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Abstract
Peer prediction mechanisms incentivize agents to truthfully report their signals even in the absence
of verification by comparing agents’ reports with those of their peers. In the detail-free multi-task
setting, agents are asked to respond to multiple independent and identically distributed tasks, and
the mechanism does not know the prior distribution of agents’ signals. The goal is to provide an
ε-strongly truthful mechanism where truth-telling rewards agents “strictly” more than any other
strategy profile (with ε additive error) even for heterogeneous agents, and to do so while requiring
as few tasks as possible.

We design a family of mechanisms with a scoring function that maps a pair of reports to a
score. The mechanism is strongly truthful if the scoring function is “prior ideal”. Moreover, the
mechanism is ε-strongly truthful as long as the scoring function used is sufficiently close to the
ideal scoring function. This reduces the above mechanism design problem to a learning problem –
specifically learning an ideal scoring function. Because learning the prior distribution is sufficient
(but not necessary) to learn the scoring function, we can apply standard learning theory techniques
that leverage side information about the prior (e.g., that it is close to some parametric model).
Furthermore, we derive a variational representation of an ideal scoring function and reduce the
learning problem into an empirical risk minimization.

We leverage this reduction to obtain very general results for peer prediction in the multi-task
setting. Specifically,
Sample Complexity. We show how to derive good bounds on the number of tasks required for

different types of priors–in some cases exponentially improving previous results. In particular,
we can upper bound the required number of tasks for parametric models with bounded learning
complexity. Furthermore, our reduction applies to myriad continuous signal space settings. To
the best of our knowledge, this is the first peer-prediction mechanism on continuous signals
designed for the multi-task setting.

Connection to Machine Learning. We show how to turn a soft-predictor of an agent’s signals (given
the other agents’ signals) into a mechanism. This allows the practical use of machine learning
algorithms that give good results even when many agents provide noisy information.

Stronger Properties. In the finite setting, we obtain ε-strongly truthful mechanisms for any stochastic-
ally relevant prior. Prior works either only apply to more restrictive settings, or achieve a weaker
notion of truthfulness (informed truthfulness).
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1 Introduction

Peer prediction is the problem of information elicitation without verification. Peer prediction
mechanisms exploit the interdependence in agents’ signals to incentive agents to report their
private signal truthfully even when the reports cannot be directly verified. In the multi-task
setting [5], each agent is asked to respond to multiple, independent tasks. For example:

I Example 1 (Commute time). We can collect data from drivers to estimate the commute
time of a certain route. Each driver’s daily commute time might be modeled in the following
way: each day, the route has an expected time generated from a Gaussian distribution, and
each driver’s commute time is the expected time perturbed by independently distributed
Gaussian noise.

Peer prediction from strategic agents has been attracting a surge of interest in economics
and computer science. Several previous works [1, 16, 19] can be understood as using particular
learning algorithms to learn nice payment functions that capture the interdependence in
agents’ reports. In this paper, we decouple these two components: mechanism design and
learning algorithms. This framework provides a clean black-box reduction from learning
algorithms to peer prediction mechanism.

One advantage of our framework is that we can use results from machine learning about
complexity of learning parameters of priors to obtain bounds on the sample complexity
(number of tasks required) of our mechanism. For instance, using our reduction, we can
easily exponentially improve the required number of tasks in the previous work [28].

Two features of our mechanisms enable us to work in more complicated settings. First,
our mechanisms use mutual information to pay agents. This allows us to use aggregation
algorithms and pay an agent the mutual information between her reports and the aggregated
outcome of the other agents. For example, suppose the agents’ report’s average quality is
low, and a large fraction of agents report random noise. In that case, we can use aggregation
to enhance the signal to noise ratio and provide a robust incentive to strategic workers. The
second feature of our mechanisms is a variational formulation, which ensures one-sided error
such that we can only underestimate the mutual information but not overestimate it. Thus,
we can use deep learners or other rich enough functions to learn a good payment in practice.

In addition to the above contributions, we also improve previous work in two axes: the
truthfulness guarantee and the prior assumption.

The truthful guarantee explains how good the truth-telling strategy is in the mechanism
(formally defined in Sect.2.1). Is truth-telling always the best response regardless of other’s
strategy (dominantly truthful)? Or is truth-telling a Bayesian Nash equilibrium in which
agents receive strictly higher payment than any other non-permutation equilibrium (strongly
truthful) where a permutation equilibrium is one where agents report a permutation of the
signals? A slightly weaker property is informed truthful where no strategy profile pays strictly
more than truth-telling, and truth-telling pays more than any uninformative equilibrium. Our
pairing mechanisms is dominantly truthful if the number of tasks is infinite and approximately
strongly truthful when the number of tasks is finite.

Another axis upon which to measure a peer prediction mechanism’s performance is its
assumption on the prior of agents’ signals. There are two motivations to understand how
general the prior can be. First, in practice, we need a peer prediction mechanism that
works for general settings, e.g., continuous signals in the aforementioned commute time
example. Second, a mechanism’s prior assumption often reveals why the mechanism works.
Thus, improving prior assumptions can push our theoretical understanding of peer prediction
mechanisms.



G. Schoenebeck and F.-Y. Yu 78:3

It is well-known that a necessary condition for the truth-telling strategy profile to be a
strict Bayesian Nash equilibrium is that agents’ signals need to be stochastic relevant (Defini-
tion 5) [32]. However, when is stochastic relevance a sufficient condition? Previous multi-task
peer prediction mechanisms make ad hoc assumptions on agents’ private signals (positively
correlated [5], fine-grained [16], strictly correlated [11], or latent variable models [19]) which
are discussed in Sect. 2.2. This restricts the settings in which they can be used. Moreover,
all the above mechanisms only work when agents’ signals are in a finite space1.

In this paper, we show stochastic relevance is also a sufficient condition in the multi-tasks
setting. Our pairing mechanisms are approximately-strongly truthful as long as the prior
is stochastic relevant. In particular, the space of agents’ signals can be countably infinite
or even continuous. To the authors’ knowledge, our mechanism is the first (detail-free)
multi-task mechanism that works all stochastically relevant priors.

Besides the above properties, we also require our mechanisms 1) are minimal which only
elicit the agents’ signals and no additional information; 2) are detail-free which do not require
foreknowledge of the prior; and 3) have low sample number, where each agent only needs to
answer a few questions for the mechanism to achieve approximately strong truthfulness.

Our Techniques. Prior work [16] has shown that paying agents according to the Φ mutual
information (a generalization of the Shannon mutual information) between their signals is
a good idea. This is because, if agents try to strategically manipulate their signals, the Φ
mutual information can only decrease. However, a key open question is how to compute
the mutual information while having access to only a few signals for each agent. Moreover,
the computation needs to be done in a way that maintains the incentive guarantees of the
mechanism.

We solve this issue. First, we convert the mechanism design problem into an optimization
problem (Theorem 16). The Φ mutual information of a pair of random variables can be
defined as the Φ divergence between two distributions: the joint distribution and the product
of marginal distributions. The Φ divergence is just a measure of distance between the two
distributions and contains the KL-divergence as a special case. The problem of computing
the Φ divergence, using variational representation as a bridge, can be changed into the
optimization problem of finding the best “distinguisher” between these two distributions.
We call such a distinguisher a scoring function. The optimal scoring function (distinguisher)
can differentiate the two distributions with a score equal to the Φ divergence, whereas any
other scoring function (distinguisher) yields a lower score. Thus, once one has this optimal
scoring function, estimating the Φ divergence (and hence Φ mutual information) is easy –
just compute its score. In this paper we call the optimal scoring function for a particular
prior P , the (P,Φ)-ideal scoring function which can be easily computed when the prior P is
known.

Our mechanism will reward agents according to some scoring function. Importantly,
agents’ ex-ante payments under prior P are maximized when both the distinguisher used
is the (P,Φ)-ideal scoring function, and the agents are truth-telling. Consequently, if we
already have the (P,Φ)-ideal scoring function, the mechanism incentivizes truthful reporting.
Additionally, agents will receive a smaller payout if the mechanism fails to find the optimal
scoring function. Thus agents are naturally incentivized to aid the mechanism in finding it
and cannot gain by deceiving the mechanism into using a suboptimal scoring function.

1 Discretization approach is not practical in most situations. See [17] for more discussion.
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Compared with Kong and Schoenebeck [16], our variational characterization provides a
better truthfulness guarantee when the number of tasks is finite. We can uniformly upper
bound the ex-ante payments under any non-truthful strategy profile (Definition 4) even when
the learning algorithm cannot estimate the ideal scoring functions under those non-truthful
strategies. This property is vital for continuous signal spaces where agents may adversarially
adopt the worst possible strategy profiles to compromise the learning algorithm.

The above observations transform the problem from designing a mechanism to simply
learning the (P,Φ)-ideal scoring function given samples from a prior. We provide two
algorithms to learn the scoring function. The first one is a generative approach which
estimates the whole density function of the prior and computes a scoring function from it.
In a discriminative approach, we formulate the estimation of the ideal scoring function as
a convex optimization problem, empirical risk minimization [22], and estimate the scoring
function directly. This latter approach allows us to use state-of-art convex optimization
solvers to estimate good scoring functions.

Our Contributions. In this paper, we leverage the above insights to design a Φ-pairing
mechanism that is minimal and detail-free for heterogeneous agents. In particular:
Sample Complexity. We show how to derive good bounds on the number of tasks required

for different types of priors–in some cases exponentially improving previous results. In
particular, we can upper bound the required number of tasks for parametric models with
bounded learning complexity (as measured by a continuous analog of the VC dimension).
Furthermore, our reduction applies to myriad continuous signal space settings. To the
best of our knowledge, this is the first peer-prediction mechanism on continuous signals
designed for the multi-question setting.

Connections to Machine Learning. In this paper, we discuss how to convert information
elicitation design into three learning problems. 1) The first one is a generative approach
which estimates the whole density function of the prior and computes a scoring function
from it. 2) We formulate the estimation of the ideal scoring function as a convex
optimization problem, empirical risk minimization, and estimate the scoring function
directly. 3) Finally, we show how to turn a soft-predictor of an agent’s signals (given the
other agents’ signals) into a mechanism. This allows the practical use of machine learning
algorithms that give good results even when many agents provide noisy information.

Stronger Properties. In the finite setting, we obtain ε-strongly truthful mechanisms for any
stochastically relevant prior. Prior works either only apply to more restrictive settings [11],
or achieve a weaker notion of truthfulness (informed truthfulness) [28, 1].

1.1 Related Work
Multi-task setting. In the multi-task setting, Dasgupta and Ghosh [5] propose a strongly
truthful mechanism when the signal space is binary and every pair of agents’ signals are
assumed to be positively correlated. Both Kong and Schoenebeck [16] and Shnayder et
al. [28] independently generalize Dasgupta and Ghosh [5] to discrete signal spaces, though in
different manners illustrated as follows.

Kong and Schoenebeck [16] present the Φ-mutual information mechanism, a multi-task
peer prediction mechanism for the finite signal space setting with arbitrary interdependence
between signals. Unfortunately, the sample number is infinite. They show that their
mechanism is strongly truthful as long as the prior is “fine-grained” where, roughly speaking,
no two signals can be interpreted as different names for the same signal. To define their
mechanism they introduce the notion of Φ-mutual information (of which Shannon mutual
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Table 1 Comparison to previous work.

D&G [5] CA [28, 1] Φ-MIM [16] DMI [11] Φ-pairing
mechanism

Signal space binary finite finite finite continuous
Prior
Assumptions

positive
correlated

stochastic
relevant

fine
-grained

strictly
correlated

stochastic
relevant

Truthful X X X X X

Informed-truthful X X X X X

Strongly truthful X X X X

Detail-free X X X X X

information is a special case) where Φ is any convex function. Their mechanism pays each
agent the Φ-mutual information between her reports and the reports of another randomly
chosen agent. Strategic behavior is shown to not increase Φ-mutual information by a
generalized version of the data processing inequality. Unfortunately, their analysis requires
infinite sample number to measure this Φ-mutual information and does not handle errors in
estimation.

Shnayder et al. [28] introduce the Correlated Agreement (CA) mechanism which
also generalizes Dasgupta and Ghosh [5] to any finite signal space. On the one hand, the CA
mechanism can assume the knowledge of the “signal structure” (which tells which signals
are positively and negatively correlated). In this case they can provide a mechanism that is
truthful with sample number of two.2 On the other hand, when agents are homogeneous the
CA mechanism can learn the signal structure, albeit with some chance of error. The CA
mechanism is shown to be robust to this error, and is ε-informed truthful (a slightly weaker
notion than strongly truthful). Agarwal et al. [1] extend the above work [28] to a particular
setting of heterogeneous agents where agents are (close to) one of a fixed number of types.
They establish a O(n) sample number in this new setting where n is the number of agents.

Note that in the above works, a new robustness (error) analysis is required for each
different setting of interdependence between signals. Interestingly, the CA mechanism can
be viewed as a special case of the aforementioned Φ-mutual information mechanism using
the total variation distance mutual information (i.e., Φ(a) = |a− 1|/2). However, instead
of directly computing this mutual information, the CA mechanism obtains a consistent
estimator of it [16]. Similarly, in the special case that our mechanism implements the total
variation distance, we also recover the CA mechanism. However, our analysis is entirely
different.

Kong [11] shows an elegant way of obtaining strongly truthful mechanisms (DMI mechan-
ism) for the multitask setting. Our results are incommensurate with these results. In our
results, the sample complexity grows with the ε in the desired ε-strongly truthful guarantee
but is independent of the number of signals. In Kong [11], there is an exact strongly truthful
guarantee but sample complexity grows in the size of the signal space. However, the prior
structure needs to be strictly correlated, which is a stronger assumption than stochastic
relevance. We provide a comparison in Table 1 and Sect. 2.2. In particular, her mechan-
ism requires all agents’ report spaces are finite and have the same size. This restricts the
application of an aggregation algorithm (as mentioned in the introduction and Sect. 7).

2 The original paper shows it requires 3, but it actually only needs 2 tasks.

ITCS 2021
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Single task setting. In general, agents do not (necessarily) have multiple identical and
independent signals. Without this property, most of the mechanisms require knowledge of a
common prior (not detail-free) or for agents to report their whole posterior distribution of
other’s signals (not minimal). The later solution is especially difficult to apply to complicated
signal spaces (e.g. asking agents to report their probability density function of others’
continuous signals).

Miller et al. [20] introduce the peer prediction mechanism which is the first mechanism
that has truth-telling as a strict Bayesian Nash equilibrium and does not need verification.
However, their mechanism requires the full knowledge of the common prior and there exist
some equilibria that are paid more than truth-telling. In particular, the oblivious equilibrium
pays strictly more than truth-telling. Kong et al. [12] modify the original peer prediction
mechanism such that truth-telling pays strictly better than any other equilibrium but still
requires the full knowledge of the common prior. Prelec [23] designs the first detail-free peer
prediction mechanism – Bayesian truth serum (BTS) in the one quesetion setting. Several
other works study the one-question setting of BTS [24, 25, 31, 14, 27]. For continuous
signals, Radanovic and Faltings [25] apply a discretization approach and use a new payment
method, but that is also non-minimal. Goel and Faltings [10] work on a mixture of normal
distributions with an infinite number of agents.

Miscellany. Liu and Chen [18] design a peer prediction mechanism where each agents’
responses are not compared to another agents’, but rather the output of a machine learning
classifier that learns from all the other agents’ responses. Liu and Chen [19] design a non-
minimal approximate dominant strategy mechanism that uses surrogate loss functions as
tools to correct for the mistakes in agents’ reports. Kong and Schoenebeck [15] studies the
related goal for forecast elicitation, and like the present work uses Fenchel’s duality to reward
truth-telling (though in a different manner).

One interesting, but orthogonal, line of work looks at “cheap” signals, where agents can
coordinate on less useful information. For example, instead of grading an assignment based
on correctness, a grader could only spot check the grammar. Gao et al. [9] introduces the
issue, while Kong and Schoenebeck [13] shows a partial solution using conditional mutual
information.

The recent book [7] surveys additional results from this area.

1.2 Structure of Paper

Sect. 2 introduces some basic notions. In particular, Sect. 2.2 defines scoring functions, which
will play an important role in this paper.

At the beginning of Sect. 3, we define a central component of our Φ-pairing mechanism,
Mechanism 1, which takes agents’ report and a scoring function K as input. In Sect. 4, we
consider the full information setting. We show, in the Mechanism 1 with an ideal scoring
function, agents are incentivized to report their signals truthfully. In Sect. 5, we prove
Theorem 11, and main technical lemmas. In Sect. 6, we define a notion of approximation of
an ideal scoring function and introduce our framework that reduces the mechanism problem
for information elicitation to a learning problem for an ideal scoring function (Theorem 16).
In Sect. 6.3, we focus on the learning problem introduced in Sect. 6. We first show two
sufficient conditions for approximating an ideal scoring function in Sect. 6.3.1. Then, we
present two algorithms to derive approximately ideal scoring functions from agents’ reports
in Sect. 6.3.2.

In Sect. 7, we generalize Mechanism 1 to more than two agents. We show how machine
learning techniques can be naturally integrated with our mechanism.
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2 Preliminaries

We use (Ω,F , µ) to denote a measure space where F is a σ-algebra on the outcome space
Ω and µ is a measure. Let ∆Ω denote the set of distributions of over (Ω,F),3 and P as a
subset of distributions in ∆Ω. Given a distribution P , we also use P to denote the density
function where P (ω) is the probability density of outcome ω ∈ Ω. We use uppercase for a
random object X and lowercase for the outcome x. In this paper we consider Φ to be a
convex continuous function and use dom(Φ) to denote its domain.

2.1 Mechanism Design for Information Elicitation
For simplicity we first consider two agents, Alice and Bob, who work on a set of m tasks
denoted as [m]. For each task s ∈ [m], Alice receives a signal xs in X and Bob a signal ys
in Y. We use (X,Y) ∈ (X × Y)m to denote the signal profile of Alice and Bob which is
generated from a prior distribution P. In this paper, we make the following assumption:

I Assumption 2 (A priori similar tasks [5]). P is a prior, and each task is identically and
independently (i.i.d.) generated: there exists a distribution PX,Y over X × Y such that
P = PmX,Y , Moreover, we assume the marginal distributions have full supports, PX(x) > 0
and PY (y) > 0 for all x ∈ X and y ∈ Y.

Given a report profile of Alice, x̂ ∈ Xm and Bob, ŷ ∈ Ym, an information elicitation
mechanism M = (MA,MB) with m tasks pays MA(x̂, ŷ) ∈ R to Alice, and MB(x̂, ŷ) ∈ R to
Bob. In the rest of the paper we often only define notions for Alice, and define Bob’s in the
symmetric way.

Besides Assumption 2, we assume their strategies are uniform and independent across
different tasks which is also made in previous work [5, 28, 16].

I Assumption 3 (Uniform strategy). Formally, the strategy of Alice is a random function
θA : X → ∆X where θA(x, x̂) is the probability that Alice reports x̂ conditioning on her
private information x. That is, each report only depends on the corresponding signal.

For instance, given Alice receiving x ∈ Xm the probability that Alice reports x̂ ∈ Xm
is Pr[X̂ = x̂] =

∏
s∈[m] θA(xs, x̂s). We call θ = (θA, θB) a the strategy profile. The

ex-ante payment to Alice under a strategy profile θ and a prior P in mechanism M is
uA(θ;P,M) , E(X,Y)

[
E(X̂,Ŷ) [EM[MA(x̂, ŷ)]] | (x,y)

]
where we use a semicolon to separate

the variable, θ, and parameters P andM. Note that a strategy profile θ can be seen as a
Markov operator on the signal space X × Y , so that Alice and Bob’s reports, θ ◦ P , is also a
distribution on the signal space X × Y.

In the literature on peer-prediction, there are three important classes of strategies. We
use τ to denote the truth-telling strategy profile where both agents’ reports are equal to
their private signals with probability 1, e.g., Alice’s strategy is τA(x, x̂) = I[x = x̂]. A strategy
profile is a permutation strategy profile if both agents’ strategy are a (deterministic)
permutation, a bijection between signals and reports. Finally, a strategy profile is oblivious
or uninformed if even one of the agents’ strategies does not depend on their signal: that is
for Alice θA(x, x̂) = θA(x′, x̂) for all x, x′, and x̂ in X . Note that the set of permutation
strategy profiles includes the truth-telling strategy profile τ but does not include any oblivious
strategy profiles.

3 We assume these distribution has a density function with respect to the µ, P � µ for all P ∈ ∆Ω. The
distributions in ∆Ω depend on F and µ, but we omit it to simplify the notation. The density is defined
as the Radon–Nikodym derivative dP

dµ which exists because P is dominated by µ.

ITCS 2021
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Truthful Guarantees. We now define some truthfulness guarantees for our mechanismM
that differ in how unique the high payoff of truth-telling strategy profile is:
Truthful: the truth-telling strategy profile τ is a Bayesian Nash Equilibrium, and has the

highest payment to both Alice and Bob.
Informed-truthful [28]: Truthful and also for each agent τ is strictly better than any obli-

vious strategy profiles. For any oblivious strategy profile θ, uA(τ ;P,M) > uA(θ;P,M)
and uB(τ ;P,M) > uB(θ;P,M).

Strongly truthful [28, 16]: Truthful and also for each agent τ is strictly better than all non-
permutation strategy profiles. For any non-permutation strategy profile θ, uA(τ ;P,M) >
uA(θ;P,M) and uB(τ ;P,M) > uB(θ;P,M).

Dominant truthful: Each agent report truthfully leads to higher expected payoff than other
strategies, regardless of other agent’s reporting strategies. For any strategy profile θ, we
have uA(τ ;P,M) > uA(θ;P,M) and uB(τ ;P,M) > uB(θ;P,M).

We can also call a general mapping truthful, informed-truthful, strongly truthful, dominant
truthful when it satisfy the corresponding property.

In this work, we consider an approximate version of above statements with low sample
number. For example, given ε > 0, a mechanismM with m(ε) tasks (the sample number)4 is
ε-strongly truthful with m(ε) tasks if there exists a mapping from strategy profiles to ex-ante
payments such that 1) this mapping is strongly truthful; 2) for all ε the ex-ante payments of
our mechanism with m(ε) tasks is within ε of this mapping.

Now we define the sample number for approximately truthfulness guarantees.

I Definition 4. Given a family of joint signal distributions P and a function S : R>0 → N
we say a mechanismM is ε-strongly truthful on P with S(ε) number of tasks, if there
exists a strongly truthful mapping F = (FA, FB) from joint signal distributions and strategy
profiles to payments such that for all ε > 0 and m ≥ S(ε)

the ex-ante payment under the truth-telling strategy profile inM with m number of tasks
is within ε additive error from F : for all P ∈ P, uA(τ ;P,M) ≥ FA(τ , P )− ε;
and the ex-ante payment under any strategy profile θ in M with m number of tasks is
bounded above by F : for all P ∈ P, and θ, uA(θ;P,M) ≤ FA(θ, P ).

And the inequality also holds for Bob’s ex-ante payment. Furthermore, we sayM is (δ, ε)-
strongly truthful on P with S(δ, ε) if the above conditions holds with probability 1− δ for
all δ ∈ (0, 1) and ε > 0. Additionally, we sayM is ε-informed-truthful (ε-truthful) with
S(ε) number of tasks if it is ε close to an informed-truthful (truthful) mapping.

Note that our notion of ε-truthfulness guarantee is quite strong. In particular, the second
item requires for any strategy profile θ, the ex-ante payment is upper bounded by a strongly
truthful (informed-truthful, truthful) mapping.

2.2 Prior Assumptions
There are two axes to compare these peer prediction mechanism: truthful guarantee and
prior assumption. Truthful guarantee asks how good the truth-telling strategy is. Prior
assumption addresses how general these mechanisms are. We first introduce the weakest
possible notion of interdependence that we used in our paper. Then we survey other notions
proposed in previous works. Finally, we provide concrete examples to show the distinction
between those notions of interdependence.

4 Here mechanism which can take different length of report m. Or we can consider a family of mechanisms
(Mm) parameterized by the sample number (the number of tasks) m.
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I Definition 5 (Stochastic Relevant [28]). We call PX,Y stochastic relevant if for any two
distinct signals x, x′ ∈ X PX,Y [Y | X = x] 6= PX,Y [Y | X = x′]. That is, Alice’s posteriors
on Bob’s signals are different when Alice receives signal x or x′. And symmetrically, the
same holds for Bob’s posterior on Alice’s signals.

Stochastic relevancy is the weakest assumption we can hope for designing peer prediction
mechanisms. Proposition 6 shows that if agent’s signal are not stochastic relevant an agent
can always misreport regardless other agents’ reports even if the mechanism knows the
information structure.

I Proposition 6 (Elicitability [32]). If the prior PX,Y is not stochastic relevant, there is no
mechanism that has truth-telling as a strict Bayesian Nash equilibrium.

Besides the above notion, previous peer prediction mechanisms make ad hoc assumptions on
agents’ private signals.

Kong and Schoenebeck [16] studies fine-grained joint distributions. A joint distribution
PX,Y is fine-grained if for any distinct pairs of signals (x, y) and (x′, y′), PX,Y (x,y)

PX(x)PY (y) 6=
PX,Y (x′,y′)
PX(x′)PY (y′) . Kong [11] considers strictly correlated distributions. A joint distribution P

on a finite space X 2 is strictly correlated if the determinant of distribution P ∈ R|X |×|X| is
nonzero. Those two notions are both stronger than stochastic relevance.

2.3 Convex Analysis and Φ-divergence
Informally, Φ-divergences quantify the difference between a pair of distributions over a
common measurable space.

I Definition 7 (Φ-divergence [3, 21, 2]). Let Φ : [0,∞) → R be a convex function with
Φ(1) = 0. Let P and Q be two probability distributions on a common measurable space (Ω,F).
The Φ-divergence of Q from P where P � Q is defined as DΦ(P‖Q) , EQ [Φ (P/Q)] .5

We can use these divergences to measure interdependency between two random variables
X and Y . Formally, Let PX,Y be a distribution over (x, y) ∈ X × Y, and PX and PY be
marginal distributions of X and Y respectively. We set PXPY be the tensor product between
PX and PY such that PXPY (x, y) = PX(x)PY (y). We call DΦ(PX,Y ‖PXPY ) the Φ-mutual
information between X and Y .

Given a joint distribution PX,Y , let joint to marginal product ratio at (x, y) on
PX,Y be JPP (x, y) := PX,Y (x,y)

PX(x)PY (y) which is ratio between joint probability divided by the
product of the probabilities at (x, y). We will omit subscript P when there is no ambiguity.
This ratio widely studied. For instance, it’s called observed to expected ratio in life sciences
literature, or lift in data mining for binary random variable. Additionally, log JP(x, y) is
called point-wise mutual information. Finally, note that Φ mutual information is the average
of joint to marginal product ratio applied to Φ.

Now, we introduce some basic notions in convex analysis [26]. Let Φ : [0,+∞)→ R be a
convex function. The convex conjugate Φ∗ of Φ is defined as: Φ∗(b) = supa∈dom(Φ){ab−Φ(a)}.
Moreover Φ = Φ∗∗ if Φ is continuous.

By Young-Fenchel inequality [8], we can rewrite the Φ-divergence of Q from P in a
variational form. This formulation is important to understand our mechanisms.

5 P/Q is the Radon-Nikodym derivative between measures P and Q, and it is equal to the ratio of density
function.
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I Theorem 8 (Variational representation [22]).

DΦ(P‖Q) = sup
k:Ω→dom(Φ∗)

{
E

ω∼P
[k(ω)]− E

ω∼Q
[Φ∗(k(ω))]

}
, 6

and the equality holds DΦ(P‖Q) = Eω∼P [k(ω)]−Eω∼Q[Φ∗(k(ω))] if and only if k ∈ ∂Φ (P/Q)
almost everywhere on Q.7

2.4 Scoring Function
Our constructions and analysis will make heavy use of the following functionals – scoring
functions.

I Definition 9 (Scoring function). A scoring function K : X × Y → R is a functional
(real-valued function) that maps from a pair of reports to a real value. Given a convex
function Φ, a scoring function K?

P,Φ is a (PX,Y ,Φ)-ideal scoring function if

K?
P,Φ(x, y) ∈ ∂Φ

(
PX,Y (x, y)
PX(x)PY (y)

)
= ∂Φ(JPP (x, y)). (1)

We will use P and PX,Y interchangeably later, and say K? is ideal without specifying P and
Φ when it’s clear.

A (P,Φ)-ideal scoring function is the joint to marginal product ratio applied to ∂Φ which is
a monotone increasing function if Φ is differentiable. joint to marginal product ratio encodes
the signal structure of PX,Y which measure how interdependent x and y is. Alternatively, the
scoring function serves as a “distinguisher” which tries to decide whether a pair of reports
came from the joint distribution or the product of the marginal distributions.

Furthermore, the ideal scoring function can also be easily computed from the density
function PX,Y .

2.5 Functional Complexity
In this section, we provide some standard notions to characterize the complexity of learning
functionals which are standard [29, 30]. We will use these notions to characterize the
complexity of learning an ideal scoring function.

Let K be a pre-specified class of functionals k : X × Y → R. Given k ∈ K, L > 0, and
a distribution PX,Y , we define the Bernstein norm as ρ2

L(k;P ) , 2L2 EP [exp (|k|/L)− 1−
|k|/L], and ρL(K;P ) , supk∈K ρL(k, P ). Let N[],L(δ,K, P ) be the smallest value of n for
which there exists n pairs of functions {(kLj , kUj )} such that 1) ρL(kUj − kLj ;P ) ≤ δ for all
j and 2) for all k ∈ K there is a j, kLj (x, y) ≤ k(x, y) ≤ kUj (x, y) for all (x, y) ∈ X × Y.
Then H[],L(δ,K, P ) , logN[],L(δ,K, P ) is called the generalized entropy with bracketing. We
further define the entropy integral as J[],L(R,K, P ) ,

∫ R
0
√
H[],L(u,K, P )du.

Our results will show that constant number of questions suffice as long as the ideal scoring
functions is in some bounded complexity space K where J[],L(R,K, P ) and ρL(K;P ) are
bounded.

6 The sup is taken over k with finite Eω∼P [k(ω)] and Eω∼Q[Φ∗(k(ω))].
7 ∂Φ is the subgradient of Φ, and the formal definition can be found in [26]. Here we only use the equality

condition when Ω is finite.
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3 Φ-Divergence Pairing Mechanisms

In this section, we first define a class of multi-task peer-prediction mechanismsMΦ,K . The
mechanism is parametrized by a convex function Φ and a scoring function K (Definition 9).
Then we briefly discuss how to obtain a good scoring function, and develop algorithms for
estimating good scoring function.

The process of this mechanism is quite simple. Given a scoring function K and Φ, we
arbitrarily choose one task b, and two distinct tasks p and q from m ≥ 2 tasks. Alice gets
paid by Eqn. (2) the scoring function on her and Bob’s reports on task b minus the Φ∗
applied to the scoring function on her report on p and Bob’s report on q. In this way, agents
are paid by a scoring function on a correlated task minus a regularized scoring function on
two uncorrelated tasks.

Algorithm 1 Φ-divergence pairing mechanism with a scoring function K for two agents,MΦ,K .

Input: A report profile (x̂, ŷ) where both Alice and Bob submit report for all m ≥ 2 tasks.
Parameters: A convex function Φ : [0,∞)→ R, its conjugate Φ∗, and a scoring function

K : X × Y → dom(Φ∗) ⊆ R.
1: For Alice, arbitrarily pick three tasks b, p and q where p and q are distinct. We call b

the bonus task, p the penalty task to Alice, and q the penalty task to Bob.
2: Based on Alice’s reports on b and p (x̂b and x̂p) and Bob’s reports on b and q (ŷb and
ŷq), the payment to Alice is

MΦ,K
A (x̂, ŷ) , K (x̂b, ŷb)− Φ∗ (K (x̂p, ŷq)) . (2)

3: The payment of Bob is defined similarly.

To simplify the notion, we use uA or uA(θ, P,K) to denote the ex-ante payment to Alice
under a strategy profile θ and a joint signal distribution P in pairing mechanism with a
scoring function K.

In general, the truthfulness guarantees of Mechanism 1 depends on the degeneracy of
Alice’s and Bob’s signal distribution P and convex function Φ. In this paper, we consider
three different conditions which will be used in the statement of our results.

I Assumption 10. In this paper, we consider the following three different settings.
1. no assumption;
2. PX,Y is stochastic relevant;
3. Besides the above conditions, X and Y are finite sets, Φ is strictly convex and differentiable,

and Φ∗ is strictly convex.

3.1 Obtaining a Good Scoring Function
The Φ-pairing mechanismMΦ,K is not stand-alone mechanism for information elicitation,
because it requires a scoring function K as a parameter. We will see shortly in Sect. 4
and 6, the truthfulness guarantees of the pairing mechanism depends on the quality of the
scoring function. In this paper, we consider three different models for mechanism designers
to estimate good scoring functions which are discussed in the rest of the sections:

Direct access of K?
P,Φ. In Sect. 4, we first consider the mechanism knows a (P,Φ)-ideal

scoring function K?
P,Φ. Note that if the mechanism knows the prior P , it can compute

the (P,Φ)-ideal scoring function, but the converse is not necessarily true.
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General reduction to a learning problem. In Sect. 6, besides the reports from Alice and
Bob, mechanism may exploit Alice and Bob’s previous scoring function and other side
information. For example the joint distribution between Alice and Bob can be approx-
imated by some parametric model, say joint Gaussian distributions. We introduce our
framework (Mechanism 2) that reduces the problem into a learning problem.

Estimation from samples. Finally, in the multi-task setting, if Alice and Bob truthfully
report their signals, it is possible to estimate the (P,Φ)-ideal scoring function from those
reports. However, the mechanism needs to incentive them to be truthful. In Sect. 6.3, we
propose two learning methods to estimate good scoring functions. Combining them with
our framework (Mehcanism 2), we can have detail-free ε-strongly truthful mechanisms
with high probability.

4 Pairing Mechanisms in the Known Prior Setting

If the the mechanismMΦ,K? has an (P,Φ)-ideal scoring function K? where P is the joint
distribution to Alice’s and Bob’s signals, the mechanism has the following properties. We
defer the proof to Sect. 5.

I Theorem 11. Let an integer m be greater than 2, a functional Φ be a continuous convex
function with [0,∞) ⊆ dom(Φ), P with PX,Y be a common prior between Alice and Bob
satisfying Assumption 2. Let τ be the truth-telling strategy profile, and K? be a (P,Φ)-ideal
scoring function.

The Φ-pairing mechanism with K?,MΦ,K? has the following properties: For any strategy
profile θ, 8

uA (θ, P,K?) ≤ uA (τ , P,K?) . (3)

Furthermore, under the four conditions in Assumption 10 respectively, the mechanism
MΦ,K? is
1. truthful,
2. informed-truthful, or
3. strongly truthful.

In the following example, we show how Mechanism 1 with a (P,Φ)-ideal scoring function
works, and illustrate the difference between informed-truthful and strongly truthful.

5 Main Technical Lemmas and Proof of Theorem 11

To prove Theorem 11, we use the following lemmas which are also important in the rest of
the paper.

We first show the ex-ante payment under the truth-telling strategy profile in the Φ-pairing
mechanism with (P,Φ)-ideal scoring function is the Φ-mutual information between Alice’s
and Bob’s signals.

I Lemma 12 (Truth-telling). If K? is a (PX,Y ,Φ)-ideal scoring function,

uA(τ , P,K?) = DΦ(PX,Y ‖PXPY ).

8 There are some minor details when X and Y are not finite set. Here we require θ to have finite∫
K? dθA dθBdPX,Y ,and

∫
Φ∗(K?) dθA dθBdPXPY .
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Moreover, if PX,Y is stochastic relevant, DΦ(PX,Y ‖PXPY ) > 0.
Then we show any deviation from the truth-telling strategy profile or an ideal scoring

function cannot improve Alice (and Bob’s) ex-ante payment. The proof uses the variational
representation of Φ-divergence (Theorem 8).

I Lemma 13 (Manipulation). For any strategy profile θ and scoring function K,
uA(θ, P,K) ≤ DΦ(PX,Y ‖PXPY ).

Note that combining these two lemmas we have an even stronger result than inequality (3)
which is a key tool in this paper: For any scoring function K and strategy profile θ,

uA (θ, P,K) ≤ uA (τ , P,K?) . (4)

I Lemma 14 (Oblivious strategy). If θ is an oblivious strategy profile, for any scoring function
K, uA(θ, P,K) ≤ 0.

I Lemma 15. Moreover, given Conditions 3 in Assumption 10, the equality in (4) for Alice
or Bob occurs if and only if
1. θ = (πA, πB) which is a permutation strategy profile, and
2. For all x ∈ X and y ∈ Y, K(πA(x), πB(y)) = Φ′ (JP(x, y)).
Informally, Lemma 15 shows if the pair of a strategy profile and a scoring function (θ,K)
have (4) equal only if there is a “conjugated” structure between the strategy and the scoring
function. The proof uses the pigeonhole principle on the finite signal spaces and shows if the
equality holds under a non permutation strategy profile, P is not stochastic relevant.

With the above four lemmas, we are ready to prove Theorem 11.

Proof of Theorem 11. There are four statements to show.
First, (3) is a direct result of (4). Furthermore, (3) proves that truth-telling is a Bayesian

Nash equilibrium, and has highest ex-ante payment to Alice. This shows the mechanism is
truthful.

By Lemma 14, the ex-ante payment to Alice (and Bob) is non-positive. Combining this
and Lemma 12, we prove the Φ-pairing mechanism with (P,Φ)-ideal scoring function is
informed-truthful when P is stochastic relevant.

To show our mechanism is strongly truthful, under Condition 3 in Assumption 10, we use
the first part of Lemma 15. If the ex-ante payment under some strategy profile is equal to the
ex-ante payment under the truth-telling strategy profile, the strategy profile is a permutation
strategy profile. J

6 The Pairing Mechanism in the Detail Free Settings

With Sect. 5, we can see that to achieve the truthfulness guarantees, it suffices to have a
“good” scoring function. That is if the ex-ante payment to Alice under the truth-telling
strategy profile is close to the Φ-mutual information between Alice’s and Bob’s signals, by
(4), the ex-ante payment under an untruthful-strategy is less than the ex-ante payment under
the truth-telling strategy profile.

In Sect. 6.1 we formalize the notions of a good scoring function and of the accuracy of a
learning algorithm L for scoring functions. In Sect. 6.2, we state our main result, Theorem 16,
which reduces the mechanism design problem to a learning problem for an ideal scoring
function, and provides some intuition about the proof of the theorem.
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6.1 Accuracy of Scoring Rules and Learning Algorithms
Now we define a good scoring function, and the accuracy of a learning algorithm L. Given Φ,
a prior PX,Y and ε > 0, we say that a scoring function K is ε-ideal on (PX,Y ,Φ), if for
Alice

uA(τ , P,K) ≥ uA(τ , P,K?
P,Φ)− ε = DΦ(PX,Y ‖PXPY )− ε, (5)

and the similar inequality holds for Bob. Additionally, For mL ∈ N, we say a learning
algorithm for scoring functions with mL samples, as a function from (xL,yL) ∈ (X ×Y)mL to
a scoring functionK. Given P , a set of distributions on X×Y , and a function SL : R×R→ N,
we say such a learning algorithm L is (δ, ε)-accurate on (P,Φ) with SL(δ, ε) samples, if
for all PX,Y ∈ P, δ ∈ (0, 1), ε > 0, and mL ≥ SL(δ, ε):

Pr
(xL,yL)∼PmL

X,Y

[uA(τ , P,L(xL,yL)) > DΦ(PX,Y ‖PXPY )− ε] ≥ 1− δ.

That is, given mL i.i.d. samples from PX,Y , the probability that the output, L(xL,yL), is
ε-ideal on (P,Φ) is greater than 1− δ. Note that we require the algorithm L to approximate
the ideal scoring uniformly on all distributions in P.

6.2 Pairing Mechanism with Learning Algorithms
Now we replace a fixed scoring function with an accurate learning algorithm L in Mechanism 1.
Intuitively, in the detail-free setting, the Mechanism 2 first runs a learning algorithm on
Alice’s and Bob’s report profile to derive a scoring function, and then pays Alice and Bob by
Mechanism 1.

Algorithm 2 Φ-divergence pairing mechanism with a learning algorithmMΦ,L.

Parameters: A convex function Φ, and a learning algorithm L with mL samples.
Input: A report profile (x̂, ŷ) from Alice and Bob on m tasks where m ≥ 2 +mL.
1: Partition m tasks (arbitrarily) into a set of learning tasks ML and a set of scoring tasks
MS where |ML| ≥ mL and |MS | ≥ 2. Let (x̂L, ŷL) be the reports from Alice and Bob
on the learning tasks ML, and (x̂S , ŷS) be the reports on the scoring tasks.

2: Run the learning algorithm and derive Kest = L(x̂L, ŷL).
3: Run the Φ-pairing mechanism (Mechanism 1) with the scoring function Kest, and pay

Alice and Bob accordingly.

I Theorem 16. Let Φ be a continuous convex function with [0,∞) ⊆ dom(Φ), mL be an
integer, L be a learning algorithm on mL samples, a function SL : R× R→ N, and P be a
set of joint distributions on X × Y.

Suppose the common prior between Alice and Bob satisfying Assumption 2 with PX,Y ∈
P, and L is (δ, ε)-accurate on (P,Φ) with SL(δ, ε) samples. Under three conditions in
Assumption 10 respectively, Mechanism 2 is
1. (δ, ε)-truthful on P with a 2 + SL(δ, ε) number of tasks;
2. (δ, ε)-informed-truthful on P with a 2 + SL(δ, ε) number of tasks;
3. (δ, ε)-strongly truthful on P with a 2 + SL(δ, ε) number of tasks.
Here L only outputs an ε-ideal scoring function on the joint distribution of agents’ signals.
Still, the algorithm can have an arbitrarily large error when agents are not truthtelling. For
instance, there may exists a non-truth-telling strategy profile θ such that θ ◦ P is not in P,
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and the output of L is not ε-ideal on (θ ◦ P,Φ). Nevertheless, Mechanism 2 still can upper
bound their ex-ante payment under such non-truth-telling strategy profiles. Furthermore, if
the learning algorithm is ε-ideal on (θ ◦P,Φ) for all strategy profile θ, the pairing mechanism
is indeed approximately dominantly truthful.

6.3 Learning Ideal Scoring Functions
Theorem 16 reduces the mechanism design problem to a learning problem for an ideal scoring
function. However, Eqn. (5) may be hard to verify. We provide two natural sufficient
conditions for ε-ideal scoring functions in Sect. 6.3.1, and we will provide two concrete
learning algorithms for scoring function in Sect. 6.3.2.

6.3.1 Sufficient Conditions for Approximately Φ-Ideal Scoring Functions
Bregman divergence. Given a, b ∈ R and a strictly convex and twice differentiable Φ : R→
R, the standard Bregman divergence is Φ(a)− Φ(b)−∇Φ(b)>(a− b). It can be extended to
Bregman divergence between two functionals f and g over a probability space (Ω,F , P ) [4]

BΦ,P (f, g) =
∫

Φ(f(ω))− Φ(g(ω))−∇Φ(g(ω))>(f(ω)− g(ω))dP (ω).

I Lemma 17 (Bregman divergence and accuracy). If Φ is strictly convex and twice dif-
ferentiable on [0,∞), DΦ(PX,Y ‖PXPY ) − uA(τ , P,K) = BΦ∗,PXPY

(K,K?). Therefore, if
BΦ∗,PXPY

(K,K?) ≤ ε, K is an ε-ideal scoring function on (Φ, P ).

Since Bregman divergence capture an average distance between a scoring function K and
the ideal one, if the scoring function K is uniformly close to the ideal one K?, the Bergman
divergence between K and K? is also small.

Total variation distance. On the other hand, we may first learn the prior P and compute an
approximately ideal scoring function afterward. This indirect method is also useful, because
estimating the probability density function is a much well studied problem.

I Theorem 18 (Total variation to accuracy). Given Φ is a convex function and a prior PX,Y
over a finite space X × Y, suppose there exist constants 0 < α < 1 and cL such that

∀x ∈ X , y ∈ Y, PX,Y (x, y) > 2α or PX,Y (x, y) = 0, (6)
∀z, w ∈ [α, 1/α], |Φ(z)− Φ(w)| ≤ cL|z − w|. (7)

If ‖P̂X,Y − PX,Y ‖TV ≤ δ < α,9 K̂(x, y) ∈ ∂Φ
(

P̂X,Y

P̂X⊗P̂Y

)
is a 6cL

α2 δ-ideal scoring function.

The first condition says the smallest nonzero probability PX,Y (x, y) is either constantly away
from zero or equal to zero, and the second condition requires the function Φ is Lipschitz
in [α, 1/α]. With these conditions, if we have a good estimation P̂ for P with small total
variation distance, we can compute a very accurate scoring function K̂ from P̂ . As we will
see in Sect. 6.3.2, the empirical distributions with mL samples satisfies this condition with
high probability for large enough mL.

9 ‖P̂ − P̂‖TV =
∑

ω∈Ω |P (ω)− P̂ (ω)| is the total variation distance between P and P̂ .
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6.3.2 Learning Algorithms for Scoring Functions
Generative approach. Recall that if P is known, the ideal scoring function can be computed
directly. In a generative approach, we try to estimate the probability density function P from
reports and derive the scoring function afterward under the truth-telling strategy profile. In
general this generative approach is useful when P is on a finite space, or P is a parametric
model by Theorem 18. Here we provide an example of a generative approach.

A standard way of learning probability density function is to use empirical distribution
on mL samples. The following theorem shows that the empirical distribution gives a good
estimation in terms of total variation distance.

I Lemma 19 (Theorem 3.1 in [6]). For all ε > 0, δ > 0, finite domain Ω, and distribution in
P in ∆Ω, there exists M = O

( 1
ε2 max(|Ω|, log(1/δ))

)
such that for all mL ≥M the empirical

distribution P̂mL
with mL i.i.d. samples, ‖P − P̂mL

‖TV ≤ ε with probability at least 1− δ.

Therefore, we can design a learning algorithm Lemp as follows: estimate joint distribution
PX,Y by their empirical distributions P̂X,Y and derive K̂ from Theorem 18. By Theorem 18
and Lemma 19, such algorithm is ε-accurate with 1− δ probability.

Discriminative approach. Instead of density estimation, a discriminative approach estimates
an ideal scoring functions directly. This enables more freedom of algorithm design. Here we
use the variational representation (Theorem 8), and give an optimization characterization of
an ideal scoring function.

Given the assumption 2, under the truth-telling strategy profile we can have i.i.d. samples
of (u, v) where u is sampled from PX,Y and v is sampled from PXPY independently. Taking
LΦ(a, b) , a− Φ∗(b) as the risk function, we can convert the estimation of the ideal scoring
functions to empirical risk minimization (maximization) over a training set (ut, vt) with
t = 1, 2, . . . , bmL/3c,

K̃ = arg max
k∈K

∑
t

LΦ(k(ut), k(vt)) = arg max
k∈K

{∫
k(ω)dP̂X,Y (ω)−

∫
Φ∗(k(ω))d ˆPXPY (ω)

}
(8)

where K is a pre-specified class of functionals k : X ×Y → R, P̂X,Y and ˆPXPY are empirical
distributions on bmL/3c samples from distributions PX,Y and PXPY respectively.

Assuming that K is a convex set of functionals, the implementation of (8) only requires
solving a convex optimization problem over function space K which is well studied [22]. With
these results, we show the empirical risk maximizer K̃ with respect to LΦ is ε-accurate with
large probability under some conditions on K and prior PX,Y . Furthermore, this error can
be seen as the generalized error of the empirical risk maximizer.

I Theorem 20. Consider a distribution P over X × Y; a strictly convex and a twice
differentiable function Φ on [0,∞) with its gradient Φ′ and conjugate Φ∗; a family of
functional K from X × Y to dom(Φ∗); and Φ∗(K) = {Φ∗(k) : k ∈ K}. Suppose
1. the (P,Φ)-ideal scoring function K? = Φ′

(
PX,Y

PXPY

)
is in K, and

2. there exist constants (Ll, Rl, Dl)l=1,2

a. supk∈K ρL1(k, PX,Y ) ≤ R1, and
∫ R1

0
√
H[],L1(u,K, PX,Y )du ≤ D1

b. supl∈Φ∗(K) ρL2(l, PXPY ) ≤ R2 and
∫ R2

0
√
H[],L2(u,Φ∗(K), PXPY )du ≤ D2

There exists M = O
( 1
ε2 log 1

δ

)
, such that for all mL ≥M , K̃ is ε-accurate on prior P with

probability 1− δ.
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Informally, Theorem 20 requires the functional class K contains an ideal scoring function
and it has a constant complexity (generalized entropy with bracketing). Under these
conditions, the empirical risk minimizer (maximizer) can estimate the ideal scoring function
accurately even when the signal space can be integers, real numbers, or Euclidean spaces.

Here we give a outline of the proof. By Lemma 17, it is sufficient to show the empirical risk
minimizer K̃ has small Bregman divergence form the ideal one. Moreover, if the estimation
K is the empirical risk maximizer, this error can be upper bounded by the distance between
the empirical distribution and the real distribution (Lemma 21). Therefore, we can use
functional form of Central Limit Theorem to upper bound the error. We defer the proof to
the full version.

I Lemma 21. Let K̃ be the estimate of K? obtained by solving Eqn. (8), and K? ∈ K Then

BΦ∗,PXPY (K̃,K?) ≤ sup
k∈K

∣∣∣∣∫ Φ∗(k − Φ∗(K?)d(P̃X P̃Y − PXPY )−
∫

(k −K?) d(P̃X,Y − PX,Y )
∣∣∣∣ .

7 Machine Learning and Multiple Agents

We have discussed the Φ-pairing mechanisms on two agents, Alice and Bob. What can we do
if there are more than two agents, Alice, Bob, . . . ? We first discuss a naive approach that
reduces the multiple agents setting to the two agent setting: Randomly select two agents, pay
them according to a two agent mechanism, and pay the other agents 0. In this mechanism,
as long as the mutual information between any two agents’ signals is lower bounded, the
sample complexity does not grow with the number of agents.

This naive approach is clearly wasteful and not useful in practice. It throws away nearly
all the information agents provide, and will yield payments with high variance. Nonetheless
it can provide some strong theoretical guarantees if the sole goal is obtaining approximately
informed truthful mechanisms. In a way, this improves the sample complexity of Agarwal et
al. [1] from O(n) to constant with an almost trivial analysis.

Yet, the progression of these papers does provide key insights. In Shnayder et al. [28],
agents are paired up with every other agent, enough samples are drawn to estimate the
pairwise joint distributions and this is used to (in our parlance) learn an ideal scoring function.
Agarwal et al. [1] then assumes structure on the joint prior of all agents, and leverages this
particular structure to better learn the ideal scoring function.

These approaches seem much more promising in practice. In the case where the mu-
tual information between any two agents is lower bounded by a constant, they will not
asymptotically improve the sample complexity, but in real life, constants matter.

Moreover, these technique may lead to better asymptotic analysis when the average
pair-wise mutual information goes to zero. For example, say only Alice and Bob work on the
tasks and the rest of agents report random noise. Alice will now only have positive expected
payment if she and Bob are both randomly selected. As the number of agents increases, her
expected payment will go to zero. However, if the sample complexity is large enough that a
learning algorithm can pick out Alice and Bob from the crowd of noise, a mechanism might
be able to appropriately reward them.

Intuitively, in such a case, we can pair Alice simultaneously with all other agents, and
run our mechanism using the concatenation of all other agent’s signals as “Bob”’s signal.
As the number of agents increases, this approach ensures Alice’s expected payment is non-
decreasing because the mutual information does not decrease by adding more information –
the additional agents’ reports. However, the sample complexity for ideal scoring function
will increase, perhaps even exponentially.
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We propose two novel approaches that exploit the power of current machine learning
algorithms to compute the mutual information between Alice’s signal and the rest of the
agents with limited sample complexity.

Computing the Φ-Mutual Information between Xi and X−i. Our variation method is
well suited to the challenge of reliably computing the Φ-mutual information between Alice’s
reports, Xi, and those of the other agents, X−i.

Recall that Mechanism 2 reduces the mechanism design problem to learning a scoring
rule, which Eqn. (1) reduces to learning

JPP (xi, x−i) =
PXi,X−i(xi, x−i)
PXi

(xi)PY (x−i)
=
PXi|X−i

(xi | x−i)
PXi

(xi)
.

Therefore, it is enough to learn both the marginal distribution, PXi(xi) and PXi|X−i
(xi |

x−i). The former can be estimated empirically. However, when the number of agents is large,
the later is high dimensional and must be learned. Fortunately, this is just a soft-classifier
which produces a forecast to predict her report rather than a single report. which, given the
reports of every agent but Alice on a particular task, (soft) predicts Alice’s report on the
same task.

Therefore, we can derive an approximate ideal scoring rule by using machine learning
techniques to produce a (soft) prediction of Alice’s report for an answer given the reports
of the other agents. Specifically, the machine learning algorithm outputs f(·, ·) such that
f(xi, x−i) = PXi|X−i

(xi | x−i).
Using Mechanism 2, we can divide the tasks into training and testing tasks. The training

tasks are used to learn f and to estimate PX(x). We can compute Kest from f and PX(x),
and then use Mechanism 2 to pay the agents.

Note that for the guarantees of Theorem 16 to hold, it is required that f is learned
accurately on truthful strategy profiles. However, we do not require the learning algorithms
perform well on non-truthful strategy profiles.

Latent Variable Models. Our pairing mechanisms are particularly powerful when the prior
P on agents’ signals is a latent variable model. In a latent variable model, signals are
mutually independent conditioned on the latent variables. Examples include Dawid-Skene
models, Gaussian mixture models, hidden Markov models, and latent Dirichlet allocations.
When P is a latent variable model, we can pay Alice the (approximate) mutual information
between her report and each task’s latent variable.
1. Given a latent label recovery algorithm, e.g., [33], we run such algorithm on all reports

except Alice’s, and get estimate of latent label for each tasks (Y1, . . . , Ym);
2. Then, using Alice’s report (X1, . . . , Xm) and the estimated latent label (Y1, . . . , Ym) we

can run Mechanism 2 with the generated method to pay Alice the mutual information
between Alice’s report and the latent labels.

This mechanism is (approximate) strongly truthful, because the Φ-mutual information
between Alice and the others’ reports is less than the Φ-mutual information between her
reports and the tasks’ latent variable due to data processing inequality. This approach has
the following advantages. First, this provides a reduction from aggregation to elicitation.
Second, paying mutual information between Alice’s reports and the latent variable resolves
the problems that the above naive approaches have. Alice’s payment increases as the number
of agents increases by the data processing inequality and the sample complexity of scoring
function mirrors that of the latent label algorithm, which typically will not increase.
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