automaton on R = {q1, q2, q5}. Furthermore, it is synchronizing already by a letter from
W2W1 (e.g., abb), and each its reset word corresponds to a reset word of the original A .

The following lemma states that the completeness of a set of words together with the
synchronizability and strong connectivity of the whole automaton transfer to the induced
automaton. It generalizes [4, Theorem 2] to partial automata, and the proof uses a recursion
instead of an augmenting argument.

▶ Lemma 19. Let A = (Q, Σ, δ) be a strongly connected synchronizing partial auto-
maton and let W1 and W2 be two non-empty sets of words over Σ. Let A I(W1,W2) =
(R, W2W1, δA I(W1,W2)) be the induced automaton. If W2 is complete for V(Q) = Rn, then
W2W1 is complete for V(R), and A I(W1,W2) is synchronizing and strongly connected.

▶ Corollary 20. Let A = (Q, Σ, δ) be a strongly connected synchronizing partial automaton
with n states, and let w ∈ Σ∗ be a word such that R = δ(Q, w) ̸= ∅. Let W1 = {w},
W2 = Σ≤n−1, and A I(W1,W2) = (R, Σ≤n−1{w}, δA I(W1,W2)) be the induced automaton. Then
rt(A ) ≤ |w| + (|w| + n − 1) · rt(A I(W1,W2)).

The corollary directly follows from Lemma 19, since Σ≤n−1 is always complete for V(Q)
in the case of a strongly connected synchronizing partial automaton. It is useful for deriving
upper bounds for automata with a word of small rank. Having such a word w, we can further
synchronize R through the induced automaton instead of trying to do this directly. Although
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every letter of A I(W1,W2) corresponds to a word of length |w| + n − 1 in the original A , if
R is small enough, this yields a better upper bound. We show its application in the next
subsection.

3.8 The Literal Automaton of a Finite Prefix Code
We use the obtained results about induced automata to get better bounds for partial literal
automata of finite prefix codes. To do so, we first need to prove that such automata admit
short enough words of small rank. It is known that every complete literal automaton
over an alphabet Σ has a word of rank and length at most ⌈log|Σ| n⌉ ([4, Lemma 16], cf.
[6, Lemma 14]). However, this is no longer true for non-mortal words in partial literal
automata [29] and no similar statement was known for any wider class than complete literal
automata. We prove that there exist O(log n)-rank non-mortal words of length O(n) in such
automata, excluding the case of a code with only one word. Then we use this result to
provide an O(n log3 n) upper bound on the reset threshold of n-state synchronizing partial
literal automata, matching the known upper bound for complete literal automata [4].

We start with a special case of one-word codes. A non-empty word w is called primitive
if it is not a power of another word, i.e., w ̸= uk for every word u and k ≥ 2. The upper
bound on rt(AX) follows from a result of Weinbaum ([14, 39]).

▶ Proposition 21. Let X = {x} be a one-word prefix code, and suppose that x = yk, where
y is a non-empty primitive word and k ≥ 1. Then AX has rank k. If AX is synchronizing,
then rt(AX) ≤ |x|

2 , and this bound is tight.

In the remaining cases, there always exists a word of linear length and logarithmic rank.

▶ Theorem 22. Let X be a prefix code with at least two words. Let AX = (Q, Σ, δ) be its
partial literal automaton with n states and height h. Then there exists a word of length at
most 2h and of rank at most ⌈log2 hn⌉ + ⌈log2 h⌉ for AX . Moreover, such a word can be
found in polynomial time in n = |Q|.

Proof idea. The general idea is as follows. We construct a word from the theorem in two
phases. First, we define an auxiliary filtering algorithm computing some function α : Σ∗ → Σ∗.
We consider the results of the algorithm for a lot of short (logarithmic) input words w and
show that at least one of them satisfies that α(w) is non-mortal, has length at most h, and
every state from Q is either sent to ⊥ or goes through the root by its action. Then, we use
specific properties of the image δ(Q, α(w)) to divide it into two disjoint sets: one that has
up to h states, but on a single specific path, and the other one with a small (logarithmic)
number of states. In the second phase, we construct a word v of length also bounded by h,
such that its action map all the states from the mentioned specific path to a subset of at
most logarithmic size. The concatenation of both words α(w)v is a word of length at most
2h satisfying the theorem. ◀

▶ Corollary 23. Let AX be a partial literal automaton with n states. If it is synchronizing, its
reset threshold is at most O(n log3 n). If the Cerny conjecture holds, then it is O(n log2 n).

Proof. If |X| = 1 then the bound follows from Proposition 21. If |X| ≥ 2, from Theorem 22,
we get a word w of length O(n) and rank O(log n). Then we use Corollary 20 with w, which
yields the upper bound O(n) + O(n) · rt(B), where B is an induced automaton with O(log n)
states. Then we use upper bounds on the reset threshold of a complete DFA ([32, 33])
transferred to strongly connected partial DFAs by Theorem 17. ◀
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4 Lower Bounds for Properly Incomplete Automata

We conclude with observations for transferring lower bounds from the complete case to the
partial case. Of course, in general, this is trivial, since a complete automaton is a special
case of a partial one. On the other hand, letters with all transitions undefined cannot be
used for synchronization. Hence we need to add a restriction to exclude these cases and see
the effect of usable incomplete transitions. A partial automaton is properly incomplete if
there is at least one letter whose transition is defined for some state and is undefined for
some other state.

For an automaton A , let the length of the shortest words of rank r be called the rank
threshold rt(A , r). We show that bounding the rank/reset threshold of a strongly connected
properly incomplete automaton is related to bounding the corresponding threshold of a
complete automaton. A general construction for this is the following.

▶ Definition 24 (Duplicating automaton). For a complete automaton A = (Q, Σ, δA ), we
construct the duplicating automaton A D = (Q ∪ Q′, Σ ∪ {γ}, δA D) as follows. Assume that
Q = {q1, . . . , qn}. Then Q′ = {q′

1, . . . , q′
n} is a set of fresh states disjoint with Q and γ /∈ Σ

is a fresh letter. For all 1 ≤ i ≤ n and a ∈ Σ, we define: δA D(qi, a) = qi, δA D(qi, γ) = q′
i,

δA D(q′
i, a) = δA (qi, a), and δA D(q′

i, γ) = ⊥.

The duplicating automaton turns out to be a partial DFA counterpart to the recent
Volkov’s construction of a complete DFA [37]. The duplicating automaton A D has twice the
number of states of A and is properly incomplete. Also, it is strongly connected if A is.

▶ Proposition 25. Let A = (Q, Σ, δA ) be a strongly connected complete automaton. For all
1 ≤ r < n, we have rt(A D, r) = 2 rt(A , r).

From Proposition 25, it follows that we cannot expect a better upper bound on the reset
threshold of a properly incomplete strongly connected automaton than 0.04135n3 + O(n2),
unless we can improve the best general upper bound on the reset threshold of a complete
automaton, which currently is roughly 0.1654n3 + O(n2) [32, 33]. We can also show a lower
bound on the largest possible reset threshold, using the Rystsov’s construction of automata
with long shortest mortal words [27].

▶ Proposition 26. For every n, there exists a strongly connected properly incomplete n-state
automaton with the reset threshold n2−n

2 .
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