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Abstract
The linear cross-entropy benchmark (Linear XEB) has been used as a test for procedures simulating
quantum circuits. Given a quantum circuit C with n inputs and outputs and purported simulator
whose output is distributed according to a distribution p over {0, 1}n, the linear XEB fidelity of
the simulator is FC(p) = 2nEx∼pqC(x) − 1, where qC(x) is the probability that x is output from
the distribution C |0n〉. A trivial simulator (e.g., the uniform distribution) satisfies FC(p) = 0,
while Google’s noisy quantum simulation of a 53-qubit circuit C achieved a fidelity value of
(2.24± 0.21)× 10−3 (Arute et. al., Nature’19).

In this work we give a classical randomized algorithm that for a given circuit C of depth d with
Haar random 2-qubit gates achieves in expectation a fidelity value of Ω( n

L
· 15−d) in running time

poly(n, 2L). Here L is the size of the light cone of C: the maximum number of input bits that each
output bit depends on. In particular, we obtain a polynomial-time algorithm that achieves large
fidelity of ω(1) for depth O(

√
logn) two-dimensional circuits. This is the first such result for two

dimensional circuits of super-constant depth. Our results can be considered as an evidence that
fooling the linear XEB test might be easier than achieving a full simulation of the quantum circuit.
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1 Introduction

Quantum computational supremacy refers to experimental violations of the extended Church
Turing Hypothesis using quantum computers. The most famous (and arguably at this point
the only) example of such an experiment was carried out by Google [2]. The Google team
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constructed a device D that provides a “noisy simulation” of a quantum circuit C with n
inputs and n outputs. The device can be thought as a “black box” that samples from a
distribution pD over {0, 1}n that (loosely) approximates the distribution qC that corresponds
to measuring C applied to the all-zeroes string 0n. The quality of the device was measured
using a certain benchmark known as the Linear Cross-Entropy benchmark (a.k.a. Linear
XEB). The computational hardness assumption underlying the experiment is that no efficient
classical algorithm can achieve a similar score. In this paper we investigate this assumption,
giving a new classical algorithm for “spoofing” this benchmark in certain regimes. While our
algorithm falls short of spoofing the benchmark in the parameter regime corresponding to
the Google experiment, we do manage to achieve non-trivial results for deeper circuits than
were known before. To our knowledge, this is the first algorithm that directly targets the
linear XEB benchmark, without going through a full simulation of the underlying quantum
circuit. Thus our work can be viewed as evidence that obtaining non-trivial performance for
this benchmark is not equivalent to simulating quantum circuits.

The linear XEB benchmark is defined as follows. Let C be an n-qubit quantum circuit
and qC : {0, 1}n → [0, 1] be the pdf of the distribution obtained by measuring C|0n〉. For
each x ∈ {0, 1}n, the instance linear XEB of x is defined as FC(x) := 2nqC(x)− 1. For every
probability distribution p, the linear XEB fidelity of p with respect to circuit C is defined as

FC(p) := E
x∼p

[FC(x)] = 2n
∑

x∈{0,1}n
qC(x)p(x)− 1 .

If C is a fully random circuit, then in expectation a perfect simulation p = qC achieves
FC(p) = 2.1 Google’s “quantum computational supremacy” experiment demonstrated a
noisy simulator sampling from a distribution p with FC(p) ≈ (2.24± 0.21)× 10−3 for two
dimensional 53-qubit circuits of depth 20. A trivial simulation (e.g. a distribution p which is
the uniform distribution or another distribution independent of C) will achieve FC(p) = 0.
Motivated by the above, we say that p achieves non-trivial fidelity with respect to the circuit
C if FC(p) = 1/poly(n).2

The computational assumption underlying quantum computational supremacy with
respect to some distribution D over quantum circuits can be defined as follows. For every
efficient randomized classical algorithm A, with high probability over C ∼ D , if we let AC be
the distribution of A’s output on input C, then FC(AC) = n−ω(1). That is, the distribution
output by A(C) has trivial fidelity with respect to C. Aaronson and Gunn [1] showed that
this assumption follows from a (very strong) assumption they called “Linear Cross-Entropy
Quantum Threshold Assumption” or XQUATH.3

In this work, we present an efficient classical algorithm A that satisfies FC(AC) = Ω(1)
for quantum circuit C sampled from a distribution with Haar random 2-qubit gates with
small light cones (see Definition 4).4 Specifically, we prove the following theorem:

1 This follows since qC is the Porter Thomas distribution. However, qC is not the maximizer of FC(p): a
distribution p that has all its mass on the mode x of the distribution qC will achieve FC(p) ≥ Ω(n) for
fully random circuits, and even higher values for shallower circuits as we’ll see below.

2 As mentioned above, for an ideal simulation in random circuits the fidelity will be a constant. For noisy
quantum circuits such as Google’s, the fidelity is roughly exp(−εs) where ε is the level of noise per gate
and s = Θ(d · n) is the number of gates in the circuit.

3 While [1] state their result for Ω(1) fidelity, their proof shows that the XQUATH assumption implies
that classical algorithms can not achieve 1/poly(n) empirical fidelity with poly(n) samples.

4 If C is a quantum circuit and i is an output bit of C, then the light cone of i is the set of all input
bits j that are connected to i via a path in the circuit. For general circuits the light cone size can
be exponential in the depth, but for one or two dimensional circuits, of the type used in quantum
supremacy experiment, the light cone size is polynomial in the depth.
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I Theorem 1 (Linear XEB for circuits with small light cones). Let n, d, L ∈ N and let D be
a distribution over n-qubit quantum circuits with (i) light cone size at most L, (ii) depth
at most d, and (iii) Haar random 2-qubit gates. Then, there exists a classical randomized
algorithm A running in poly

(
n, 2L

)
time such that

E
C∼D

[FC(AC)] ≥
(
1 + 15−d

)b nLc − 1 .

For constant dimensional circuits (such as the 2D quantum architecture used by Google),
Theorem 1 yields the following corollary:

I Corollary 2 (Constant dimensional circuits). Let n ∈ N and d = O(logn). Let c ∈ N be a
constant and D be the distribution of n-qubit c-dimensional circuits of depth d with Haar
random 2-qubit gates. There is a randomized algorithm A running in time 2O(dc) such that

EC∼DFC(AC) = 1/poly(n) .

Proof. A c-dimensional of depth d circuit has light-cone of size L = O(dc) = no(1) for
d = O(logn). Let d = α logn. By plugging in the parameters of Theorem 1, we see that
(using log2 15 < 4 and n/L ≥ n1−o(1)) the expected value of the fidelity is at least

(1 + 2−4d)n
1−o(1)

− 1 ≥ Ω(n
1−o(1)

n4α ) .

The right hand side is at least 1/poly(n) for every constant α and in fact is at least ω(1) for
α < 1/4. J

The bounds of Corollary 2 do not correspond to the Google experiment where the depth
is roughly comparable to

√
n, rather than logarithmic. However, prior works in the literature

were only able to achieve good linear XEB performance for circuits of constant depth (see
Section 1.2). More importantly (in our view) is that our bounds show that it may be possible
to achieve good linear XEB performance without achieving a full simulation.

1.1 From expectation to concentration
In actual experiments, one measures the empirical linear XEB, obtained by sampling
x1, . . . , xT independently from the distribution p and computing 1

T

∑T
i=1 2nqC(xi)− 1. Thus

in our classical simulation we want to go beyond achieving large expected linear XEB
benchmark, to show that our algorithm A actually achieves non-trivial empirical linear XEB
with probability at least inverse polynomial over the choice of the circuit and with a number
of samples T that is at most polynomial in n. These probability bounds are more challenging
to prove, and at the moment our results are weaker than the optimal bounds one can hope
for.

Probability over circuits

For bounding the probability over circuits we show in Section 5.1, that in the setting of
Theorem 1 , for logarithmic depth circuits, we can obtain 1/poly(n) fidelity with probability
at least 1/poly(n). We also obtain more general tradeoffs between the fidelity, probability,
and depth, see Corollary 12. We conjecture that random circuits from the distributions we
consider exhibit much better concentration, and fact that the fidelity sharply concentrates
around its expectation.

ITCS 2021
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Sample complexity, or probability over the algorithms’ randomness

Bounding the sample complexity of our algorithm is a more difficult task then the expectation
analysis because it requires higher moment information on FC(AC). We obtain only partial
bounds in this setting, which we believe to be far from optimal. In Section 6 we show that
an upper bound for the collision probability of qC is sufficient to give an upper bound for the
sample complexity of our algorithm. Specifically, letting CP (q) =

∑
x∈{0,1}n q(x)2, we show

that if CP (q) = M · 2−n then the number of samples needed for the empirical linear XEB to
achieve a value of at least ε isM ·exp

(
O(ε · 15d)

)
. In particular, for logarithmic depth circuits

we can get inverse-polynomial empirical fidelity using O(M) samples. For random quantum
circuits, where qC is the Porter-Thomas distribution (with qC(x) drawn independently as the
square of a mean zero variance 2−n normal variable), it is known that CP (qC) = O(2−n),
i.e., M = O(1). For shallow circuits, of the type we study, we show in Lemma 16 that
CP (qC) = O(2−n) for random one dimensional circuits of depth at least c logn for some
constant c > 0, which shows that we can achieve for such circuits inverse polynomial empirical
fidelity using a polynomial number of samples. While this is significantly more technically
challenging to prove, we conjecture that the same collision probability bound holds for two
dimensional circuits of depth Ω(

√
logn). This conjecture, if true, will imply that for such

circuits we can achieve 1/poly(n) empirical fidelity using a polynomial number of samples, and
constant fidelity using a sub-exponential (e.g. exp

{
exp
{
O(
√

logn)
}}

) number of samples.5

1.2 Prior works

Prior classical algorithms mostly focused on the task of obtaining a full simulation (sampling
from C|0n〉 or from a distribution close to it in statistical distance). We are not aware of any
prior work that directly targeted the linear XEB measure and gave explicit bounds for the
performance in this measure that are not implied by approximating the full distribution.

Napp et al [8] gave an algorithm to simulate random two-dimensional circuits of some
small constant depth. They gave strong theoretical evidence that up to a certain constant
depth, such circuits can be approximated by 1D circuits of small entanglement (i.e., “area
law” as opposed to “volume law”), which can be effectively simulated using Matrix Product
States [10]. However, [8] also gave evidence that the system undergoes a phase transition
when the depth is more than some constant size (around 4), at which case the entanglement
grows according to a “volume law” and hence their methods cannot be used to simulate
circuits of super-constant depth.

Another direction of approximating large quantum circuits has considered the effect of
noise. Some restricted classes of noisy quantum circuits were shown to be simulated by
polynomial time classical algorithms in [4, 11] (in contrast to their noiseless variant [3]). This
was also extended to more general random circuits by [6]. Very recent work has given numerical
results suggesting that states generated by noisy quantum circuits could be approximated by
Matrix Product States or Operators under the state fidelity measure [12, 9].6 Low degree
Fourier expansions yield other candidates for approximating such quantum states [6, 4].

5 Very recently we have learned that Dalzell, Hunter-Jones, and Brandao (personal communication)
refuted Conjecture 10 though we have not yet had a chance to verify their proof. The refutation
of Conjecture 10 would only rule out a specific approach to upper bound the sample complexity. It
is still possible that our algorithm achieves 1/poly(n) empirical fidelity using a polynomial number of
samples for two dimensional circuits of depth Ω(

√
logn).

6 [12] briefly discusses the linear XEB measure as well, see Figure 7 there.



B. Barak, C.-N. Chou, and X. Gao 30:5

2 Preliminaries

In this section we introduce some of the notions we use for quantum circuits, and in particular
distributions of random quantum circuits of fixed architecture, as well as tensor networks
for analyzing quantum circuits. We include this here since some of this notation, and in
particular tensor networks, might be unfamiliar to theoretical computer science audience.
However, the reader can choose to skip this section and refer back to it as needed.

For n ∈ N, an n-qubit quantum state |ψ〉 =
∑
x∈{0,1}n αx |x〉 is a unit vector in C2n . We

let I,X, Y, Z denote the Pauli matrices where

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 i

−i 0

]
, and Z =

[
1 0
0 −1

]
.

The following definition captures the notion of an “architecture” of a quantum circuit
(see Figure 1 for an example):

I Definition 3 (Circuit skeleton and light cone). Let n ∈ 2N and d ∈ N, an n-qubit depth d
circuit skeleton S is a directed acyclic graph with d+ 2 layers with the following structure.
For convenience, we start the index of layers from 0.

The 0th and the (d + 1)th layer has n nodes corresponding to the n input and output
qubits. Each node in the first layer has exactly one out-going edge to the next layer while
each node the last layer has exactly one in-going edge from the previous layer.
Each of the other layers has exactly n/2 nodes and each node has exactly two in-going to
the next layer and two out-going edges from the previous layer. Specifically, the first edge
ith gate is indexed by 2i−1 while the second edge is indexed by 2i for each i = 1, 2, . . . , n/2.
For each i = 1, 2, . . . , n, the ith input node connects to the ith edge of the second layer
while the ith edge of the (d+ 1)th layer connects to the ith output node.

Note that with the above definition, a circuit skeleton S can be specified by d + 1 many
permutations π(0), π(1), . . . , π(d) ∈ Sn. Namely, for each t = 0, 1, 2, . . . , d − 1 and i =
1, 2, . . . , n, the ith edge of the tth layer connects to the π(t)(i)th edge of the (t+ 1)th layer.

For every circuit skeleton G, the light cone size of G is the maximum over all output
qubits i of the size of the set {j : j is input qubit connected to i in G}.

(d)

(e)

(f)

(a)
(c)

(b)

x1
x2

x3
x4

x5
x6

x7
x8

y1
y2

y3
y4

y5
y6

y7
y8

Figure 1 An example of 1D circuit skeleton with n = 8 and d = 3. In this example the
permutations are π(0) = π(4) = id, π(1) = π(3) = (18765432), π(2) = (81234567).

Next, we define the light cone for an output qubit and the light cone size for a circuit
skeleton.

I Definition 4 (Light cone). Let S be a circuit skeleton and i be an output qubit. The light
cone of i is the set of all input vertices in S that has a path from left to right that ends at i.
The light cone size of S is then defined as the largest light cone size of an output qubit in S.

Note that the light cone size of the 1D circuit in Figure 1 is 6, which is less than the
number of qubits. Also, it turns out that computing the marginal of an output qubit only
requires the information from the light cone.

ITCS 2021
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I Lemma 5 (Marginal probability and light cone). Let S be a circuit skeleton with light
cone size L and C be a circuit using skeleton S. For each output qubit of C, the marginal
probability can be computed in time O(2L).
Proof of Lemma 5. We use the circuit skeleton in Figure 1 as an illustrating example. For
an output qubit in C, to compute its marginal probability it suffices to compute the input
state to the gate it connects to. For example, for output qubit y3, it suffices to compute the
input state to gate (a).

Similarly, to compute the input state of a gate, it suffices to compute the input states of
the gate it connects to from the previous layer. Namely, to compute the input state of gate
(a), it suffices to compute that of gate (b) and (c). If we continue this process inductively,
the only input state needed to compute the marginal probability of an output bit is then
the one lies in its light cone. In this example, to compute the marginal probability of y3, it
suffices to consider only x1, x2, . . . , x6.

Finally, to compute the input states of all the intermediate gates, it suffices to perform
2L × 2L matrix vector multiplication because each intermediate state is of size at most
L. While all the above operations can be done in O(2L) times, computing the marginal
probability of an output qubits in C only requires O(2L) time. J

Now, we are able to formally define random quantum circuits.
I Definition 6 (Random quantum circuits). Let n ∈ 2N, d ∈ N. A distribution D of n-qubit
depth d random circuits consists of an n-qubit depth d circuit skeleton S and ensembles {Ei,j}
over 4× 4 unitary matrices for each i = 1, . . . , d and j = 1, . . . , n/2.

A random quantum circuit C sampled from D by sampling a 4×4 unitary matrix U (t)
i from

E(t)
i and assigning U (t)

i to the ith node of the tth layer for each t = 1, . . . , d and i = 1, . . . , n/2.
Specifically, if each E(t)

i is Haar random, then we say D is Haar random 2-qubit circuits
over S.

2.1 Tensor networks
Tensor network is an intuitive graphical language that can be rigorously used in reasoning
about multilinear maps. Especially, it finds many applications in quantum computing since
the basic operations such as partial measurement are all multilinear maps. In this paper, we
restrict our attention to qubits (as opposed to the general case of qudits) and only to gates
that act on two qubits.

A
i1

i2

j1

j2

(a)

bi

(b)

i j

(c)

Figure 2 Three basic elements in tensor networks. (a) Gate: the figure represents∑
bi,bj∈{0,1}Abi,bj |bi〉 〈bj |. (b) State: the figure represents 〈bi|. (c) Line: the figure represents

δbi,bj .

In a tensor network, we represent a unitary matrix (e.g., a gate) as a box with lines on
the sides (see Figure 2a). Each line represents a coordinate of the gate and in this paper each
coordinate has dimension 2 and is indexed by {0, 1}. Specifically, a line on the left represents
a column vector (i.e., |·〉) while a line on the right represents a row vector (i.e., 〈·|).7 For
example, Figure 2a represents

∑
bi,bj∈{0,1}Abi,bj |bi〉 〈bj |.

7 This is when the tensor network is written left to right - sometimes it is written top to bottom, in which
case a line on the top represents a column vector and a line on the bottom represents a row vector.
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Similarly, a state (e.g., a qubit)is represented by a triangle with line only on one side and
it is a |·〉 (resp. 〈·|) if the free-end of the line is left (resp. right). For example, Figure 2b
represents 〈bi|.

Semantically, a pure line refers to an indicator function8 for its two ends. For example,
the line in Figure 2c reads as

∑
b)i,bj∈{0,1} δbi,bj 〈bi|bj〉 where δbi,bj = 1 if bi = bj ; otherwise

it is 0.

3 Our Algorithm

We now describe our classical algorithm that spoofs the linear cross-entropy benchmark in
shallow quantum circuits. The key idea is that rather than directly simulating the whole
quantum circuit, our algorithm only computes the marginal distributions of few output
qubits and then samples substrings for those qubit accordingly. We sample the remaining
subits uniformly at random. Intuitively, due to the correlation on those output qubits, one
can expect that the linear cross-entropy of our algorithm could be better than uniform
distribution, but the analysis is somewhat delicate. Because consider shallow quantum
circuits (of at most logarithmic light cone size), the marginal of few output qubits can be
efficiently computed.

Algorithm 1 Classical algorithm for spoofing linear XEB in shallow quantum circuits.

Input: A quantum circuit C sampled from DS , a Haar random distribution over an n-qubit
circuit skeleton S with light cone size at most L.

1: We set m be some parameter in {1, . . . , bn/Lc}. (We set m = bn/Lc to obtain the result
of Theorem 1 as stated.)

2: Find m output qubits i1, . . . , im such that their light cones are disjoint.
3: Calculate the marginal probability of each output qubits i1, . . . , im.
4: Sample xi1 , . . . , xim according to the marginal probabilities calculated in the previous

step. For any i /∈ {i1, . . . , im}, sample xi uniformly random from {0, 1}.
Output: x.

Running time of the algorithm

The total running time of Algorithm 1 is at most poly(n, 2L). Finding m outputs with disjoint
light cones takes poly(n) time by a greedy algorithm. The second step takes poly

(
n, 2L

)
time because it suffices to keep track of the 2L × 2L density matrix recording the marginal
probability of every qubit in the light cone of ij for each j ∈ [m] (see Lemma 5). The final
step of sampling uniform bits for the remaining outputs can be done in polynomial time.

3.1 Analysis
The following theorem implies Theorem 1 by setting m = bn/Lc:

I Theorem 7 (Linear XEB for circuits with small light cones.). Let n, d, L ∈ N and let D be a
distribution over n-qubit quantum circuits with (i) light cone size at most L, (ii) depth at
most d, and (iii) Haar random 2-qubit gates. Then, letting AC be the distribution output by
Algorithm 1 on input C,

E
C∼D

[FC(AC)] ≥
(
1 + 15−d

)m − 1 ,

where m is the parameter chosen in step 1 of the algorithm.

8 Also known as contraction.

ITCS 2021
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The proof of Theorem 7 consists of three steps:
1. We reduce analyzing analyzing the expectation when the algorithms samples the marginals

of m output qubits into analyzing it for a single output qubit.
2. We apply the integration formula for Haar measure and rewrite the expected linear XEB

of a single qubit into a tensor network.
3. We then perform a change of basis on the tensor network and turn the single qubit

analysis into a Markov chain problem where the expected linear XEB of a single qubit
can be easily lower bounded.

Since the heart of the proof is the single output qubit analysis, we will describe it first.

4 Single qubit analysis

In this section, we prove the m = 1 case of our algorithm. That is, we prove that for a single
output qubit, the expected contribution to linear XEB is of the order of 15−d.

I Theorem 8 (Linear XEB of a single output qubit). Let n, d ∈ N and D be distribution over
n-qubit quantum circuits with depth at most d and with Haar random 2-qubit gates. For
C ∼ D, let U denote the unitary matrix computed by C. For each i ∈ [n], we have

E
C∼D

[
q2
C,i,0 + q2

C,i,1
]
≥ 1 + 15−d

2 ,

where qC,i,b = Prx∼qC [xi = b].

We prove Theorem 8 by reducing to a Markov chain problem using tensor networks.
Without loss of generality we can assume i = 1. Observe that

q2
C,1,0 + q2

C,1,1 =
1 + tr

(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2

2 (1)

So our goal is to show that

E
C∼D

[
tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2] ≥ 15−d . (2)

Let us start with rewriting the trace term of Equation 2 into an equivalent tensor network
expression as follows.

tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2 =

U1

U†1

U1

U†1

U2

U†2

U2

U†2

Ud

U†d

Ud

U†d

Z ⊗ I⊗n−1
0n

0n

0n

0n

π(1) · · ·

· · ·

· · ·

· · ·

π(1)

π(1)

π(1) Z ⊗ I⊗n−1

π(0)

π(0)

π(0)

π(0)

.

Next, for a single gate g in a quantum circuit, its expected behavior over the choice of
2-qubit Haar random gates can be characterized in the following lemma.

I Lemma 9. Let Ug be Haar random 2-qubit gate, then the following holds.

E
Ug



Ug
1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d


=

∑
σ1,σ2,σ′1,σ

′
2∈{I,X,Y,Z}

σ1
1a

1b

σ1
1c

1d

σ2
2a

2b

σ2
2c

2d

Mσ1,σ2,σ′1,σ
′
2

σ′1

σ′1

σ′2

σ′2

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

.
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where

Mσ1,σ2,σ′1,σ
′
2

=

II IX IY · · · ZZ


1 0 0 0 0 II

0 1
15

1
15 · · · 1

15 IX

0 1
15

1
15 · · · 1

15 IY

0
...

...
. . .

...
...

0 1
15

1
15 · · · 1

15 ZZ

.

The proof of Lemma 9 is based on the integration formula [5] for Haar measure. We
postpone the proof of Lemma 9 to Subsection 4.1. Intuitively, the lemma says that by a
change a basis, the expected behavior of a single Haar random 2-qubit gate can be exactly
understood by an explicit transition matrix M . By the linearity of taking expectation, we
can apply Lemma 9 on every gates in the circuit C and thus the whole tensor network is
simplified to a Markov chain. Concretely, we have the following lemma.

I Lemma 10 (Rewrite Equation 2 as a Markov chain). Let n, d ∈ N and D be a Haar random
distribution over an n-qubit depth d circuit skeleton S with permutations π(0), π(1), . . . , π(d).
For C ∼ D, let U denote the unitary matrix computed by C.

E
C∼D

[
tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2] =
∑

σ
(t′)
i′
∈{I,X,Y,Z}

i′=1,2,...,n
t′=1,2,...,d+1

d+1∏
t=0

V (t)
({
σ

(t′)
i′

})
(3)

where

V (t)
({
σ

(t′)
i′

})
=



∏n
i=1 tr

(
I+Z

2
σ

(1)
i√
2

)2
, if t = 0∏n/2

i=1 Mσ
(t)
2i−1,σ

(t)
2i ,σ

(t+1)
π(t)(2i−1)

,σ
(t+1)
π(t)(2i)

, if t = 1, 2, . . . , d

tr
(
σ

(d+1)
1√

2 Z

)2
·
∏n
i=2 tr

(
σ

(d+1)
i√

2 I

)2
, if t = d+ 1 .

The proof of Lemma 10 is based on a careful composition of applying Lemma 9 on each
of the gates. We postpone the proof of Lemma 10 to Subsection 4.2. Now, we are ready to
prove Theorem 8 and complete the analysis for the expected linear XEB of single output
qubit.

Proof of Theorem 8. Lemma 10 rewrites the desiring quantity into the form of a Markov
chain so now it suffices to show that the right hand side of Equation 3 is at least 15−d.

Notice that for every possible assignment to {σ(t′)
i′ }, V ({σ(t′)

i′ }) ≥ 0. That is, it suffices
to find an assignment such that

∏d+1
t=0 V

(t)({σ(t′)
i′ }) ≥ 15−d. Specifically, let us consider the

following assignment. For all i = 1, 2, . . . , n and t = 1, 2, . . . , d+ 1, let

σ
(t)
i =

{
Z , if π(d) ◦ π(d−1) ◦ · · · ◦ π(t)(i) = 1
I , else .
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To analyze this assignment, let us start with the last layer. There we have σ(d+1)
1 = Z and

σ
(d+1)
i = I for each i = 2, 3, . . . , n and thus

V (d+1)({σ(t′)
i′ }) = tr

(
σ

(d+1)
1√

2
Z

)2

·
n∏
i=2

tr
(
σ

(d+1)
i√

2
I

)2

= tr
(
ZZ√

2

)2
· tr
(
II√

2

)2(n−1)
= 2n .

Next, for each t = 1, 2, . . . , d and i = 1, 2, . . . , n, observe that σ(t)
i = σ

(t)
π(t+1)(i) due to the

choice of the assignment. As a result, all the M
σ

(t)
2i−1,σ

(t)
2i ,σ

(t+1)
π(t)(2i−1)

,σ
(t+1)
π(t)(2i)

will be either

MI,I,I,I or MI,Z,I,Z . Specifically, for each t = 1, 2, . . . , d, since there is exactly one Z appears
among {σ(t)

i }i=1,...,n while the rest are Is, there is also exactly one MI,Z,I,Z term contributes
in V (t)({σ(t′)

i′ }) while the other terms are MI,I,I,I . Namely, we have

V (t)({σ(t′)
i′ }) = MI,Z,I,Z · (MI,I,I,I)n/2−1 = 1

15
for each t = 1, 2, . . . , d.

Finally, since there is exactly one Z appears in {σ(0)
i }i=1,...,n while the rest are Is, we

have

V (0)({σ(t′)
i′ }) =

n∏
i=1

tr
(
I + Z

2
σ

(0)
i√
2

)2

= tr
(
I + Z

2
Z√
2

)2
· tr
(
I + Z

2
I√
2

)2(n−1)

=
(

1√
2

)
·
(

1√
2

)2(n−1)
= 1

2n .

To sum up, we conclude that V ({σ(t′)
i′ }) =

∏d+1
t=0 V

(t)({σ(t′)
i′ }) = 15−d as desired. Specific-

ally, this implies Equation 2, i.e., EC∼D
[
tr
(
Z ⊗ I⊗n−1U† |0n〉 〈0n|U

)2
]
≥ 15−d. Combine

with Equation 1, this completes the proof of Theorem 8. J

4.1 Proof of Lemma 9
We start with applying the integration formula for Haar random matrix and considering its
tensor netowrok representation.

I Lemma 11 ([5, Equation 2.4]). Let U be a Haar random 2-qubit gate, then we have the
following. For each xa, xb, xc, xd, ya, yb, yc, yd ∈ {0, 1}2,

E
U

[
UxayaU

†
xbyb

UxcycU
†
xdyd

]
= 1

15 ·
[
δxaxbδxcxdδyaybδycyd + δxaxdδxbxcδyaydδybyc

]
− 1

60 ·
[
δxaxbδxcxdδyaydδybyc + δxaxdδxbxcδyaybδycyd

]
.

The above equation can be represented as the following tensor network.

E
Ug



Ug
1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d


= 1

15 ·


+

1a

1b

1c

1d

2a

2b

2c

2d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1a

1b

1c

1d

2a

2b

2c

2d


− 1

60 ·


+

1a

1b

1c

1d

2a

2b

2c

2d

1a

1b

1c

1d

2a

2b

2c

2d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d

1̃a

1̃b

1̃c

1̃d

2̃a

2̃b

2̃c

2̃d


.
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Next, the idea is to apply the Pauli identity (i.e., on each pair of (1a, 1b),(1c, 1d), (2a, 2b),
(2c, 2d), (1′a, 1′b), (1′c, 1′d), (2′a, 2′b), and (2′c, 2′d). Intuitively, this is doing a change of basis
from the standard basis to Pauli basis.

Let us first apply the Pauli identity on (1a, 1b) and (1c, 1d) note that we have

σ

σ′ σ′

σ

1a

1b
1c

1d

=


2

σ

σ′

1a

1b
1c

1d

, σ = σ′

0 , else

(4)

and

σ

σ′ σ′

σ

1a

1b
1c

1d

=


4

σ

σ′

1a

1b
1c

1d

, σ = σ′ = I

0 , else.

(5)

That is, the tensor network is non-zero only if σ = σ′. Thus, we only need one variable
σ1 ∈ {I,X, Y, Z} to handle (1a, 1b) and (1c, 1d). Similarly, we can use σ2, σ̃1, σ̃2 ∈ {I,X, Y, Z}
to handle other pairs respectively. The equation becomes the following.

E
Ug


Ug

1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d

 = 1
28

∑
σ′1,σ

′
2,σ
′′
1 ,σ
′′
2

∈{I,X,Y,Z}

σ1

σ1

σ2

σ2

σ′1

σ′1

σ′2

σ′2

1a

1b

1c

1d

2a

2b

2c

2d

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

 1
15 ·

 +

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

− 1
60 ·

 +

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′a
1′b
1′c
1′d
2′a
2′b
2′c
2′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d




σ1

σ1

σ2

σ2

σ′1

σ′1

σ′2

σ′2

1′′a
1′′b
1′′c
1′′d
2′′a
2′′b
2′′c
2′′d

1̃a

2̃a

1̃b

2̃b

1̃c

2̃c

1̃d

2̃d

.

To finish the proof of Lemma 9, we have to explicitly calculate the value of the tensor
network for each choice of σ1, σ2, σ1′ , σ2′ ∈ {I,X, Y, Z}. Again, by Equation 4 and Equation 5,
we have the following observations.

If σ1 = σ2 = σ1′ = σ2′ = I, then the value is 2−8 ·
(
15−1 · (28 + 24)− 60−1 · (26 + 26)

)
=

2−4.
If σ1 = σ2 = I and at least one of σ1′ , σ2′ is not I, or at least one of σ1, σ2 is not I and
σ1′ = σ2′ = I, then the value is 2−4 · (15−1 · (0 + 24) + 60−1 · (26 + 0)) = 0.
For all the other cases, the value is 2−4 · (15−1 · (0 + 24) + 60−1 · (0 + 0)) = 2−4 · 15−1.

Finally, we take out the 2−4 and evenly distribute it to the Pauli gates outside. Namely,
each of them gets an extra 1/

√
2 factor as shown in the equation. This completes the proof

of Lemma 9.

4.2 Proof of Lemma 10
Let us do a change of basis from the standard basis to the Pauli basis. Concretely, we
apply Lemma 9 on every gate. Note that by the independence of each gate and the linearity
of expectation, the tth layer of the circuit becomes the following for each t = 1, 2, . . . , d.

E
Ut

1̃a

ña

1a

na

...Ut
...

1̃b

ñb

1b

nb

...Ut
...

1̃c

ñc

1c

nc

...Ut
...

1̃d

ñd

1d

nd

...Ut
...

=
∑

σ
(t)
i
,σ̃

(t)
i
∈{I,X,Y,Z}

∀i=1,2,...,n

σ
(t)
1

1a

1b

σ
(t)
1

1c

1d

σ
(t)
n

na

nb

σ
(t)
n

nc

nd

1√
2

1√
2

1√
2

1√
2

...

n/2∏
i=1

M
σ

(t)
2i−1,σ

(t)
2i ,σ̃

(t)
2i−1,σ̃

(t)
2i

σ̃
(t)
1

1̃a

1̃b

σ̃
(t)
1

1̃c

1̃d

σ̃
(t)
n

ña

ñb

σ̃
(t)
n

ñc

ñd

1√
2

1√
2

1√
2

1√
2

... .
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Next, the ith output wire at the tth layer, i.e., the wires indexed by ĩa, ĩb, ĩc, ĩd,
connects to the (π(t)(i))th input wire at the (t + 1)th later, i.e., the wires indexed
by π(t)(i)a, π(t)(i)b, π(t)(i)c, π(t)(i)d. By the orthogonality of Pauli gates (i.e.„ we have

tr
(
σ̃

(t)
i√
2

σ
(t+1)
π(t)(i)√

2

)
= δ

σ̃
(t)
i
,σ

(t+1)
π(t)(i)

for all i = 1, 2, . . . , n. To sum up, the 1st to dth layer is

equivalent to following.

E
U1,U2,...,Ud


U1

U†1

U1

U†1

U2

U†2

U2

U†2

Ud

U†d

Ud

U†d

π(1) · · ·

· · ·

· · ·

· · ·

π(1)

π(1)

π(1)

π(0)

π(0)

π(0)

π(0)

π(d+1)

π(d+1)

π(d+1)

π(d+1)

1a

na

1b

nb

1c

nc

1d

nd

...

...

...

...

...

...

...

...

1̃a

ña

1̃b

ñb

1̃c

ñc

1̃d

ñd

 =

∑
σ

(t)
i
∈{I,X,Y,Z}
∀i=1,2,...,n
t=1,2,...,t+1

σ
(1)
1

1a

1b

σ
(1)
1

1c

1d

σ
(1)
n

na

nb

σ
(1)
n

nc

nd

1√
2

1√
2

1√
2

1√
2

...

d∏
t=1

n/2∏
i=1

M
σ

(t)
2i−1,σ

(t)
2i ,σ

(t+1)
π(t)(2i−1)

,σ
(t+1)
π(t)(2i)


σ

(d+1)
1

1̃a

1̃b

σ
(d+1)
1

1̃c

1̃d

σ
(d+1)
n

ña

ñb

σ
(d+1)
n

ñc

ñd

1√
2

1√
2

1√
2

1√
2

... .

Finally, let us plug in the input and output layer. Recall that the input layer contains
4 copies of |0n〉 and the output layer contains 2 copies of Z ⊗ I⊗n−1. Concretely, the
contribution from the input layer would be

n∏
i=1

(
〈0| σ

(1)
1√
2
|1〉
)2

=
n∏
i=1

tr
(
I + Z

2
σ

(1)
i√
2

)2

while the contribution from the output layer would be

tr
(
σ

(d+1)
1√

2
Z

)2

·
n∏
i=2

tr
(
σ

(d+1)
i√

2
I

)2

.

This completes the proof of Lemma 10.

5 Wrapping up: from single output bit to many bits

In this section we complete the proof of Theorem 1 .
We will use the following notation. Let q(x) be a pdf over x ∈ {0, 1}n. For any I ⊂ [n]

and xI ∈ {0, 1}I , let q(I, xI) denote the marginal probability of the output qubit at location
I being xI . Formally, q(I, xI) =

∑
y∈{0,1}n
yI=xI

q(y). For a fixed input C, let I = {i1, . . . , im} be
the output qubits selected by Algorithm 1. Note that Algorithm 1 will choose the same I for
each C sampled from D. By the design of Algorithm 1, AC(x) = 1

2n−m qC(I, xI) for every
x ∈ {0, 1}n. Thus, the linear XEB of AC is the following.

FC(AC) = 2n
∑

x∈{0,1}n
qC(x)AC(x)− 1 = 2n

∑
x∈{0,1}n

qC(x)qC(I, xI)
2n−m − 1 (6)

= 2m
∑

xI∈{0,1}I
qC(I, xI)2 − 1 .
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Note that because their light cones are disjoint, we have qC(I, xI) =
∏m
j=1 qC

(
{ij}, xij

)
.

Thus, the equation becomes

=
∑

xI∈{0,1}I

m∏
j=1

2qC({xij}, xij )2 − 1 . (7)

Now, let us take expectation on the linear XEB over D. Since D fixes the structure of
the circuit and the randomness only lies in the choice of gates, qC

(
{ij}, xij

)
is independent

to each other. Namely,

E
C∼D

[FC(AC)] =
∑

xI∈{0,1}I

m∏
j=1

2 E
C∼D

[
qC({xij}, xij )2]− 1

=
m∏
j=1

2 E
C∼D

[
qC({xij}, 0)2 + qC({xij}, 1)2]− 1 . (8)

Using the single qubit analysis (Theorem 8), we can complete the proof of Theorem 1 as
follows.

Proof of Theorem 1. Apply Theorem 8 on Equation 8, we have

E
C∼D

[FC(AC)] ≥
(
1 + 15−d

)m − 1

as desired. J

5.1 Probability over circuits

Using Theorem 1, we can obtain the following lower bound on the probability over the choice
of the circuit C of obtaining non-trivial fidelity:

I Corollary 12 (Lower bounding for the probability of success). Let n, d,D, L be as in Theorem 1.
Then there is a randomized poly(n, 2L) time algorithm such that for every 1 ≤ n ≤

⌊
n
L

⌋
and

0 < ε < 1,

Pr
C∼D

[
FC (AC) ≥

((
1 + 15−d

)m − 1
)]
≥

(1− ε) ·
((

1 + 15−d
)m − 1

)
2m − 1 ≥ Ω

(
m · 15−d

2m

)
.

Proof of Corollary 12. The idea is simple - since our algorithm picks n−m bits uniformly
at random, for every circuit C, by Equation 7, FC(AC) ≤ 2m. Now, for any 0 < ε < 1, let
δ = PrC∼D

[
FC(AC) > ε ·

((
1 + 15−d

)m − 1
)]
, we have

(
1 + 15−d

)m − 1 ≤ E
C∼D

[FC(AC)] ≤ δ · 2m + ε ·
((

1 + 15−d
)m − 1

)
.

Thus,

δ ≥
(1− ε) ·

((
1 + 15−d

)m − 1
)

2m . J
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6 Sample complexity analysis

In this section, we discuss the empirical linear XEB of our algorithm. Namely, how many
samples are required so that the empirical average of the linear XEB can be non-trivially
lower bounded. Specifically, the goal would be the following. For some T = poly(n),

Pr
C∼D

x1,...,xT∼AC

[
1
T

n∑
i=1
FC(xi) = Ω(1)

]
≥ 1

poly(n) . (9)

In Section 5, we have shown that the expectation of the linear XEB of our algorithm is at
least

(
1 + 15−d

)m for 1 ≤ m ≤ bn/Lc with probability 1/poly(n) over the choice of random
circuits. Thus, to achieve Equation 9, it suffices to show that the probability of the empirical
average of the linear XEB deviating from FC(x) is small.

In general, it is a difficult task to rigorously upper bound the sample complexity of linear
XEB. The reason is that such analysis needs to handle higher moment of qC which is highly
non-trivial for even 2D circuits. In this work we stick with the simpler case of analyzing
the variance of linear XEB in Lemma 13. We further show in Lemma 14 that an inverse
exponential bound on the collision probability of qC would be sufficient for giving poly(n)
upper bound for the sample complexity.

6.1 A variance/collision probability approach
The variance of FC(x) is sufficient for upper bounding the number of samples required for
the empirical linear XEB to converge. Specifically,Chebyshev’s inequality implies that with
Varx∼p[FC(x)]/(ε2δ) many samples, the empirical XEB is at least FC(p)− ε with probability
δ over the randomness of p. Note that here the circuit C is fixed.

I Lemma 13. Let C be an n-qubit quantum circuit and qC be the pdf of the distribution
obtained from C |0n〉. For any pdf p : {0, 1}n → [0, 1] and ε, δ ∈ (0, 1), we have

Pr
x1,...,xT∼p

[
1
T

T∑
i=1
FC(xi) ≤ FC(p)− ε

]
≤ δ

when T ≥ Varx∼p[FC(x)]
ε2δ .

Proof. Since {FC(xi)} are i.i.d. random variables with mean FC(p) and variance
Varx∼p[FC(x)], by Chebyshev’s inequality, we have

Pr
x1,...,xT∼p

[
1
T

T∑
i=1
FC(xi) < FC(p)− ε

]
≤ Varx∼p[FC(x)]

T · ε2
.

As we pick T ≥ Varx∼p[FC(x)]
ε2δ , the above error is at most δ desired. J

The following lemma further shows that to upper bound the variance of our algorithm, it
suffices to bound the collision probability of the ideal distribution.

I Lemma 14. Let n, d, L ∈ N and D be distribution over n-qubit quantum circuits with (i)
light cone size at most L, (ii) depth at most d, and (iii) with Haar random 2-qubit gates. Let
1 ≤ m ≤ bn/Lc and A be the algorithm from Algorithm 1, we have

Var
x∼AC

[FC(x)] ≤ 2m+n
∑

x∈{0,1}n
qC(x)2

where
∑
x∈{0,1}n qC(x)2 is also known as the collision probability of qC .
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Proof of Lemma 14. Consider the variance of the linear XEB of our algorithm AC as follows.

Var
x∼AC

[FC(x)] ≤ E
x∼AC

[22nqC(x)2] = 22n
∑

x∈{0,1}n
AC(x)qC(x)2 .

Recall that AC(x) ≤ 2m−n for all x, thus the equation becomes

≤ 2m+n
∑

x∈{0,1}n
qC(x)2 . J

To have some intuition on Lemma 14, the right hand side is minimized when qC is the
uniform distribution over {0, 1}n where the collision probability is 2−n. In such case, the
variance of our algorithm is O(2m). When choosing m = O(logn), the sample complexity of
our algorithm would be poly(n) as desired.

In general, using the variance/collision probability to upper bound the sample complexity
might not be tight. For example, consider the distribution of a sequence of independent
biased coins, i.e., q(x) = (1/2+ε)‖x‖1 ·(1/2−ε)n−‖x‖1 for each x ∈ {0, 1}n. Then the variance
Varx∼q[q(x)] is exponentially large, however, the sample complexity of having the empirical
average of q(x) being of the order of Ex∼q[q(x)] is O(1) with high probability. Specifically,
when the depth of the random circuit is 1, then the marginal distribution looks like the above
biased coins distribution with high probability and thus undesirable.

On the other extreme where the random circuit is very deep, it is known that the marginal
distribution will converge to the Porter Thomas distribution and its collision probability is
O(2−n) [2].

In Subsection 6.2, we further show that the collision probability of qC is O(2−n) in
expectation for 1D circuit of depth at least (logn)/ log(5/4). While the proof could potentially
be extended to 2D circuit and beyond, we leave it as a future direction and state the following
conjecture.

I Conjecture 10. Let n, d ∈ N and D be a distribution of n-qubit. For a circuit C, denote
qC as the pdf of C |0n〉. We conjecture that there exists a constant c > 0 such that when D is
the distribution over 2D random circuits of depth d ≥ c

√
logn,

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = O

(
1
2n

)
.

6.2 The sample complexity of 1D random circuits of logarithmic depth
In this subsection, we formally prove that the sample complexity of our algorithm is O (2m)
for random 1D circuits with high probability.

I Theorem 15. Let n ∈ N and D be the distribution over n-qubit 1D quantum circuits with
depth d = Ω(logn) and with Haar random 2-qudit gates where the dimension of the qudit is
at least 4. Let 1 ≤ m ≤ bn/2dc be the number of output qubits used by our algorithm. Then
for any δ ∈ (0, 1), we have

Pr
C∼D

[
Var
x∼AC

[FC(x)] = O

(
2m

δ

)]
≥ 1− δ .

Specifically, combine with Theorem 1, we have

Pr
C∼D

x1,...,xT∼AC

[
T∑
i=1
FC(xi) = Ω

(
1

poly(n)

)]
≥ 1

poly(n)

when T = Ω(1).
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Proof of Theorem 15. Let us first show that upper bounding the second moment of qC is
sufficient for proving Theorem 15. Consider the variance of the linear XEB of our algorithm
AC as follows.

Var
x∼AC

[FC(x)] ≤ E
x∼AC

[22nqC(x)2] = 22n
∑

x∈{0,1}n
AC(x)qC(x)2 .

Recall that AC(x) ≤ 2m−n for all x, thus the equation becomes

≤ 2m+n
∑

x∈{0,1}n
qC(x)2 .

Next, the lemma below shows that the second moment term
∑
x∈{0,1}n qC(x)2 is expo-

nentially small with high probability over the choice of C.

I Lemma 16. Let n ∈ N and D be the distribution over n-qubit 1D quantum circuits with
depth at least logn

log(5/4) and with Haar random 2-qubit gates. Then we have

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = O

(
1
2n

)
.

The proof of Lemma 16 is based on the Ising model analysis by [7]. We postpone it
to Subsection 6.3. Now, let us complete the proof of Theorem 15. By Lemma 16, we have

E
C∼D

[
Var
x∼AC

[FC(x)]
]
≤ 2m+n E

C∼D

[
qC(x)2] ≤ O (2m) .

Thus, for any δ > 0, by Markov’s inequality, we have PrC∼D[Varx∼AC [FC(x)] = O(2m/δ)] ≥
1− δ as desired. J

6.3 Proof of Lemma 16

It turns out that the previous Markov chain approach in analysis the expected linear XEB of
our algorithm is not sufficient for upper bounding the expectation of

∑
x∈{0,1}n qC(x)2. We

thus consider a different approach by reducing the quantity to a combinatorial problem in a
spin system on lattice. The proof is highly inspired by a recent paper of Hunter [7].

For the convenience of the analysis, here we fix the following skeleton for 1D circuit while
the result can be easily extended to other variants.

...
...

· · ·
...

. (11)
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Step 1: Reducing to counting spin configurations on a hexagonal lattice

First, let us rewrite
∑
x∈{0,1}n qC(x)2 into an equivalent tensor network.∑

x∈{0,1}n
qC(x)2 =

∑
x∈{0,1}n

tr
(
〈0n|U |x〉 〈x|U† |0n〉

)2

=
∑

x∈{0,1}n

U1

U†1

U1

U†1

U2

U†2

U2

U†2

Ud

U†d

Ud

U†d

0n

0n

0n

0n

π(1) · · ·

· · ·

· · ·

· · ·

π(1)

π(1)

π(1)

π(0)

π(0)

π(0)

π(0)

x
π(d+1)

π(d+1)

π(d+1)

π(d+1)

x

x

x

.

In Lemma 9, we change the basis to the Pauli basis and replace the expectation of a
single gate with a transition matrix. Here, we instead stick to the permutation basis in the
integration formula and represent a single gate as an effective vertex [5].

I Lemma 17 ([5]). Let Ug be a Haar-random 2-qubit gate. We have the following.

E
Ug



Ug
1̃a

2̃a

1a

2a

U†g
1̃b

2̃b

1b

2b

Ug
1̃c

2̃c

1c

2c

U†g
1̃d

2̃d

1d

2d


=

∑
σ,τ∈S2

σ τ

1a, . . . , 1d

2a, . . . , 2d

1′a, . . . , 1
′
d

2′a, . . . , 2
′
d

.

Here S2 = {I,S} is the permutation group of two elements and an edge on the left represents
four edges on the right. Specifically, the edge with σ and τ on the two ends has weight 〈σ|τ〉
where

〈σ|τ〉 =
{ 1

15 , σ = τ
−1
60 , σ 6= τ .

for all σ, τ ∈ S2. As for the boundary condition, for each bi ∈ {0, 1}, we have

bi

bi

bi

bi

bj

bj

bj

bj

= ,

bi

bi

bi

bi

bj

bj

bj

bj

= , and
∑
∈S2

= 1
20 .

Apply Lemma 17 on a 1D circuit, the expectation of
∑
x∈{0,1}n qC(x)2 is then exactly the

sum over spin configurations on the the hexagonal lattice. For example, Equation 11 becomes
the following. Note that each circle represents a distinct choices of elements from S2.

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = 2n ·
∑
, ∈S2 ...

· · ·

...

. (12)
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Step 2: Reducing to counting domain wall configurations on a triangular lattice

The second idea in [7] is doing local summation on the blue vertices. Specifically, he showed
that the local behavior of a blue vertex and its three red neighboring vertices can be fully
described only by the spin of these three red vertices.

I Lemma 18 ([7, Equation 18]). Let Ug be a Haar-random 2-qubit gate. We have the
following.

∑
τ∈S2 σ3

σ2

σ1 τ =
σ3

σ2

σ1 =


1 , σ1 = σ2 = σ3
0 , σ1 6= σ2 = σ3
2
5 , else.

An immediate corollary of Lemma 18 is that now we can instead summing over the spin
configurations over a triangular lattice. That is, Equation 12 becomes the following

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 = 2n ·
(

1
20

)n/2
·
∑
∈S2 ...

· · ·

...

(13)

The advantage of working on this triangular lattice is that the non-zero term on the right
hand side of Equation 13 corresponds to a domain wall in the triangular lattice.

I Definition 19 (Domain wall). Consider the right hand side of Equation 13 and a configur-
ation to all the red circles. The domain wall for this configuration is a collection of disjoint
horizontal lines that separate the circles that are configured to I from the circles that are
configured to S.

Note that the domain wall configuration is in 1-to-1 correspondence with the spin
configurations. Let dw denote a domain wall, let w(dw) be the weight of the corresponding
spin configuration. Thus, Equation 13 becomes the following.

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 =
(

1
5

)n/2
·

∑
dw∈

...

· · ·

...

w(dw) . (14)

Note that a domain wall could contain two types of paths: (i) a path that goes from left
boundary to the right boundary and (ii) a path that starts from and ends at both the right
boundary. Furthermore, as the domain wall configuration is in 1-to-1 correspondence with
subset of disjoint paths, Equation 14 becomes the following.

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 ≤ (1
5

)n/2
·


1 +

∑
disjoint path of type (i)

∈
...

· · ·

...

w(path)


·


1 +

∑
disjoint path of type (ii)

∈
...

· · ·

...

w(path)


. (15)
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Step 3: Upper bound the sum of possible path configurations of type (i)

For a set of disjoint path of type (i), it contains at most bn/2c paths. Also, a path of type (i)

contributes
(

q
q2+1

)d
in the weight of a domain wall.

Now, for each 1 ≤ t ≤ bn/2c let us first estimate the number of domain walls having at
most t paths of type (i). Specifically, for every i ∈ [bn/2c], the number of paths starting from
i is at most 2d because at each layer it either moves up or down. Next, for each 1 ≤ t ≤ bn/2c,
the number of possible t paths is then at most

(
n/2
t

)
· 2dt. This gives the following upper

bound for the weight contributing from domain wall of type (i).
∑

disjoint path of type (i)

∈
...

· · ·

...

w(path)


≤
bn/2c∑
t=1

(
2
5

)dt
·
(
bn/2c
t

)
· 2dt

≤
bn/2c∑
t=1

(
4
5

)dt
·
(
bn/2c
t

)

≤

(
1 +

(
4
5

)d)bn/2c

.

Consider d ≥ logn
log(5/4) , the equation becomes

≤ exp
((

4
5

) logn
log(5/4) n

2

)
= O(1) .

Step 4: Upper bound the sum of possible path configurations of type (ii)

Let us consider the 1D circuit with infinite depth and denote the distribution as D∞. Also,
since the depth is infinity, the sum of the weight of domain wall with paths of type (i) is
negligible. Namely, only paths of type (ii) contribute in the infinite depth circuit. Thus, we
have the following upper bound.

1 +
∑

disjoint path of type (ii)

∈
...

· · ·

...

w(path)


≤


1 +

∑
disjoint path of type (ii)

∈
...

· · ····

w(path)


= 5n/2 · E

C∼D∞

 ∑
x∈{0,1}n

qC(x)2

 .
Finally, it is a well known fact that the expectation of the sum of squares of marginal
probabilities is O(2−n) for infinite depth 1D circuit. So the above equation becomes

= O

((
5
4

)n/2
)
.
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Wrap up

To conclude the proof of Lemma 16, let us plug in the calculations from step 3 and step 4
into Equation 15, this gives us

E
C∼D

 ∑
x∈{0,1}n

qC(x)2

 ≤ (1
5

)n/2
·O(1) ·O

((
5
4

)n/2
)

= O

(
1
2n

)

as desired.
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