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Abstract
We formulate an average-case analog of the NLTS conjecture of Freedman and Hastings (QIC 2014)
by asking whether there exist topologically ordered systems with corresponding local Hamiltonians
for which the thermal Gibbs state for constant temperature cannot even be approximated by shallow
quantum circuits. We then prove this conjecture for nearly optimal parameters: we construct
a quantum error correcting code whose corresponding (log) local Hamiltonian has the following
property: for nearly constant temperature (temperature decays as 1/log2log(n)) the thermal Gibbs
state of that Hamiltonian cannot be approximated by any circuit of depth less than log(n), and it is
highly entangled in a well-defined way. This implies that appropriately chosen local Hamiltonians can
give rise to ground-state long-range entanglement which can survive without active error correction
at temperatures which are nearly independent of the system size: thereby improving exponentially
upon previously known bounds.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Quantum error-correcting codes, Quantum Entanglement, Quantum Locally-
Testable Codes, Local Hamiltonians, quantum PCP, NLTS

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.49

Related Version A full version of the paper is available at https://arxiv.org/abs/1911.04461v3.

Acknowledgements The author thanks Dorit Aharonov, Simon Apers, Aram Harrow, Matthew
Hastings and Anthony Leverrier for their useful comments and suggestions. He also thanks anonymous
reviewers for their helpful comments and suggestions.

1 General

In order to perform universal quantum computation, one should at the very least be able to
store quantum states for long periods of time. While the Fault Tolerance theorem [1] makes
this possible using active error correction, in parallel, and in part due to the limitations of
the FT theorem (see e.g. [4]) a huge research effort was devoted to finding quantum systems
that can retain quantum information passively - namely a self-correcting quantum memory.

Self-correcting quantum memories are often referred to as topologically-ordered systems
(or TQO) which is a phase of matter that exhibits long-range entanglement at 0 temperature.
Since 0 temperature states are essentially theoretical objects that one does not expect to
encounter in the lab, the race was on to find TQO systems whose long-range entanglement
can survive at very high temperatures - ideally at a constant temperature T > 0 that is
independent of the system size.

In recent years there has been progress in ruling out such robustness for low-dimensional
systems like the 2-D and 3-D Toric Code, but there has been an indication that perhaps in 4
dimensions and above, robustness is more likely (see Section 2.1.2 for a summary of these
results). Intriguingly, it seems that quantum mechanics does not fundamentally limit the
ability to store quantum states for long times, at least for high-dimensional systems. Despite
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49:2 Robust Quantum Entanglement at (Nearly) Room Temperature

that there remains today a large gap between our physical intuition and our ability to provide
formal proofs on the existence of robust systems. Hence the problem of establishing the
existence of robust TQO systems, even for high dimensions is wide open.

2 Topological Quantum Order (TQO)

TQO is a phase of matter (i.e. in addition to the traditional gas, liquid, and solid states)
defined as the zero eigenspace of a local Hamiltonian which is “robust” in the sense that
there can be no transition between orthogonal zero eigenstate without a phase transition
(See survey of TQO in [19]). Formally one says that a system is ε-TQO if any sufficiently
local observable O is unable to discern orthogonal states of the groundspace - i.e. there exists
some z 6= 0 such that

‖POP − zP‖ ≤ ε

where P is the projection onto the groundspace.
In the language of quantum computing, TQO is mostly synonymous with quantum error

correcting codes, and specifically topological quantum codes - these are ε-TQO systems with
ε = 0. Under error-correction terminology the TQO property of robustness of ground-state
degeneracy is the quantum error-correcting minimal distance: i.e. the system can retain its
logical encoded state in the presence of sufficiently small errors.

Thus, TQO systems have the promise that at zero temperature, their entanglement
can passively sustain itself (i.e. without active error-correction) as a form of self-correcting
quantum memory. It is this stability that brought forth the immensely influential paradigm of
the topological quantum computer by Kitaev [14, 8], and even initiated large-scale engineering
efforts in trying to build such a set-up [9].

However, since a physicist attempting to prepare a TQO state in a lab can only expect
to encounter a Gibbs state (i.e. a thermal state) of the Hamiltonian governing the TQO
for some low temperature, then for TQO to serve as a self-correcting quantum memory a
necessary property for such a system is that it retains its long-range entanglement at some
non-zero temperature T > 0 that is independent of the size of the system.

A natural treatment of robustness of TQO systems can be made using quantum circuit
lower bounds, a form of analysis initially considered in [11]. Under TQO terminology,
topologically ordered states cannot be generated from a tensor product state using a shallow
circuit, whereas a state is said to be “trivial” if it can be generated from product states by
shallow circuits - namely it is nearly equivalent to a product state in its lack of quantum
entanglement. With this terminology in mind we consider the following conjecture:

I Conjecture 1 (Robust Circuit Depth for Topologically Ordered Systems). There exists a
number β > 0 and a family of topologically-ordered systems (local Hamiltonians) {Hn}n on n
qubits such that for all γ ≥ β we have: Any quantum circuit U that approximates the thermal
Gibbs state e−γH to vanishing trace distance has depth Ω(log(n)).

In words: the conjecture posits the existence of a TQO system (say, a quantum error-
correcting code) for which one can show a circuit lower bound for the thermal state for all
T from 0 (i.e. the ground-state) up to some constant temperature. Such a system exhibits
“robustness” in the sense that the circuit lower bound for approximating its Gibbs state does
not collapse when temperature is increased, with the logarithmic bound potentially allowing
the coupling of every pair of qubits in the system, using a locally-defined quantum circuit.
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Similar variants of this conjecture have been studied in physics literature: for example,
in [20] Yoshida provides a negative solution to a similar conjecture for codes embeddable in 2
or 3 dimensional lattices. On the other hand, in [11, 13] the authors provided an indication to
the affirmative of this conjecture by considering the 4-dimensional Toric Code: for example,
Hastings [11] assumes the existence of certain error operators from which he derived a
related property. In [3] the authors use an approximation of thermal systems called the
weak Markovian limit, and conclude that certain topological measurements are preserved at
constant temperatures for exponentially long time in the system size (exponential coherence
times). However, to the best of our knowledge there is no formal proof of conjecture 1.

Here, we make progress towards affirming this conjecture formally by proving conjecture
1 for nearly-optimal parameters:

I Theorem (sketch). (Robust TQO at nearly Room Temperature). There exists a log-local
family of quantum error-correcting codes {Cn}n with polynomial minimal distance nΩ(1) (in
particular, a topologically-ordered system) and a corresponding family of commuting local
Hamiltonians {Hn}n such that for any βn = O(log2log(n)) the following holds: any quantum
circuit V that acts on a ≥ n qubits and approximates the thermal state at temperature at
most Tn = 1/(κβn) on a set of qubits S, |S| = n:∥∥∥∥ 1

Z
e−βnHn − tr−S(V |0⊗a〉〈0⊗a|V †)

∥∥∥∥
1

= o(1), Z = tr(e−βnHn)

satisfies a circuit lower bound:

d(V ) = Ω(ln(n)).

Our proof will actually show a stronger statement: namely that the thermal Gibbs state of
these codes, for sufficiently low, yet nearly constant temperature, can be decoded using a
shallow circuit to a bona-fide quantum code state. This implies that the Gibbs state retains
topological order (up to a shallow decoder) at very high temperatures: if we initialize our
system in some ground-state of the TQO, and allow it to thermalize, we can later recover
that code-state with little extra cost (see Section 2.1.7 discussing the possible implementation
error of such a set-up). In particular, it implies that appropriately chosen local Hamiltonians
can give rise to ground-state multi-partite entanglement which can survive without active
error correction at nearly-constant temperatures.

2.1 Some Perspective

2.1.1 The Thermal Gibbs State

This study explores quantum circuit lower bounds on arguably the most natural of physical
states - namely the thermal Gibbs state e−βH - which can be formed by coupling a ground-
state of a physical system H to a “heat bath” at temperature 1/β - meaning it is allowed to
interact indefinitely with an environment to which we have no access to. (see definition 3)

2.1.2 The Regimes of “Inverse-Temperature” β

We consider here a summary of prior art: the temperature at which one can establish an
Ω(log(n)) (i.e. “global”) circuit lower bound for the Gibbs state of a Hamiltonian:

ITCS 2021



49:4 Robust Quantum Entanglement at (Nearly) Room Temperature

Hamiltonian Temperature Result Comments
QECC with large distance 0 Folklore
2 or 3-D systems O(1/poly(n)) 1 [20] No-go theorem
Projective Code Ω(1/polylog(n)) This work By definition, Without amplification
Amplified Projective Code Ω(1/polyloglog(n)) This work With amplification
4-D Toric Code Ω(1) [11] Heuristic argument.

Our main theorem establishes the existence of log-local Hamiltonians for which the
thermal state e−βH for β = (loglog(n))2 requires a logarithmic circuit depth. Therefore it
improves exponentially on previous work in terms of the provable highest temperature as a
function of system size n at which circuit lower bounds can be maintained.

Notably, observe that the rate of errors experienced by quantum states from this ensemble
scales like n/polylog(n) - i.e. a nearly linear fraction. Such error rates result in error patterns
whose weight is much larger than the minimal error-correcting distance of the quantum code,
and hence it is not immediately clear, at least from an information-theoretic perspective,
whether these states - that formally cannot protect quantum information - can be assigned
circuit lower bounds.

2.1.3 Is it Entangled?

Any quantum system satisfying Conjecture 1 has a highly entangled ground-space, because
for T = 0 a Gibbs state can be any (possibly pure) ground-state of a topologically ordered
system. That said, for T > 0 the circuit lower bound is applied to mixed states: assigning
a quantum circuit lower bound for the task of approximating a quantum mixed state (as
opposed to a pure state) does not necessarily indicate the existence of quantum correlations
but rather the presence of long-range correlations, which may or may not be quantum. In
fact, by using the argument of Lovett and Viola [17] one can show a Ω(log(n)) circuit lower
bound for the Gibbs state at constant temperature T = Ω(1) of any good classical locally
testable code, though, this bound breaks for T = 0 since any classical string codeword, which
is unentangled, is a valid Gibbs state.

However, as noted above even this somewhat weaker notion of a quantum system with
a highly-entangled ground-space that retains a quantum circuit lower bound at very high
temperature isn’t known to exist (at least formally), and is related to major open questions
in quantum complexity theory. See in this context the NLTS conjecture discussed in the
section 2.1.6.

2.1.4 Quantum Circuit Lower Bounds

This work adds to the set of available tools for showing quantum circuit lower bounds - by
combining quantum locally-testable codes, an analysis of the thermal state as a truncated
Markov chain, and a local decoder that relies on these two properties to decode a thermal
state to a bona-fide quantum code-state which can be assigned a circuit lower bound by
information-theoretic arguments. Previous works have either used quantum locally testable
codes [5] to argue direct circuit lower bounds, or local decoders [11, 16] but as far as we
know these strategies were never used in conjunction. We outline our strategy in more detail
in Section 2.3
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2.1.5 Energy versus error
An important distinction that one needs to make early on is that having a quantum state with
low-energy does not necessarily imply it is generated by applying few errors to a ground-state.
This is only true if the Hamiltonian governing the quantum state is a so-called qLTC [2].
qLTC’s are quantum analogs of locally-testable codes (and see Definition 7).

Like their classical counterparts qLTC’s are (local) Hamiltonians for which large errors
necessarily result in a large number of violations from a set of local check terms. To give
an example - consider Kitaev’s 2-dimensional Toric Code [14] at very low-temperature, say
T = O(1/

√
n). At that temperature the probability of an error of weight

√
n, at least one

which is composed of strings of weight
√
n is proportional to the probability of observing

an error of constant energy, i.e.: e−βO(1) i.e. comparable to the probability of a single error.
So, unless additional structure of the problem is used, for all we know the number of errors
could be Ω(n). The reason for the above is that the Toric Code is known to have very poor
soundness as a locally testable code: in fact one can have an error of size

√
n with only two

violations.

2.1.6 The relation to NLTS
Conjecture 1 above is a mixed-state analog (albeit with a slightly more stringent requirement
on the circuit depth) of the NLTS conjecture due to Freedman and Hastings [7] - which posits
the existence of local Hamiltonians for which any low-energy state can only be generated by
circuits of diverging depth. As far as we know neither conjecture is stronger than the other.

Arguably, the only known strategy to establishing the NLTS conjecture, outlined in [5], is
to show a construction of quantum locally-testable codes (qLTC’s) with constant soundness
and linear minimal quantum error correcting distance. However, such a statement by itself
requires the construction of quantum LDPC codes with distance growing linearly in the
number of qubits - a conjecture now open for nearly 30 years. Thus our inability to make
progress on qLDPC is a significant barrier to any progress on the NLTS conjecture.

In this work, we show that by considering a mixed-state (or average-case) analog of NLTS
(while still placing a more stringent requirement on the circuit depth) one can break away from
this strategy using the tools we already have today - namely qLTC’s with 1/polylog soundness
and code distance which is sub-linear in n, in this case

√
n, and achieve a construction

with nearly optimal parameters. Nevertheless, it could be the case that the construction
provided here is in fact NLTS - meaning there are no trivial states of the code Hamiltonian
for sufficiently small constant temperature.

2.1.7 Implementation Error
Above, we mentioned the ability of the proposed system to allow thermalization of an
initialized state, and still be able to recover that state using a local decoder. Arguably, one
can argue against such a statement that one also needs to account for the implementation
error of the Hamiltonian governing the TQO state, as well as the decoding Hamiltonian.
There exist analogous claims against active fault-tolerance in the form of implementation
error of the error-correcting unitary circuits.

However, we conjecture that the system we construct, insofar as the check terms of the
Hamiltonians are concerned {Ci}, is in fact robust against implementation error by virtue of
local testability. Recall that a locally testable code (see Definition 7) satisfies the following
operator inequality: 1

m

∑m
i=1 Ci �

s
nDC . where DC is an operator that relates a state to its

distance from the code-space.
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49:6 Robust Quantum Entanglement at (Nearly) Room Temperature

On can check that if the LHS above suffers from an additive error quantified by a
Hermitian error operator E , 1

m

∑m
i=1 Ci + E then using standard results about stability

of Hermitian operators under Hermitian perturbation, the resulting code will still be, for
sufficiently weak error E , a locally testable code albeit with slightly worse parameters, and
for a smaller range of distances from the codespace: it will not be able to faithfully test very
small errors, but only large errors.

Still, this code will possess the key property that we use here to argue the main theorem:
that for sufficiently low temperature (depending on the strength of the implementation error
‖E‖) - the code reins in the error weight to small weights, and these errors are far apart to
allow for local error correction. Notably, the actual shallow decoder used in the argument
will also suffer from implementation noise, undoubtedly, but as a theoretic argument about
entanglement, it is only important to account for implementation error of the Hamiltonian,
and not the decoding circuit.

Hence the system proposed has apparently two advantages: not only it is able to sustain
long-range entanglement for high temperatures as established in Theorem 31, one doesn’t
even need to implement it precisely to gain the first advantage. We leave for future research
to quantify precisely the degree to which this system is robust against implementation error.

2.2 Some Open Questions

We end this section with several questions for further research. First, it is desirable to
improve (reduce) the value of β and improve (reduce) the locality of checks (currently they
are log-local). We note that a limiting factor to decreasing β is the maximal size set for
which one can show near-optimal expansion, for qLTC’s.

An interesting extension of this work is to extend it to actual quantum information -
namely show the system can store an arbitrary quantum state for long periods of time:
notably here we have only showed that one can recover the uniform distribution on code-states,
but it is not immediately clear that it can preserve a single arbitrarily encoded code-state.
In addition, it would be insightful to understand the actual coherence time of such a system
as a self-correcting quantum memory - we conjecture that it is polynomial in n.

Finally, one could explore the possibility that the constructed code in fact satisfies the
NLTS condition: namely that any low-energy state is highly entangled.

2.3 Overall Strategy

In figure 1 we outline the main steps of our argument. To recall, the main goal of this study
is to demonstrate that the thermal state e−βH/Z is hard to produce for sufficiently small β,
and show the same for any ground-state of H - mixed or pure.

Our overall strategy is to demonstrate a shallow quantum circuit that allows to correct
this thermal state to some code-state of a quantum code with large minimal distance. For a
quantum code with large minimal error-correcting distance it is a folklore fact (made formal
here) that any quantum state in that codespace is hard to approximate (the gray-shaded box
in Figure 1), thereby satisfying the hardness-of-approximation requirement for groundstates.
Furthermore, together with the existence of a shallow decoder, it implies a lower-bound on
the circuit depth for e−βH as the lower-bound on a circuit generating a quantum code-state,
minus the depth of the decoder. Thus, working in the diagram of Figure 1 backwards we
translate our overall theorem to demonstrating a shallow error-correcting circuit from a
thermal state to a code-state with polynomial distance.
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2.3.1 Translating Energy to Error
The strategy outlined above requires us to demonstrate a shallow decoder for thermal states
of sufficiently low temperatures. Here we are faced with a severe obstacle: a thermal Gibbs
state is defined in terms of energy, whereas the natural language for decoders is the language
of “errors” (whether they are average-case or worst-case). Hence we need a scheme to argue
about the error distribution of the Gibbs state.

To our aid come quantum locally testable codes (qLTCs) [2] (and see Definition 7). The
main use of locally testable codes is to rein in the error weight of low-energy states. We
use this property in conjunction with the well-known Metropolis-Hastings algorithm (or
MH) on Hamiltonians corresponding to the check terms of qLTC’s. The MH algorithm is
a standard tool in physics to simulate the thermal Gibbs state by a random walk where
transition probabilities between quantum states are dictated by their relative energies (see
Section 7).

Applying this tool to local Hamiltonians corresponding to qLTCs we show that the thermal
Gibbs state e−βH , for H corresponding to a qLTC, can in fact be approximated by a so-called
“truncated” MH process. These arguments correspond to the top Vanilla-colored boxes in
the diagram.

As a general note, as far as we know, no previous work using qLTC’s made such a
translation from energy to error weight: in [5] the authors show that qLTC’s with linear
distance are NLTS, but since such codes are not known to exist, they end up proving a
somewhat weaker version called NLETS thus bypassing the energy-to-error translation. On
the other hand, such a translation is probably the most natural way to proceed w.r.t. quantum
codes: we do not know how to treat “energies” on quantum states, but if we can model the
errors they experience we can leverage our vast knowledge of quantum error-correction to
handle them. Hence, we believe that the use of the MH random process is of conceptual
importance and will be useful elsewhere, since it allows for the first time, to bring the analysis
from a point we want to argue about (“energies”) to a point where we have powerful analysis
tools (“errors”).

2.3.2 Shallow Decoding from Local Expansion
To recap the flow of arguments: the arguments about the MH random process (Vanilla-
colored boxes in Figure 1) allow us to argue that the thermal Gibbs state e−βH , for a qLTC
Hamiltonian H, can be simulated by sampling an error according to an MH random walk
that is controlled by the inverse temperature β and the soundness of the qLTC. We would
now like to leverage that property to demonstrate a shallow decoder for this state.

A key observation towards that end (corresponding to the bottom Vanilla-colored box)
is that while the MH random process is not an i.i.d. process, it does in fact conform
to a somewhat weaker characterization called “locally-stochastic” (or “locally-decaying”)
[15, 6, 10], which are a main source of inspiration of this work. A noise is locally-stochastic if
the probability of a large cluster of errors decays exponentially in its size (see Definition 23).

Concretely, using the truncated MH random process we conclude (orange box) that
for sufficiently large β (low temperature) the errors experienced by the Gibbs state are
locally-stochastic, and hence typically form only small clusters whose size is, say, at most
log(n).

In effect, a stronger notion is true: we show that local-stochasticity of these random
errors means that their clusters are also far away from each other - in the sense that even if
we “blow up” each cluster by a factor of 1/α (for small α > 0) they are still at most the size
above. This definition is called α-subset and it too, is due to [15, 6].

ITCS 2021
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In these works, error patterns that are locally-stochastic were shown to be amenable to
correction by a local decoder, since intuitively, these errors can be “divided-and-conquered”
locally. In this context, the notion of α-subsets was used to handle the possibility that the
decoder can introduce errors to qubits which weren’t initially erred, by arguing that even if
such an event occurs it will not cause the initial clusters to aggregate together to form large,
undecodable clusters.

Our choice for a shallow “local-decoder” is to use a straightforward quantum generalization
of the Sipser-Spielman decoder (notably, a variant of this decoder was used in [15]). This
decoder is desirable since it is able, under certain conditions to decode an error of weight w
in time log(w), and do so locally. That would imply that for error patches of logarithmic
size, the decoder would run in depth O(loglog(n)) - i.e. a very shallow decoder.

However, such a decoder comes attached with a very stringent condition: it requires the
Tanner graph of the code to be a very strong bi-partite expander. That condition is too
stringent for our purposes, since we also need the quantum code to be locally-testable, and
it is not known how to make even classical local-testability co-exist with the code’s Tanner
graph being a bi-partite expander.

In our study, we relax the stringent expansion condition, and require that only very
small errors, i.e. those of logarithmic size which we’ve shown to be the typical error size for
the Gibbs state - those errors are required to expand well (“small-set expansion”), while
requiring nothing for linear-weight errors, which is the regime of interest of the standard
Sipser-Spielman decoder. Hence, we are able to use a code whose Tanner graph is not a true
expander. This while still being able to use the Sipser-Spielman approach to a fast parallel
decoder by considering only small sets. These arguments are outlined in the pink-shaded
boxes in the middle of the diagram.

2.4 The construction
To recap again, starting from the previous section, our goal is to find quantum a code, whose
thermal state can be corrected quickly and in parallel. We’ve shown that if a code is qLTC
then the Gibbs state can be essentially modeled as an error process that is locally-stochastic.
Locally-stochastic errors can be decoded quickly, if the underlying topology is a good expander
- at least for the typical error size. Hence, our interim goal is to find a quantum code C that
satisfies simultaneously three requirements:
1. It has a minimal quantum error-correcting distance that is some polynomial in the number

of qubits n, say
√
n - to allow a circuit lower bound for proper code-states.

2. It is locally-testable - to allow translation from energies to errors in the truncated-MH
modeling of the Gibbs state.

3. Expansion of the bi-partite Tanner graph corresponding to the checks of the code, for
errors of small weight (or “small-set expansion”) - to allow for shallow decoding using the
Sipser-Spielman algorithm.

2.4.1 The Choice of Quantum Code
In [12] Hastings found a way to make progress on the qLTC conjecture [2] by considering
high-dimensional manifolds: he showed that by tessellating a high-dimensional sphere using
a regular grid (or some other topology for improved rate) the resulting quantum code on n
qubits has soundness 1/polylog(n). We make a crucial use of his approach here.

Recently, Leverrier et al. [16] have proposed the projective code, which is an arguably
simpler variant of this high-dimensional construction whereby a length-3 complex chain of
p-faces of the binary N -cube (modulo the all-ones vector), for p = Ω(N) is used to derive
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a quantum code on n qubits with distance scaling like nc, for some constant c > 0. This
code has improved soundness compared to the one in [12]. Our construction is based on the
projective code on n qubits, using p-faces of the N -dimensional cube for p = N/2, where
N = Θ(log(n)).

On one hand, by the minimal distance of the projective code one immediately gains a
circuit lower bound of Ω(log(n)) on the minimal depth circuit generating its ground-state
(corresponding to the gray-shaded block in Figure 1. This satisfies the first requirement
above. It is also a qLTC with reasonable (1/log2(n)) soundness, (see navy-shaded block in
Figure 1) thus satisfying the second requirement.

However, the last critical advantage that we gain by using this code, as opposed to say
the original high-dimensional manifold of Hastings, is not its improved soundness parameter
but rather the underlying structure of the high-dimensional cube: namely its property of
small-set expansion that exists in addition to its non-negligible soundness. This property
of small set expansion is the turnkey for allowing the application of a shallow decoder to
combat the typical errors of a thermal state with large β parameter.

More specifically, we make crucial use of the structure of the N -cube to establish the
third requirement - namely, show that small error sets expand significantly - i.e. have many
unique incident constraints. This emanates from the fact that small subsets of p-faces of the
n-cube for p = n/2 have many adjacent p+ 1-faces and many adjacent p− 1-faces.

2.4.2 Efficient Soundness Amplification

The flow of arguments until this point results in lemma 27 which roughly states that a
qLTC with soundness s and qubit degree D has the property that its thermal state for
sufficiently large inverse temperature: β ≥ log(D)/s. has error patterns that form clusters of
only logarithmic size. Such errors admit a shallow-depth parallel decoding scheme resulting
in a circuit lower bound for approximating this thermal state.

Consider, for example the projective code of [16]. We have D = log(n), s = 1/log2(n)
Using these parameters one would only be able to establish a circuit lower bound for
β = polylog(n). Hence, by the behavior of β as a function of D and s one sees it is desirable
to trade-off increased degree for improved soundness so long as these two quantities are
increased/decreased in a commensurate manner.

Using standard probabilistic analysis we show that it is sufficient to choose a random
family of Ω(nlog2(n)) subsets - each set comprised of 1/s checks in order to achieve a qLTC
with constant soundness and query size q/s. This corresponds to the second navy-shaded
box in Figure 1.

This amplification procedure results in a somewhat peculiar situation that we’d like to
point out: the thermal Gibbs state e−βH is defined w.r.t. the Hamiltonian H = H(Cpa)
where Cpa is the result of the amplification of the projective code formed by choosing a
sufficiently large random family of subsets of check terms of size 1/s each. However, the
decoding procedure, using the Sipser-Spielman algorithm uses the original checks of C to
locate and correct errors, and not the amplified ones: this is because we do not establish
local expansion for the amplified checks, only for the original checks. Still, both sets of checks
share the same code-space - namely the original projective code C. Hence, the set of checks
used for testing are not the same as the ones used for correcting errors.

ITCS 2021
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Fact 1: Metropolis-Hastings process converges
to e−βH

Prop. 2: Metropolis-Hastings random pro-
cess for (q,s)-qLTC Hamiltonian truncated
at weight k approximates e−βH for β =
O(ln(n/k)/s)

Lemma 9: k-Truncated
Metropolis-Hastings results
in locally-stochastic error
distribution for all k ≤
n/4D

Lemma 8: Locally-
stochastic error with
p = Ω(1/D) has w.h.p.
largest α-connected compo-
nent of size at most t with
probability O(n(D · pα)t)

Lemma 10: Let Cpa denote the amplified code,
and H = H(Cpa). For β = O(ln(D)/(αs))
the maximal α-connected component has size
at most ln(n)/100 w.h.p when sampling from
e−βH .

k = n/(De200)1/α

k = n/(De200)1/α

Lemma 11: The Sipser-Spielman
decoder on a (c, d)-regular bi-
partite graph such that for all er-
rors of weight E at most w has
|N(E)| ≥ c · (3/4 + ε)|E| runs in
O(w) steps and corrects E.

Lemma 12: Consider the projec-
tive code and an error E whose
maximal α-connected component
has size at most ln(n) for α =
1/ ln ln(n). Then applying SS de-
coder on X,Z errors separately
corrects E.

Lemma 5:
Let E be an error of weight at
most ln(n)/100. Then |N(E)| ≥
|E|D(15/16) for both X,Z checks.

Thm. 2: Let H = H(Cpa) and
β = O(ln(D)/(αs)). Applying the
SS decoder on X,Z errors to e−βH

results w.h.p. in a state of Cpa.

Thm. 2: For β = O(ln2 ln(n)) the
quantum state e−βH cannot be ap-
proximated to error o(1) with cir-
cuits of depth o(log(n)).

q = log3(n), D = log3(n), s = 1/e

Lemma 1: Let ρ ∈ C be a state
in a quantum code C on n qubits
with minimal distance at least nc

for constant c > 0. Then any cir-
cuit that approximates ρ to dis-
tance better than o(1) has depth
Ω(log(n)).

D = log(n), s = 1/ log2(n)

Prop. 1:
Soundness amplification

Lemma 6: The projective code
on n qubits C has parameters
[[n, 1, nc]], and is qLTC (q =
log(n), s = 1/ log3(n)), and degree
D = log(n)

Figure 1 Flow of the main arguments.
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3 Notation

A quantum CSS code on n qubits is a pair of codes C = (Cx, Cz), where Cx, Cz are subspaces
of Fn2 . For a thermal state ρ = (1/Z)e−βH , β signifies the “inverse temperature” β = 1/(κT )
where κ is the Boltzmann constant, and Z = tr(e−βH) is the partition function of this state.
For a finite discrete set S, |S| denotes the cardinality of the set. For E ∈ {0, 1}n the support
of E , supp(E) is the set of non-zero positions of E . |E| is the Hamming weight of E . For
quantum density matrices A,B, the trace distance between A,B is denoted by ‖A− B‖1,
and the quantum fidelity between these states is denoted by F(A,B). A density matrix ρ
of rank r is said to be a uniform mixture if it can be written as ρ = 1

r

∑r
i=1 |ui〉〈ui| where

{|ui〉} are an orthonormal set of vectors.
We say that a quantum circuit U on a set T of N qubits approximates a quantum state

ρ on a set S ⊆ T of n ≤ N qubits, to error δ if
∥∥trT−S

(
U |0⊗n〉〈0⊗n|U†

)
− ρ
∥∥

1 ≤ δ
In this work, we will consider random error models E supported on the n-th fold tensor

product Pauli group Pn, where P = {X,Z, Y, I}. For an error E E = E1 ⊗ . . .⊗ En, Ei ∈ P
we denote by |E| the Hamming weight of E - namely the number of terms Ei that are not equal
to I. Often we will use |E| to denote the minimal weight of E modulo a stabilizer subgroup
of Pn. For a stabilizer code C with local check terms {Ci}mi=1, Ci ∈ Pn, the Hamiltonian
H = H(C) is the local Hamiltonian

∑m
i=1(I −Ci)/2 - i.e. its ground-space is the intersection

of the 1-eigenspaces of all check terms Ci.
The N -cube is the binary cube in N dimensions. We will use capital N to denote the

dimension of the cube. The projective cube results in a code of n qubits. When considering
n in the context of the projective cube we will use lower-case n to denote the number of
qubits, i.e. n = 2N .

The letter a will be used to denote an initial set of qubits a ≥ n that also include any
ancillary qubits used to generate the state of n qubits, i.e. to generate a mixed state on n
qubits one applies a unitary transformation on the state |0⊗a〉〈0⊗a|, traces out a− n qubits.

Let G = (V,E) be a graph. For a set S ⊆ V the set Γ(S) ⊆ V is the set of all vertices
that neighbor S in G. The degree of a vertex v ∈ V is the number of edges incident on that
vertex. The degree D of a graph is the maximal degree of any vertex v ∈ V . A graph is
D-regular if the degrees of all vertices are equal. We will use a ∝ b to signify that a = c · b for
some c that does not depend on b. Throughout the paper we will use the binary logarithm
log(n) in the context of quantum circuit lower bounds, and the natural logarithm ln(n) in
the context of errors occurring on a thermal state e−βH .

4 Preliminaries I: Thermal Gibbs State of a Local Hamiltonian

When considering the thermal Gibbs state for a local Hamiltonian H =
∑
iHi, ‖Hi‖ ≤ 1,

care needs to be taken as to how to scale the energy of the Hamiltonian. On one hand, we
would like the Gibbs state of a Hamiltonian H to be invariant under scaling of H, or perhaps
rewriting H as a sum of possibly lower-rank projections. On the other hand, we note that it
is unreasonable to expect to have a family of local Hamiltonians {Hn}n with entanglement at
room temperature (i.e. constant β > 0), if the norm of Hn doesn’t grow with the number of
qubits n. Hence, we introduce the definition of energy density - which captures the average
“energy” invested into a qubit in the system:

I Definition 2 (Energy density). A local Hamiltonian on n qubits with m local terms H =∑m
i=1Hi, ‖Hi‖ ≤ 1 is said to have energy density λ = m/n.

The thermal Gibbs state is defined for a local Hamiltonian as follows:
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I Definition 3 (Gibbs state of a local Hamiltonian). Let H =
∑
i∈[m]Hi, be a local Hamiltonian

on n qubits H = C⊗n, m local terms, and energy density λ = m/n. The Gibbs state of H
for finite β > 0 is the following density matrix: 1

Z e
−βH̃ where Z = tr(e−βH̃) and H̃ = H/λ.

For β →∞ the Gibbs state is any ρ ∈ ker(H).

Remark about the definition

One could also define the Gibbs state more strictly for T = 0 or β → ∞ as the uniform
mixture over codestates. Such a definition would not change the “quantumness” of the
conjecture 1 nor the proof: the conjecture requires that at 0 temperature the system be
topologically-ordered, so it must be highly entangled. As to the proof - it shows a circuit
lower bound for every mixed ground-state, and in particular the uniform mixture thereof.
The more relaxed definition here for T = 0 is designed to include every state which is a
stationary distribution of the Metropolis-Hastings algorithm, and indeed any mixed/pure
ground-state is such a stationary distribution.

5 Preliminaries II :Quantum Error-Correcting Codes

We require the basic definition of stabilizer codes and CSS codes

I Definition 4 (Quantum Stabilizer Code and Quantum CSS Code). A stabilizer group G ⊆ Pn
is an Abelian subgroup of Pn. The codespace C is then defined as the centralizer of G, denoted
by C[G], or equivalently - the mutual 1-eigenspace of G. A CSS code C = (Cx, Cz) is a
stabilizer code where the check terms (i.e. generators of the group) are tensor-products of
either only Pauli X or only Pauli Z. In particular regarding Cx, Cz as F2 subspaces of Fn2 we
have Cx ⊆ C⊥z and vice versa.

In this work, we will require some bounds on the minimal depth of a quantum circuit to
generate a quantum code state. We recall a slight rephrasing of Prop. 45 in [5] to mixed
states: 2

I Lemma 5 (Robust circuit lower bound for CSS code-states, [5]). Let C be a quantum CSS
code of non-zero number of logical qubits k > 1 on n qubits with minimal distance nε for
some ε > 0. Let ρgs be a mixture on a set of code-states of C and let V be a unitary circuit on
N ≥ n,N = poly(n) qubits that approximates ρgs: ρ = trT

(
V |0⊗N 〉〈0⊗N |V †

)
‖ρ−ρgs‖1 ≤

n−2, ρgs ∈ C Then the depth of V is Ω(log(n)).

5.1 Quantum Locally Testable Codes
In [2] Aharonov and the author defined quantum locally testable codes (qLTC’s). We state
here a version due to Eldar and Harrow [5]: a quantum locally testable code can be defined
by the property that quantum states on n qubits at distance d to the codespace have energy
Ω(d/n).

2 The only change required to achieve a mixed-state version of Prop. 45 is to construct distant subsets
C0, C1 of Fn

2 that each has a non-negligible probability, when measuring the ground-state ρ in one of
the X/Z bases. Such sets are readily available: consider some eigenbasis of the code: In at least one
of the Z or X bases the state ρ has support at least 1/2 on basis vectors such that each of them is
a “well-partitioned” pure-state. One then constructs the sets C0, C1 by “cutting in half” each such
well-partitioned eigenstate, sending each half to a different set. By the minimal distance of the code,
the “half” of each eigenstate is far from any “half” of any other eigenstate.
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I Definition 6. If V is a subspace of (C2)⊗n then define its t-fattening to be Vt := Span{(A1⊗
· · · ⊗An)|ψ〉 : |ψ〉 ∈ V,#{i : Ai 6= I} ≤ t}. Let ΠVt project onto Vt. Then define the distance
operator DV :=

∑
t≥1 t(ΠVt −ΠVt−1).

This reflects the fact that for quantum states, Hamming distance should be thought of as
an observable, meaning a Hermitian operator where a given state can be a superposition of
eigenstates.

I Definition 7 (Quantum locally testable code). An (q, s)-quantum locally testable code C ⊆
(C2)⊗n, is a quantum code with q-local projection C1, . . . , Cm such that 1

m

∑m
i=1 Ci �

s
nDC .

s is called the soundness parameter of the code.

We note that the soundness parameter s in this definition generalizes the standard notion of
soundness of a classical LTC as a special case, where all Ci’s are diagonal in the computational
basis. In particular, if the quantum code is a stabilizer code, then the definition of quantum
local testability can be further simplified to resemble classical local testability more closely:

I Definition 8 (Stabilizer Locally-Testable Codes (sLTC)). An sLTC is a quantum stabilizer
code that is qLTC. An equivalent group-theoretic of an sLTC is as follows: C is a stabilizer
code generated by stabilizer group G. It is (q, s)− sLTC if there exists a set S of q-local words
in the stabilizer group g1, . . . , gt ∈ G such that for P ∈ Pn we have Pg∼U [S] ([g, P ] 6= 0) ≥
(|P |/n) · s where |P | is the Hamming weight of P modulo the centralizer of G, C[G]: |P | =
minz∈C[G] wt(P + z) where for x ∈ Pn wt(x) counts the number of non-identity entries in x.

See [5] and [2] for the derivation of this definition as a special case of Definition 7: the
operator DC penalizes a quantum state according to the “weighted” distance of that state
from the codespace, whereas in definition 8 the penalty is defined w.r.t. each Pauli error
separately, and as a function of the standard Hamming weight of the error, modulo the code.

Given a (q, s)-sLTC one can generate a sLTC with parameters (dq/se, 1/e) by amplification
as follows:

I Proposition 9 (Randomized Amplification). Given is a (q, s) sLTC on n qubits with poly(n)
checks. There exists a qLTC Camp of poly(n) checks with parameters (dq/se, 1/e) where each
qubit is incident on at most D′ = dqlog2(n)/se checks.

6 Preliminaries III: Expansion of Small Errors on the Projective
Hypercube

The main observation of this section is that while the projective code is a qLTC with a mild
soundness parameter 1/log2(n), the soundness parameter for small errors is much better,
and in fact for very small errors, their boundary (i.e. the Hamming weight of their image) is
very close to maximal. We begin with a couple of standard definitions:

I Definition 10 (Shadow). Let [n]r denote the set of all r-subsets of [n], and let A ⊆ [n]r.
The lower shadow of A is the set of all r − 1 subsets which are contained in at least one
element of A: ∂−A = {A− {i} : A ∈ A, i ∈ A} and the upper shadow of A is the set of all
r + 1 subsets that contain at least one element of A: ∂+A = {A+ {i} : A ∈ A, i /∈ A}

Recall our notation that n denotes the dimension of the cube, and N = 2n signifies the
number of qubits in the context of the quantum error correcting code generated by the
projective code of dimension n. We define p-faces as follows:
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I Definition 11 (p-face, set of p-faces, subspaces of p-faces). For integer n ≥ 1 a p-face is a
word in {0, 1, ∗}n that contains exactly p positions with ∗. We denote by KNp as the set of
p-faces of the n-th cube. Let CNp denote the space spanned by KNp with coefficients from F2.

One can think about a p-face as a subset of {0, 1}n of all points that are equal to the p-face
in its non-∗ positions. Under this notation one can naturally define upper and lower shadow
of p-faces as follows:

I Definition 12 (Shadow of p-faces of KNp ). The lower-shadow ∂− of a p-face f is the set of
all p− 1 faces derived by replacing any ∗ entry with either 0 or 1. The upper-shadow ∂+ of a
p-face f is the set of all p+ 1 faces that can be derived by replacing any non-∗ entry of p
with ∗.

To connect the definitions above, note that the F2-boundary operator ∂p+1 associated
with the F2-complex chain {Cnp }p maps each p + 1-face f to a summation over the set of
p-faces ∂−f with coefficient 1 in F2, whereas the co-boundary map ∂Tp sends each p− 1 face
f to a summation over the set of p-faces ∂+f with coefficient 1.

Importantly, in this work, we will focus on the p-faces of the projective cube as the
combinatorial set KNp , and not on the corresponding F2-space CNp . This is because we are
interested in establishing a combinatorial expansion property of the boundary maps ∂+, ∂−,
to be later used in conjunction with the Sipser-Spielman decoder.

However, we will use, in a black box fashion, the properties of these maps, as maps over
an F2 complex chain that appeared in [16]: these properties are namely the soundness and
minimal distance of a quantum code derived by the pair (∂+, ∂−).

In this study, we consider p-faces of the n-hypercube. While this resembles the case of
subsets of [n]r there is a major difference - since now any ∗-entry replaced, can assume a value
either 0 or 1, and the isoperimetric inequality needs to account for this larger set. Bollobas
and Radcliffe provide an isoperimetric inequality for the regular grid [Thm. 10, Bollobas and
Radcliffe]. Their bounds are useful especially when the set of faces is exponentially large in
the dimension of the embedding space. For our purposes though, we are interested in set of
p-faces that are polynomial in that dimension so simpler bounds are available as follows:

I Lemma 13. Let A ⊆ Knp−1 be a set of (p − 1)-faces for p = n/2, |A| ≤ n/32. Then
|∂+A| ≥ |A| · (n/2+1) · (15/16). Let A ⊆ Knp+1 be a set of p+1-faces for p = n/2, |A| ≤ n/8.
Then |∂−A| ≥ 2 · |A| · (n/2 + 1) · (15/16)

6.1 The Projective Code
I Definition 14 (The Projective Cube). Let KNp denote the set of p-faces of the N -th cube.
The projective cube, denoted by K̃Np is formed by identifying x ∼ x̄ iff x = x̄+ 1 Let C̃Np
denote the space spanned by K̃np with coefficients in F2.

In this study, we will use build upon the projective code defined by Leverrier et al. [16]:

I Definition 15 (Projective code). Extend the operators ∂+, ∂− from KNp to K̃Np and consider
the complex chain formed by the F2 span of K̃Np , namely the spaces {C̃Np }p: C̃Np+1 →∂p+1

C̃Np →∂p C̃Np−1 the quantum CSS code (see Definition 4) defined by Cx = ker(∂p), Cz =
(Im∂p)⊥ is called the (N, p)-projective code and denoted by CN,p = (Cx, Cz).

I Lemma 16 (Properties of the projective code, [16]). For every sufficiently large N there
exists n = 2Ω(N) such that the (N, p)-projective code CN,p for p = N/2 has parameters
[[n, 1, nc]], for some constant c > 0. It has soundness 1/log2(n) and each qubit is incident
on at most D = 2log(n) checks.
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We conclude this section by reducing the isoperimetric inequality for the projective cube
to the isoperimetric inequality for the N -cube.

I Lemma 17 (Isoperimetric inequalities for the projective hypercube). Let C = (Cx, Cz) denote
the (N, p)-projective code with p = N/2. Let E be a subset of errors of weight at most N/64.
Then the number of checks Cx incident on E is at least |E| · (N/2) · (15/16) and the number
of Cz checks incident is at least |E| · (N) · (15/16)

Some context

To provide some context, we note that at first sight it is unclear why considering such small
weight (N/64) may provide a non-trivial result: after all, for the regime of temperatures we
are considering the typical error has nearly linear weight - i.e. n/polylog(n), and since n = 2N
the weight considered above is merely polylog(n). The reason is that as we later show in the
proof, the typical error of the Gibbs state is not arbitrary, but can be further characterized
as being formed on very small clusters - clusters of logarithmic size (see Lemma 27). We
would like the check terms of the p-th projective code CN,p to be such that any error of
logarithmic size expands very well in the Tanner graph of the code. The isoperimetric
inequality provided here on this very restricted error model will allows us to argue that we
can use a Sipser-Sipelman type decoder to correct all errors of the thermal state with high
probability.

7 Behavior of Errors in the Gibbs State of qLTCs

7.1 The Thermal Gibbs by the Metropolis-Hastings Algorithm
As mentioned in the introduction, a recurring barrier in the emergent field of robust quantum
entanglement is to establish a connection between the energy of a state, w.r.t. some local
Hamiltonian, and the “error” experienced by that state.

The main observation in this section is that specifically for qLTC’s the Gibbs state can
be formulated as a random error process (and specifically, a discrete finite Markov process)
where the errors occur independently at each step, with an error rate that is comparable to
the energy parameter of the state. This will then allow us to conclude that for sufficiently
small energy of the Gibbs state the resulting errors can only form very small clusters.

I Definition 18 (The Metropolis-Hastings Random Process Stabilizer Hamiltonians). Let G be
a stabilizer group with a corresponding Hamiltonian H = H(G) on n qubits H =

∑m
i=1Hi

with m local terms, and λ(H) = λ = m/n. Let β ≥ 0 be finite. Define a Markov random
process M on a finite graph G = (V,E) whose vertex set V is formed by considering the
uniform mixture τ0 on the set of zero-eigenstates of H, and an additional vertex for each
unique state formed by applying a Pauli error applied to τ0: V := {P · τ0 · P, P ∈ Pn} For
any two vertices τi, τj such that τj = PτiP where P is a single qubit Pauli P ∈ P we define
the following transition probabilities: ∀i 6= j Mi,j = 1

4n min
{

1, exp
{
β(Eτi − Eτj )/λ

}}
and

Mi,i = 1−
∑
j 6=iMi,j where E(τi) = tr(τiH)

We note that under the definition above, any two vertices connected by an element of the
stabilizer group g ∈ G, i.e. τi = gτjg

† will correspond to the same vertex - since it preserves
the uniform distribution on the codespace. In particular we have |V | = |Fn2/Cx| = |Fn2/Cz|.
More generally for stabilizer codes, each vertex corresponds to a minimal weight error modulo
the stabilizer group. Also note, that the transition probabilitiesMi,j correspond to a 2-step
process, where at the first step one samples a uniformly random index k ∈ [n] and then
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applies a uniformly random Pauli error E on that index with probability corresponding to the
exponent of energy differences. We also note that the normalization by factor of 4n stems
from the size of the single-qubit Pauli group |P| = 4.

I Fact 19. There exists a stationary distribution of M, denoted by ρ0 and it satisfies:
ρ0 = 1

Z e
−βH̃ where H̃ = H/λ and Z = tr(e−βH̃) is the partition function for value β.

7.2 The Thermal Gibbs Markov Process for qLTC’s
As a next step, we consider a truncated random processMk for integer k where one only
considers errors up to some “typical” weight k, beyond which the measure of the stationary
distribution of the original processM is negligible.

I Definition 20 (k-Truncated Markov chain). Let C be a quantum stabilizer code on n qubits
with m checks, and let H = H(C). Set λ(H) = λ = m/n. Let β ≥ 0 be finite. For any
two vertices τi, τj such that τj = PτiP where P is a single qubit Pauli P ∈ P we define the
following transition probabilities:

∀i 6= j Mi,j =
{

0 if ∆(τj , τ0) > k/n
1

4n min
{

1, exp
{
β(Eτi − Eτj )/λ

}}
o/w

where ∆(τi, τj) is the minimal weight of a Pauli P such that PτiP = τj, and Mi,i =
1−

∑
i 6=jMi,j

In general, given the energy parameter β > 0 one cannot bound a so-called “typical”
weight, for which the measure of errors above that weight are negligible in the thermal Gibbs
state e−βH . However, for the specific case of qLTC’s such a bound is readily available, via
the soundness parameter ε > 0.

I Proposition 21 (Truncated Metropolis Hastings Approximates the Gibbs State of a qLTC).
Suppose in particular that H = H(C) where C is a (q, s) sLTC, and set λ = λ(H). Let
0 < δ < 1/2 and denote k = nδ. Let ρk denote a stationary distribution of the k-th
truncated Markov chain Mk. Then for β ≥ 5 ln(1/δ)/s the k-th truncated Markov chain
approximates the thermal Gibbs state of the scaled Hamiltonian H̃ = H/λ:

∥∥∥ρk − 1
Z e
−βH̃

∥∥∥ ≤
2n · e−2n·ln(1/δ)·δ, Z = tr(e−βH̃)

7.3 Percolation Behavior of Random Errors in the Gibbs State of qLTC’s
We now recall some of the definitions of Fawzi et al. [6]. The first one is that of an α-subset
which is a subset that has a large intersection with some fixed subset:

I Definition 22 (α-subset). Let G = (V,E) be a graph, X ⊆ V , and α ∈ [0, 1]. An α-subset
of X is a set S ⊆ V such that |S∩X| ≥ α · |S|. We denote by maxconnα(X) as the maximum
size of an α connected subset of X.

The second definition is that of a locally-stochastic random error model, which generalizes
an independent random error model in that the probability of a set decays exponentially in
its size:

I Definition 23 (Locally-stochastic). Let V be a set of n elements. A random subset
X ⊆ V is said to be locally-stochastic with parameter p ∈ [0, 1] if for every S ⊆ V we have
P(X ⊇ S) ≤ p|S|
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We now recall Theorem 17 of [6] on the percolation behavior of α-subsets. It states, roughly,
that the size of the maximal α-connected component when choosing vertices at random with
probability p drops exponentially in dpα. We rephrase the theorem as the following lemma:

I Lemma 24 (Percolation behavior for locally-stochastic random errors). Let G = (V,E) be
a graph on n vertices, such that each vertex has at most D = D(n) neighboring edges. Let
α > 0. Let X ⊆ V be a random subset of V that is locally stochastic with parameter p. There
exists a constant c such that if p < c/D we have P(maxconnα(X) ≥ t) ≤ 2n · (2Depα)t

Consider now a local Hamiltonian H, we define its interaction graph as follows:

I Definition 25 (Interaction graph of a local Hamiltonian). Let H =
∑
iHi denote a local

Hamiltonian on n qubits. The interaction graph of H, G(H) = (V,E) is defined by V = [n]
corresponding to the n qubits, and e = (i, j) ∈ E if qubits i and j share a local term He in H.

We would like to show that the k-th truncated Metropolis-Hastings random process on H is
locally-stochastic for sufficiently small k.

To see why this is a non-trivial statement, recall that the MH random process does not
induce independent errors, since the probability of adding error to a given qubit depends
on the additional energy cost induced by flipping that qubit, and that additional energy
depends on the specific error configuration on its neighboring qubits.

In fact this random error model implies that errors are more likely to occur near previously
sampled errors thus leading to a behavior that is completely opposite to local stochasticity.
However, we show that if k is significantly less than n/D then this effect is negligible compared
to the probability of sampling an error that is not connected to any other error, and hence
approximately these errors are locally-stochastic.

I Lemma 26 (The Thermal Gibbs State is Locally-Stochastic). Let C be a stabilizer code and
let H = H(C) denote the corresponding local Hamiltonian. Suppose that the corresponding
interaction graph G(H) has degree at most D. Let α ∈ (0, 1], and consider the k-th truncated
Markov chain Mk and its stationary distribution ρk, for k ≤ n

2e(De300)1/α If the energy
density is sufficiently large compared to the inverse temperature: λ ≥ β ln(n) then E ∼ ρk is
locally-stochastic with parameter at most p0 ≤ 2ke/n with probability at least 1− (k + 1)n−4.

We conclude our central lemma of this section - which is that the thermal Gibbs state
e−βH where H is a Hamiltonian corresponding to a qLTC, and β is sufficiently large, satisfies
a percolation property - namely that the maximal α-connected component of a typical error
E is of logarithmic size:

I Lemma 27 (Typical error components are small for the thermal state of qLTC’s). Let C
be a (q, s)-sLTC on n qubits and let H(C) be its corresponding Hamiltonian, λ(H) = λ.
Suppose that the interaction graph of H, G(H), is of degree most D. Let α > 0. Let
τ = E · τ0 · E be a random state (the uniform code mixed state conjugated by a random error
E) sampled according to the distribution e−βH/λ/Z for (10/α) · ln(D)/s ≤ β ≤ λ/ ln(n) Then
P (maxconnαE > ln(n)/100) ≤ n−3

The range of values β

It is insightful at this point to consider the statement of the lemma w.r.t. the parameter β:
the statement of the lemma requires that β is within some range - between loglog(n) and
log(n). This initially might seem strange as intuitively, increasing β can only improve the
ability to correct errors since it corresponds to a regime of much fewer errors - e.g. lower
temperature.
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However in Lemma 26 it turns out that the analysis is more subtle: indeed we require β
to be also sufficiently small so that the error model is locally stochastic: if β is too large (i.e.
the temperature is very low) it turns out that a qubit that is hit by an error is much more
likely to be hit by another error - this contrary to local stochasticity, whereas for higher
temperatures this phenomenon is greatly alleviated.

Hence, the phenomenon of locally stochastic errors, that we exploit to demonstrate a
shallow decoder is in fact relevant only for a median range of temperatures: for very low
temperatures, the error is no longer locally stochastic, but in that range - the absolute number
of errors is extremely small to allow worst-case error correction. For higher temperatures,
the absolute number of errors is very large but conforms to the locally stochastic model
which is treatable by a local decoder. This results in a “win-win” situation, which is handled
case-by-case in the proof of the main theorem.

8 A Shallow Decoder for Low Error Rate

The last component of the proof is to demonstrate a shallow circuit that can correct the
thermal state e−βH to a code-state, for sufficiently large β > 0 (finite or not). In the previous
section we’ve seen that such a state can be modeled as a random error process with small rate.
We would now like to leverage that understanding, together with the small-set expansion
property of the n-projective cube to show that the quantum version of the Sipser Spielman
decoder yields a shallow decoder.

Inspired by the decoding algorithm of Fawzi et al. [6] we propose an algorithm for
decoding a random error E in depth proportional to log(maxconnα(E)). It is based on a
parallel version of the Sipser-Spielman decoder, which we state as follows:

I Lemma 28 ([18], Theorem 11). (Parallel decoder for small-set expander graphs). Let C be a
code on n bits and let G denote the Tanner graph of C. Suppose G is a (c, d)-bi-regular graph
on n vertices. The parallel decoder A is an algorithm that given error E = E1 iteratively
replaces it with errors Ei for i ≥ 1. At step i the algorithm may modify bits only in the
support of Ei ∪ Γ(Ei), and in particular, examines for each bit k only Γ(k). If, in addition,
at the beginning of iteration i we have: |Γ(Ei)| ≥ |Ei| · c · (3/4 + ε) for some constant ε > 0,
then after step i the weight of the residual error Ei decreases by a multiplicative factor:
|Ei+1| ≤ |Ei| · (1− 4ε)

Our quantum decoder is an application of the Sipser-Spielman decoder on the individual
X,Z errors.

I Algorithm 29 (Shallow Decoder B).
Input: a quantum state ρ on n qubits, a set of X checks Cx and a set of Z checks Cz.
1. Run the decoder A w.r.t. Z errors using Cx.
2. Run the decoder A w.r.t X errors using Cz.

I Lemma 30. Consider the projective code C = (Cx, Cz) on n qubits with p = n/2, and let
E ∈ Pn denote an error with far-away and small connected components: maxconnα(E) ≤
ln(n)/100, α = 1/(γloglog(n)) where γ = log(1 − 4 · (3/16)) is the constant implied by
Lemma 28 for ε = 3/16. Then shallow decoder B runs in depth at most 2γlog2log(n) steps
and satisfies: B ◦ E ◦ ρ = ρ ∀ρ ∈ C

We note here that the decoder B requires extra ancillary bits for syndrome computation,
hence the notation B ◦ E ◦ ρ signifies a quantum channel, where some of the qubits are
discarded after computation.
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9 Global Entanglement for Thermal States

9.1 The construction
1. Step 1 – The projective code:

Fix n as the number of qubits in the code. As the basis for our construction we
consider the (N, p) projective code C for p = N/2. By Lemma 16 we can choose
N = Θ(log(n)) such that C is a qLTC [[n, 1, nc]] for some c > 0 with qLTC parameters
(q = log(n), s = 1/log2(n)). By construction, the interaction graph of H(C), i.e. G(H(C))
is D-regular with D = 2 · log(n) and the local Hamiltonian H has m = 2n · log(n) check
terms.

2. Step 2 – Amplification:
We apply Proposition 9 to conclude the existence of a qLTC, denoted by C′ with parameters
(q′ = dlog3(n)e, s′ = 1/e) and λ = log4(n). The interaction graph of the Hamiltonian of
C′, i.e. G(H(C′)) has degree at most D′ ≤ dlog7(n)e.

3. Step 3 – Union:
Finally, we consider the union of the checks of C and C′ and denote the union by Cpa - this is
our construction. We denote the number of checks by mpa. We have that, Cpa is [[n, 1, nc]]
quantum code, and is qLTC with parameters: (qpa = log3(n), spa = 1/2e,Dpa ≤ 2log7(n))
and λpa ≥ 2log4(n).

We note that the the amplified code C′ has constant soundness for all non-zero distances,
but it is not clear a-priori why it should also satisfy ker(C) = ker(C′). Hence, the union of C
and C′ is taken in order to enforce the ground-state of the final code to equal that of Cpa.
This slightly reduces the soundness, and increases the degree of the interaction graph of the
final code. Also note that the check terms of Cpa commute in pairs.

9.2 Main Theorem
We now state formally our main theorem.

I Theorem 31. Let Cpa denote the code constructed above on n qubits, and let H = H(Cpa),
λ = λ(H) and inverse temperature: β ≥ 20e · log2log(n) Any quantum circuit U on a ≥ n

qubits that approximates the thermal state of H̃ = H/λ on a set of qubits S, |S| = n,
at inverse temperature β,

∥∥∥tr−S(U |0⊗a〉〈0⊗a|U†)− e−βH̃/Z
∥∥∥

1
≤ 0.1n−2 has depth at least

d(U) = Ω(log(n))
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