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Abstract
We study the setup where each of n users holds an element from a discrete set, and the goal is to
count the number of distinct elements across all users, under the constraint of (ε, δ)-differentially
privacy:

In the non-interactive local setting, we prove that the additive error of any protocol is Ω(n) for
any constant ε and for any δ inverse polynomial in n.
In the single-message shuffle setting, we prove a lower bound of Ω̃(n) on the error for any constant
ε and for some δ inverse quasi-polynomial in n. We do so by building on the moment-matching
method from the literature on distribution estimation.
In the multi-message shuffle setting, we give a protocol with at most one message per user in
expectation and with an error of Õ(

√
n) for any constant ε and for any δ inverse polynomial

in n. Our protocol is also robustly shuffle private, and our error of
√
n matches a known lower

bound for such protocols.
Our proof technique relies on a new notion, that we call dominated protocols, and which can also
be used to obtain the first non-trivial lower bounds against multi-message shuffle protocols for the
well-studied problems of selection and learning parity.

Our first lower bound for estimating the number of distinct elements provides the first ω(
√
n)

separation between global sensitivity and error in local differential privacy, thus answering an open
question of Vadhan (2017). We also provide a simple construction that gives Ω̃(n) separation between
global sensitivity and error in two-party differential privacy, thereby answering an open question of
McGregor et al. (2011).
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1 Introduction

Differential privacy (DP) [20, 19] has become a leading framework for private-data analysis,
with several recent practical deployments [25, 39, 28, 3, 16, 1]. The most commonly studied
DP setting is the so-called central (aka curator) model whereby a single authority (sometimes
referred to as the analyst) is trusted with running an algorithm on the raw data of the users
and the privacy guarantee applies to the algorithm’s output.

The absence, in many scenarios, of a clear trusted authority has motivated the study of
distributed DP models. The most well-studied such setting is the local model [31] (also [44]),
denoted henceforth by DPlocal, where the privacy guarantee is enforced at each user’s output
(i.e., the protocol transcript). While an advantage of the local model is its very strong privacy
guarantees and minimal trust assumptions, the noise that has to be added can sometimes be
quite large. This has stimulated the study of “intermediate” models that seek to achieve
accuracy close to the central model while relying on more distributed trust assumptions. One
such middle-ground is the so-called shuffle (aka anonymous) model [29, 8, 12, 24], where the
users send messages to a shuffler who randomly shuffles these messages before sending them
to the analyzer; the privacy guarantee is enforced on the shuffled messages (i.e., the input to
the analyzer). We study both the local and the shuffle models in this work.

1.1 Counting Distinct Elements
A basic function in data analytics is estimating the number of distinct elements in a domain
of size D held by a collection of n users, which we denote by CountDistinctn,D (and simply
by CountDistinctn if there is no restriction on the universe size). Beside its use in database
management systems, it is a well-studied problem in sketching, streaming, and communication
complexity (e.g., [30, 9] and the references therein). In central DP, it can be easily solved
with constant error using the Laplace mechanism [20]; see also [36, 15, 38, 14].

We obtain new results on (ε, δ)-DP protocols for CountDistinct in the local and shuffle
settings2.

1.1.1 Lower Bounds for Local DP Protocols
Our first result is a lower bound on the additive error of DPlocal protocols3 for counting
distinct elements.

I Theorem 1. For any ε = O(1), no public-coin (ε, o(1/n))-DPlocal protocol can solve4
CountDistinctn,n with error o(n).

The lower bound in Theorem 1 is asymptotically tight5. Furthermore, it answers a
question of Vadhan [42, Open Problem 9.6], who asked if there is a function with a gap
of ω(

√
n) between its (global) sensitivity and the smallest achievable error by any DPlocal

2 For formal definitions, please refer to Section 2. We remark that, throughout this work, we consider the
non-interactive local model where all users apply the same randomizer (see Definition 15). We briefly
discuss in Section 1.4 possible extensions to interactive local models. See the full version for how to
generalize our results to the relaxed setting where each user can apply different randomizers to their
inputs.

3 See Section 2 for the the formal (standard) definition of public-coin DP protocols. Note that private-coin
protocols are a sub-class of public-coin protocols, so all of our lower bounds apply to private-coin
protocols as well.

4 Throughout this work, we say that a randomized algorithm solves a problem with error e if with
probability 0.99 it incurs error at most e.

5 The trivial algorithm that always outputs 0 incurs an error n.
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protocol.6 As the global sensitivity of the number of distinct elements is 1, Theorem 1
exhibits a (natural) function for which this gap is as large as Ω(n). While Theorem 1 applies
to the constant ε regime, it turns out we can prove a lower bound for much less private
protocols (i.e., having a much larger ε value) at the cost of polylogarithmic factors in the
error:

I Theorem 2. For some ε = ln(n)−O(ln lnn) and D = Θ(n/ polylog(n)), no public-coin
(ε, n−ω(1))-DPlocal protocol can solve CountDistinctn,D with error o(D).

To prove Theorem 2, we build on the moment matching method from the literature on
(non-private) distribution estimation, namely [43, 45], and tailor it to CountDistinct in the
DPlocal setting (see Section 3.1 for more details on this connection). The bound on the
privacy parameter ε in Theorem 2 turns out to be very close to tight: the error drops
quadratically when ε exceeds lnn. This is shown in the next theorem:

I Theorem 3. There is a (ln(n) +O(1))-DPlocal protocol solving CountDistinctn,n with error
O(
√
n).

1.1.2 Lower Bounds for Single-Message Shuffle DP Protocols
In light of the negative result in Theorem 2, a natural question is whether CountDistinct
can be solved in a weaker distributed DP setting such as the shuffle model. It turns out
that this is not possible using any shuffle protocol where each user sends no more than 1
message (for brevity, we will henceforth denote this class by DP1

shuffle, and more generally
denote by DPkshuffle the variant where each user can send up to k messages). Note that the
class DP1

shuffle includes any method obtained by taking a DPlocal protocol and applying the
so-called amplification by shuffling results of [24, 6].

In the case where ε is any constant and δ is inverse quasi-polynomial in n, the improvement
in the error for DP1

shuffle protocols compared to DPlocal is at most polylogarithmic factors:

I Theorem 4. For all ε = O(1), there are δ = 2− polylog(n) and D = n/ polylog(n) such that
no public-coin (ε, δ)-DP1

shuffle protocol can solve CountDistinctn,D with error o(D).

We note that Theorem 4 essentially answers a more general variant of Vadhan’s question:
it shows that even for DP1

shuffle protocols (which include DPlocal protocols as a sub-class) the
gap between sensitivity and the error can be as large as Ω̃(n) .

The proof of Theorem 4 follows by combining Theorem 2 with the following connection
between DPlocal and DP1

shuffle:

I Lemma 5. For any ε = O(1) and δ ≤ δ0 ≤ 1/n, if the randomizer R is (ε, δ)-DP1
shuffle on

n users, then R is
(
lnn− ln(Θε(log δ−1

0 / log δ−1)), δ0
)
-DPlocal.

We remark that Lemma 5 provides a stronger quantitative bound than the qualitatively
similar connections in [12, 27]; specifically, we obtain the term ln(Θε(log δ−1

0 / log δ−1)), which
was not present in the aforementioned works. This turns out to be crucial for our purposes,
as this term gives the O(ln lnn) term necessary to apply Theorem 2.

6 To the best of our knowledge, the largest previously known gap between global sensitivity and error
was O(

√
n), which is achieved, e.g., by binary summation [11]. For CountDistinct, the lower bound

of [21] on pan-private algorithms against two intrusions along with the equivalence shown by [2] between
this model and sequential local DP, imply a lower bound of Ω(n) against pure DP protocols. A lower
bound against approximate DP protocols can then be obtained via the transformation of [10]; however,
this lower bound would only hold for an ε bounded strictly below one (e.g., 1/4), whereas our lower
bound in Theorem 1 holds for ε an arbitrarily large constant.

ITCS 2021
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1.1.3 A Communication-Efficient Shuffle DP Protocol
In contrast with Theorem 4, Balcer et al. [5] recently gave a DPshuffle protocol for
CountDistinctn,D with error O(

√
D). Their protocol sends Ω(D) messages per user. We

instead show that an error of Õ(
√
D) can still be guaranteed with each user sending in

expectation at most one message each of length O(logD) bits.

I Theorem 6. For all ε ≤ O(1) and δ ≤ 1/n, there is a public-coin (ε, δ)-DPshuffle protocol
that solves CountDistinctn with error

√
min(n,D) ·poly(log(1/δ)/ε) where the expected number

of messages sent by each user is at most one.

In the special case where D = o(n/ poly(ε−1 log(δ−1))), we moreover obtain a private-coin
DPshuffle protocol achieving the same guarantees as in Theorem 6 (see the full version for a
formal statement). Note that Theorem 6 is in sharp contrast with the lower bound shown in
Theorem 4 for DP1

shuffle protocols. Indeed, for δ inverse quasi-polynomial in n, the former
implies a public-coin protocol with less than one message per-user in expectation having
error Õ(

√
n) whereas the latter proves that no such protocol exists, even with error as large

as Ω̃(n), if we restrict each user to send one message in the worst case.
A strengthening of DPshuffle protocols called robust DPshuffle protocols7 was studied

by [5], who proved an Ω
(√

min(D,n)
)
lower bound on the error of any protocol solving

CountDistinctn,D. Our protocols are robust DPshuffle and, therefore, achieve the optimal error
(up to polylogarithmic factors) among all robust DPshuffle protocols, while only sending at
most one message per user in expectation.

1.2 Dominated Protocols and Multi-Message Shuffle DP Protocols
The technique underlying the proof of Theorem 1 can be extended beyond DPlocal protocols
for CountDistinct. It applies to a broader category of protocols that we call dominated, defined
as follows:

I Definition 7. We say that a randomizer R : X →M is (ε, δ)-dominated, if there exists a
distribution D onM such that for all x ∈ X and all E ⊆M,

Pr[R(x) ∈ E] ≤ eε · Pr
D

[E] + δ.

In this case, we also say R is (ε, δ)-dominated by D. We define (ε, δ)-dominated protocols in
the same way as (ε, δ)-DPlocal, except that we require the randomizer to be (ε, δ)-dominated
instead of being (ε, δ)-DP.

Note that an (ε, δ)-DPlocal randomizer R is (ε, δ)-dominated: we can fix a y∗ ∈ X and take
D = R(y∗). Therefore, our new definition is a relaxation of DPlocal.

We show that multi-message DPshuffle protocols are dominated, which allows us to prove
the first non-trivial lower bounds against DPO(1)

shuffle protocols.
Before formally stating this connection, we recall why known lower bounds against

DP1
shuffle protocols [12, 27, 4] do not extend to DPO(1)

shuffle protocols.8 These prior works
use the connection stating that any (ε, δ)-DP1

shuffle protocol is also (ε+ lnn, δ)-DPlocal [12,

7 Roughly speaking, they are DPshuffle protocols whose transcript remains private even if a constant
fraction of users drop out from the protocol.

8 We remark that [26] developed a technique for proving lower bounds on the communication complexity
(i.e., the number of bits sent per user) for multi-message protocols. Their techniques do not apply to
our setting as our lower bounds are in terms of the number of messages, and do not put any restriction
on the message length. Furthermore, their technique only applies to pure-DP where δ = 0, whereas ours
applies also to approximate-DP where δ > 0.
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Theorem 6.2]. It thus suffices for them to prove lower bounds for DPlocal protocols with low
privacy requirement (i.e., (ε+ lnn, δ)-DPlocal), for which lower bound techniques are known
or developed. For ε-DP1

shuffle protocols, [4] showed that they are also ε-DPlocal; therefore,
lower bounds on DPlocal protocols automatically translate to lower bounds on pure-DP1

shuffle
protocols. To apply this proof framework to DPO(1)

shuffle protocols, a natural first step would be
to connect DPO(1)

shuffle protocols to DPlocal protocols. However, as observed by [4, Section 4.1],
there exists an ε-DPO(1)

shuffle protocol that is not DPlocal for any privacy parameter. That
is, there is no analogous connection between DPlocal protocols and multi-message DPshuffle
protocols, even if the latter can only send O(1) messages per user.

In contrast, the next lemma captures the connection between multi-message DPshuffle
and dominated protocols.

I Lemma 8. If R is (ε, δ)-DPkshuffle on n users, then it is (ε+ k(1 + lnn), δ)-dominated.

By considering dominated protocols and using Lemma 8, we obtain the first lower
bounds for multi-message DPshuffle protocols for two well-studied problems: Selection and
ParityLearning.

1.2.1 Lower Bounds for Selection
The Selection problem on n users is defined as follows. The ith user has an input xi ∈ {0, 1}D

and the goal is to output an index j ∈ [D] such that
n∑
i=1

xi,j ≥

(
max
j∗

n∑
i=1

xi,j∗

)
− n/10.

Selection is well-studied in DP (e.g., [17, 40, 41]) and its variants are useful primitives for
several statistical and algorithmic problems including feature selection, hypothesis testing
and clustering. In central DP, the exponential mechanism of [35] yields an ε-DP algorithm
for Selection when n = Oε(logD). On the other hand, it is known that any (ε, δ)-DPlocal
protocol for Selection with ε = O(1) and δ = O(1/n1.01) requires n = Ω(D logD) users [41].
Moreover, [12] obtained a (ε, 1/nO(1))-DPDshuffle protocol for n = Õε(

√
D). By contrast, for

DP1
shuffle protocols, a lower bound of Ω(D1/17) was obtained in [12] and improved to Ω(D)

in [27].
The next theorem give a lower bounds for Selection that holds against approximate-

DPkshuffle protocols. To the best of our knowledge, this is the first lower bound even for k = 2
(and even for the special case of pure protocols, where δ = 0).

I Theorem 9. For any ε = O(1), any public-coin (ε, o(1/D))-DPkshuffle protocol that solves

Selection requires n ≥ Ω
(
D

k

)
.

We remark that combining the advanced composition theorem for DP and known DPshuffle
aggregation algorithms, one can obtain a (ε, 1/poly(n))-DPkshuffle protocol for Selection with
Õ(D/

√
k) samples for any k ≤ D (see the full version for details).

1.2.2 Lower Bounds for Parity Learning
In ParityLearning, there is a hidden random vector s ∈ {0, 1}D, each user gets a random vector
x ∈ {0, 1}D together with the inner product 〈s, x〉 over F2, and the goal is to recover s. This
problem is well-known for separating PAC learning from the Statistical Query (SQ) learning
model [32]. In DP, it was studied by [31] who gave a central DP protocol (also based on the
exponential mechanism) computing it for n = O(D), and moreover proved a lower bound of
n = 2Ω(D) for any DPlocal protocol, thus obtaining the first exponential separation between
the central and local settings.

ITCS 2021
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We give a lower bound for ParityLearning that hold against approximate-DPkshuffle protocols:

I Theorem 10. For any ε = O(1), if P is a public-coin (ε, o(1/n))-DPkshuffle protocol that
solves ParityLearning with probability at least 0.99, then n ≥ Ω(2D/(k+1)).

Our lower bounds for ParityLearning can be generalized to the Statistical Query (SQ)
learning framework of [32] (see the full version for more details).

Independent Work

In a recent concurrent work, Cheu and Ullman [13] proved that robust DPshuffle protocols
solving Selection and ParityLearning require Ω(

√
D) and Ω(2

√
D) samples, respectively. Their

results have no restriction on the number of messages sent by each user, but they only hold
against the special case of robust protocols. Our results provide stronger lower bounds when
the number of messages per user is less than

√
D, and apply to the most general DPshuffle

model without the robustness restriction.

1.3 Lower Bounds for Two-Party DP Protocols
Finally, we consider another model of distributed DP, called the two-party model [33], denoted
DPtwo-party. In this model, there are two parties, each holding part of the dataset. The DP
guarantee is enforced on the view of each party (i.e., the transcript, its private randomness,
and its input). See the full version for a formal treatment.

McGregor et al. [33] studied the DPtwo-party and proved an interesting separation of Ωε(n)
between the global sensitivity and ε-DP protocol in this model. However, this lower bound
does not extend to the approximate-DP case (where δ > 0); in this case, the largest known
gap (also proved in [33]) is only Ω̃ε(

√
n), and it was left as an open question if this can be

improved9. We answer this question by showing that the gap of Ω̃ε(n) holds even against
approximate-DP protocols:

I Theorem 11. For any ε = O(1) and any sufficiently large n ∈ N, there is a function
f : {0, 1}2n → R whose global sensitivity is one and such that no (ε, o(1/n))-DPtwo-party
protocol can compute f to within an error of o(n/ logn).

The above bound is tight up to a logarithmic factors in n, as it is trivial to achieve an
error of n.

The proof of Theorem 11 is unlike others in the paper; in fact, we only employ simple
reductions starting from the hardness of inner product function already shown in [33].
Specifically, our function is a sum of blocks of inner product modulo 2. While this function
is not symmetric, we show that it can be easily symmetrized (see the full version for details).

1.4 Discussions and Open Questions
In this work, we study DP in distributed models, including the local and shuffle settings. By
building on the moment matching method and using the newly defined notion of dominated
protocols, we give novel lower bounds in both models for three fundamental problems:
CountDistinct, Selection, and ParityLearning. While our lower bounds are (nearly) tight in a
large setting of parameters, there are still many interesting open questions, three of which
we highlight below:

9 The conference version of the paper [33] actually claimed to also have a lower bound Ωε(n) for the
approximate-DP case as well. However, it was later found to be incorrect; see [34] for more discussions.
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DPshuffle Lower Bounds for Protocols with Unbounded Number of Messages.
Our connection between DPshuffle and dominated protocols becomes weaker as k →∞
(Lemma 8). As a result, it cannot be used to establish lower bounds against DPshuffle
protocols with a possibly unbounded number of messages. In fact, we are not aware of
any separation between central DP and DPshuffle without a restriction on the number
of messages and without the robustness restriction. This remains a fundamental open
question. (In contrast, separations between central DP and DPlocal are well-known, even
for basic functions such as binary summation [11].)
Lower Bounds against Interactive Local/Shuffle Model. Our lower bounds hold
in the non-interactive local and shuffle DP models, where all users send their messages
simultaneously in a single round. While it seems plausible that our lower bounds can
be extended to the sequentially interactive local DP model [17] (where each user speaks
once but not simultaneously), it is unclear how to extend them to the fully interactive
local DP model.
The situation for DPshuffle however is more complicated. We remark that certain definitions
could lead to the model being as powerful as the central model (in terms of achievable
accuracy and putting aside communication constraints); see e.g., [29] on how to perform
secure computations under a certain definition of the shuffle model. A very recent work
provides a formal treatment of an interactive setting for the shuffle model [7].
DP1

shuffle Lower Bounds for CountDistinct with Larger δ. All but one of our lower
bounds hold as long as δ = n−ω(1), which is a standard assumption in the DP literature.
The only exception is that of Theorem 4, which requires δ = 2−Ω(logc n) for some constant
c > 0. It is interesting whether this can be relaxed to δ = n−ω(1).

2 Preliminaries

2.1 Notation
For a function f : X → R, a distribution D on X , and an element z ∈ X , we use f(D) to
denote E

x←D
[f(x)] and Dz to denote Pr

x←D
[x = z]. For a subset E ⊆ X , we use DE to denote∑

z∈E
Dz = Pr

x←D
[x ∈ E]. We also use UD to denote the uniform distribution over {0, 1}D.

For two distributions D1 and D2 on sets X and Y respectively, we use D1 ⊗D2 to denote
their product distribution over X × Y. For two random variables X and Y supported on
RD for D ∈ N, we use X + Y to denote the random variable distributed as a sum of two
independent samples from X and Y . For any set S, we denote by S∗ the set consisting of
sequences on S, i.e., S∗ = ∪n≥0Sn. For x ∈ R, let [x]+ denote max(x, 0). For a predicate P ,
we use 1[P ] to denote the corresponding Boolean value of P , that is, 1[P ] = 1 if P is true,
and 0 otherwise.

For a distribution D on a finite set X and an event E ⊆ X such that Pr
z←D

[z ∈ E ] > 0, we
use D|E to denote the conditional distribution such that

(D|E)z =
{

Dz

Prz←D[z∈E] if z ∈ E ,
0 otherwise.

Slightly overloading the notation, we also use α ·D1 +(1−α) ·D2 to denote the mixture of
distributions D1 and D2 with mixing weights α and (1− α) respectively. Whether + means
mixture or convolution will be clear from the context unless explicitly stated.

ITCS 2021
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2.2 Differential Privacy
We now recall the basics of differential privacy that we will need. Fix a finite set X , the space
of user reports. A dataset X is an element of X ∗, namely a tuple consisting of elements of
X . Let hist(X) ∈ N|X | be the histogram of X: for any x ∈ X , the xth component of hist(X)
is the number of occurrences of x in the dataset X. We will consider datasets X,X ′ to be
equivalent if they have the same histogram (i.e., the ordering of the elements x1, . . . , xn does
not matter). For a multiset S whose elements are in X , we will also write hist(S) to denote
the histogram of S (so that the xth component is the number of copies of x in S).

Let n ∈ N, and consider a dataset X = (x1, . . . , xn) ∈ Xn. For an element x ∈ X , let

fX(x) = hist(X)x
n

be the frequency of x in X, namely the fraction of elements of X that are
equal to x. Two datasets X,X ′ are said to be neighboring if they differ in a single element,
meaning that we can write (up to equivalence) X = (x1, x2, . . . , xn) and X ′ = (x′1, x2, . . . , xn).
In this case, we write X ∼ X ′. Let Z be a set; we now define the differential privacy of a
randomized function P : Xn → Z as follows.

I Definition 12 (Differential privacy (DP) [20, 19]). A randomized algorithm P : Xn → Z is
(ε, δ)-DP if for every pair of neighboring datasets X ∼ X ′ and for every set S ⊆ Z, we have

Pr[P (X) ∈ S] ≤ eε · Pr[P (X ′) ∈ S] + δ,

where the probabilities are taken over the randomness in P . Here, ε ≥ 0 and δ ∈ [0, 1].

If δ = 0, then we use ε-DP for brevity and informally refer to it as pure-DP; if δ > 0, we
refer to it as approximate-DP. We will use the following post-processing property of DP.

I Lemma 13 (Post-processing, e.g., [22]). If P is (ε, δ)-DP, then for every randomized
function A, the composed function A ◦ P is (ε, δ)-DP.

2.3 Shuffle Model
We briefly review the shuffle model of DP [8, 24, 12]. The input to the model is a dataset
(x1, . . . , xn) ∈ Xn, where item xi ∈ X is held by user i. A protocol P : X → Z in the shuffle
model consists of three algorithms:

The local randomizer R : X → M∗ takes as input the data of one user, xi ∈ X , and
outputs a sequence (yi,1, . . . , yi,mi) of messages; here mi is a positive integer.
To ease discussions in the paper, we will further assume that the randomizer R pre-shuffles
its messages. That is, it applies a random permutation π : [mi]→ [mi] to the sequence
(yi,1, . . . , yi,mi

) before outputting it.10

The shuffler S : M∗ →M∗ takes as input a sequence of elements ofM, say (y1, . . . , ym),
and outputs a random permutation, i.e., the sequence (yπ(1), . . . , yπ(m)), where π ∈ Sm is a
uniformly random permutation on [m]. The input to the shuffler will be the concatenation
of the outputs of the local randomizers.
The analyzer A : M∗ → Z takes as input a sequence of elements of M (which will be
taken to be the output of the shuffler) and outputs an answer in Z that is taken to be
the output of the protocol P .

10Therefore, for every x ∈ X and any two tuples z1, z2 ∈ M∗ that are equivalent up to a permutation,
R(x) outputs them with the same probability.
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We will write P = (R,S,A) to denote the protocol whose components are given by R, S,
and A. The main distinction between the shuffle and local model is the introduction of the
shuffler S between the local randomizer and the analyzer. As in the local model, the analyzer
is untrusted in the shuffle model; hence privacy must be guaranteed with respect to the input
to the analyzer, i.e., the output of the shuffler. Formally, we have:

I Definition 14 (DP in the Shuffle Model, [24, 12]). A protocol P = (R,S,A) is (ε, δ)-DP if,
for any dataset X = (x1, . . . , xn), the algorithm

(x1, . . . , xn) 7→ S(R(x1), . . . , R(xn))

is (ε, δ)-DP.

Notice that the output of S(R(x1), . . . , R(xn)) can be simulated by an algorithm that takes
as input the multiset consisting of the union of the elements of R(x1), . . . , R(xn) (which
we denote as

⋃
i

R(xi), with a slight abuse of notation) and outputs a uniformly random

permutation of them. Thus, by Lemma 13, it can be assumed without loss of generality for
privacy analyses that the shuffler simply outputs the multiset

⋃
i

R(xi). For the purpose of

analyzing the accuracy of the protocol P = (R,S,A), we define its output on the dataset
X = (x1, . . . , xn) to be P (X) := A(S(R(x1), . . . , R(xn))). We also remark that the case of
local DP, formalized in Definition 15, is a special case of the shuffle model where the shuffler
S is replaced by the identity function:

I Definition 15 (Local DP [31]). A protocol P = (R,A) is (ε, δ)-DP in the local model (or
(ε, δ)-locally DP) if the function x 7→ R(x) is (ε, δ)-DP.

We say that the output of the protocol P on an input dataset X = (x1, . . . , xn) is P (X) :=
A(R(x1), . . . , R(xn)).

We denote DP in the shuffle model by DPshuffle, and the special case where each user can
send at most11 k messages by DPkshuffle. We denote DP in the local model by DPlocal.

Public-Coin DP

The default setting for local and shuffle models is private-coin, i.e., there is no randomness
shared between the randomizers and the analyzer. We will also study the public-coin variants
of the local and shuffle models. In the public-coin setting, each local randomizer also takes a
public random string α ← {0, 1}∗ as input. The analyzer is also given the public random
string α. We use Rα(x) to denote the local randomizer with public random string being
fixed to α. At the start of the protocol, all users jointly sample a public random string from
a publicly known distribution Dpub.

Now, we say that a protocol P = (R,A) is (ε, δ)-DP in the public-coin local model, if the
function

x 7→
α←Dpub

(α,Rα(x))

is (ε, δ)-DP.

11We may assume w.l.o.g. that each user sends exactly k messages; otherwise, we may define a new symbol
⊥ and make each user sends ⊥ messages so that the number of messages becomes exactly k.
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Similarly, we say that a protocol P = (R,S,A) is (ε, δ)-DP in the public-coin shuffle
model, if for any dataset X = (x1, . . . , xn), the algorithm

(x1, . . . , xn) 7→
α←Dpub

(α, S(Rα(x1), . . . , Rα(xn)))

is (ε, δ)-DP.

2.4 Useful Divergences
We will make use of two important divergences between distributions, the KL-divergence
and the χ2-divergence, defined as

KL(P ||Q) = E
z←P

log
(
Pz
Qz

)
and χ2(P ||Q) = E

z←Q

[
Pz −Qz
Qz

]2
.

We will also use Pinsker’s inequality, whereby the total variation distance lower-bounds
the KL-divergence:

KL(P ||Q) ≥ 2
ln 2‖P −Q‖

2
TV .

2.5 Fourier Analysis
We now review some basic Fourier analysis and then introduce two inequalities that will be
heavily used in our proofs. For a function f : {0, 1}D → R, its Fourier transform is given by the
function f̂(S) := E

x←UD

[f(x) · (−1)
∑

i∈S
xi ]. We also define ‖f‖22 = E

x←UD

[f(x)2]. For k ∈ N,

we define the level-k Fourier weight as Wk[f ] :=
∑

S⊆[D],|S|=k

f̂(S)2. For convenience, for

s ∈ {0, 1}D, we will also write f̂(s) to denote f(χs), where χs is the set {i : i ∈ [D]∧ si = 1}.
One key technical lemma is the Level-1 Inequality from [37], which was also used in [27].

I Lemma 16 (Level-1 Inequality). Suppose f : {0, 1}D → R≥0 is a non-negative-valued
function with f(x) ∈ [0, L] for all x ∈ {0, 1}D, and E

x∼UD

[f(x)] ≤ 1. Then, W1[f ] ≤
6 ln(L+ 1).

We also need the standard Parseval’s identity.

I Lemma 17 (Parseval’s Identity). For all functions f : {0, 1}D → R,

‖f‖22 =
∑
S⊆[D]

f̂(S)2.

3 Overview of Techniques

In this section, we describe the main intuition behind our lower bounds. As alluded to in
Section 1, we give two different proofs of the lower bounds for CountDistinct in the DPlocal
and DPshuffle settings, each with its own advantages:

Proof via Moment Matching. Our first proof is technically the hardest in our work.
It applies to the much more challenging low-privacy setting (i.e., (lnn − O(ln lnn), δ)-
DPlocal), and shows an Ω(n/polylog(n)) lower bound on the additive error (Theorem 2).
Together with our new improved connection between DP1

shuffle and DPlocal (Lemma 5), it
also implies the same lower bound for protocols in the DP1

shuffle model. The key ideas
behind the first proof will be discussed in Section 3.1.
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Proof via Dominated Protocols. Our second proof has the advantage of giving the
optimal Ω(n) lower bound on the additive error (Theorem 1), but only in the constant
privacy regime (i.e., (O(1), δ)-DPlocal), and it is relatively simple compared to the first
proof.
Moreover, the second proof technique is very general and is a conceptual contribution: it
can be applied to show lower bounds for other fundamental problems (i.e., Selection and
ParityLearning; Theorems 9 and 10) against multi-message DPshuffle protocols. We will
highlight the intuition behind the second proof in Section 3.2.

While our lower bounds also work for the public-coin DPshuffle models, throughout this
section, we focus on private-coin models in order to simplify the presentation. The full proofs
extending to public-coin protocols are given in the full version.

3.1 Lower Bounds for CountDistinct via Moment Matching
To clearly illustrate the key ideas behind the first proof, we will focus on the pure-DP case
where each user can only send O(logn) bits. In the full version, we generalize the proof to
approximate-DP and remove the restriction on communication complexity.

I Theorem 18 (A Weaker Version of Theorem 2). For ε = ln(n/ log7 n) and D = n/ log5 n,
no ε-DPlocal protocol where each user sends O(logn) bits can solve CountDistinctn,D with
error o(D).

Throughout our discussion, we use R : [D] → M to denote a ln(n/ log7 n)-DPlocal
randomizer. By the communication complexity condition of Theorem 18, we have that
|M| ≤ poly(n).

Our proof is inspired by the lower bounds for estimating distinct elements in the property
testing model, e.g., [43, 45]. In particular, we use the so-called Poissonization trick. To
discuss this trick, we start with some notation. For a vector ~λ ∈ RD, we use ~Poi(~λ) to denote
the joint distribution of D independent Poisson random variables:

~Poi(~λ) := (Poi(~λ1),Poi(~λ2), . . . ,Poi(~λn)).

For a distribution ~U on RD, we define the corresponding mixture of multi-dimensional
Poisson distributions as follows:

E[ ~Poi(~U)] := E
~λ←~U

~Poi(~λ).

For two random variables X and Y supported on RM, we use X + Y to denote the
random variable distributed as a sum of two independent samples from X and Y .

Shuffling the Outputs of the Local Protocol. Our first observation is that the analyzer for
any local protocol computing CountDistinct should achieve the same accuracy if it only sees
the histogram of the randomizers’ outputs. This holds because only seeing the histogram
of the outputs is equivalent to shuffling the outputs by a uniformly random permutation,
which is in turn equivalent to shuffling the users in the dataset uniformly at random. Since
shuffling the users in a dataset does not affect the number of distinct elements, it follows that
only seeing the histogram does not affect the accuracy. Therefore, we only have to consider
the histogram of the outputs of the local protocol computing CountDistinct. For a dataset W ,
we use HistR(W ) to denote the distribution of the histogram with randomizer R.
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Poissonization Trick. Given a distribution D onM, suppose we draw a sample m← Poi(λ),
and then draw m samples from D. If we use N to denote the random variable corresponding
to the histogram of these m samples, it follows that each coordinate of N is independent,
and N is distributed as ~Poi(λ~µ), where ~µi = Di for each i ∈M.

We can now apply the above trick to the context of local protocols (recall that by our
first observation, we can focus on the histogram of the outputs). Suppose we build a dataset
by drawing a sample m ← Poi(λ) and then adding m users with input z. By the above
discussion, the corresponding histogram of the outputs with randomizer R is distributed
as ~Poi(λ · R(z)), where R(z) is treated as an |M|-dimensional vector corresponding to its
probability distribution.

Moment-Matching Random Variables. Our next ingredient is the following construction
of two moment-matching random variables used in [45]. Let L ∈ N and Λ = Θ(L2). There
are two random variables U and V supported on {0} ∪ [1,Λ], such that E[U ] = E[V ] = 1 and
E[U j ] = E[V j ] for every j ∈ [L]. Moreover U0 − V0 > 0.9. That is, U and V have the same
moments up to degree L, while the probabilities of them being zero differs significantly. We
will set L = logn and hence Λ = Θ(log2 n).

Construction of Hard Distribution via Signal/Noise Decomposition. Recalling that
D = n/ log5 n, we will construct two input distributions for CountDistinctn,D.12 A sample
from both distributions consists of two parts: a signal part with D many users in expectation,
and a noise part with n−D many users in expectation.

Formally, for a distribution W over R≥0 and a subset E ⊆ [D], the dataset distributions
DWsignal and DEnoise are constructed as follows:

DW
signal: for each i ∈ [D], we independently draw λi ←W , and ni ← Poi(λi), and add ni

many users with input i.
DE

noise: for each i ∈ E, we independently draw ni ← Poi((n−D)/|E|), and add ni many
users with input i.

We are going to fix a “good” subset E of [D] such that |E| ≤ 0.02 · D (we will later
specify the other conditions for being “good”). Therefore, when it is clear from the context,
we will use Dnoise instead of DEnoise.

Our two hard distributions are then constructed as DU := DUsignal + Dnoise and DV :=
DVsignal +Dnoise. Using the fact that E[U ] = E[V ] = 1, one can verify that there are D users
in each of DUsignal and DVsignal in expectation. Similarly, one can also verify there are n−D
users in Dnoise in expectation. Hence, both DU and DV have n users in expectation. In fact,
the number of users from both distributions concentrates around n.

We now justify our naming of the signal/noise distributions. First, note that the number
of distinct elements in the signal parts DUsignal and DVsignal concentrates around (1−E[e−U ]) ·D
and (1− E[e−V ]) ·D respectively. By our condition that U0 − V0 > 0.9, it follows that the
signal parts of DU and DV separates their numbers of distinct elements by at least 0.4D.
Second, note that although Dnoise has n−D � D many users in expectation, they are from
the subset E of size less than 0.02 · n. Therefore, these users collectively cannot change the
number of distinct elements by more than 0.02 · n, and the numbers of distinct elements in
DU and DV are still separated by Ω(D).

12 In fact, in our presentation the number of inputs in each dataset from our hard distributions will not be
exactly n, but only concentrated around n. This issue can be easily resolved by throwing “extra” users
in the dataset; we refer the reader to the full version for the details.
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Decomposition of Noise Part. To establish the desired lower bound, it now suffices to
show for the local randomizer R, it holds that HistR(DU ) and HistR(DV ) are very close in
statistical distance. For W ∈ {U, V }, we can decompose HistR(DW ) as

HistR(DW ) =
∑
i∈[D]

~Poi(W ·R(i)) +
∑
i∈[E]

~Poi((n−D)/|E| ·R(i)).

By the additive property of Poisson distributions, letting ~ν = (n−D)/|E| ·
∑
i∈[E]R(i), we

have that
∑
i∈[E]

~Poi((n−D)/|E| ·R(i)) = ~Poi(~ν).
Our key idea is to decompose ~ν carefully into D+1 nonnegative vectors ~ν(0), ~ν(1), . . . , ~ν(D),

such that ~ν =
∑D
i=0 ~ν

(i). Then, for W ∈ {U, V }, we have

HistR(DW ) = ~Poi(~ν(0)) +
∑
i∈[D]

~Poi(W ·R(i) + ~ν(i)).

To show that HistR(DU ) and HistR(DV ) are close, it suffices to show that for each i ∈ [D], it
is the case that ~Poi(U ·R(i) + ~ν(i)) and ~Poi(V ·R(i) + ~ν(i)) are close. We show that they are
close when ~ν(i) is sufficiently large on every coordinate compared to R(i).

I Lemma 19. For each i ∈ [D], and every ~λ ∈ (R≥0)M, if ~λz ≥ 2Λ2 ·R(i)z for every z ∈M,
then13

‖E[ ~Poi(U ·R(i) + ~λ)]− E[ ~Poi(V ·R(i) + ~λ)]‖TV ≤
1
n2 .

To apply Lemma 19, we simply set ~ν(i) = (2Λ2) ·R(i) and ~ν(0) = ~ν −
∑
i∈[D] ~ν

(i). Letting
~µ =

∑
i∈[D]R(i), the requirement that ~ν(0) has to be nonnegative translates to ~νz ≥ 2Λ2 · ~µz,

for each z ∈M.

Construction of a Good Subset E. So we want to pick a subset E ⊆ [D] of size at most
0.02 ·D such that the corresponding ~νE = (n−D)/|E| ·

∑
i∈[E]R(i) satisfies ~νEz ≥ 2Λ2 ·~µz for

each z ∈M. We will show that a simple random construction works with high probability:
i.e., one can simply add each element of [D] to E independently with probability 0.01.

More specifically, for each z ∈M, we will show that with high probability ~νEz ≥ 2Λ2 · ~µz.
Then the correctness of our construction follows from a union bound (and this step crucially
uses the fact that |M| ≤ poly(n)).

Now, let us fix a z ∈M. Let m∗ = maxi∈[D]R(i)z. Since R is ln(n/ log7 n)-DP, it follows
that ~νz ≥ n−D

n/ log7 n
·m∗ ≥ log7 n

2 ·m∗. We consider the following two cases:
1. If m∗ ≥ ~µz/ log2 n, we immediately get that ~νz ≥ log5 n/2 · ~µz ≥ 2Λ2 · ~µz (which uses the

fact that Λ = Θ(log2 n)).
2. If m∗ < ~µz/ log2 n, then in this case, the mass ~µz is distributed over at least log2 n many

components R(i)z. Applying Hoeffding’s inequality shows that with high probability over
E, it is the case that ~νEz ≥ Θ(n/D) ·~µz ≥ Λ2 ·~µz (which uses the fact that D = n/ log5 n).

See the full version for a formal argument and how to get rid of the assumption that
|M| ≤ poly(n).

13We use ‖D1 −D2‖T V to denote the total variation (aka statistical) distance between two distributions
D1,D2.
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The Lower Bound. From the above discussions, we get that

‖HistR(DU )−HistR(DV )‖TV ≤
D∑
i=1
‖E[ ~Poi(U ·R(i)+~ν(i))]−E[ ~Poi(V ·R(i)+~ν(i))]‖TV ≤ 1/n.

Hence, the analyzer of the local protocol with randomizer R cannot distinguish DU and
DV , and thus it cannot solve CountDistinctn,D with error o(D) and 0.99 probability. See the
full version for a formal argument and how to deal with the fact that there may not be
exactly n users in dataset from DU or DV .

Single-Message DPshuffle Lower Bound. To apply the above lower bound to DP1
shuffle

protocols, the natural idea is to resort to the connection between the DP1
shuffle and DPlocal

models. In particular, [12] showed that (ε, δ)-DP1
shuffle protocols are also (ε+ lnn, δ)-DPlocal.

It may seem that the lnn privacy guarantee is very close to the lnn − O(ln lnn) one
in Theorem 2. But surprisingly, it turns out (as was stated in Theorem 3) that there is
a (lnn+O(1))-DPlocal protocol solving CountDistinctn,n (hence also CountDistinctn,D) with
error O(

√
n). Hence, to establish the DP1

shuffle lower bound (Theorem 4), we rely on the
following stronger connection between DP1

shuffle and DPlocal protocols.

I Lemma 20 (Simplification of Lemma 5). For every δ ≤ 1/nω(1), if the randomizer R is
(O(1), δ)-DP1

shuffle on n users, then R is
(
ln(n log2 n/ log δ−1), n−ω(1))-DPlocal.

Setting δ = 2− logk n for a sufficiently large k and combining Lemma 20 and Theorem 2 gives
us the desired lower bound against DP1

shuffle protocols.

3.2 Lower Bounds for CountDistinct and Selection via Dominated Protocols
We will first describe the proof ideas behind Theorem 1, which is restated below. Then, we
apply the same proof technique to obtain lower bounds for Selection (the lower bound for
ParityLearning is established similarly; see the full version for details).

I Lemma 21 (Detailed Version of Theorem 1). For ε = o(lnn), no (ε, o(1/n))-dominated
protocol can solve CountDistinct with error o(n/eε).

Hard Distributions for CountDistinctn,n. We now construct our hard instances for
CountDistinctn,n. For simplicity, we assume n = 2D for an integer D, and identify the
input space [n] with {0, 1}D by a fixed bijection. Let UD be the the uniform distribu-
tion over {0, 1}D. For (`, s) ∈ [2] × {0, 1}D, we let D`,s be the uniform distribution on
{x ∈ {0, 1}D : 〈x, s〉 = `}.

We also use Dα`,s to denote the mixture of D`,s and UD which outputs a sample from D`,s
with probability α and a sample from UD with probability 1− α.

For a parameter α > 0, we consider the following two dataset distributions with n users:

Wuniform: each user gets an i.i.d. input from UD. That is, Wuniform := U⊗nD .
Wα: to sample a dataset from Wα, we first draw (`, s) from [2] × {0, 1}D uni-
formly at random, then each user gets an i.i.d. input from Dα`,s. Formally, Wα :=
E(`,s)←[2]×{0,1}D (Dα`,s)⊗n.

Since for every `, s, it holds that |supp(D1
`,s)| ≤ n/2, the number of distinct elements from

any dataset inW1 is at most n/2. On the other hand, since UD is a uniform distribution over
n elements, a random dataset from Wuniform =W0 has roughly (1− e−1) · n > n/2 distinct
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elements with high probability. Hence, the expected number of distinct elements of datasets
from Wα is controlled by the parameter α. A simple but tedious calculation shows that it is
approximately (1− e−1 · cosh(α)) · n, which can be approximated by (1− e−1 · (1 + α2)) · n
for n−0.1 < α < 0.01. Hence, any protocol solving CountDistinct with error o(α2n) should be
able to distinguish between the above two distributions. Our goal is to show that this is
impossible for (ε, o(1/n))-dominated protocols.

Bounding KL Divergence for Dominated Protocols. Our next step is to upper-bound the
statistical distance ‖HistR(Wuniform)− HistR(Wα)‖TV . As in previous work [41, 27, 23], we
may upper-bound the KL divergence instead. By the convexity and chain-rule properties of
KL divergence, it follows that

KL(HistR(Wα)||HistR(Wuniform)) ≤ E
(`,s)←[2]×{0,1}D

KL(R(Dα`,s)⊗n||R(UD)⊗n)

= n · E
(`,s)←[2]×{0,1}D

KL(R(Dα`,s)||R(UD)). (1)

Bounding the Average KL Divergence between a Family and a Single Distribution. We
are now ready to introduce our general tool for bounding average KL divergence quantities
like (1). We first set up some notation. Let I be an index set and {λv}v∈I be a family of
distributions on X , let π be a distribution on I, and µ be a distribution on X . For simplicity,
we assume that for every x ∈ X and v ∈ I, it holds that (λv)x ≤ 2 · µx (which is true for
{Dα`,s}(`,s)∈[2]×{0,1}D and UD).

I Theorem 22. Let W : R→ R be a concave function such that for all functions ψ : X → R≥0

satisfying ψ(µ) ≤ 1, it holds that

E
v←π

[
(ψ(λv)− ψ(µ))2] ≤W (‖ψ‖∞).

Then for an (ε, δ)-dominated randomizer R, it follows that

E
v←π

[KL(R(λv)||R(µ))] ≤ O (W (2eε) + δ) .

Similar theorems are proved in the previous work [17, 18, 41, 23] but only for locally
private randomizers. Theorem 22 can be seen as a generalization of these previous results to
dominated protocols.

Bounding (1) via Fourier Analysis. To apply Theorem 22, for f : X → R≥0 with f(UD) =
Ex∈{0,1}D [f(x)] ≤ 1, we want to bound

E
(`,s)←[2]×{0,1}D

[(f(Dα`,s)− f(UD))2] = E
s∈{0,1}D

α2 · f̂(s)2.

By Parseval’s Identity (see Lemma 17),∑
s∈{0,1}D

f̂(s)2 = E
x∈{0,1}D

f(x)2 ≤ f(UD) · ‖f‖∞ ≤ ‖f‖∞.

Therefore, we can set W (L) := α2 · L2D , and apply Theorem 22 to obtain

E
(`,s)←[2]×{0,1}D

KL(R(Dα`,s)||R(UD)) ≤ O(α2 · eε/n+ δ).
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We set α such that α2 = c/eε for a sufficiently small constant c and note that δ = o(1/n).
It follows that

KL(HistR(Wα)||HistR(Wuniform)) ≤ 0.01,

and therefore

‖HistR(Wα)− HistR(Wuniform)‖TV ≤ 0.1

by Pinsker’s inequality. Hence, we conclude that (ε, o(1/n))-dominated protocols cannot
solve CountDistinctn,n with error o(n/eε), completing the proof of Lemma 21. Now Theorem 1
follows from Lemma 21 and the fact that (ε, δ)-DPlocal protocols are also (ε, δ)-dominated.

Lower Bounds for Selection against Multi-Message DPshuffle Protocols. Now we show how
to apply Theorem 22 and Lemma 20 to prove lower bounds for Selection. For (`, j) ∈ [2]× [D],
let D`,j be the uniform distribution on all length-D binary strings with jth bit being `.
Recall that UD is the uniform distribution on {0, 1}D. Again we aim to upper-bound the
average-case KL divergence E(`,j)←[2]×[D] KL(R(D`,j)||R(UD)).

To apply Theorem 22, for f : X → R≥0 with f(UD) = Ex∈{0,1}D [f(x)] ≤ 1, we want to
bound

E
(`,j)←[2]×[D]

[(f(Dα`,j)− f(UD))2] = E
j∈[D]

f̂({j})2.

By Lemma 16, it is the case that∑
j∈[D]

f̂({j})2 ≤ O(log ‖f‖∞).

Therefore, we can setW (L) := c1 · logL
D for an appropriate constant c1, and apply Theorem 22

to obtain

E
(`,j)←[2]×[D]

KL(R(D`,j)||R(UD)) ≤ O
( ε
D

+ δ
)
.

Combining this with Lemma 20 completes the proof (see the full version for the details).
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