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Abstract
We consider a model where an agent has a repeated decision to make and wishes to maximize their
total payoff. Payoffs are influenced by an action taken by the agent, but also an unknown state of
the world that evolves over time. Before choosing an action each round, the agent can purchase
noisy samples about the state of the world. The agent has a budget to spend on these samples, and
has flexibility in deciding how to spread that budget across rounds. We investigate the problem of
choosing a sampling algorithm that optimizes total expected payoff. For example: is it better to buy
samples steadily over time, or to buy samples in batches? We solve for the optimal policy, and show
that it is a natural instantiation of the latter. Under a more general model that includes per-round
fixed costs, we prove that a variation on this batching policy is a 2-approximation.
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1 Introduction

The growing demand for machine learning practitioners is a testament to the way data-driven
decision making is shaping our economy. Data has proven so important and valuable because
so much about the current state of the world is a priori unknown. We can better understand
the world by investing in data collection, but this investment can be costly; deciding how much
data to acquire can be a non-trivial undertaking, especially in the face of budget constraints.
Furthermore, the value of data is typically not linear. Machine learning algorithms often see
diminishing returns to performance as their training dataset grows [22, 10]. This non-linearity
is further complicated by the fact that a data-driven decision approach is typically intended
to replace some existing method, so its value is relative to the prior method’s performance.

As a motivating example for these issues, consider a politician who wishes to accurately
represent the opinion of her constituents. These constituents have a position on a policy, say
the allocation of funding to public parks. The politician must choose her own position on
the policy or abstain from the discussion. If she states a position, she experiences a disutility
that is increasing in the distance of her position from that of her constituents. If she abstains,
she incurs a fixed cost for failing to take a stance. To help her make an optimal decision she
can hire a polling firm that collects data on the participants’ positions.
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77:2 Buying Data over Time

We focus on the dynamic element of this story. In many decision problems, the state of
the world evolves over time. In the example above, the opinions of the constituents might
change as time passes, impacting the optimal position of the politician. As a result, data
about the state of the world becomes stale. Furthermore, many decisions are not made a
single time; instead, decisions are made repeatedly. In our example, the politician can update
funding levels each fiscal quarter.

When faced with budget constraints on data collection and the issue of data staleness,
decisions need to be made about when to collect data and when to save budget for the future,
and whether to make decisions based on stale data or apply a default, non-data-driven policy.
Our main contribution is a framework that models the impact of such budget constraints on
data collection strategies. In our example, the politician has a budget for data collection.
A polling firm charges a fixed cost to initiate a poll (e.g., create the survey) plus a fee per
surveyed participant. The politician may not have enough budget to hire the firm to survey
every constituent every quarter. Should she then survey fewer constituents every quarter?
Or survey a larger number of constituents every other quarter, counting on the fact that
opinions do not drift too rapidly?

We initiate the study with arguably the simplest model that exhibits this tension. The
state of the world (constituents’ opinions) is hidden but drawn from a known prior distribution,
then evolves stochastically. Each round, the decision-maker (politician) can collect one or
more noisy samples that are correlated with the hidden state at a cost affine in the number
of samples (conduct a poll). Then she chooses an action and incurs a loss. Should the
decision-maker not exhaust her budget in a given round, she can bank it for future rounds. A
sampling algorithm describes an online policy for scheduling the collection of samples given
the budget and past observations.

We instantiate this general framework by assuming Gaussian prior, perturbations and
sample noise.1 We capture the decisions that need to be made as the problem of estimating
the current state value, using the classic squared loss to capture the cost of making a decision
using imprecise information. Alternatively, there is always the option to not make a decision
based on the data and instead accept a default constant loss. We assume a budget on the
number of samples collected per unit time, and importantly this budget can be banked for
future rounds if desired.

1.1 A Simple Example
To illustrate our technical model, suppose the hidden state (constituents’ average opinion) is
initially drawn from a mean-zero Gaussian of variance 1. In each round, the state is subject
to mean-zero Gaussian noise of variance 1 (the constituents update their opinions), which is
added to the previous round’s state. Also, any samples we choose to take are also subject to
mean-zero Gaussian noise of variance 1 (polls are imperfect). Our budget for samples is 1 per
period, and one can either guess at the hidden state (incurring a penalty equal to the squared
loss) or pass and take a default loss of 3/4. What is the expected average loss of the policy
that takes a single sample each round, and then takes the optimal action? As it turns out,
the expected loss is precisely φ− 1 ≈ 0.618, where φ is the golden ratio 1+

√
5

2 (see Section 3.5
for the analysis). However, this is not optimal: saving up the allotted budget and taking

1 A Gaussian prior is justified in our running example if we assume a large population limit of constituents’
opinions. That the prior estimate of drift is also Gaussian is likewise motivated as the number of periods
grows large. We discuss alternative distributional assumptions on the prior, perturbations and noise in
Section 6.
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two samples every other round leads to an expected loss of 0.75+
√

2−1
2 ≈ 0.582. The intuition

behind the improvement is that taking a single sample every round beats the outside option,
but not by much; it is better to beat the outside option significantly on even-numbered
rounds (by taking 2 samples), then simply use the outside option on odd-numbered rounds.
It turns out that one cannot improve on this by saving up for 3 or more rounds to take
even more samples all at once. However, one can do better by alternating between taking
no samples for two periods and then two samples each for two periods, which results in a
long-run average loss of ≈ 0.576.

1.2 Our Results
As we can see from the example above, the space of policies to consider is quite large. One
simple observation is that since samples become stale over time it is never optimal to collect
samples and then take the outside option (i.e., default fixed-cost action) in the same round;
it would be better to defer data collection to later rounds where decisions will be made based
on data. As a result, a natural class of policies to consider is those which alternate between
collecting samples and saving budget. Such “on-off” policies can be thought of as engaging
in “data drives” while neglecting data collection the rest of the time.

Our main result is that these on-off policies are asymptotically optimal, with respect
to all dynamic policies. Moreover, it suffices to collect samples at a constant rate during
the sampling part of the policy’s period. Our argument is constructive, and we show how
to compute an asymptotically optimal policy. This policy divides time into exponentially-
growing chunks and collects data in the latter end of each chunk.

The solution above assumes that costs are linear in the number of samples collected. We
next consider a more general model with a fixed up-front cost for the first sample collected
in each round. This captures the costs associated with setting up the infrastructure to
collects samples on a given round, such as hiring a polling firm which uses a two-part tariff.
Under such per-round costs, it can be suboptimal to sample in sequential periods (as in an
on-off policy), as this requires paying the fixed cost twice. For this generalized cost model,
we consider simple and approximately optimal policies. When evaluating performance, we
compare against a null “baseline” policy that eschews data collection and simply takes the
outside option every period. We define the value of a policy to be its improvement over this
baseline, so that the null policy has a value of 0 and every policy has non-negative value.
While this is equivalent to simply comparing the expected costs of policies this alternative
measure is intended to capture how well a policy leverages the extra value obtainable from
data; we feel that this more accurately reflects the relative performance of different policies.

We focus on a class of lazy policies that collect samples only at times when the variance
of the current estimate is worse than the outside option. This class captures a heuristic
based on a threshold rule: the decision-maker chooses to collect data when they do not have
enough information to gain over the outside option. We show the optimal lazy policy is a
1/2-approximation to the optimal policy. The result is constructive, and we show how to
compute an asymptotically optimal lazy policy. Moreover, this approximation factor is tight
for lazy policies.

To derive these results, we begin with the well-known fact that the expected loss under
the squared loss cost function is the variance of the posterior. We use an analysis based
on Kalman filters [23], which are used to solve localization problems in domains such as
astronautics [27], robotics [34], and traffic monitoring [36], to characterize the evolution of
variance given a sampling policy. We show how to maximize value using geometric arguments
and local manipulations to transform an optimal policy into either an on-off policy or a lazy
policy, respectively.

ITCS 2021
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We conclude with two extensions. We described our results for a discrete-time model, but
one might instead consider a continuous-time variant in which samples, actions, and state
evolution occur continuously. We show how to extend all of our results to such a continuous
setting. Second, we describe a non-Gaussian instance of our framework, where the state of
the world is binary and switches with some small probability each round. We solve for the
optimal policy, and show that (like the Gaussian model) it is characterized by non-uniform,
bursty sampling.

1.3 Other Motivating Examples
We motivated our framework with a toy example of a politician polling his or her constituents.
But we note that the model is general and applies to other scenarios as well. For example,
suppose a phone uses its GPS to collect samples, each of which provides a noisy estimate
of location (reasonably approximated by Gaussian noise). The “cost” of collecting samples
is energy consumption, and the budget constraint is that the GPS can only reasonably
use a limited portion of the phone’s battery capacity. The worse the location estimate
is, the less useful this information is to apps; sufficiently poor estimates might even have
negative value. However, as an alternative, apps always have the outside option of providing
location-unaware functionality. Our analysis shows that it is approximately optimal to
extrapolate from existing data to estimate the user’s location most of the time, and only use
the GPS in “bursts” once the noise of the estimate exceeds a certain threshold. Note that in
this scenario the app never observes the “ground truth” of the phone’s location. Similarly,
our model might capture the problem faced by a firm that runs user studies when deciding
which features to include in a product, given that such user studies are expensive to run and
preferences may shift within the population of customers over time.

1.4 Future Directions
Our results provide insight into the trade-offs involved in designing data collection policies
in dynamic settings. We construct policies that navigate the trade-off between cost of data
collection and freshness of data, and show how to optimize data collection schedules in a
setting with Gaussian noise. But perhaps our biggest contribution is conceptual, in providing
a framework in which these questions can be formalized and studied. We view this work as
a first step toward a broader study of the dynamic value of data. An important direction
for future work is to consider other models of state evolution and/or sampling within our
framework, aimed at capturing other applications. For example, if the state evolves in a
heavy-tailed manner, as in the non-Gaussian instance explored in Section 6, then we show
it is beneficial to take samples regularly in order to detect large, infrequent jumps in state
value, and then adaptively take many samples when such a jump is evident. We solve this
extension only for a simple two-state Markov chain. Can we quantify the dynamic value
of data and find an (approximately) optimal and simple data collection policy in a general
Markov chain?

1.5 Related work
While we are not aware of other work addressing the value of data in a dynamic setting, there
has been considerable attention paid to the value of data in static settings. Arietta-Ibarra
et al. [4] argue that the data produced by internet users is so valuable that they should be
compensated for their labor. Similarly, there is growing appreciation for the value of the
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data produced on crowdsourcing platforms like Amazon Mechanical Turk [6, 20]. Other
work has emphasized that not all crowdsourced data is created equal and studied the way
tasks and incentives can be designed to improve the quality of information gathered [17, 30].
Similarly, data can have non-linear value if individual pieces are substitutes or complements [8].
Prediction markets can be used to gather information over time, with participants controlling
the order in which information is revealed [11].

There is a growing line of work attempting to determine the marginal value of training
data for deep learning methods. Examples include training data for classifying medical
images [9] and chemical processes [5], as well as for more general problems such as estimating
a Gaussian distribution [22]. These studies consider the static problem of learning from
samples, and generally find that additional training data exhibits decreasing marginal value.
Koh and Liang [25] introduced the use of influence functions to quantify how the performance
of a model depends on individual training examples.

While we assume samples are of uniform quality, other work has studied agents who have
data of different quality or cost [29, 7, 16]. Another line studies the way that data is sold in
current marketplaces [32], as well as proposing new market designs [28]. This includes going
beyond markets for raw data to markets which acquire and combine the outputs of machine
learning models [33].

Our work is also related to statistical and algorithmic aspects of learning a distribution
from samples. A significant body of recent work has considered problems of learning
Gaussians using a minimal number of noisy and/or adversarial samples [21, 13, 14, 26, 15].
In comparison, we are likewise interested in learning a hidden Gaussian from which we obtain
noisy samples (as a step toward determining an optimal action), but instead of robustness to
adversarial noise we are instead concerned about optimizing the split of samples across time
periods in a purely stochastic setting.

Our investigation of data staleness is closely related to the issue of concept drift in
streaming algorithms; see, e.g., Chapter 3 of [2] Concept drift refers to scenarios where the
data being fed to an algorithm is pulled from a model that evolves over time, so that, for
example, a solution built using historical data will eventually lose accuracy. Such scenarios
arise in problems of histogram maintenance [18], dynamic clustering [3], and others. One
problem is to quantify the amount of drift occurring in a given data stream [1]. Given that
such drift is present, one approach to handling concept drift is via sliding-window methods,
which limit dependence on old data [12]. The choice of window size captures a tension
between using a lot of stale data or a smaller amount of fresh data. However, in work on
concept drift one typically cannot control the rate at which data is collected.

Another concept related to staleness is the “age of information.” This captures scenarios
where a source generates frequent updates and a receiver wishes to keep track of the current
state, but due to congestion in the transmission technology (such as a queue or database
locks) it is optimal to limit the rate at which updates are sent [24, 31]. Minimizing the age of
information can be captured as a limit of our model where a single sample suffices to provide
perfect information. Recent work has examined variants of the model where generating
updates is costly [19], but the focus in this literature is more on the management of the
congestible resource. Closer to our work, several recent papers have eliminated the congestible
resource and studied issues such as an energy budget that is stochastic and has limited
storage capacity [37] and pricing schemes for when sampling costs are non-uniform [35, 38].
Relative to our work these papers have simpler models of the value of data and focus on
features of the sampling policy given the energy technology and pricing scheme, respectively.

ITCS 2021
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2 Model

We first describe our general framework, then describe a specific instantiation of interest in
Section 2.1. Time occurs in rounds, indexed by t = 1, 2, . . . . There is a hidden state variable
xt ∈ Ω that evolves over time according to a stochastic process. The initial state x1 is drawn
from known distribution F1. Write mt for the (possibly randomized) evolution mapping
applied at round t, so that xt+1 ← mt(xt).

In every round, the decision-maker chooses an action yt ∈ A, and then suffers a loss
`(yt, xt) that depends on both the action and the hidden state. The evolution functions
(mt) and loss function ` are known to the decision-maker, but neither the state xt nor the
loss `(yt, xt) is directly observed.2 Rather, on each round before choosing an action, the
decision-maker can request one or more independent samples that are correlated with xt,
drawn from a known distribution Γ(xt).

Samples are costly, and the decision-maker has a budget that can be used to obtain
samples. The budget is B per round, and can be banked across rounds. A sampling policy
results in a number of samples st taken in each round t, which can depend on all previous
observations. The cost of taking st samples in round t is C(st) ≥ 0. We assume that C is
non-decreasing and C(0) = 0. A sampling policy is valid if

∑T
t=1 C(st) ≤ B · T for all T . For

example, C(st) = st corresponds to a cost of 1 per sample, and setting C(st) = st + z · 1st>0
adds an additional cost of z for each round in which at least one sample is collected.

To summarize: on each round, the decision-maker chooses a number of samples st to
observe, then chooses an action yt. Their loss `(yt, xt) is then realized, the value of xt is
updated to xt+1, and the process proceeds with the next round. The goal is to minimize the
expected long-run average of `(yt, xt), in the limit as t→∞, subject to

∑T
t=0 C(st) ≤ B · T

for all T ≥ 1.

2.1 Estimation under Gaussian Drift
We will be primarily interested in the following instantiation of our general framework. The
hidden state variable is a real number (i.e., Ω = R) and the decision-maker’s goal is to
estimate the hidden state in each round. The initial state is x1 ∼ N(0, ρ), a Gaussian with
mean 0 and variance ρ > 0. Moreover, the evolution process mt sets xt+1 = xt + δt, where
each δt ∼ N(0, ρ) independently. We recall that the decision-maker knows the evolution
process (and hence ρ) but does not directly observe the realizations δt.

Each sample in round t is drawn from N(xt, σ) where σ > 0. Some of our results will
also allow fractional sampling, where we think of an α ∈ (0, 1) fraction of a sample as a
sample drawn from N(xt, σ/α).3 The action space is A = R ∪ {⊥}. If the decision-maker
chooses yt ∈ R, her loss is the squared error of her estimate (yt − xt)2. If she is too unsure
of the state, she may instead take a default action yt =⊥, which corresponds to not making
a guess; this results in a constant loss of c > 0. Let Gt be a random variable whose law

2 Assuming that the ground truth for `(yt, xt) is unobserved captures scenarios like our political example,
and approximates settings where the decision maker only gets weak feedback, feedback at a delay, or
feedback in aggregate over a long period of time. Observing the loss provides additional information
about xt+1, and this could be considered a variant of our model where the decision-maker gets some
number of samples “for free” each round from observing a noisy version of the loss.

3 One can view fractional sampling as modeling scenarios where the value of any one single sample is
quite small; i.e., has high variance, so that a single “unit” of variance is derived from taking many
samples. E.g., sampling a single constituent in our polling example. It also captures settings where it is
possible to obtain samples of varying quality with different levels of investment.
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is the decision maker’s posterior after observing whatever samples are taken in round t as
well as all previous samples. The decision maker’s subjective expected loss when guessing
yt ∈ R is E[(yt −Gt)2]. This is well known to be minimized by taking yt = E[Gt], and that
furthermore the expected loss is E[(E[Gt] − Gt)2] = V ar(Gt). It is therefore optimal to
guess yt = E[Gt] if and only if Var(Gt) < c, otherwise pass.

We focus on deriving approximately optimal sampling algorithms. To do so, we need to
track the variance of Gt as a function of the sampling strategy. As the sample noise and
random state permutations are all zero-mean Gaussians, Gt is a zero-mean Gaussian as well,
and the evolution of its variance has a simple form.

I Lemma 1. Let vt be the variance of Gt and suppose each δt ∼ N(0, ρ) independently,
and that each sample is subject to zero-mean Gaussian noise with variance σ. Then, if the
decision-maker takes s samples in round t+ 1, the variance of Gt+1 is

vt+1 = vt + ρ

1 + s
σ (vt + ρ) .

The proof, which is deferred to the full version of the paper along with all other proofs,
follows from our model being a special case of the model underlying a Kalman filter.

The optimization problem therefore reduces to choosing a number of samples st to take in
each round t in order to minimize the long-run average of min(vt, c), the loss of the optimal
action. That is, the goal is to minimize lim supT→∞ 1

T

∑T
t=1 min(vt, c), where we take the

superior limit so that the quantity is defined even when the average is not convergent. We
choose C(st) = st + z · 1st>0, so this optimization is subject to the budget constraint that,
at each time T ≥ 1,

∑T
t=1 st + z · 1st>0 ≤ BT . This captures two kinds of information

acquisition costs faced by the decision-maker. First she faces a cost per sample, which we
have normalized to one. Second, she faces a fixed cost z (which may be 0) on each day she
chooses to take samples, expressed in terms of the number of samples that could instead
have been taken on some other day had this cost not been paid. This captures the costs
associated with setting up the infrastructure to collects samples on a given round, such as
getting data collectors to the location where they are needed, hiring a polling firm which
uses a two-part tariff, or establishing a satellite connection to begin using a phone’s GPS.

A useful baseline performance is the cost of a policy that takes no samples and simply
chooses the outside option at all times. We refer to this as the null policy. The value of a
sampling policy s, denoted Val(s), is defined to be the difference between its cost and the
cost of the null policy: lim infT→∞ 1

T

∑T
t=1 max(c − vt, 0). Note that maximizing value is

equivalent to minimizing cost, which we illustrate in Section 3.1. We say that a policy is
α-approximate if its value is at least an α fraction of the optimal policy’s value.

3 Analyzing Variance Evolution

Before moving on to our main results, we show how to analyze the evolution of the variance
resulting from a given sampling policy. We first illustrate our model with a particularly
simple class of policies: those where st takes on only two possible values. We then analyze
arbitrary periodic policies, and show via contraction that they result in convergence to a
periodic variance evolution.

3.1 Visualizing the Decision Problem
To visualize the problem, we begin by plotting the result of an example policy where the
spending rate is constant for some interval of rounds, then shifts to a different constant
spending rate. Figure 1 illustrates one such policy. The spending rates are indicated as

ITCS 2021
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Figure 1 The variance for a piecewise-constant sampling policy, and its loss and benefit.

alternating line segments, while the variance is an oscillating curve, always converging toward
the current spending rate. Note that this particular policy is periodic, in the sense that the
final variance is the same as the initial variance. The horizontal line gives one possible value
for the cost of the outside option. Given this, the optimal policy is to guess whenever the
orange curve is below the green line and take the outside option whenever it is above it.
Thus, the loss associated with this spending policy is given by the orange shaded area in
Figure 1. Minimizing this loss is equivalent to maximizing the green shaded area, which
corresponds to the value of the spending policy. The null policy, which takes no samples and
has variance greater than c always (possibly after an initial period if v0 < c), has value 0.

3.2 Periodic Policies
We next consider policies that are periodic. A periodic policy with period R has the property
that st = st+R for all t ≥ 1. Such policies are natural and have useful structure. In a periodic
policy, the variance (vt) converges uniformly to being periodic in the limit as t→∞. This
follows because the impact of sampling on variance is a contraction map.

I Definition 2. Given a normed space X with norm || · ||, a mapping Ψ: X → X is a
contraction map if there exists a k < 1 such that, for all x, y ∈ X, ||Ψ(x)−Ψ(y)|| ≤ k||x−y||.

I Lemma 3. Fix a sampling policy s, and a time R ≥ 1, and suppose that s takes a strictly
positive number of samples in each round t ≤ R. Let Ψ be the mapping defined as follows:
supposing that v0 = x and v is the variance function resulting from sampling policy s, set
Ψ(x) := vR. Then Ψ is a contraction map over the non-negative reals, under the absolute
value norm.

The proof appears in the full version of the paper. It is well known that a contraction map
has a unique fixed point, and repeated application will converge to that fixed point. Since
we can view the impact of the periodic sampling policy as repeated application of mapping
Ψ to the initial variance in order to obtain v0, vR, v2R, . . . , we conclude that the variance
will converge uniformly to a periodic function for which vt = vt+R. Thus, for the purpose of
evaluating long-run average cost, it will be convenient (and equivalent) to replace the initial
condition on v0 with a periodic boundary condition v0 = vR, and then choose s to minimize
the average cost over a single period, 1

R

∫ R
0 min{vt, c}dt, subject to the budget constraint

that, at any round T ≤ R, we have
∑T
t=1 st ≤ BT .

3.3 Lazy Policies
Write ṽ = vt−1 + ρ for the variance that would be obtained in round t if st = 0. We say that
a policy is lazy if st = 0 whenever ṽt < c. That is, samples are collected only at times where
the variance would otherwise be at or above the outside option value c. Intuitively, we can
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think of such a policy as collecting a batch of samples in one round, then “free-riding” off of
the resulting information in subsequent rounds. The free-riding occurs until the posterior
variance grows large enough that it becomes better to select the outside option, at which
point the policy may collect another batch of samples.

If a policy is lazy, then its variance function v increases by ρ whenever ṽt < c, with
downward steps only at times corresponding to when samples are taken. Furthermore, the
value of such a policy decomposes among these sampling instances: for any t where st > 0,
resulting in a variance of vt < c, if we write h = bc− vtc then we can attribute a value of
1
2h(h+ 1) + (h+ 1)(c− vt − h). Geometrically, this is the area of the “discrete-step triangle”
formed between the increasing sequence of variances vt and the constant line at c, over the
time steps t, . . . , t+ h+ 1.

3.4 On-Off Policies
An On-Off policy is a periodic policy parameterized by a time interval T and a sampling rate
S. Roughly speaking, the policy alternates between intervals where it samples at a rate of S
each round, and intervals where it does not sample. The two interval lengths sum to T , and
the length of the sampling interval is set as large as possible subject to budget feasibility.
More formally, the policy sets st = 0 for all t ≤ (1− α) · T , where α = min{B/S, 1} ∈ [0, 1]
and st = S for all t such that (1− α)T < t ≤ T . This policy is then repeated, on a cycle of
length T . The fraction α is chosen to be as large as possible, subject to the budget constraint.

3.5 Simple Example Revisited
We can now justify the simple example we presented in the introduction, where ρ = σ = 1,
B = 1, and c = 0.75. The policy that takes a single sample each round is periodic
with period 1, and hence will converge to a variance that is likewise equal each round.
This fixed point variance, v∗, satisfies v∗ = v∗+1

1+(v∗+1) by Lemma 1. Solving for v∗ yields
v∗ =

√
5−1
2 < 0.75, which is the average cost per round.

If instead the policy takes k samples every k rounds, this results in a variance that is
periodic of period k. After the round in which samples are taken, the fixed-point variance
satisfies v∗ = v∗+k

1+k(v∗+k) , again by Lemma 1. Solving for v∗, and noting that v∗ + 1 ≥ 1 > c,
yields that the cost incurred by this policy is minimized when k = 2.

To solve for the policy that alternates between taking no samples for two round, followed
by taking two samples on each of two rounds, suppose the long-run, periodic variances
are v1, v2, v3, v4, where samples are taken on rounds 3 and 4. Then we have v2 = v1 + 1,
v3 = v2+1

1+2(v2+1) , v4 = v3+1
1+2(v3+1) , and v1 = v4 + 1. Combining this sequence of equations yields

4v2
1 + 4v1 − 13 = 0, which we can solve to find v1 = −1+

√
14

2 ≈ 1.3708. Plugging this into the
equations for v2, v3, v4 and taking the average of min{vi, 0.75} over i ∈ {1, 2, 3, 4} yields the
reported average cost of ≈ 0.576.

4 Solving for the Optimal Policy

In this section we show that when the cost of sampling is linear in the total number of
samples taken (i.e., z = 0)4, and when fractional sampling is allowed, then the supremum
value over all on-off policies is an upper bound on the value of any policy. This supremum

4 Recall that z is the fixed per-round cost of taking a positive number of samples. Even when z = 0, there
is still a positive per-sample cost.
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is achieved in the limit as the time interval T grows large. So, while no individual policy
achieves the supremum, one can get arbitrarily close with an on-off policy of sufficiently long
period. Proofs appear in the full version of the paper.

We begin with some definitions. For a given period length T > 0, write sT for the on-off
policy of period T with optimal long-run average value. Recall Val(sT ) is the value of policy
sT . We first argue that larger time horizons lead to better on-off policies.

I Lemma 4. With fractional samples, for all T > T ′, we have Val(sT ) > Val(sT ′).

Write V ∗ = supT→∞Val(sT ). Lemma 4 implies that V ∗ = limT→∞Val(sT ) as well. We
show that no policy satisfying the budget constraint can achieve value greater than V ∗.

I Theorem 5. With fractional samples, the value of any valid policy s is at most V ∗.

The proof of Theorem 5 proceeds in two steps. First, for any given time horizon T , it
is suboptimal to move from having variance below the outside option to above the outside
option; one should always save up budget over the initial rounds, then keep the variance
below c from that point onward. This follows because the marginal sample cost of reducing
variance diminishes as variance grows, so it is more sample-efficient to recover from very high
variance once than to recover from moderately high variance multiple times.

Second, one must show that it is asymptotically optimal to keep the variance not just
below c, but uniform. This is done by a potential argument, illustrating that a sequence
of moves aimed at “smoothing out” the sampling rate can only increase value and must
terminate at a uniform policy. The difficulty is that a sample affects not only the value
in the round it is taken, but in all subsequent rounds. We make use of an amortization
argument that appropriately credits value to samples, and use this to construct the sequence
of adjustments that increase overall value while bringing the sampling sequence closer to
uniform in an appropriate metric.

We also note that it is straightforward to compute the optimal on-off policy for a given
time horizon T , by choosing the sampling rate that maximizes [value per round] × [fraction of
time the policy is “on”]. One can implement a policy whose value asymptotically approaches
V ∗ by repeated doubling of the time horizon. Alternatively, since limT→∞Val(sT ) = V ∗, sT
will be an approximately optimal policy for sufficiently large T .

5 Approximate Optimality of Lazy Policies

In the previous section we solved for the optimal policy when z = 0, meaning that there
is no fixed per-round cost when sampling. We now show that for general z, lazy policies
are approximately optimal, obtaining at least 1/2 of the value of the optimal policy. Proofs
appears in the full version of the paper.

We begin with a lemma that states that, for any valid sampling policy and any sequence
of timesteps, it is possible to match the variance at those timesteps with a policy that only
samples at precisely those timesteps, and the resulting policy will be valid.

I Lemma 6. Fix any valid sampling policy s (not necessarily lazy) with resulting variances
(vt), and any sequence of timesteps t1 < t2 < . . . < t` < . . . . Then there is a valid policy s′
such that {t | s′t > 0} ⊆ {t1, . . . , t`, . . . }, resulting in a variances (v̆t) with v̆ti ≤ vti for all i.

The intuition is that if we take all the samples we would have spent between timesteps t`
and t`+1 and instead spend them all at t`+1 the result will be a (weakly) lower variance at
t`+1. We next show that any policy can be converted into a lazy policy at a loss of at most
half of its value.
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Figure 2 Visualizing the construction in the proof of Theorem 7. Variance (vertical) is plotted
against time (horizontal). We approximate the value of an optimal policy’s variance (orange) given
c (green). The squares (drawn in blue) cover the gap between the curves, except possibly when
|vt − c| < ε (for technical reasons). The lazy policy samples on rounds corresponding to the left edge
of each square, bringing the variance to each square’s bottom-left corner.

I Theorem 7. The optimal lazy policy is 1/2-approximate.

See Figure 2 for an illustration of the intuition behind the result. Consider an arbitrary
policy s, with resulting variance sequence (vt). Imagine covering the area between (vt) and c
with squares, drawn left to right with their upper faces lying on the outside option line, each
chosen just large enough so that vt never falls below the area covered by the squares. The area
of the squares is an upper bound on Val(s). Consider a lazy policy that drops a single atom
on the left endpoint of each square, bringing the variance to the square’s lower-left corner.
The value of this policy covers at least half of each square. Moreover, Lemma 6 implies this
policy is (approximately) valid, as it matches variances from the original policy, possibly
shifted early by a constant number of rounds. This shifting can introduce non-validity; we
fix this by delaying the policy’s start by a constant number of rounds without affecting the
asymptotic behavior.

The factor 1/2 in Theorem 7 is tight. To see this, fix the value of c and allow the budget
B to grow arbitrarily large. Then the optimal value tends to c as the budget grows, since
the achievable variance on all rounds tends to 0. However, the lazy policy cannot achieve
value greater than c/2, as this is what would be obtained if the variance reached 0 on the
rounds on which samples are taken.

Finally, while this result is non-constructive, one can compute a policy whose value
approaches an upper bound on the optimal lazy policy, in a similar manner to the optimal
on-off policy. One can show the best lazy policy over any finite horizon has an “off” period
(with no sampling) followed by an “on” period (where vt ≤ c). One can then solve for the
optimal number of samples to take whenever ṽt > c by optimizing either value per unit of
(fixed plus per-sample) sampling cost, or by fully exhausting the budget, whichever is better.
Details appear in the full version of the paper.

6 Extensions and Future Directions

We describe two extensions of our model in the appendix. First, we consider a continuous-time
variant where samples can be taken continously subject to a flow cost, in addition to being
requested as discrete atoms. The decision-maker selects actions continuously, and aims to
minimize loss over time. All of our results carry forward to this continuous extension.

Second, returning to discrete time, we consider a non-Gaussian instance of our framework.
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Figure 3 Simulating the optimal policy for the non-Gaussian extension. The round number is
on the horizontal axis. The hidden state of the world is binary and evolves stochastically (blue).
The optimal policy tracks a posterior distribution over the hidden state (red), and takes samples
in order to maintain a tuned level of certainty (dashed green). Note that most rounds have only a
small number of samples, with occasional spikes triggered adaptively in response to uncertainty.

In this model, there is a binary hidden state of the world, which flips each round independently
with some small probability ε > 0. The decision-maker’s action in each round is to guess the
hidden state of this simple two-state Markov process, and the objective is to maximize the
fraction of time that this guess is made correctly. Each sample is a binary signal correlated
with the hidden state, matching the state of the world with probability 1

2 +δ where δ > 0. The
decision-maker can adaptively request samples in each round, subject to the accumulating
budget constraint, before making a guess.

In this extension, as in our Gaussian model, the optimal policy collects samples non-
uniformly. In fact, the optimal policy has a simple form: it sets a threshold θ > 0 and takes
samples until the entropy of the posterior distribution falls below θ. Smaller θ leads to higher
accuracy, but also requires more samples on average, so the best policy will set θ as low as
possible subject to the budget constraint. Notably, the result of this policy is that sampling
tends to occur at a slow but steady rate, keeping the entropy around θ, except for occasional
spikes of samples in response to a perceived change in the hidden state. See Figure 3 for a
visualization of a numerical simulation with a budget of 6 samples (on average) per round.

More generally, whenever the state evolves in a heavy-tailed manner, it is tempting to
take samples regularly in order to detect large, infrequent jumps in state value, and then
adaptively take many samples when such a jump is evident. This simple model is one scenario
where such behavior is optimal. More generally, can we quantify the dynamic value of data
and find an (approximately) optimal data collection policy for more complex Markov chains,
or other practical applications?
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