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Abstract
This paper considers a variant of the online paging problem, where the online algorithm has access
to multiple predictors, each producing a sequence of predictions for the page arrival times. The
predictors may have occasional prediction errors and it is assumed that at least one of them makes
a sublinear number of prediction errors in total. Our main result states that this assumption suffices
for the design of a randomized online algorithm whose time-average regret with respect to the
optimal offline algorithm tends to zero as the time tends to infinity. This holds (with different regret
bounds) for both the full information access model, where in each round, the online algorithm
gets the predictions of all predictors, and the bandit access model, where in each round, the online
algorithm queries a single predictor.

While online algorithms that exploit inaccurate predictions have been a topic of growing interest
in the last few years, to the best of our knowledge, this is the first paper that studies this topic in the
context of multiple predictors for an online problem with unbounded request sequences. Moreover, to
the best of our knowledge, this is also the first paper that aims for (and achieves) online algorithms
with a vanishing regret for a classic online problem under reasonable assumptions.
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1 Introduction

A critical bottleneck in the performance of digital computers, known as the “memory wall”,
is that the main memory (a.k.a. DRAM) is several orders of magnitude slower than the
multiprocessor [26, 16, 4]. Modern computer architectures bridge this performance gap by
utilizing a cache, namely, a memory structure positioned next to the multiprocessor that
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67:2 Online Paging with a Vanishing Regret

responds much faster than the main memory. However, the cache is inherently smaller than
the main memory which means that some of the memory items requested by the running
program may be missing from the cache. When such a cache miss occurs, the multiprocessor
is required to fetch the requested item from the main memory into the cache; if the cache is
already full, then some previously stored item must be evicted to make room for the new one.
Minimizing the number of cache misses is known to be a primary criterion for improving the
computer’s performance [26, 17].

The aforementioned challenge is formalized by means of a classic online problem called
paging [21] (a.k.a. unweighted caching), defined over a main memory that consists of n ∈ Z>0
pages and a cache that holds k ∈ Z>0 pages at any given time, k < n. The execution of a
paging algorithm Alg progresses in T ∈ Z>0 discrete rounds, where round t ∈ T occupies the
time interval [t, t−1). An instance of the paging problem is given by a sequence σ = {σt}t∈[T ]
of page requests so that request σt ∈ [n] is revealed at time t ∈ [T ]. Denoting the cache
configuration of Alg at time t by Ct ⊂ [n], |Ct| = k, if σt ∈ Ct, then Alg does nothing in
round t; otherwise (σt /∈ Ct), a cache miss occurs and Alg should bring the requested page
into the cache so that σt ∈ Ct+1. Since |Ct+1| = |Ct| = k, it follows that upon a cache miss,
Alg must evict some page i ∈ Ct and its policy is reduced to the selection of this page i. The
cost incurred by Alg on σ is defined to be the number of cache misses it suffers throughout
the execution, denoted by

costσ(Alg) = |{t ∈ [T ] : σt /∈ Ct}| ,

taking the expectation if Alg is a randomized algorithm. When σ is clear from the context,
we may omit the subscript, writing cost(Alg) = costσ(Alg).

NAT and the FitF Algorithm. To avoid cumbersome notation, we assume hereafter that
the request sequence σ is augmented with a suffix of n virtual requests so that σT+i = i for
every i ∈ [n]. This facilitates the definition of the next arrival time (NAT) of page i ∈ [n]
with respect to time t ∈ [T ] as the first time after t at which page i is requested, denoted by

At(i) = min{t′ > t | σt′ = i} .

Based on that, we can define the FitF (stands for furthest in the future) paging algorithm
that on a cache miss at time t ∈ [T ], evicts the page i ∈ Ct that maximizes At(i). A classic
result of Belady [5] states that FitF is optimal in terms of the cost it incurs for the given
request sequence σ; we subsequently denote OPTσ = costσ(FitF) and omit the subscript,
writing OPT = OPTσ, when σ is clear from the context. It is important to point out that FitF
is an offline algorithm as online algorithms are oblivious to the NATs.

Regret. We define the regret of an online paging algorithm Alg on σ as

regretσ(Alg) = costσ(Alg)− OPTσ

and omit the subscript, writing regret(Alg) = regretσ(Alg) when σ is clear from the context.
Our goal in this paper is to develop an online algorithm that admits a vanishing regret,
namely, an online algorithm Alg for which it is guaranteed that

lim
T→∞

sup
{

regretσ(Alg) | σ ∈ [n]T
}

T
= 0 .

The following theorem states that this goal is hopeless unless the online algorithm has access
to some additional information; its proof should be a folklore, we add it in the full version [11]
of this paper for completeness.
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I Theorem 1. Fix n = k+1 and let σ be a request sequence generated by picking σt uniformly
at random (and independently) from [n] for t = 1, . . . , T . Then, E (cost(Alg)) ≥ Ω

(
T
k

)
for

any (possibly randomized) online paging algorithm Alg, whereas E(OPT) ≤ O
(

T
k log k

)
.

1.1 Machine Learned Predictions
Developments in machine learning (ML) technology suggest a new direction for reducing the
number of cache misses by means of predicting the request sequence. Indeed, recent studies
have shown that neural networks can be employed to predict the memory pages accessed by a
program with high accuracy [16, 9, 22, 19, 23]. When provided with an accurate prediction of
the request sequence σ, one can simply simulate FitF, thus ensuring an optimal performance.

Unfortunately, the predictions generated by ML techniques are usually not 100% accurate
as a result of a distribution drift between the training and test examples or due to adversarial
examples [24, 18]. This gives rise to a growing interest in developing algorithmic techniques
that can overcome inaccurate predictions, aiming for the design of online algorithms with
performance guarantee that improves as the predictions become more accurate [18, 20, 1, 25].
The existing literature in this line of research studies a setting where the online algorithm Alg
is provided with a sequence of predictions for σ and focuses on bounding Alg’s competitive
ratio as a function of the proximity of this sequence to σ (more on that in Section 2).

The current paper tackles the challenge of overcoming inaccurate predictions from a
different angle: Motivated by the abundance of forecasting algorithms that may be trained
on different data sets or using different models (e.g., models that are robust to adversarial
examples [15]), we consider a decision maker with access to multiple predicting sequences
for σ. Our main goal is to design an online algorithm Alg that admits a vanishing regret
assuming that at least one of the predicting sequences is sufficiently accurate, even though
the decision maker does not know in advance which predicting sequence it is.

Explicit Predictors. Formally, we consider M ∈ Z>0 predictors whose role is to predict the
request sequence σ. In the most basic form, referred to hereafter as the explicit predictors
setting, each predictor j ∈ [M ] produces a page sequence πj = {πjt }t∈[T ] ∈ [n]T , where
πjt aims to predict σt for every t ∈ [T ], and the sequences π1, . . . , πM are revealed to the
online algorithm Alg at the beginning of the execution. Under the explicit predictors setting,
predictor j ∈ [M ] is said to have a prediction error in round t ∈ [T ] if πjt 6= σt. We measure
the accuracy of predictor j by means of her cumulative prediction error

ηje = ηe(πj) =
∣∣∣{t ∈ [T ] : πjt 6= σt

}∣∣∣
and define ηmin

e = min{ηje | j ∈ [M ]}.
The fundamental assumption that guides the current paper, referred to hereafter as

the good predictor assumption, is that there exists at least one predictor whose cumulative
prediction error is sublinear in T , namely, ηmin

e = o(T ). We emphasize that Alg has no a
priori knowledge of η1

e , . . . , η
M
e nor does it know the predictor that realizes ηmin

e . Our main
research question can now be stated as follows:

Does the good predictor assumption provide a sufficient condition for the existence of
an online algorithm that admits a vanishing regret?

NAT Predictors. For the paging problem, it is arguably more natural to consider the setting
of NAT predictors, where predictor j ∈ [M ] produces in each round t ∈ [T ], a prediction
ajt ∈ (t, T + n] for the NAT At(σt) of the page that has just been requested. Under this

ITCS 2021
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setting, predictor j ∈ [M ] is said to have a prediction error in round t ∈ [T ] if ajt 6= At(σt).
As in the explicit predictors setting, we measure the accuracy of (NAT) predictor j by means
of her cumulative prediction error, now defined as

ηjN =
∣∣∣{t ∈ [T ] : ajt 6= At(σt)

}∣∣∣ (1)

(this measure is termed classification loss in [18]), and define ηmin
N = min{ηjN | j ∈ [M ]}.1

The NAT predictors version of the good predictor assumption states that ηmin
N = o(T ).

Given a page sequence π = {πt}t∈[T ] ∈ [n]T augmented with a suffix of n pages such
that πT+i = i for every i ∈ [n], we say that (NAT) predictor j ∈ [M ] is consistent with π
if ajt = min{t′ > t | πt′ = σt} for every t ∈ [T ]; if the page sequence π is not important or
clear from the context, then we may say that predictor j is consistent without mentioning π.
The key observation here is that if predictor j is consistent with a page sequence π, then ηjN
provides a good approximation for ηe(π), specifically,

ηe(π)− n ≤ ηjN ≤ 2 · ηe(π) (2)

(the proof is deferred to the full version [11]). This means that the setting of NAT predictors
is stronger than that of explicit predictors in the sense that NAT predictor j ∈ [M ] can
be simulated (consistently) from explicit predictor j by deriving the NAT prediction ajt in
round t ∈ [T ] from the (explicit) predictions πjt+1, π

j
t+2, . . . , π

j
T , while ensuring that ηjN is

a good approximation for ηje. Therefore, unless stated otherwise, we subsequently restrict
our attention to NAT predictors and in particular omit the subscript from the cumulative
prediction error notation, writing ηj = ηjN and ηmin = ηmin

N . It is important to point out
though that the results established in the current paper hold regardless of whether the (NAT)
predictors are consistent or not.

Access Models. Recall that the (NAT) predictors j ∈ [M ] produce their predictions in
an online fashion so that the NAT prediction ajt is produced in round t. This calls for
a distinction between two access models that determine the exact manner in which ajt is
revealed to the online paging algorithm Alg. First, we consider the full information access
model, where in each round t ∈ [T ], Alg receives ajt for all j ∈ [M ]. Motivated by systems
in which accessing the ML predictions is costly in both time and space (thus preventing
Alg from querying multiple predictors in the same round and/or predictions belonging to
past rounds), we also consider the bandit access model, where in each round t ∈ [T ], Alg
receives ajt for a single predictor j ∈ [M ] selected by Alg in that round. To make things
precise, we assume, under both access models, that if Alg has to evict a page in round t,
then the decision on the evicted page is made prior to receiving the prediction(s) in that
round. Notice though that the information that Alg receives from the predictor(s) is not
related to the evicted page and as such, should not be viewed as a feedback that Alg receives
in response to the action it takes in the current round.

1.2 Our Contribution
Consider a (single) predictor that in each round t ∈ [T ], produces a prediction at for the NAT
At(σt) of the page that has just been requested and let η be her cumulative prediction error.
Our first technical contribution comes in the form pf a thorough analysis of the performance

1 In Section 2, we provide a refined definition for the cumulative prediction error of a NAT predictor that
is more robust against adversarial interference such as shifting each atj by a constant. For simplicity of
the exposition, the definition presented in Eq. (1) is used throughout the current section; we emphasize
though that all our results hold for the stronger notion of prediction error as defined in Section 2.
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of a simple online paging algorithm called Sim that simulates FitF, replacing the actual
NATs with the ones derived from the prediction sequence {at}t∈[T ]. Using some careful
combinatorial arguments, we establish the following bound.

I Theorem 2. The regret of Sim satisfies regret(Sim) ≤ O(η + k).

Relying on online learning techniques, Blum and Burch [6] develop an online algorithm
“multiplexer” that given multiple online algorithms as subroutines, produces a randomized
online algorithm that performs almost as good as the best subroutine in hindsight. Applying
Theorem 2 to the M predictors so that each predictor j ∈ [M ] yields its own online paging
algorithm Simj and plugging algorithms Sim1, . . . , SimM into the multiplexer of [6], we
establish the following theorem, thus concluding that the good predictor assumption implies
an online paging algorithm with a vanishing regret under the full information access model.

I Theorem 3. There exists a randomized online paging algorithm that given full information
access to M NAT predictors with minimum cumulative prediction error ηmin, has regret at
most O

(
ηmin + k + (Tk logM)1/2

)
.

Combined with (2), we obtain the same asymptotic regret bound for explicit predictors.

I Corollary 4. There exists a randomized online paging algorithm that given access to
M explicit predictors with minimum cumulative prediction error ηmin

e , has regret at most
O
(
ηmin
e + k + (Tk logM)1/2

)
.

The explicit predictors setting is general enough to make it applicable to virtually any
online problem. This raises the question of whether other online problems admit online
algorithms with a vanishing regret given access to explicit predictors whose minimum
cumulative prediction error is sublinear in T . We view the investigation of this question as
an interesting research thread that will hopefully arise from the current paper.

Going back to the setting of NAT predictors, one wonders if a vanishing regret can be
achieved also under the bandit access model since the technique of [6] unfortunately does not
apply to this more restricted access model. An inherent difficulty in the bandit access model
is that we cannot keep track of the cache configuration of Simj unless predictor j is queried in
each round (which means that no other predictor can be queried). To overcome this obstacle,
we exploit certain combinatorial properties of the Sim algorithm to show that Simj can be
“chased” without knowing its current cache configuration, while bounding the accumulated
cost difference. By a careful application of online learning techniques, this allows us to
establish the following theorem, thus concluding that the good predictor assumption implies
an online paging algorithm with a vanishing regret under the bandit access model as well.

I Theorem 5. There exists a randomized online paging algorithm that given bandit access
to M NAT predictors with minimum cumulative prediction error ηmin, has regret at most
O
(
ηmin + T 2/3kM1/2).

1.3 Related Work and Discussion
We say that an online algorithm Alg for a minimization problem P has competitive ratio
α if for any instance σ of P, the cost incurred by Alg on σ is at most α · OPTσ + β, where
OPTσ is the cost incurred by an optimal offline algorithm on σ and β is a constant that
may depend on P, but not on σ [21, 7]. In comparison, the notion of regret as defined in
the current paper uses the optimal offline algorithm as an absolute (additive), rather than

ITCS 2021
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relative (multiplicative), benchmark. Notice that the vanishing regret condition cannot be
expressed in the scope of the competitive ratio definition. In particular, α = 1 is a stronger
requirement than vanishing regret as the latter can accommodate an additive parameter β
that does depend on σ as long as it is sublinear in T = |σ|. On the other hand, α > 1 implies
a non-vanishing regret when OPTσ scales linearly with T .

As mentioned in Section 1.1, most of the existing literature on augmenting online
algorithms with ML predictions is restricted to the case of a single predictor [18, 20, 1, 25].
The goal of these papers is to develop online algorithms with two guarantees: (i) their
competitive ratio tends to O(1) (though not necessarily to 1) as the predictor’s accuracy
improves; and (ii) they are robust in the sense that regardless of the predictor’s accuracy,
their competitive ratio is not much worse than that of the best online algorithm that has no
access to predictions.

In contrast, the current paper addresses the setting of multiple predictors, working under
the assumption that at least one of them is sufficiently accurate, and seeking to develop
online algorithms with a vanishing regret. To the best of our knowledge, this is the first
paper that aims at this direction.

Most closely related to the current paper are the papers of [18, 20, 25] on online paging
with predictions. The authors of these papers stick to the setting of a (single) NAT predictor
and quantify the predictor’s accuracy by means of the L1-norm. Specifically, taking {at}t∈[T ]
to be the sequence of NAT predictions, they define the predictor’s cumulative prediction error
to be ]L1 =

∑
t |at −At(σt)|. It is easy to see that for any NAT predictor, the cumulative

prediction error as defined in (1) is never larger than its ]L1, while the former can be
Ω(T )-times smaller.

In particular, Lykouris and Vassilvitskii [18] design a randomized online paging al-
gorithm whose competitive ratio is at most O

(
min

{
1 +

√
]L1/OPT, log k

})
. Rohatgi

[20] presents an improved randomized online algorithm with competitive ratio up-
bounded by O

(
min

{
1 + log k

k
]L1
OPT , log k

})
and accompany this with a lower bound of

Ω
(

min
{

1 + 1
k log k

]L1
OPT , log k

})
. Notice that the online algorithms presented in [18, 20] belong

to the marking family of paging algorithms [13] and it can be shown that the competitive
ratio of any such algorithm is bounded away from 1 even when provided with a fully accurate
predictor (consider for example the paging instance defined by setting n = 4, k = 2, and
σt = (t mod 4) + 1 for every t ∈ [T ]).

Recently, Wei [25] advanced the state of the art of this problem further, present-
ing a randomized O

(
min

{
1 + 1

k
]L1
OPT , log k

})
-competitive online paging algorithm. To do

so, Wei analyzes an algorithm called BlindOracle, that can be viewed as a variant of
our Sim algorithm (see Section 1.2), and proves that its competitive ratio is at most
min

{
1 +O

(
]L1
OPT

)
, O
(

1 + 1
k
]L1
OPT

)}
. He then plugs this algorithm into the multiplexer of [6]

together with an O(log k)-competitive off-the-shelf randomized online paging algorithm to
obtain the promised competitive ratio. Notice that the bound that Wei establishes on the
competitive ratio of BlindOracle immediately implies an O(]L1) bound on the regret of this
algorithm. As such, Theorem 2 can be viewed as a refinement of Wei’s result, bounding the
regret as a function of η rather than the weaker measure of ]L1.

Antoniadis et al. [1] studies online algorithms with ML predictions in the context of the
metrical task system (MTS) problem [8]. They consider a different type of predictor that in
each round t ∈ [T ], provides a prediction ŝt for the state st of an optimal offline algorithm,
measuring the prediction error by means of ]Distances =

∑
t∈[T ] dist(st, ŝt), where dist(·, ·)

is the distance function of the underlying metric space. It is well known that any paging
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instance I can be transformed into an MTS instance IMTS. Antoniadis et al. prove that
the prediction sequence {at}t∈[T ] of a NAT predictor for I can also be transformed into a
prediction sequence {ŝt}t∈[T ] for IMTS. However, the resulting prediction error ]Distances
of the latter sequence is incomparable to the prediction error ]L1 of the former; this remains
true also for the stronger notion of cumulative prediction error as defined in (1).

Online algorithms with access to multiple predictors have been studied by Gollapudi and
Panigrahi for the ski rental problem [14]. Among other results, they prove that a competitive
ratio of α = 4

3 (resp., α =
√

5+1
2 ) can be achieved by a randomized (resp., deterministic)

online algorithm that has access to two predictors assuming that at least one of them provides
an accurate prediction for the number of skiing days. Notice that the length of the request
sequence in the ski rental problem is inherently bounded by the cost of buying the ski gear;
this is in contrast to the paging problem considered in the current paper, where much of the
challenge comes from the unbounded request sequence.

The reader may have noticed that some of the terminology used in the current paper
is borrowed from the online learning domain [10]. The main reason for this choice is that
the research objectives of the current paper are, to a large extent, more in line with the
objectives common to the online learning literature than they are in line with the objectives
of the literature on online computation. In particular, as discussed already, we measure
the quality of our online algorithms by means of their regret (rather than competitiveness),
indicating that the online algorithm can be viewed as a decision maker that tries to learn
the best offline algorithm.

1.4 Paper’s Organization
The remainder of this paper is organized as follows. In Section 2, we refine the notion of
cumulative prediction error as defined in (1) and compare the refined notion with the number
of inversions used in some of the related literature [20, 25]. The analysis of the Sim algorithm
(using a single predictor), leading to the proof of Theorem 2, is carried out in Section 3.
Section 4 is then dedicated to the setting of multiple (NAT) predictors under the bandit
access model and establishes Theorem 5. As discussed in Section 1.3, Theorem 3, dealing
with the full information access model, follows from Theorem 2 combined with a technique
of [6]; this is explained in more detail in the full version [11].

2 Measurements of Prediction Errors

The measurement of the prediction errors plays an important role in the study on online
paging algorithms augmented by predictions. This part makes a comparison between different
measurements for the scenario where there is a single NAT predictor. To avoid ambiguity, in
this part we use ]ErrorRounds to represent the measurement defined in Eq. (1) for the single
predictor j. In the following, the superscript j for the predictor is omitted for convenience.

In the analysis of [25], the prediction errors are measured with the number of inverted
pairs. For a pair of two rounds {t, t′}, we say it is an inverted pair if At(σt) < At′(σt′) and
at ≥ at′ . Let INV be the set of all the inverted pairs, and define ]InvertedPairs = |INV|. To
compare the measurement ]InvertedPairs with ]ErrorRounds, we also define the following
notations.

]InvertedRounds .=
∣∣∣{t | ∃t′ s.t. {t, t′} ∈ INV}

∣∣∣
]ErrorRoundsInInversion .=

∣∣∣{t |At(σt) 6= at ∧ ∃t′ s.t. {t, t′} ∈ INV}
∣∣∣

ITCS 2021
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First, it trivially holds that ]InvertedRounds ≤ 2·]InvertedPairs, and ]InvertedPairs
can be Ω(T ) times larger than ]InvertedRounds. To see the second claim, consider the
following sequence σ of requested pages and a prediction sequence π.

σt =
{

1 if t ≤ T
2

2 if t > T
2
, and πt =

{
2 if t ≤ T

2

1 if t > T
2
.

It can be verified that for a sequence of predictions in the form of NATs that are consistent
with the settings above, ]InvertedPairs is in the order of T 2 while ]InvertedRounds is in
the order of T .

Second, we claim that ]InvertedRounds and ]ErrorRounds are incomparable, which
means that there exists an example where ]InvertedRounds is Ω(T ) times larger than
]ErrorRounds, and vice versa. Still, we demonstrate these examples with the sequence σ of
requests and the prediction sequence π, and the claims above can be verified after converting
the predictions in the form of requests to consistent predictions in the form of NATs. The
configuration of the first example is given as follows.

σt =
{

(t mod (k − 1)) + 1 if 1 < t < T

k otherwise
, and π =

{
(t mod (k − 1)) + 1 if t > 2
k otherwise

.

The second example is configured as follows.

σt = (t mod (k − 1)) + 1 , and π =
{

((t− 1) mod (k − 1)) + 1 if t > 1
k otherwise

.

Third, it is obvious that

]ErrorRoundsInInversion ≤ min
{
]ErrorRounds, ]InvertedRounds

}
.

Although in Section 1.1 we define ηj for every predictor j in the form of ]ErrorRounds for sim-
plicity, our technique indeed works for the better measurement ]ErrorRoundsInInversion.
Therefore, in the technical parts of the current paper, including Section 3 and Section 4, we
use the following refined definition of ηj by abuse of notation:

ηj
.=
∣∣∣{t |At(σt) 6= ajt ∧ ∃t′ s.t. {t, t′} ∈ INVj}

∣∣∣ ,
where INVj = {(t, t′)|At(σt) < At′(σt′) ∧ ajt ≥ a

j
t′}.

3 Single NAT Predictor

We start with the NAT predictor setting with M = 1. In such a case, there is no difference
between the full information access model and the bandit access model. Throughout this
section, we still omit the superscript j for the index of the predictor.

The algorithm Sim that we consider for this setting simulates FitF with maintaining a
value ât(i), which we call the remedy prediction, for each round t ∈ [T ] and each page i ∈ [n].
In particular, for each page i ∈ [n], Sim sets

â1(i) =
{
a1 if i = σ1

Z + 1 otherwise
, and

∀ t ∈ [2, T ] ât(i) =


at if i = σt

Z if ât−1(i) ≤ t ∧ i 6= σt ∧ ât−1(i) ≤ ât−1(σt) < Z

ât−1(i) otherwise
,

(3)
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where Z > T + n is a sufficiently large integer. For each round t when a cache miss happens,
the algorithm evicts the page êt = i that maximizes ât(i), and ties are broken in an arbitrary
way. The following statements can be directly inferred from Eq. (3).

I Lemma 6. The following properties are satisfied for every round t ∈ [T ]:
If at > At(σt), then for each round t′ ∈ [t,min{T,At(σt)− 1}], we have ât′(σt) > At′(σt).
If at < At(σt), then for each round t′ ∈ [t,min{T,At(σt)− 1}], either ât′(σt) < At′(σt)
or ât′(σt) = Z > At′(σt). Particularly, if t′ ≤ at − 1, then ât′(σt) < At′(σt).
If at = At(σt), then for each round t′ ∈ [t,min{T,At(σt)− 1}], we have ât′(σt) = At′(σt).

Next, we will analyze the cost incurred by Sim and show that it has a vanishing regret.

3.1 Definitions and Notations for Analysis
For each round t, we use et and êt to represent the pages that are evicted by FitF and Sim,
respectively. We say et =⊥ (resp. êt =⊥) if FitF (resp. Sim) does not evict any page.

For each page i ∈ [n] and each round t ∈ [T ], define Rt(i) to be the last round before t
when i is requested. Formally,

Rt(i)
.=
{

max{t′ < t | σt′ = i} if ∃ t′ ∈ [1, t) s.t. σt′ = i

−1 otherwise
. (4)

The following results can be inferred from Eq. (4) and Lemma 6.
For any round t ∈ [T ], let Ct and Ĉt be the cache profiles incurred by FitF and Sim,

respectively. More specifically, C1 and Ĉ1 represent the cache items given at the beginning.
To provide tools for the more complicated scenario where there are multiple predictors, the
analysis in this section is carried out without assuming that C1 = Ĉ1. For each t ∈ [T−1], the
cache profile Ct (resp. Ĉt) is updated to Ct+1 (resp. Ĉt+1) immediately after FitF (resp. Sim)
has processed the request σt. The cache profiles of FitF and Sim after serving σT are denoted
by CT+1 and ĈT+1, respectively.

Denote the intersection between the cache profiles at each round t ∈ [T ] by It = Ct ∩ Ĉt.
Define the distance between the cache profiles to be dt = k − |It|. We use δt to represent the
difference in the costs between FitF and Sim for serving σt. Formally, δt

.= 1σt /∈Ĉt − 1σt /∈Ct .
Define Hyx for x ∈ Z, y ∈ Z to be the set of rounds t ∈ [T ] where the dt+1 − dt = x and

δt = y. Let Hx =
⋃
yHyx and Hy =

⋃
xHyx.

For a round t ∈ [T ], we say that t is a troublemaker if and only if t satisfies(
êt 6=⊥

)
∧
(
êt ∈ It

)
∧ At(êt) ∈ [T ] ∧

(
êt ∈ CAt(êt)

)
∧
(
et =⊥ ∨ et /∈ It

)
. (5)

The set of troublemaker rounds is denoted by Γ. For any troublemaker γ ∈ Γ and any round
t ∈ (γ, T ], we say γ is active at t if t < Aγ(êγ). The set of troublemakers that are active at t
is denoted by Γt ⊆ Γ ∩ [t− 1]. The active period [γ + 1, Aγ(êγ)− 1] of γ is denoted by θγ .

Preliminary results. The following results are directly inferred from the definitions above.

I Lemma 7. For any round t and any page i, the following properties are satisfied.
If Rt(i) = −1 and i 6= σt, then ât(i) = Z + 1, and vice versa.
The equality ât(i) = At(i) holds if ar = Ar(σr), where r = Rt(i).

Proof. The first statement can be proved inductively with using Eq. (3). The first statement
implies that if ât(i) = At(i), then Rt(i) 6= −1. Therefore, the second statement can be
inferred from Lemma 6. J

ITCS 2021



67:10 Online Paging with a Vanishing Regret

I Lemma 8. |{t | êt 6=⊥ ∧Rt(êt) = −1}| ≤ k.

Proof. For each round t and each page i ∈ Ĉt, the equality Rt(i) = −1 holds only if i ∈ Ĉ1.
The initial cache profile Ĉ1 contains k different pages, and for each page i ∈ Ĉ1, if there exist
two rounds t, t′ with t < t′ and êt = êt′ = i, then Rt′(i) ≥ t 6= −1. This implies that there
are at most k rounds t with Rt(êt) = −1. J

I Lemma 9. |{t | Rt(σt) = −1 ∧ t ∈ H1
0}| ≤ k

Proof. For a round t ∈ H1
0, we have σt ∈ Ct. Since Rt(σt) = −1, we have σt ∈ C1. Then

this lemma can be proved in a similar way with Lemma 8. J

I Lemma 10. For every round t and any troublemaker γ ∈ Γt, we have (1) êγ ∈ Ct \ Ĉt,
and (2) êγ 6= êγ′ for any troublemaker γ′ ∈ Γt with γ 6= γ′.

Proof. The first statement is directly inferred from the definition of active troublemakers.
Now consider the second statement. Without loss of generality, we assume that γ < γ′. Then
the first statement shows that êγ /∈ Ĉγ′ , which means that Sim cannot evict êγ at γ′. J

3.2 Reducing Cost Analysis to Troublemaker Counting
I Lemma 11. For each round t ∈ [T ], we have dt+1 − dt ∈ {−1, 0, 1} and δt ∈ {−1, 0, 1}.

The proof of Lemma 11 is deferred to the full version [11]. This lemma implies that for
the sets Hyx, we only need to consider the parameters x, y ∈ {−1, 0, 1}. The following result
on Hyx can be inferred from the proof of Lemma 11.

I Lemma 12. It holds that H1 = H0
1 = {t | et 6=⊥

∧
êt 6=⊥

∧
et 6= êt

∧
êt ∈ It

∧
et ∈ It}.

Lemma 12 implies that H1
1 = ∅, therefore, cost(Sim) − OPT can be bounded by |H1| −

|H−1| = |H1
0|+ |H1

−1| − |H−1|.

I Lemma 13. |H−1| ≤ |H1|+ k.

Proof. By definition, H−1 is the set of rounds t with dt+1 − dt < 0, and H1 is the set of
rounds t with dt+1 − dt > 0. Since d1 ≤ k and dt ≥ 0 for every t ∈ [T + 1], this proposition
holds. J

Lemma 13 allows us to bound |H1
−1| with |H1|. The following result follows from the

mechanisms of FitF and Sim in choosing the page for eviction when cache miss happens.

I Lemma 14. For each round t ∈ H1, we have At(êt) < At(et) and ât(et) ≤ ât(êt).

For each round t ∈ H1, we say that t blames another round t′ specified as follows. Let
r = Rt(êt) and r′ = Rt(et), then the round blamed by t is

t′ =


r if (r 6= −1) ∧ (ar 6= Ar(σr))
r′ if

(
r = −1 ∨ ar = Ar(σr)

)
∧
(
r′ 6= −1 ∧ ar′ 6= Ar′(σr′)

)
−1 otherwise

.

I Lemma 15. For each t ∈ H1, let t′ be the round blamed by t. If t′ = −1, then Rt(êt) = −1.
If Rt(êt) 6= −1, then there exists a round t′′ such that {t′, t′′} ∈ INV.
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Proof. For the first claim, suppose on the contrary r = Rt(êt) 6= −1. Now consider two
cases, r′ 6= −1 and r′ = −1, where r′ = Rt(et).

r′ 6= −1: Since t′ = −1, in such a case we have ar = Ar(σr) and ar′ = Ar′(σr′). By
Lemma 7, it holds that ât(êt) = ar = Ar(σr) = At(êt). Similarly, we have ât(et) = At(et).
This conflicts with Lemma 14.
r′ = −1: By Lemma 7, in such a case we have ât(et) = Z + 1, because et 6= σt. As it still
holds that ât(êt) = At(êt) < Z, we have ât(êt) < ât(et), which conflicts with Lemma 14.

For the second claim, since Rt(êt) 6= −1, Lemma 7 indicates that ât(êt) ≤ Z. Now
consider the following two cases.

ât(êt) < Z: By Lemma 14, in such a case we also have ât(et) < Z. It can be inferred from
Eq. (3) that ât(êt) = ar and ât(et) = ar′ . Notice that the second equality holds because
ât(et) < Z means that r′ 6= −1. Then by Lemma 14, we have ar′ = ât(et) ≤ ât(êt) = ar
and Ar(σr) = At(êt) < At(et) = Ar′(σr′). This means that the pair {r, r′} is an inversion.
Since Rt(êt) = −1, we have either t′ = r or t′ = r′. By taking

t′′ =
{
r′ if t′ = r

r if t′ = r′
,

this claim is proved.
ât(êt) = Z: Let t1 be the first round in (r, t] so that ât1(êt) = Z. Then Eq. (3)
indicates that ât1−1(σt1) < Z. By Lemma 7, we have r1 = Rt1(σt1) 6= −1. Then,
Ar1(σr1) = t1 < At(êt) = Ar(σr). Moreover, ât1−1(σr) ≤ ât1−1(σt1) < Z means that
ar = ât1−1(σr) and ar1 = ât1−1(σt1). Therefore, the pair {r1, r} is an inversion. Then
this claim is established if t′ = r. This equation holds because (1) r = Rt(êt) 6= −1, and
(2) Lemma 7 implies that Ar(σr) 6= ar, because otherwise ât(êt) = At(êt) < Z.

This completes the proof. J

I Lemma 16. For each round t′ 6= −1, it can be blamed by at most two rounds in H1.

Proof. Suppose that t′ is blamed by t ∈ H1 such that t′ = Rt(et). Then for any round
t′′ ∈ H1 with t′ < t′′ < t, it cannot blame t′ by taking t′ = Rt′′(et′′). This is because if there
exists such a round t′′, then by definition we have et = et′′ . In such a case, there must exist
a round t̃ ∈ (t′′, t) with σt̃ = et, otherwise et /∈ Ct. This conflicts with the definition that
Rt(et) is the last round before t when et is requested. For any t′′ ∈ H1 with t′′ > t, it cannot
blame t′ by taking t′ = Rt′′(et′′), either. Still, if et = et′′ , there must exist a round t̃ ∈ (t, t′′)
with σt̃ = et. In such a case, Rt′′(et′′) ≥ t̃ > t > t′. The case t′ = Rt(êt) is symmetric with
the case above. J

I Lemma 17. It holds that |H1| ≤ 2 · η + k and |H1
−1| ≤ 2 · η + 2k.

Proof. The statement |H1| ≤ 2 · η + k follows from Lemma 8, Lemma 15 and Lemma 16.
The statement |H1

−1| ≤ 2 · η + 2k then follows from Lemma 13. J

Next, we analyze |H1
0| with the notion of troublemakers defined in Section 3.1. In

particular, for two rounds t, t′ with t′ < t, we say t′ is the parent of t and t is the child of t′
if t ∈ H1

0 and t′ = max{t′′ < t | σt ∈ Ĉt′′}.

I Lemma 18. Every round t ∈ H1
0 \ {t̃ | Rt̃(σt̃) = −1} has one parent t′ ∈ Γ ∪H1, and any

round t′ has at most one child.
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Proof. Since t /∈ {t̃ | Rt̃(σt̃) = −1}, the page σt is requested at round r = Rt(i) ∈ [1, t),
which gives that σt ∈ Ĉr+1. As t ∈ H1

0, we know that σt /∈ Ĉt. Therefore, there must exist a
round t′′ ∈ [r + 1, t) with σt = êt′′ ∈ Ĉt′′ . Since {t′′ | t′′ < t ∧ σt ∈ Ĉt′′} 6= ∅, the existence
of the parent round of t is ensured.

For the parent t′ of round t, we know that êt′ = σt, because σt ∈ Ĉt′ \ Ĉt′+1. Then we
have êt′ 6=⊥ and êt′ ∈ It′ , where the second equality holds because σt ∈ Ct and σt′′ 6= σt
for every t′′ ∈ [t′, t − 1]. Then by the definitions of the parent round and H1

0, we have
At′(êt′) = t ∈ [T ] and êt′ ∈ Ct, which means that êt′ ∈ CAt′ (êt′ ). Therefore, t

′ ∈ Γ if et′ =⊥
or et′ /∈ It′ . If et′ 6=⊥ and et′ ∈ It, then we have et′ 6= êt′ , because otherwise êt′ /∈ Ct. By
Lemma 12, in such a case we have t′ ∈ H1.

It remains to prove that any round t′ has at most one child. Suppose that t′ has two
children t1, t2 with t1 < t2. In such a case, σt2 = êt′ = σt1 ∈ Ĉt1+1, which conflicts with the
definition of the parent round. J

Putting Lemma 9, Lemma 17, and Lemma 18 together gives the following result.

I Theorem 19. cost(Sim)− OPT ≤ 4η + 4k + |Γ| − |H−1|.

We defer the proof of Theorem 19 to the full version [11]. The upper bound on |Γ|− |H−1|
is studied in the next subsection.

3.3 Labeling for Troublemakers
From the high level, the analysis in this part on |Γ| − |H−1| is done by showing that each
troublemaker γ either can be mapped a distinct round in H−1, or can be mapped to a round
t < γ that has a prediction error. We specify the mappings with a procedure called Labeling,
which is designed to avoid mapping too many troublemakers to a single prediction error.
Notice that Labeling is only used in the analysis, while the paging algorithm is unaware of
the output generated by Labeling.

Procedure Labeling takes
〈
{At(i)}t∈[T ],i∈[n], {at}t∈[T ]

〉
as the input, which implicitly

encodes the operations of FitF and Sim, and for each troublemaker γ ∈ Γ, Labeling outputs
a labeling function λγ : θγ 7→

(
[n]∪ ⊥

)
, which maps each round in the active period θγ of γ

to either a page i or an empty value. For each γ ∈ Γ and each round t in the active period θγ
with λγ(t) 6=⊥, we say that page i = λγ(t) is labelled by γ. Procedure Labeling is presented
in Algorithm 1 with notions defined as follows.

∀t ∈ [T ] : Lt
.=
⋃
γ∈Γt

λγ(t) , and Φt
.= Ĉt \

(
Ct ∪ Lt

)
,

∀t ∈ [2, T ] : Ψt
.= Ĉt \

(
Ct ∪ Lt−1

)
.

Briefly speaking, for every γ ∈ Γ, Labeling picks an arbitrary page i = δ̂γ from Φγ and
labels i with γ for the first round in the active period of γ, which means setting λγ(γ+ 1) = i.
For convenience, the NAT of i after γ is denoted by τγ . Then we consider the following cases.

τγ > Aγ(êγ): Then the label on δ̂γ is kept throughout the active period θγ of γ.
τγ < Aγ(êγ) and δ̂γ ∈ Ĉτγ : This means that δ̂γ is not evicted by Sim before its NAT after
γ. In such a case, the label on δ̂γ is kept until the last round before its NAT.
τγ < Aγ(êγ) and δ̂γ /∈ Ĉτγ : In such a case, a labelled page is evicted by Sim before its
NAT after γ. For each round t with such an eviction, we label a new page at round t+ 1
in Ψt+1 with γ. We stop labelling new pages either when the labelled page is requested,
or the NAT of the previous labelled page after the previous round is less than the NAT
of the current labelled page.
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Algorithm 1 Procedure Labeling.

Input: {At(i)}t∈[T ],i∈[n], {at}t∈[T ]
Output: {λγ}γ∈Γ

1 for each γ ∈ Γ do
2 Pick an arbitrary element i ∈ Φγ and set δ̂γ = i;
3 Set λγ(γ + 1) = δ̂γ and τγ = Aγ(δ̂γ);
4 if τγ > Aγ(êγ) then
5 Set λγ(t) = δ̂γ for all the remaining rounds t in θγ;
6 else
7 Set t = γ + 2;
8 while t < Aγ(êγ) do
9 if λγ(t− 1) = σt−1 then

10 break;
11 if λγ(t− 1) 6= êt−1 then
12 Set λγ(t) = λγ(t− 1);
13 else
14 Pick an arbitrary element i from Ψt and set λγ(t) = i;
15 if At−1(λγ(t)) > At−1(λγ(t− 1)) then
16 Set λγ(t′) = i for every round t′ ∈ [t+ 1,min{Aγ(êγ), At(i)});
17 Set t = min{Aγ(êγ), At(i)} − 1;
18 break;
19 Set t = t+ 1;
20 Set λγ(t′) =⊥ for every t′ ∈ [t, Aγ(êγ));

Before describing how Procedure Labeling is applied to map each troublemaker to a
round with a prediction error or a round in H−1, we first prove that this procedure is
consistent by showing that Φt (resp. Ψt) is not empty whenever we need to find a new page
to label from Φt (resp. Ψt). For every troublemaker round t ∈ Γ, define

ζt =
{
σt if et =⊥
et otherwise

.

Then we have the following results.

I Lemma 20. For each troublemaker round t ∈ Γ, we have (1) ζt 6=⊥, (2) ζt ∈ Ct \ Ĉt, and
(3) for any γ ∈ Γt, we have ζt 6= êγ .

Proof. Claim (1) and (2) are obvious. Now consider claim (3). Since γ < t < Aγ(êγ),
σt 6= êγ , because otherwise t = Aγ(êγ). By the definition of troublemakers, êγ ∈ CAγ(êγ), so
for any t ∈ [γ + 1, Aγ(êγ)− 1], it holds that et 6= êγ . J

I Lemma 21. For each troublemaker round t ∈ Γ, it holds that |Φt| ≥ 1.

Proof. By Lemma 10 and Lemma 20, we have Ct \ Ĉt ⊇ {êγ}γ∈Γt ∪{ζt} . Still by Lemma 20,
it follows that ζt 6= êγ for every γ ∈ Γt, then |Ct \ Ĉt| ≥

∣∣{êγ}γ∈Γt
∣∣+ 1 =

∣∣Γt∣∣+ 1 . Because
|Ct| = |Ĉt|, we have |Ĉt \ Ct| ≥

∣∣∣Γt∣∣∣+ 1. Since for every γ with t ∈ θγ , we have γ ∈ Γt, then
it always holds that |Lt| ≤ |Γt| . This finishes the proof. J

I Lemma 22. For each round t ∈ [T ], we have Ct ∩ Lt = ∅.
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Proof. This proposition is true because for any round t when we find a new page i to label,
i /∈ Ct, and the label on any page i is cancelled before i is requested. J

I Lemma 23. For every γ ∈ Γ and every t ∈ [γ + 2, Aγ(êγ)− 1], if êt−1 = λγ(t− 1), then
Ψt 6= ∅.

Proof. First, consider the case where Φt−1 6= ∅. For each page i ∈ Φt−1, we know i 6= êt−1
because i /∈ Lt−1 while êt−1 = λγ(t − 1) ∈ Lt−1. This gives i ∈ Ĉt. Moreover, we have
i 6= σt−1 because êt−1 6=⊥. This gives i /∈ Ct. Therefore, i ∈ Ĉt \ (Ct ∪ Lt−1) = Ψt.

Now consider Φt−1 is empty. In such a case, |Ĉt−1 \ Ct−1| = |Lt−1|. Lemma 10 indicates
that for every γ′ ∈ Γt′ with t′ ∈ θγ′ , we have êγ′ ∈ Ct′ − Ĉt′ . Then |Ĉt−1 \ Ct−1| = |Lt−1|
implies that Ct−1 \ Ĉt−1 = {êγ′}γ′∈Γt−1 . By the definition of active troublemakers, σt−1 /∈
Ct−1 − Ĉt−1. Also, we have σt−1 /∈ It−1 = Ct−1 ∩ Ĉt−1, because êt−1 6=⊥. Therefore,
σt−1 /∈ Ct−1, which means that et−1 6=⊥. Still by the definition of the troublemakers, we
have et−1 /∈ {êγ′}γ′∈Γt−1 = Ct−1 \ Ĉt−1. Thus, et−1 ∈ It−1 ⊆ Ĉt−1. By Lemma 22, we
have et−1 /∈ Lt−1 and et−1 6= êt−1. Putting et−1 6= êt−1 and et−1 ∈ Ĉt−1 together, we get
et−1 ∈ Ĉt − Ct. Therefore, et−1 ∈ Ψt. J

Lemma 21 and Lemma 23 ensure the consistency of Procedure Labeling.

I Lemma 24. For every round t and any page i ∈ [n], there exists at most one troublemaker
γ ∈ Γt so that λγ = i.

The proof of Lemma 24 is deferred to the full version [11]. It also gives the following
byproduct.

I Lemma 25. For each round t ∈ [2, T ], we have |Lt \ Lt−1| ≤ 1.

Let t be an arbitrary round with êt 6=⊥. Suppose that there exists a page i ∈ Ĉt satisfying
At(i) > At(êt), i /∈ Lt, and i ∈ Lt′ for every t′ ∈ [t+ 1,min{At(êt), t◦}], where

t◦ =
{

min{t′′ | t′′ > t ∧ êt′′ = i} if ∃t′′ ∈ (t+ 1, T ] s.t. êt′′ = i

∞ otherwise
. (6)

Lemma 25 implies that such a page i is unique if it exists. In such a case, we say that the
page i is the competitor of êt, and the round t has an abettor round t∗ specified as follows.
Let r = Rt(êt) and r′ = Rt(i), then the abettor of t is

t∗ =


r if r 6= −1 ∧ Ar(σr) 6= ar

r′ if
(
r = −1 ∨ Ar(σr) = ar

)
∧
(
r′ 6= −1 ∧ Ar′(σr′) 6= ar′

)
−1 otherwise

. (7)

I Lemma 26. For any round t∗ ∈ [T ], the number of rounds in
{
t | êt 6=⊥ ∧Rt(êt) 6=

−1 ∧ t∗ is the abettor of t
}
is at most two.

Proof. It can be proved in a similar way with Lemma 16 that
{
t | êt 6=⊥ ∧Rt(êt) 6=

−1 ∧ t∗ is the abettor of t ∧ t∗ = Rt(êt)
}
contains at most one round. It remains to prove

that
{
t | êt 6=⊥ ∧Rt(êt) 6= −1 ∧ t∗ is the abettor of t ∧ t∗ = Rt(i)

}
contains at most a

single round, where i is the competitor of êt as defined in Eq. (6). Notice that different
from the case considered in the proof of Lemma 16, the page i may not be evicted by FitF.
Therefore, we need to utilize the properties of procedure Labeling to prove the uniqueness
of the round t which satisfies t∗ = Rt(i).
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B Claim 27. If a round t has an abettor t∗ = Rt(i) with i being the competitor of êt and
r = Rt(êt) 6= −1, then it holds that ât(i) < Z and ât′(i) = Z for any round t′ ∈ [At(êt), At(i)).

Proof. Since t∗ = Rt(i) and r 6= −1, we have Ar(σr) = ar, which by Lemma 7 gives
At(êt) = ât(êt) < Z. Following Lemma 14, we have ât(i) ≤ At(êt) and ât(i) < Z. If there
exists a round t′′ ∈ (t, At(êt)) so that ât′′(i) = Z, then it follows from Eq. (3) that for any
round t′ ∈ [At(êt), At(i)), it holds that ât′(i) = Z, which means that this proposition holds.
We proceed to prove that âAt(êt)(i) = Z if ât′′(i) 6= Z holds for every round t′′ ∈ (t, At(êt)).
In such a case, it can be inferred from Eq. (3) that ât′′(i) = ât(i). Since Ar(σr) = ar,
Lemma 7 indicates that ât′′(êt) = At′′(êt) = At(êt) = ât(êt) and ât′′(êt) < Z hold for any
round t′′ ∈ (t, At(êt)). Combining ât′′(êt) = ât(êt) with ât′′(i) = ât(i) gives ât′′(êt) ≥ ât′′(i).
Therefore, âAt(êt)−1(i) ≤ âAt(êt)−1(êt) < Z. Moreover, we have âAt(êt)−1(i) < At(êt)
because At(êt) ≥ ât(i) = ât′′(i) holds for every t′′ ∈ (t, At(êt)). By Eq. (3), the conditions
for âAt(êt)(i) = Z are all satisfied. Thus, the equality ât′(i) = Z holds for any round
t′ ∈ [At(êt), At(i)). C

For any round t′ ∈ (t∗, t), the round t∗ cannot be the abettor of t′ with taking t∗ = Rt′(i),
because otherwise,

if At′(êt′) ≥ t, then by the definition of abettors, we have i ∈ Lt, which conflicts with the
requirement in the definition of abettors; else
if At′(êt′) < t, then we get ât(i) = Z with using the second statement in Claim 27, which
conflicts with the first statement in Claim 27.

Therefore, this proposition holds. J

The following result can be proved by following the same line of arguments with the proof
of Lemma 15.

I Lemma 28. Let t be an arbitrary round that has an abettor t∗. If t∗ = −1, then Rt(êt) = −1.
If Rt(êt) 6= −1, then there exists a round t′ such that {t∗, t′} ∈ INV.

I Remark 29. Notice that the statement of Lemma 28 is consistent because for any round t
having an abettor, by definition we have êt 6=⊥.

For an arbitrary round t, if there exists a page i in Ĉt satisfies (1) At(i) ≤ T , (2) i /∈ Lt
and (3) i ∈ Lt′ for every t′ ∈ [t+ 1, At(i)], we say that t4 = At(i) is the savior of t.

I Lemma 30. If a round t has a savior t4, then (1) t4 ∈ H−1, and (2) for any t4 ∈ H−1,
it is the savior of at most one step t.

Proof. The first claim follows from the definition of H−1. For any round t′ ∈ [t+ 1, t4], t4
is not the savior of t′, because σt4 ∈ Lt′ . Therefore, the second claim holds. J

I Theorem 31. |Γ| − |H−1| ≤ 2 · η + k.

Proof. The main idea of this proof is to show that each troublemaker can be mapped to a
distinct broker round, and each broker either has an abettor or has a savior. In particular,
we classify the troublemakers γ ∈ Γ into the following three categories.
1. {γ ∈ Γ | τγ > Aγ(êγ)}: Here, the troublemaker γ as a round has an abettor t∗, because

δ̂γ ∈ Lt for every step t ∈ [γ + 1,min{Aγ(êγ), t◦}] where t◦ is defined in the same way
with Eq. (6). In such a case, we say γ is the broker of itself.

2. {γ ∈ Γ | τγ < Aγ(êγ) ∧ δ̂γ ∈ Ĉτγ}: Now the troublemaker γ as a round has a savior
τγ , because by the definition of the troublemaker, Aγ(êγ) ≤ T , which gives τγ ≤ T .
Moreover, it holds for every round t ∈ [γ + 1, Aγ(δ̂γ)] that δ̂γ ∈ Lt. The broker for such a
troublemaker γ is also itself.
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3. {γ ∈ Γ | τγ < Aγ(êγ) ∧ δ̂γ /∈ Ĉτγ}: In such a case, let i be the last page labelled by γ and
t be the first round with λγ(t) = i. Since δ̂γ /∈ Ĉτγ , we have t− 1 ∈ θγ . Let i′ = λγ(t− 1),
then we have i′ ∈ Ĉt−1 because êt−1 = i′. Also, we have i ∈ Ĉt−1, because i is chosen
from Ψt ⊆ Ĉt \ Ct and i 6= êt−1. Now consider two subcases.
At−1(i′) < At−1(i): In such a case, the round t− 1 has an abettor t∗, because we have
i ∈ Lt′ for every t′ ∈ [t,min{At−1(i), τγ , t◦}], which satisfies the requirement in the
definition of abettors because τγ > At−1(i′).
At−1(i′) > At−1(i): It can be proved inductively that At−1(i) < τγ , which implies that
At−1(i) ≤ T . By definition, it follows that t− 1 has a savior t4 = At−1(i).

The round t−1 is said to be the broker of the troublemaker γ. Lemma 24 ensures that the
round t− 1 cannot be the broker of two different troublemakers, because êt−1 = λγ(t− 1).
Moreover, by Lemma 25, the broker t− 1 is not a troublemaker.

To sum up, each troublemaker γ can be mapped to a distinct broker t, and each broker t
either has an abettor or has a savior. Then by Lemma 26, Lemma 28 and Lemma 30, this
theorem holds. J

The following result is obtained by combining Theorem 19 and Theorem 31.

I Theorem 32. It follows that cost(Sim)− OPT ≤ 6η + 5k.

Because the cumulative prediction error is assumed to satisfy η ∈ o(T ), we have cost(Sim)−
OPT ∈ o(T ). Therefore, Sim has the vanishing regret when there is a single predictor.

4 Multiple NAT Predictors

This section extends the result obtained in Section 3 to the general case where there are
M > 1 predictors making NAT predictions under the bandit access model. Our results on
the full information access model are deferred to the full version [11].

For the bandit access model, in this part, we design an algorithm called Sightless Chasing
and Switching (S-C&S) and prove that it has the vanishing regret.

The procedure of S-C&S is described in Algorithm 2. It is assumed that S-C&S is provided
with blackbox accesses to the online algorithm Implicitly Normalized Forecaster (INF) [2]
for the Multiarmed Bandit Problem (MBP) [3]. The MBP problem is an online problem
defined over Υ ∈ Z>0 rounds and a set X of arms. An oblivious adversary specifies a cost
function Fυ : X 7→ [0, 1] for each round υ ∈ [Υ] that maps each arm x ∈ X to a cost in [0, 1].
An algorithm for MBP needs to choose an arm xυ at the beginning of each round υ ∈ [Υ],
and then the cost Fυ(xυ) incurred by the chosen arm xυ is revealed to the algorithm. The
objective of MBP is to minimize the cumulative cost incurred by the chosen arms {xυ}υ∈Υ.

I Theorem 33 ([2]). The algorithm INF ensures that the chosen arms {xυ}υ∈[Υ] satisfy∑
υ∈[Υ]

Fυ(xυ)− min
x∗∈X

∑
υ∈[Υ]

Fυ(x∗) ∈ O
(√
|X| ·Υ

)
.

Our algorithm S-C&S partitions the rounds into consecutive epochs of length τ ∈ Z>0
and initializes INF by setting Υ =

⌈
T
τ

⌉
and X = [M ], which means that each epoch in the

online paging problem is mapped to a round in MBP, and each predictor is taken as an
arm. The choice of the value for τ is discussed later. At the beginning of the first round
tυ1 = (υ − 1)τ + 1 in each epoch υ ∈ [Υ], S-C&S accesses INF to pick one predictor jtυ1 . Then,
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Algorithm 2 Algorithm S-C&S.

Input: {σt}t∈[T ], MBP algorithm INF, initial cache profile Ĉ1
Output: {êt}t∈[T ]

1 Initialize the MBP algorithm INF with the number of rounds Υ = dT/τe and the set
of arms X = [M ];

2 for each round t ∈ [T ] do
3 if t mod τ = 1 then
4 Invoke INF to choose a predictor jt ∈ [M ];
5 Set j = jt;
6 else
7 Set j = jt′ with t′ = bt/τc · τ + 1;
8 Query the predictor j to obtain the prediction ajt ;
9 for each page i ∈ [n] do

10 if i = σt then
11 Set ât(i) = ajt ;
12 else if t mod τ = 1 then
13 Set ât(i) = Z + 1;
14 else if ât−1(i) = t ∧ i 6= σt ∧ ât−1(i) ≤ ât−1(σt) < Z then
15 Set ât(i) = Z;
16 else
17 Set ât(i) = ât−1(i);
18 if σt /∈ Ĉt then
19 Set êt be the page i ∈ Ct that maximizes ât(i) with breaking ties arbitrarily;
20 Update Ĉt+1 = (Ĉt \ {êt}) ∪ {σt};
21 else
22 Set êt =⊥, and set Ĉt+1 = Ĉt;
23 if t mod τ = 0 then
24 Set f = 0;
25 for each round t′ ∈ [t− τ + 1, t] do
26 if (t′ = t− τ + 1) ∨ (êt′ 6=⊥) ∨

(
(êt′ =⊥) ∧ (t′ >

t− τ + 1) ∧ (ât′−1(σt′) = Z + 1)
)

then
27 Set f = f + 1;
28 Send f

τ to INF as the cost incurred by jt−τ+1 in the epoch t
τ ;

S-C&S simulates the algorithm Sim, which is proposed in Section 3, throughout the epoch
υ with taking tυ1 as its initial round, Ĉtυ1 as its initial cache profile, and jtυ1 as the single
predictor. At the end of the last round tυτ = υ · τ in epoch υ, S-C&S sends

Fυ(jtυ1 ) = 1
n

∣∣∣{t′ ∈ [tυ1 , tυτ ]
∣∣∣(t′ = tυ1 ) ∨ (êt′ 6=⊥) ∨

(
(êt′ =⊥) ∧ (t′ > tυ1 ) ∧ (ât′−1(σt′) = Z+1)

)∣∣∣ (8)

to INF as the cost Fυ(jt1) of choosing jt1 for υ.
Notice that in MBP, the cost functions are generated by an oblivious adversary. We take

this setting as a requirement that the cost function Fυ for each round υ in MBP should not
depend on the arms chosen in the previous rounds x1, x2, . . . , xυ−1. The following result
shows that by feeding INF a cost that can be larger than the normalized cost that is actually
incurred by S-C&S in the epoch, this requirement is satisfied.
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I Lemma 34. Let Fυ
(
jtυ1

∣∣∣jt11 , . . . , jtυ−1
1

)
be the cost sent by S-C&S to INF at the end of an

arbitrary epoch υ conditioned on the the predictors chosen for the previous epochs jt11 , . . . , jtυ−1
1

.

Then for any different sequence of predictors j̃t11 , . . . , j̃tυ−1
1

, we have Fυ
(
jtυ1

∣∣∣jt11 , . . . , jtυ−1
1

)
=

Fυ

(
jtυ1

∣∣∣j′t11 , . . . , j′tυ−1
1

)
.

Proof. For the epoch υ, a round t is said to be fresh if for any earlier round t′ < t in υ,
it holds that σt 6= σt′ . We first consider the case where are at least k fresh rounds in the
epoch, which means that at least k different pages are requested. Let t be the first round
after the first k fresh rounds. We first consider the interval [tυ1 , t− 1]. For each page i ∈ [n]
and each round t′ ∈ [tυ1 , t − 1], we say i is marked at t′ if there exists a round t′′ ∈ [tυ1 , t′]
with σt′′ = i, otherwise i is said to be unmarked at t′. Then it can be inferred from Lemma 7
that ât′(i) = Z + 1 if i is unmarked at t′, and ât′(i) ≤ Z if i is marked at t′. Thus, there is
no marked page getting evicted before t, and any round t′ ∈ [tυ1 , t− 1] that satisfies êt′ 6=⊥
must be a fresh round.

B Claim 35. For each round t′ ∈ [tυ1 , t− 1], it is counted by Eq. (8) if and only if t′ is fresh.

Proof. By definition, the round tυ1 is a fresh round. Now consider a round t′ ∈ [tυ1 + 1, t− 1].
As mentioned above, if êt′ 6=⊥, then t′ is fresh. Also, if t′ is fresh, then it can be inferred
from Lemma 7 that ât′−1(σt′) = Z + 1. If t′ is not fresh, which means that σt′ is marked,
then it holds that êt′ =⊥ and ât′−1(σt′) ≤ Z. Therefore, this claim holds. C

Therefore, the contribution of the rounds in [tυ1 , t− 1] to Fυ(jtυ1 ) is always k
n , which is

independent of j1
t1 , . . . , j

υ−1
t1 . A similar result can also be obtained when there are less than

k fresh rounds in the epoch υ.
At the beginning of round t, Ĉt contains exactly the first k different pages required in the

epoch υ, and for each page i ∈ Ĉt, the remedy prediction ât(i) is computed only based on
{a
jtυ1
t′ }t′∈[tυ1 ,t] and {σt′}t′∈[tυ1 ,t]. Therefore, for any t

′ ≥ t, the decision on êt′ is independent
of the choices over j1

t1 , . . . , j
υ−1
t1 .

Furthermore, since at round t − 1, every page i ∈ Ĉt−1 is marked, then for any round
t′ ≥ t with êt =⊥, the page σt′ has been requested at least once in the interval [tυ1 , t′ − 1],
which means that ât′−1(σt′) ≤ Z. This observation is formally stated in the following claim.

B Claim 36. For any round t′ ≥ t, it is counted by Eq. (8) if and only if êt′ 6=⊥.

Thus, the contribution of the rounds in [t, υ ·τ ] to Fυ(jtυ1 ) does not depend on the previous
epochs {j1

t1 , . . . , j
υ−1
t1 }, either. J

For an epoch υ ∈ Υ and a predictor j ∈ [M ] chosen for υ, let ]Evictionsυ(j) = |{t ∈
[tυ1 , tυτ ] | êt 6=⊥}|. The following result is also obtained by combining Claim 35 with Claim 36.

I Lemma 37. For each epoch υ, ]Evictionsυ(j) ≤ τ · Fυ(j) ≤ ]Evictionsυ(j) + k .

The following result is obtained by putting Theorem 32, Theorem 33, Lemma 34, and
Lemma 37 together.

I Theorem 38. By taking τ =
⌊
T

1
3
⌋
, the regret of S-C&S is bounded by O

(
kT

2
3
√
M + ηmin).

The proof of this theorem is deferred to the full version [11]. By assumption, we have
ηmin ∈ o(T ). Therefore, Theorem 38 implies that S-C&S has a vanishing regret.

Note that the result in this section cannot be obtained by using the results in [12] directly,
because the algorithms proposed in [12] requires to know the cache profile of the algorithm
Sim that follows each predictor, which is unavailable under the bandit access model.
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