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Abstract
We exhibit several computational problems that are complete for multi-pseudodeterministic compu-
tations in the following sense: (1) these problems admit 2-pseudodeterministic algorithms (2) if there
exists a pseudodeterministic algorithm for any of these problems, then any multi-valued function
that admits a k-pseudodeterministic algorithm for a constant k, also admits a pseudodeterministic
algorithm. We also show that these computational problems are complete for Search-BPP: a pseudo-
deterministic algorithm for any of these problems implies a pseudodeterministic algorithm for all
problems in Search-BPP.
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1 Introduction

Consider the search problem of producing a witness that two multi-variate polynomials
f and g over a field are different. A simple probabilistic polynomial-time algorithm for
this problem randomly picks an element t from the domain and outputs it if f(t) 6= g(t).
Even though this algorithm is simple and efficient and the error probability can be made
arbitrarily small, Gat and Goldwasser [3] pointed out a deficiency: two different runs of
the algorithm can produce two different witnesses with very high probability. Well-known
probabilistic algorithms for several search problems, such as finding a large prime number or
computing generators of cyclic groups, also exhibit this deficiency. This raises the question
of whether we can design a probabilistic algorithm for search problems that will output
the same witness on multiple executions, with high probability. Motivated by the above
question, Gat and Goldwasser [3] introduced the notion of pseudodeterministic algorithms1.
Informally, a probabilistic algorithm M is pseudodeterministic if for every x, there exists a

1 Originally termed Bellagio algorithms
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unique value v such that Pr[M(x) = v] is high. Pseudodeterministic algorithms are appealing
in several contexts, such as distributed computing and cryptography, where it is desirable
that different invocations of an algorithms by different parties should produce the same
output. In complexity theory, the notion of pseudodeterminism clarifies the relationship
between search and decision problems in the context of randomized computation. It is not
known whether derandomizing BPP to P implies derandomization of probabilistic search
algorithms. However, BPP = P implies that pseudodeterministic search algorithms can be
made deterministic [5].

Prior Work
Since its introduction, pseudodeterminism and its generalizations have received consider-
able attention. In particular, designing pseudodeterministic algorithms for problems that
admit polynomial-time randomized algorithms but without known deterministic algorithms
continues to be a key line of research with some success. Gat and Goldwasser showed that
there exist polynomial-time pseudodeterministic algorithms for algebraic problems such as
finding quadratic non-residues and finding certificates that two multivariate polynomials
are different [3]. Goldwasser and Grossman exhibited a pseudodeterministic NC algorithm
for computing matchings in bipartite graphs [8]. Grossman designed a pseudodeterministic
algorithm for computing primitive roots whose runtime matches the best known Las Vegas
algorithm [11]. Oliveira and Santhanam [13] showed that there is a sub-exponential time
pseudodeterministic algorithm for generating primes that works at infinitely many input
lengths.

Subsequent works extended pseudodeterminism to several other scenarios. Works of
Goemans, Goldwasser, Grossman, and Holden investigated pseudodeterminism in the context
of interactive proofs [9, 4]. Goldwasser, Grossman, Mohanty and Woodruff [10] investig-
ated pseudodeterminism in the data stream model. They showed that certain streaming
problems admit faster pseudodeterministic algorithms in comparison to their deterministic
counterparts. They also obtain space lower bounds for sketch based pseudodeterministic
estimation of `2 norm. Goldreich, Goldwasser, and Ron [5] investigated pseudodeterminism
in the context of sublinear-time algorithms. Dixon, Pavan, and Vinodchandran [2] studied
pseudodeterminism in the context of approximation algorithms and showed that making
Stockmeyer’s [16] well-known approximate counting algorithm pseudodeterministic will yield
new circuit lower bounds. Oliveira and Santhanam studied pseudodeterminism in the con-
text of learning algorithms and showed that some randomized learning algorithms can be
made pseudodeterministic under certain complexity theoretic assumptions [14]. Since then
a few generalizations of pseudodeterminism such as reproducible algorithms, influential bit
algorithms and multi-pseudodeterministic algorithms have been introduced [12, 7].

Multi-Pseudodeterminism

Our main focus is on the notion of multi-pseudodeterminism recently introduced by
Goldreich [7]. Consider the problem of estimating the average value of a function that
is defined over a large but finite universe. It is well known that there is an efficient ad-
ditive error, probabilistic approximation for this problem. So far, we do not know how to
make this algorithm pseudodeterministic. Suppose that we relax the restriction of pseudo-
determinism - instead of requiring that the algorithm outputs an unique approximation,
the algorithm must output one of two approximate values with high probability. Then
it is very easy to obtain such probabilistic algorithms [7]. Motivated by this, Goldreich
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introduced the notion of multi-pseudodeterminism. For a positive integer k, a probabilistic
algorithm A is k-pseudodeterministic if, for every input x, there exists a set Sx of size
at most k such that A(x) belongs to Sx with probability at least k+1

k+2 . Thus a pseudode-
terministic algorithm is 1-pseudodeterministic. Goldreich’s work established several key
properties of multi-pseudodeterministic algorithms. This work showed that, as with the case
of probabilistic and pseudodeterministic algorithms, error reduction is possible for multi-
pseudodeterministic algorithms. Goldreich’s work also established an equivalence between
multi-pseudodeterminism and reproducible algorithms introduced by Grossman and Liu [12]
and presented a composition result for multi-pseudodeterministic algorithms.

Our Contributions
Our main focus is on the notion of multi-pseudodeterminism. The notion of multi-
pseudodeterminism is especially interesting because there are computational problems that
admit 2-pseudodeterministic algorithms for which we do not know of any pseudodetermin-
istic algorithms. As mentioned earlier, it can be shown that randomized approximation
algorithms can be made 2-pseudodeterministic (see Section 2). Thus it is significant to
investigate the possibility of designing pseudodeterministic algorithms for problems that
admit k-pseudodeterministic algorithms for small values of k.

Our main contribution is to show the existence of complete problems for multi-
pseudodeterministic computations in the following sense: (1) these computational problems ad-
mit 2-pseudodeterministic algorithms, and (2) if there exists a pseudodeterministic algorithm
for any of these problems, then all multi-valued functions that admit k-pseudodeterministic
algorithms for a constant k, also admit pseudodeterministic algorithms.

The computational problems we consider are the following. We note that all of these
problems admit 2-pseudodeterministic algorithms.

I Definition 1 (Computational Problems).
Collision Probability Estimation Problem. Given a Boolean circuit C : {0, 1}n →
{0, 1}, give a (ε, δ)-additive approximation of the collision probability of C.
Acceptance Probability Estimation Problem: Given a Boolean circuit C :
{0, 1}n → {0, 1}, give a (ε, δ)-additive approximation for Prx∈Un

[C(x) = 1].
Entropy Estimation Problem: Given a Boolean circuit C : {0, 1}n → {0, 1}, give an
(ε, δ)-additive approximation of the entropy of the distribution C(Un).

We first show that if any of the above problems have a pseudodeterministic algorithm,
then all 2-pseudodeterministic algorithms can be made pseudodeterministic and thus any
(ε, δ)-approximation algorithm for a function f can be made pseudodeterministic.

Result 1: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,
every function that has a (ε, δ)-approximation algorithm has a pseudodeterministic (ε, δ)-
approximation algorithm.

Next we extend this result to k-pseudodeterminism.

Result 2: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,
then any multivalued function that admits a k-pseudodeterministic algorithm also admits a
pseudodeterministic algorithm.

Note that the above result holds for any multivalued function computation. Search
problems are multivalued functions whose outputs have an efficient verification procedure.
Much of the work on pseudodeterminism focuses on problem in the class Search-BPP: search
problems that have randomized algorithms whose outputs can be verified in BPP [6]. We
extend the above result to problems in Search-BPP.

ITCS 2021
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Result 3: If any of the problems from Definition 1 admits a pseudodeterministic algorithm,
then any problem in Search-BPP has a pseudodeterministic algorithm.

Extending this result on Search-BPP to other classes of multivalued functions is an
interesting question. Note that there are natural multivalued functions that admit efficient
probabilistic algorithms but are not known to be in Search-BPP (because of the lack of an
efficient verification procedure). For example the problem of outputting a Boolean function
with high circuit complexity has a simple probabilistic algorithm but not known to be in
Search-BPP.

2 Pseudodeterminism in Approximation Algorithms

In this section, we establish that Collision Probability Estimation Problem is com-
plete. We first define the notions of pseudodeterminism and multi-pseudodeterminism for
approximation algorithms formally. In general, an approximation algorithm can output
different good approximations on different random choices. For an approximation algorithm
A to be k-pseudodeterministic, A has to output with high probability at most k good
approximations for any input.

I Definition 2 (Multiplicative Approximation). Let f be a function whose range is the
integers. We say that a probabilistic algorithm A is an (ε, δ)-multiplicative approxima-
tion algorithm for f if for every x, the random variable A(x) has the following property:
Pr
[
f(x)

(1+ε) ≤ A(x) ≤ (1 + ε)f(x)
]
≥ (1− δ). We say that A is an (ε, δ) k-pseudodeterministic

multiplicative approximation algorithm for f if for every x there exists a set of integers Vx
such that |Vx| ≤ k and for every v ∈ Vx

f(x)
(1 + ε) ≤ v ≤ (1 + ε)f(x) and Pr[A(x) ∈ Vx] ≥ 1− δ.

When k = 1, we call the algorithm pseudodeterministic.

I Definition 3 (Additive Approximation). Let f be a function whose range is [0, 1]. We
say that a probabilistic polynomial-time algorithm A is an (ε, δ)-additive approximation
algorithm for f if for every x, the random variable A(x) has the following property:
Pr [(f(x)− ε ≤ A(x) ≤ f(x) + ε] ≥ (1− δ). We say that A is an (ε, δ) k-pseudodeterministic
additive approximation algorithm for f if for every x there exists a set Vx ⊆ [0, 1] such that
for all v ∈ Vx

f(x)− ε ≤ v ≤ f(x) + ε and Pr[A(x) ∈ Vx] ≥ 1− δ.

When k = 1, we call the algorithm pseudodeterministic.

I Remark. In general, for (ε, δ) approximation algorithms (additive or multiplicative), error
reduction is possible when δ < 1/2 and is bounded away from 1/2. This is done by repeating
the algorithm multiple times and taking the median value. Thus without loss of generality,
we may assume that for every (ε, δ) approximation algorithm, δ ≤ 1/2n. Similarly, the error
probability of (ε, δ) pseudodeterministic approximation algorithms can be reduced to less
than 1/2n.

Goldreich [7] observed that every additive error approximation algorithm can be made
2-pseudodeterministic; this extends to multiplicative approximation algorithms as well.
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I Proposition 4. Every optimization problem that admits an (ε, δ) multiplicative approx-
imation algorithm admits a (2ε+ ε2, δ) 2-pseudodeterministic multiplicative approximation
algorithm. Similarly, every optimization problem that admits an (ε, δ) additive approximation
algorithm admits a (2ε, δ) 2-pseudodeterministic additive approximation algorithm.

Proof. We give a proof for the multiplicative case. A similar argument holds for additive
approximation algorithms. Let f be a function and let A be an (ε, δ)-multiplicative approx-
imation algorithm for f . The proposed 2-pseudodeterministic algorithm B will first run A(x)
to get an approximation v. B outputs vi from a set of points P (defined next) by choosing
the smallest vi ∈ P that is larger than v. P is defined as the set of points {vi | i ∈ N} where
vi =

⌈
(1 + ε)i

⌉
.

Observe that vi+1 = (1 + ε)vi for all i. For any input x, A(x) outputs a value in the
range

[
f(x)

(1+ε) , (1 + ε)f(x)
]
and this range will contain at most 2 values from P . Hence B

is 2-pseudodeterministic. Rounding up to the nearest value in P makes the approximation
factor at most (1 + ε)2 = 1 + 2ε+ ε2. J

2.1 Completeness of Collision Probability Estimation
In this section, we prove that Collision Probability Estimation Problem is complete
for approximation algorithms in the context of pseudodeterminism. We start with the
following observation.

I Proposition 5. Collision Probability Estimation Problem admits (ε, δ) 2-
pseudodeterministic additive approximation algorithms for every ε < 1 and δ < 1.

Proof. We can estimate collision probability of C by generating O(1/ε2 log 1/δ) independent
pairs of strings 〈xi, yi〉 and counting the number of times C(xi) = C(yi). Simple application of
Chernoff bound implies that this is a (ε, δ) additive approximation algorithm. By the previous
proposition, we can convert this algorithm into a 2-pseudodeterministic algorithm. J

We now prove the main theorem of the section.

I Theorem 6. There exists ε′ > 0 such that if Collision Probability Estimation
Problem has an (ε′, δ)-pseudodeterministic additive approximation algorithm, then every
function f that admits a (ε, δ) multiplicative approximation algorithm (resp. additive), has a
(2ε+ ε2, δ)-pseudodeterministic multiplicative approximation algorithm (resp. additive).

Proof. We first provide intuition behind the proof. By Proposition 4, we can assume that f
has a (ε′, δ) 2-pseudodeterministic algorithm A, where ε′ = 2ε+ ε2. The idea is to combine
two strategies. For an input x, let a and b be the two good outputs of A(x). Consider the
case when one of the good outputs, say a, has a noticeably higher probability of occurrence
than b. In that case we can run A several times and output the most frequent output. With
high probability A(x) will output a. Another case is when both a and b appear with roughly
equal probability. In this case, we can run A several times and output the smallest value.
Since a and b appear with equal probability, the probability that in several runs of A we will
see both a and b is very high and hence, this strategy will output min{a, b}. The challenge is
to decide which of these cases holds (note that these cases are not disjoint). However, if we
have a pseudodeterministic algorithm for Collision Probability Estimation Problem,
then we show that we can pseudodeterministically choose a good strategy. Now we provide
details.

ITCS 2021
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Let B be a pseudodeterministic algorithm that estimates collision probabilities of Boolean
circuits. In particular, assume that B can pseudodeterministically estimate the collision
probability of a circuit, CP(C), with additive error 1/49 with probability ≥ 11

12 . Without
loss of generality we assume that the success probability of A is ≥ 48/49. Assume that A
uses m random bits on input x. Consider the following algorithm A′.
Algorithm A′: On input x, A′(x) constructs a Boolean circuit Cx : {0, 1}m → {0, 1} that on
input r, simulates A(x, r), where A′(x) runs B on Cx to obtain an estimate of CP(Cx). If
B(Cx) ≥ 51

98 , A
′ runs A(x) three times and outputs the most frequent result. Otherwise, if

B(Cx) < 51
98 , A

′ runs A(x) 16 times and outputs the smallest value. y

Now we will show that A′ is a pseudodeterministic algorithm for f . Since A is 2-
pseudodeterministic, there exists a set Sx of size at most 2 such that Pr[A(x) ∈ Sx] ≥ 48/49
and every element in Sx is a (1 + ε′) multiplicative approximation of f(x). We first consider
the case where the size of Sx is 1, say Sx = {a}. Note that in this case CP(Cx) is at least
(48/49)2 > 0.9. Thus A′(x) runs A three times and outputs the most frequent result, which
is a with probability at least (48/49)3 ≥ 0.9. Thus A′(x) is pseudodeterministic. Thus, in
the rest of the proof, assume that Sx = {a, b}. Let p = Pr[A(x) = a] and q = Pr[A(x) = b].
Assume without loss of generality that p ≥ q. We first establish a relationship among p, q
and CP(Cx).

B Claim 7. If CP(Xx) > 25
49 , then p > q + 1/7

Proof. We prove the contrapositive: if p ≤ q + 1/7, then CP(Cx) ≤ 25
49 . Notice that CP(Cx)

is maximized when p = q + 1
7 and δ = 0, where δ is the error probability of A. Since

p+ q + δ = 1, it follows that p = 4/7 and q = 3/7. Thus, CP(Cx) ≤ (4/7)2 + (3/7)2 = 25/49.
C

B Claim 8. If CP(Cx) < 26
49 , then q >

1
7

Proof. We prove the contrapositive: if q ≤ 1
7 , then Pr [CP(Cx)] ≥ 26

49 . Note that CP(Cx) is
minimized when p is as close to q as possible, and all other outputs are different from a and
b. Then q = 1

7 and p = 1− 1
7 −

1
49 = 41

49 ≥
5
7 . Thus CP(Cx) ≥

( 1
7
)2 +

( 5
7
)2 = 26

49 C

B Claim 9. If p > q + 1/7, then the probability that in 3 independent runs A(x) outputs a
at least twice is ≥ 57/100.

Proof. The worst case is when p = q+1/7 and δ = 1/49. In this case, p = 55
98 and q = 41

98 . The
probability that A(x) outputs a at least twice in three runs is ≥

( 55
98
)3 + 3

( 57
98
)2 44

98 ≥
57

100 .
C

B Claim 10. Let E be following event: “Among 16 independent runs of A(x), every run
outputs either a or b and at least one run outputs a and at least one run outputs b”. If q ≥ 1

7 ,
then Pr[E] ≥ 3/5.

Proof. Note that the probability of E is at most the sum of the probabilities of i) A(x) /∈
{a, b}, ii) Every run of A(x) outputs only a, and iii) Every run of A(x) outputs only
b. This sum is maximized when q = 1/7, δ = 1/49, p = 1 − 1/7 − 1/49. In this case,
Pr
[
E
]
≤ 1− (1− δ)16p16 + q16 ≤

( 6
7
)16 +

( 1
7
)16 + 1−

( 48
49
)16

< 2
5 . C

B Claim 11. A′ is pseudodeterministic.



P. Dixon, A. Pavan, and N. V. Vinodchandran 66:7

Let y be the pseudodeterministic output of the probability estimator B on input Cx. If
y > 51

98 , then CP(Cx) ≥ 25
49 . By Claim 7, p > q + 1/7. By Claim 9, the probability that A(x)

outputs a more often than b among three runs is at least 57
100 . Since y >

51
98 , A

′ will run A 3
times and output the most frequent result; this will output a with probability ≥ 57

100 .
On the other hand, if y ≤ 51

98 , then CP(Cx) ≤ 53
98 . By Claim 8, q ≥ 1/7. Since y ≤ 51

98 ,
A′ will run A 16 times and output the lexicographically smallest result. By Claim 10, Pr[A
outputs only a and b, and outputs a and b at least once] ≥ 3

5 , so Pr[A′ outputs min(a, b)] ≥ 3
5 .

So, given that B outputs y, A′ will output one particular value x with probability ≥ 57
100 .

Pr[A′ outputs x] ≥ Pr[B outputs y] Pr[A′ outputs x|B outputs y] ≥ 11
12

57
100 ≥

52
100 . This can

be increased to 1− 1
n using standard amplification techniques. J

3 Pseudodeterminism for Multi-valued Functions

In this section, we generalize the results from the previous section to k-pseudodeterminism.
Goldreich [7] defined the notion of k-pseudodeterminism for search problems and this definition
can be extended to multivalued functions. A function f is multivalued if f(x) is a subset
of the range (possibly empty set). Note that search problems can be cast as multivalued
functions: Let R be a binary relation associated with a search problem, and define f(x) as
the set of all y such that 〈x, y〉 ∈ R.

I Definition 12. Let f be a multivalued function, i.e, f(x) is a set. We say that f admits
pseudodeterministic algorithms if there is a probabilistic polynomial-time algorithm A such
that for every x, there exists a v ∈ f(x) such that A(x) = v with probability at least 2/3. The
function f admits k-pseudodeterministic algorithms if there is a probabilistic polynomial-time
algorithm A such that for every x, there exists a set Sx ⊆ f(x) of size at most k and the
probability that A(x) ∈ S(x) is at least k+1

k+2 .

Goldreich [7] showed that if we threshold success probability to at least k+1
k+2 , the the

success probability for k-pseudodeterministic algorithms can be amplified to 1− 1/2p(n) for
any polynomial p(·).

We show that if Collision Probability Estimation Problem can be made pseudo-
deterministic, then any k-pseudodeterministic algorithm for a multi-valued function problem
can be made pseudodeterministic for a constant k. We first show how to reduce the size of
the output set from k to k − 1.

I Theorem 13. If Collision Probability Estimation Problem has a (ε, δ)-
pseudodeterministic additive approximation algorithm with ε = 1/100, then for every
multi-valued function f that admits a k-pseudodeterministic algorithm, f has a (k − 1)-
pseudodeterministic algorithm.

Proof. Let B be a pseudodeterministic algorithm for Collision Probability Estimation
Problem. In particular, assume that B, given a circuit C, estimates CP(C) to within 1

100
additive error with probability 1− δ, where n is the length of the input to C.

Let A be a k-pseudodeterministic algorithm for a multi-valued function f with error
probability δ ≤ 1

72k . That is, A, on input x, outputs from a set Sx ⊆ f(x) of size ≤ k, with
probability ≥ 1− 1

72k . We call the elements of Sx good outputs of A. Let m be the number
of random bits used by A. We will design a (k − 1)-pseudodeterministic algorithm A′ as
follows:

ITCS 2021
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Algorithm A′: On input x, first construct a circuit Cx that gets as input r and outputs
A(x, r). Then compute B(Cx).

If B(Cx) < 65
100 , run A n times on independent random bits. Output the lexicographically

smallest element that appears at least n
12k times.

If B(Cx) ≥ 65
100 , run A n times using independent random bits. Output the most frequent

value. y

As in the proof of Theorem 6, it is easy to see that if the size of Sx is 1, A′(x) is
pseudodeterministic. Thus in the rest of the proof, we assume that the size of Sx is at least 2.
For the proof of correctness, we first establish certain claims relating the collision probability
of Cx and the behavior of A.

B Claim 14. If CP(CX) ≤ 2
3 , then there exist two good outputs a and b of A so that

Pr[A(x) = a] ≥ 1
6k and Pr[A(x) = b] ≥ 1

6k .

Proof. Suppose only one good output a of A has probability ≥ 1
6k . Then that output has

probability ≥ 5
6 − δ. This is because if the other (k− 1) good outputs have probability < 1

6k ,
the total probability of outputs other than a is < 1/6 + δ. Thus Pr[A(x) = a] ≥ 5

6 − δ.

CP(Cx) ≥ Pr[A outputs a on both runs]

≥
(

5
6 − δ

)2

≥ 25
36 − 2δ ≥ 2

3

The last inequality holds since δ ≤ 1
72k and k ≥ 2. C

B Claim 15. Let a, b be the most and least likely good outputs of A with probabilities p
and q respectively. If CP(Cx) > 64

100 , then p > q + 1
8k .

Proof. If p ≤ q + 1
8k , then p ≤

9
8k −

δ
k ≤

9
8k . Then CP(Cx) ≤ k · 81

64k2 + δ2 = 81
64k + δ2. For

k ≥ 2, and δ ≤ 1
72k , this quantity is ≤ 64

100 .
C

Now we will prove correctness of A′. On input x, let y be the pseudodeterministic output
of B(Cx). We will consider two cases: y ≤ 65

100 and y > 65
100 .

Case: y ≤ 65
100

B Claim 16. If y ≤ 65
100 , then there exists a set S′(x) ⊂ Sx of size at most k − 1 such that

Pr[A′(x) ∈ S′x] ≥ 1− 2e−
n

72k2 − δ

Proof. Note that B(Cx) outputs y with probability at least 1 − δ. Thus, if y ≤ 65
100 , then

with probability ≥ 1− δ, A′ will run A n times and output the lexicographically smallest
result that appears at least n

12k times. Since y ≤ 65
100 , CP(Cx) ≤ 66

100 < 2
3 . Therefore by

Claim 14, there are at least 2 elements a and b from Sx that A outputs with probability
≥ 1

6k . Let b be the lexicographically larger of the two. We set S′x = Sx \ {b}. Clearly S′x
contains at most k− 1 elements. Thus the probability that A′(x) outputs an element outside
of S′x is at most the sum of the probabilities of the following events: i) A′ outputs b ii) A′
outputs an element that is not in Sx, iii) B(Cx) does not output y.
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We first bound the probability that A′ outputs b. For A′ to output b, it must be the case
that in the n runs of A the value b is output at least n/12k times and the value a is output
at most n/12k times. Thus

Pr[A′(x) = b] ≤ Pr[ A(x) outputs a less than n/12k times among n runs]

Since the probability that A(x) outputs a is least n/6k, the expected number of times A(x)
outputs a in n runs is ≥ n

6k . Thus by Chernoff bound, this is at most e−n/72k2 . We now
bound the probability of the second event. The probability that A(x) does not belong to Sx
is at most 1/72k. For A′(x) to output an element c that is not in Sx, it must be the case
that c is output ≥ n/12k times among n runs of A. Again by Chernoff bound, this is at
most e−n/18k2 . Finally, the probability that B(Cx) does not output y is at most δ. Thus
A′(x) ∈ S′x with probability at least 1− 2e−n/72k2 − δ. C

Case: y > 65
100

B Claim 17. If y > 65
100 , there exists a sets S′x ⊆ Sx of size at most k − 1 such that

Pr[A′(x) ∈ S′x] ≥ 1− 2e− n
8k − δ

Proof. If y > 65
100 , then with probability ≥ 1− δ, A′ will run A n times and output the most

frequent result. Also, CP(Cx) > 64
100 . By Claim 15, p > q + 1

8k where p is the probability of
the most likely element a from Sx and q is the probability of least likely element b from Sx.
We define S′x as Sx − {b}. As before, the probability that the output of A′ does not belong
to S′x is at most the sum of the probabilities of: i) A′(x) outputs b ii) the output of A′(x)
does not belong to Sx iii) B(Cx) does not output y.

We will first analyze the probability of the event that A′ outputs b. For this, consider the
event E = ‘A outputs b more often than a in n trials’. Clearly, the probability that A′(x)
outputs b is at most Pr[E]. Define random variables Xi that take value 0 if A(x) outputs a
in ith run, 1 if A(x) outputs b in the ith run, and 1/2 otherwise. Note that E[Xi] = 1

2 −
p−q

2 ,
which is at most 1

2 −
1

16k . Let X =
∑n
i=1 Xi. Now, Pr[E] is Pr[X > n/2].

Pr [X > n/2] = Pr
[∑

Xi

n
> 1/2

]
≤ Pr

[∣∣∣∣∑Xi

n
− E[Xi]

∣∣∣∣ ≥ 1
16k

]
≤ e−n/256k2

by Chernoff bound

To bound the probability of the second event, consider the probability that A(x) outputs an
element not in Sx more frequently than a in n runs. Since the probability that A(x) outputs
an element that is not in Sx is at most 1/72k , by the same argument the probability of this
event is at most e−n/256k2 . Finally the probability that B(Cx) does not output y is at most
δ. The claim follows. C

Combining Claims 16 and 17, we have that A′ outputs a value from S′x with probability
at least 1 − 2e−n/72k2 − δ ≥ k

k+1 for large enough n, since δ can be made exponentially
small. J

We now state the main result of this section.
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I Theorem 18. If Collision Probability Estimation Problem has a (ε, δ)-
pseudodeterministic additive approximation algorithm with ε = 1/100, every multi-valued
function f that admits a k-pseudodeterministic algorithm, has a pseudodeterministic al-
gorithm.

Proof. Let B be the pseudodeterministic algorithm for Collision Probability Estim-
ation Problem, where B runs in time nc with error probability ≤ δ. To convert a
k−pseudodeterministic algorithm to a pseudodeterministic algorithm, we repeatedly apply
Theorem 13. We start with a k-pseudodeterministic algorithm Ak whose runtime is bounded
by nt. On input x, Ak−1 constructs CAk,x with size ≤ 4n2t. Ak−1 computes B(C), which
takes ≤ 4cn2tc time, then runs Ak(x) n times. In total, Ak−1(x) takes ≤ nt+1 +4cn2tc ≤ n4tc.
Applying this conversion (k − 1) times, we obtain A1, a pseudodeterministic algorithm with
runtime of O(nt(4c)k ). Since k is a constant the runtime is polynomial. Note that in each
iteration, the error probability remains the same. Thus A1 is pseudodeterministic. J

3.1 Circuit Probability Acceptance
In this subsection we observe the equivalence of Collision Probability Estimation
Problem and Acceptance Probability Estimation Problem in the context of pseudo-
determinism.

I Proposition 19. There exist ε, ε′ > 0 such that Collision Probability Estimation
Problem has an (ε, δ)-pseudodeterministic additive approximation algorithm if and only
if Acceptance Probability Estimation Problem has am (ε′, δ)-pseudodeterministic
additive approximation algorithm.

Proof. It is easy to see that Acceptance Probability Estimation Problem admits an
(ε, δ) additive approximation algorithm. Thus by Proposition 4, it has a 2-pseudodeterministic
(ε, δ) approximation algorithm. By Theorem 6, if Collision Probability Estimation
Problem admits a pseudodeterministic algorithm, then Acceptance Probability Es-
timation Problem admits a pseudodeterministic algorithm.

Let B be a pseudodeterministic algorithm for Acceptance Probability Estimation
Problem. Consider the following algorithm to estimate the collision probability of a circuit
C: If B(C) outputs v, output v2 + (1−v)2. Let p = Pr[C(Un) = 1]. If v ∈ (p− ε, p+ ε), then
the output of B belongs to (CP(C)− 8ε,CP(C) + 8ε). Clearly B is pseudodeterministic. J

The following result is a corollary of the above proposition and Theorem 18.

I Theorem 20. There exists ε′ > 0 such that if Acceptance Probability Estimation
Problem admits an (ε′, δ) pseudodeterministic additive approximation algorithm, then
every function f that admits an (ε, δ) multiplicative approximation algorithm has a (3ε, δ)-
pseudodeterministic multiplicative approximation algorithm.

3.2 Entropy Estimation
In this subsection we show that Entropy Estimation Problem and Acceptance Prob-
ability Estimation Problem are equivalent in the context of pseudodeterminism. We
first observe that Entropy Estimation Problem admits an (ε, δ), 2-pseudodeterministic
additive approximation algorithm.

I Proposition 21. There is an (ε, δ) 2-pseudodeterministic approximation algorithm for the
Entropy Estimation Problem.
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Proof. Given a circuit C, let p = Pr[C(Un) = 1]. As in Proposition 5, compute an
approximate value q of p and output H(q). It follows that H(q) is an approximation
of H(p) due to the known result that entropy can be approximated by the empirical
distribution obtained from sampling, for example see [15, 1]. By Proposition 4, we obtain a
2-pseudodeterministic algorithm. J

Note that the above proof yields the following.

I Proposition 22. There exist ε and ε′ such that if Acceptance Probability Estimation
Problem has an (ε, δ) pseudodeterministic additive error approximation algorithm, then En-
tropy Estimation Problem has (ε′, δ) pseudodeterministic, additive error approximation
algorithm.

Next we reduce Acceptance Probability Estimation Problem to Entropy Es-
timation Problem. Thus a pseudodeterministic algorithm for Entropy Estimation
Problem implies a pseudodeterministic algorithm for Acceptance Probability Estima-
tion Problem.

The main technical result that we show is that an approximation of the entropy of C(Un)
can be used to approximate the probability that C(Un) = 1. It is possible that this technical
result is known or is a folklore; we could not find a reference. Thus, for completeness a proof
is provided in the appendix.

I Theorem 23. Suppose that there is a (ε, δ) pseudodeterministic approximation algorithm for
Entropy Estimation Problem for a sufficiently small ε. Then there is a (1/100, δ+e−O(n))
pseudodeterministic approximation algorithm for Acceptance Probability Estimation
Problem.

Using Proposition 19 and Theorem 23, we obtain that both Acceptance Probab-
ility Estimation Problem and Entropy Estimation Problem are complete for
k-pseudodeterministic computations.

I Theorem 24. There exist ε > 0, such that if either of Acceptance Probability Estima-
tion Problem or Entropy Estimation Problem admit (ε, δ)-pseudodeterministic, addit-
ive approximation algorithm, then every multivalued function that has a k-pseudodeterministic
algorithm has a pseudodeterministic algorithm.

4 Pseudodeterminism for Search Problems

In this section we show that if any of the 3 computational problems we consider has pseudode-
terministic approximation schemes then every problem in Search-BPP has pseudodeterministic
algorithms. The class Search-BPP was formally introduced by Goldrecich [6]

I Definition 25 (Search BPP [6]). A search problem is a relation R ⊆ {0, 1}∗ × {0, 1}∗. For
every x, the witness set Wx of x with respect to R is {y | (x, y) ∈ R}. A search problem R

is in search-BPP (1) if there exists a probabilistic polynomial-time algorithm A such that
for every x for which Wx 6= φ, A(x) ∈ Wx with probability ≥ 2/3, (2) and there exists a
probabilistic polynomial time algorithm B such that if (x, y) ∈ R, then B(x, y) accepts with
probability > 2/3, and if (x, y) 6∈ R then B(x, y) accepts with probability < 1/3.

We will first show that if Acceptance Probability Estimation Problem has a
pseudodeterministic, additive, approximation scheme, then Search-BPP problems can be
made pseudodeterministic. Then we will use Theorem 20 to prove that if Acceptance
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Probability Estimation Problem has a (ε, δ) pseudodeterministic approximation al-
gorithm, then Search-BPP problems admit pseudodeterministic algorithms. We first recall
the definition of approximation scheme.

I Definition 26. A function f : Σ∗ → Q has an additive, approximation scheme if there is a
probabilistic polynomial time algorithm A that gets x, ε, and δ as input and

Pr[f(x)− ε ≤ A(x, ε, δ) ≤ f(x) + ε] ≥ 1− δ

I Theorem 27. If Acceptance Probability Estimation Problem has a pseudode-
terministic, additive, approximation algorithm scheme, then every problem in Search-BPP
has a pseudodeterministic algorithm.

Proof. Let R be a problem in Search-BPP and let A and B be probabilistic algorithms that
witness R in search-BPP according to the definition.

The idea is to use the method of conditional probabilities to construct a good random
choice zA for A on input x first, and then output A(x, zA). The search for zA will be
aided by the pseudodeterministic approximation algorithm for Acceptance Probability
Estimation Problem.

Consider the following probabilistic algorithm B′ that, on input x of length n, first
simulates A to get an output y and then runs B(x, y) and accepts if B accepts. Then
Pr[B′(x) accepts] ≥ 2/5. Let m = p(n) be the polynomial bounding the length of the
random string of B′. We will view the random string r that B′ uses as rArB where rA
is the random string that B′ uses to simulate A and rB is to simulate B. Let Aape be a
pseudodeterministic approximation algorithm for Acceptance Probability Estimation
Problem. We will use Aape with error ε ≤ 1

n·p(n) and confidence 1− δ ≥ 1− 1
n·p(n) .

For an input x let C(rArB) be the Boolean circuit that simulates B′ on x using random
string r = rArB and outputs 1 if and only if B′ accepts x on r. Thus for any x where
Wx 6= φ, Pr[C = 1] ≥ 2/5. For a binary string z ∈ {0, 1}l, let Cz : {0, 1}m−l → {0, 1} be the
circuit obtained by fixing the first l bits of C’s input to z. We now describe the algorithm
AR for the search problem that pseudodeterministically outputs a y ∈Wx.
Algorithm PseudoAR: On input x, construct the circuit C that gets r = rArB as input
and outputs 1 if B′ accepts (x, r) on random string r = rArB. Initialize z = λ, the
empty string. Iterate from i = 1 to m = p(n). At the ith iteration, simulate Aape(Cz0)
(pseudodeterministically) to approximate Pr[Cz0(r) = 1] up to an additive error ε and
confidence (1 − δ) to get a value v. If v ≥ 2/5 − (2i + 1)ε then z ← z0 otherwise z ← z1.
Continue to the next iteration. After the mth iteration let z = zAzB be the binary string of
length m constructed. Output A(x, zA). y

Correctness: Since error probability of Aape is ≤ 1
n·m , and we are making m calls to Aape,

by the union bound, the probability that any one of the calls makes an error is ≤ 1/n. For
the rest of the argument we assume all the calls to Aape pseudodeterministically output an
approximation to acceptance probability within an additive error of ε.

B Claim 28. For every i, for the string z constructed at the end of the ith iteration,
Pr[Cz = 1] ≥ 2

5 − 2iε.

Proof. We prove this by induction on i. For i = 0, the hypothesis holds since Pr[C = 1] ≥ 2/5.
Assume the hypothesis holds for i. Consider the (i + 1)th iteration. Using conditional
probabilities, after the ith iteration, Pr[Cz0 = 1] ≥ 2

5 − 2iε or Pr[Cz1 = 1] ≥ 2
5 − 2iε. Suppose

at the (i + 1)th iteration the value v returned by Aape(Cz0) is ≥ 2/5 − (2i + 1)ε. Then z
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is updated to z0 by the algorithm and from the approximation guarantee of Aape we have
that Pr[Cz0 = 1] ≥ 2/5 − (2i + 1)ε − ε = 2/5 − 2(i + 1)ε. On the other hand suppose
v < 2/5 − (2i + 1)ε. Then z is updated to z1. Also Pr[Cz0 = 1] < v + ε = 2/5 − 2iε and
hence Pr[Cz1 = 1] ≥ 2/5− 2iε ≥ 2/5− 2(i+ 1)ε C

Thus for any 1 ≤ i ≤ m Pr[Cz = 1] ≥ 2/3− 1/n and hence the algorithm outputs a z so
that B′(x, z) accepts. Hence the output of the algorithm A(x, zA) ∈Wx.

The algorithm PseudoAR can be seen as a deterministic algorithm making subroutine calls
to the pseudodeterministic algorithm Aape. Hence the overall algorithm is pseudodeterministic.
The probability of error is bounded by any one of the calls to Aape making an error which is
≤ 1/n. J

Next we will show that if Acceptance Probability Estimation admits (ε, δ) pseudode-
terministic additive approximation, then admits pseudodeterministic additive approximation
scheme.

I Proposition 29. There exists ε > 0 such that if Acceptance Probability Estimation
admits an (ε, δ) pseudodeterministic additive approximation, then it admits a pseudodetermin-
istic approximation scheme.

Proof. We first note that Acceptance Probability Estimation Problem admits an
additive, approximation scheme. By Theorem 20, there is an ε′ > 0 such that if Acceptance
Probability Estimation Problem has an (ε′, δ) pseudodeterministic approximation
algorithm, then every (ε, δ)-additive approximation algorithm for a function f can be made
into a (3ε, δ) pseudodeterministic, additive approximation algorithm. The same proof shows
that if f admits an approximation scheme, then it can be made into a pseudodeterministic
approximation scheme. J

The main result of this section is a corollary of the above proposition and Theorem 27.

I Theorem 30. There exists ε > 0 such that if Acceptance Probability Estimation
Problem has a (ε, δ) pseudodeterministic approximation algorithm algorithm, then every
problem in Search-BPP has a pseudodeterministic algorithm.
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A Proof of Theorem 23

We first start with the following lemma. Here H is the binary entropy function H(p) =
−p log p− (1− p) log(1− p).

B Claim 31. Let 0 ≤ a+ b ≤ 1. H(a+ b) ≥ H(a) + b log 1−a−b
a+b

Proof.

H(a+ b) = −(a+ b) log(a+ b)− (1− a− b) log(1− a− b)
= −a log(a+ b)− (1− a) log(1− a− b)− b log(a+ b)− (−b) log(1− a− b)
≥ −a log(a)− (1− a) log(1− a) + b(log(1− a− b)− log(a+ b))

= H(a) + b log 1− a− b
a+ b

where the third line follows by Gibbs’ inequality. C

We now provide a proof of Theorem 23.

Proof of Theorem 23. Suppose A is a pseudodeterministic algorithm that, given a Boolean
circuit C, outputs (ε, δ) approximation of H(C(Un)). Let r = Pr[C(Un) = 1]. Our goal is to
design a pseudodeterministic algorithm to estimate r. Let q be the smaller of 1− r and r.
We will first design a pseudodeterministic algorithm B that outputs a value p such that p is
within 1/100 of q.
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B(C) runs A(C) to obtain y. If y ≥ H( 1
2 −

1
100 ) + ε, then output 1

2 . Otherwise, do a
binary search for p in the range (0, 1/2) such that −p log p − (1 − p) log(1 − p) lies within
[y, y + 1/2n). We consider two cases.
Case 1: y ≥ H( 1

2 −
1

100 ) + ε. In this case, then clearly 1
2 −

1
100 ≤ r ≤ 1

2 + 1
100 . B(C) will

output 1
2 , which is within 1

100 of r = Pr[C = 1], with probability ≥ 1− δ.
Case 2: y < H( 1

2 −
1

100 ) + ε. Since |H(p) − y| ≤ 1/2n and |H(q) − y| ≤ ε, we have that
|H(p)−H(q)| ≤ ε+ 1/2n = ε′. Now we bound how far p is from q. For this we need the
following two technical claims.

B Claim 32. Let a ≤ 1
2 . If H(a) ≤ H( 1

2 −
1

100 ) + ε′, then a ≤ 1
2 −

1
100 + 1

c , for any c that
satisfies ε′ ≤ 1

2c log( 102c−200
98c+200 ).

Proof.

H(a) ≤ H
(

1
2 −

1
100

)
+ 2ε

≤ H
(

1
2 −

1
100

)
+ 1
c

log
(

102c− 200
98c+ 200

)
= H

(
1
2 −

1
100

)
+ 1
c

log
( 1

2 + 1
100 −

1
c

1
2 −

1
100 + 1

c

)
≤ H

(
1
2 −

1
100 + 1

c

)
by Claim 31

Thus a ≤ 1
2 −

1
100 + 1

c . C

B Claim 33. Let a = b+` where a ≤ 1
2 , a, b, ` ≥ 0. IfH(a)−H(b) ≤ ε′ and a ≤ 1

2−
1

100 + 1
c ≤

1
2 ,

then ` ≤ ε′

log 102c−200
98c+200

Proof.

ε′ ≥ H(a)−H(b)
= H(b+ `)−H(b)

≥ H(b) + ` log
(

1− b− `
b+ `

)
−H(b)(ByClaim 31)

= ` log
(

1− a
a

)
Since a ≤ 1

2 , the minimum value for this is when a is as close to 1
2 as possible.

≥ ` log
1− ( 1

2 −
1

100 + 1
c )

( 1
2 −

1
100 + 1

c )

= ` log 102c− 200
98c+ 200

⇒ ` ≤ ε′

log 102c−200
98c+200

C

B Claim 34. If ε′ is sufficiently small, then there is a constant c satisfying

ε′

log 102c−200
98c+200

≤ 1
100 and ε′ ≤ 1

2c log
(

102c− 200
98c+ 200

)
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Proof. It can be verified that when ε′ = 1/42000 and c = 1100, the above inequalities are
satisfied. C

Now we are ready to prove that |p− q| ≤ 1
100

B Claim 35. |p− q| ≤ 1
100

Proof. First, suppose p > q. Then p = q+ `. Since, y < H( 1
2 −

1
100 ) + ε and |y−H(p)| ≤ 1

2n ,
so H(p) ≤ H( 1

2 −
1

100 ) + ε+ 1
2n = H( 1

2 −
1

100 ) + ε′.By Claim 34, we have that c = 1/1100.
By claim 32, p ≤ 1

2 −
1

100 + 1
c . By claim 33, we obtain that ` ≤ ε′

log 102c−200
98c+200

≤ 1/100, thus
p ≤ q + 1/100. A similar argument shows that if p < q, then p ≥ q − 1/100. C

We found a value p that is 1/100-close to q, and the goal is to estimate r = Pr[C(Un) = 1],
where q = min{r, 1− r}. Thus p is either close to r or to 1− r. Now we run C(Un), n times;
if there are more 1s than 0s output 1− p; else output p. Using Chernoff bounds, it follows
that the output is 1/100-close to q with probability ≤ 1− e−2n/(1102).

Finally, recall that we needed ε′ = ε+ 1/2n ≤ 1/42000. Thus we can take ε ≤ 1/43000
(for large enough n). So, if it’s possible to pseudodeterministically estimate H(Pr[C = 1])
within 1

43000 with probability 1−δ, it’s possible to pseudodeterministically estimate Pr[C = 1]
within 1

100 with probability 1− δ − e−2n/(1102). J
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