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Abstract
We give alternate proofs for three related results in analysis of Boolean functions, namely the KKL
Theorem, Friedgut’s Junta Theorem, and Talagrand’s strengthening of the KKL Theorem. We
follow a new approach: looking at the first Fourier level of the function after a suitable random
restriction and applying the Log-Sobolev inequality appropriately. In particular, we avoid using the
hypercontractive inequality that is common to the original proofs. Our proofs might serve as an
alternate, uniform exposition to these theorems and the techniques might benefit further research.
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1 Introduction

Let us consider the Boolean cube {0, 1}n equipped with the uniform measure and let
f : {0, 1}n → {0, 1} be a function. The influence of a coordinate i ∈ [n], denoted by Ii[f ],
is defined to be Prx [f(x) 6= f(x⊕ ei)], where x ∈ {0, 1}n is sampled uniformly and x⊕ ei
denotes the input x with the ith bit flipped. The total influence of f is I[f ] =

∑n
i=1 Ii[f ]. One

of the most basic inequalities, known as Poincare’s inequality, states that I[f ] > var(f), where
var(f) is the variance of the random variable f(x) when x ∈ {0, 1}n is sampled uniformly.
In general, Poincare’s inequality may be tight, which raises the following question: can it
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be the case that not only I[f ] ≈ var(f), but actually Ii[f ] ≈ var(f)
n for all i ∈ [n]? In other

words, can all influences of f be as small as possible simultaneously? The landmark result of
Kahn, Kalai, and Linial [13] gives a negative answer to this question:

I Theorem 1. There exists an absolute constant c > 0, such that for any f : {0, 1}n → {0, 1},
there is a coordinate i ∈ [n] with Ii[f ] > c · logn

n var(f).

The KKL Theorem and its strengthenings by Friedgut [9] and Talagrand [19] are found-
ational results in analysis of Boolean functions. These have found several applications,
e.g. to the threshold phenomena, computational learning theory, extremal combinatorics,
communication complexity, hardness of approximation, non-embeddability results in metric
geometry, and coding theory [10, 18, 5, 11, 3, 6, 14, 15, 4, 16]. Before we discuss the theorems
of Friedgut and Talagrand, let us state a dimension-free variant of the KKL Theorem (that
is morally equivalent to Theorem 1 and is easily implied by the techniques in [13]).

I Theorem 2. There exists an absolute constant K > 0, such that for any f : {0, 1}n → {0, 1},
there is a coordinate i ∈ [n] with Ii[f ] > 2−K

I[f]
var(f) .

We note that Theorem 2 implies Theorem 1: if I[f ] > logn
2K var(f), then clearly there is a

corodinate i ∈ [n] such that Ii[f ] > I[f ]
n > 1

2K
logn
n var(f). Otherwise, by Theorem 2, there is

a coordinate i ∈ [n] such that Ii[f ] > 2−K
I[f]

var(f) > 1√
n
and we are done either way. Friedgut’s

Junta Theorem can now be stated as below.

I Theorem 3. There exists an absolute constant K > 0, such that for any f : {0, 1}n → {0, 1}
and ε > 0, the function f is ε-close to a function g : {0, 1}n → {0, 1} (in Hamming distance)
that depends on at most 2K

I[f]
ε coordinates.

Morally speaking, Theorem 3 states that not only that there is a coordinate with significant
influence as in Theorem 2, but actually all coordinates that have smaller influence, combined,
barely affect the output of the function f (and this is how its proof proceeds). Talagrand’s
strengthening of the KKL Theorem is stated below.

I Theorem 4. There exists an absolute constant c > 0, such that for any f : {0, 1}n → {0, 1},
n∑
i=1

Ii[f ]
log(1/Ii[f ]) > c · var(f).

We note that Theorem 4 implies Theorem 2 as follows: suppose on the contrary that all
influences Ii[f ] are at most 2−K

I[f]
var(f) . Then the “Talagrand sum” as above is at most

var(f)
KI[f ]

∑n
i=1 Ii[f ] = var(f)

K , a contradiction for a large enough constant K.
A key technique used in the original proofs of all the theorems above is the hypercontractive

inequality (stated in Section 2.3). The use of this inequality is, by now, nearly ubiquitous
in analysis of Boolean functions. Still, using this inequality might impose limitations of
its own, limiting the discovery of new results, both qualitatively and quantitatively. As
far as we know, researchers in this area have wondered whether there is “life” beyond the
hypercontractive inequality, and certainly there have been efforts to prove the KKL Theorem
(and its strengthenings) without using it. In particular, proofs using “only” the Log-Sobolev
inequality (stated in Section 2.3) for the KKL Theorem and Friedgut’s Junta Theorem
are known [8] (their argument though does not seem to extend to Talagrand’s Theorem).
There is also a recent proof of the KKL Theorem (as well as Talagrand’s result and some
strengthenings) using stochastic calculus [7].
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In this paper, we prove Theorems 1, 2, 3, 4 using “only” the Log-Sobolev inequality.
Since the hypercontractive inequality and the Log-Sobolev inequality are equivalent to each
other and both have separate not-so-difficult proofs as well, whether one uses one or the
other is, admittedly, splitting hairs. Still, another interesting aspect of this paper is that
our proof approach is very different from all earlier proofs. We look at the first Fourier level
of the function after a suitable random restriction and apply the Log-Sobolev inequality
appropriately. The approach is, in our subjective opinion, more direct, natural, and less
mysterious, though the overall proofs are not necessarily “easier”. The additional structural
information implicit in these proofs might benefit further research. In Section 3, we describe
the basic skeleton that is common to all our proofs and the main technical lemma, Lemma
20. The paper might have some benefit from expository perspective as all our proofs are
uniformly built around the same skeleton.

Before proceeding to formal proofs, we illustrate here the underlying intuition and how
it morally explains the KKL Theorem (translating the intuition into a formal proof takes
some effort). We assume here that the reader is somewhat familiar with the area and the
standard terminology. Let f : {0, 1}n → {0, 1} be a balanced function and suppose all
its influences are at most (say) 1√

n
. We hope to conclude that the total influence is then

Ω(logn). Suppose f has degree d (we are referring to the so-called average degree, but never
mind). Consider a 1

d -random restriction fJ̄→z of the function where each coordinate stays
alive with probability 1

d independently and denoting the set of alive coordinates as J , the
coordinates in J̄ = [n] \ J are set to a uniformly random setting z. Since f has degree d,
we expect that the restricted function fJ̄→z has constant Fourier weight at the first level
and ideally, is even a dictatorship function (indeed, if the Fourier weight at the first level
exceeds a certain threshold, a Boolean function is necessarily a dictatorship). Suppose, for
the sake of illustration, that the restricted function fJ̄→z is always a dictatorship function.
However, it could be the dictatorship of a different coordinate for different settings of z. Let
Aj ⊆ {0, 1}J̄ consist of those settings of z for which fJ̄→z is the dictatorship of coordinate
j ∈ J . We note that the fractional size of Aj , denoted µ(Aj), is at most the influence of the
coordinate j (why?) and hence µ(Aj) 6 1√

n
for all j ∈ J . Now we simply note that since the

sets A1, . . . , A|J| are all polynomially small in size and form a partition of {0, 1}J̄ , at least
logn
n fraction of the edges in the hypercube {0, 1}J̄ are across some Aj and Aj′ with j 6= j′.

These edges, along with the fact that Aj and Aj′ are restrictions leading to dictatorships of
j and j′ respectively, contribute Ω(logn) to the total influence of the function f as desired
(why?)! We use here the standard isoperimetric result on the hypercube that for a small set
A ⊆ {0, 1}n, at least log(1/µ(A)))

n fraction of hypercube edges incident on it, go outside of A
(this is also a special case of the Log-Sobolev inequality, see Lemma 11).

2 Preliminaries

We denote [n] = {1, 2, . . . , n}. We write X & Y to say that there exists an absolute constant
c > 0 such that X > c · Y .

2.1 Standard Fourier Analysis
We consider the space of real-valued functions f : {0, 1}n → R, equipped with the inner
product 〈f, g〉 = Ex∈R{0,1}n [f(x)g(x)]. Here and throughout the paper, we consider the
uniform distribution over {0, 1}n. It is well-known that the collection of functions χS :
{0, 1}n → {−1, 1}, one for each subset S ⊆ [n], defined as χS(x) = (−1)⊕i∈Sxi , is an
orthonormal basis w.r.t. the said inner product. Thus each function f : {0, 1}n → R can be
written uniquely as

ITCS 2021
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f(x) =
∑
S⊆[n]

f̂(S)χS(x), where f̂(S) = 〈f, χS〉.

Since the basis {χS}S⊆[n] is orthonormal, one has the Plancherel/Parseval equality:

I Fact 5. For any f, g : {0, 1}n → R, we have 〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S). Also

〈f, f〉 = E
x

[
f(x)2] = ‖f‖22 =

∑
S⊆[n]

f̂(S)2.

We will also consider other Lp norms of functions for p > 1 (mostly L1-norm), similarly
defined as ‖f‖p =

(
Ex [|f(x)|p]

)1/p. It will be useful to consider the “Fourier weight” of a
function on a given “level”.
I Definition 6. For integer d > 1, the level d Fourier weight of a function f : {0, 1}n → R is
W=d[f ] =

∑
|S|=d

f̂(S)2. Also, its Fourier weight on the “chunk” d is W≈d[f ] =
∑

d6j<2d
W=j [f ].

For a noise parameter ε ∈ (0, 1), the noise operator T1−ε is defined as follows. For a
function f : {0, 1}n → R, the function T1−εf is

T1−εf(x) = E
y∼εx

[f(y)],

where the input y is obtained from input x by resembling each coordinate of x with probability
ε independently. It is well-known that the Fourier representation of T1−εf is

T1−εf =
∑
S⊆[n]

(1− ε)|S|f̂(S)χS .

2.2 Discrete Derivatives and Influences
For a coordinate i ∈ [n], the discrete derivatives of f along the ith direction is a function
∂if : {0, 1}n−1 → R defined as

∂if(y) = f(x−i = y, xi = 1)− f(x−i = y, xi = 0).

I Definition 7. The Lp-influence of a coordinate i ∈ [n] is defined as Ipi [f ] = ‖∂if‖pp. The

Lp total-influence is Ip[f ] =
n∑
i=1

Ipi [f ]. We stress here that in the notation Ipi [f ] and Ip[f ]

herein, the “p” is a super-script and not an exponent.
We will be concerned with only L2 and L1 influences. In the literature, the notion usually
refers to L2-influences, so in this case the superscript p is omitted, writing Ii[f ] = I2

i [f ] and
I[f ] = I2[f ] for the individual and total influence respectively. We note that for Boolean
functions, all the Lp-influences are equal. We will be concerned with the more general
case of bounded functions, i.e. functions taking values in the interval [−1, 1], and state our
variants of Theorems 1, 2, 3, and 4 using L1-influences instead. We remark that for bounded
functions, one has Ipi [f ] 6 Iqi [f ] for p > q > 1. In particular and via Cauchy-Schwartz,
Ii[f ] 6 I1

i [f ] 6
√
Ii[f ]. Using the Fourier expansion of the discrete derivatives and Parseval

equality gives the following standard formula for the total L2-influence.
I Fact 8. For any f : {0, 1}n → R, we have I[f ] = 4

∑
S⊆[n]

|S| f̂(S)2. In particular, by an

averaging argument, for any ε > 0,
∑

|S|>I[f ]/ε
f̂(S)2 6 ε.



E. Kelman, S. Khot, G. Kindler, D. Minzer, and M. Safra 26:5

2.3 Hypercontractive Inequality and Log-Sobolev Inequality
The hypercontractive inequality states that for each ε > 0, there is p > 2 such that T1−ε
is a contraction from L2 to Lp, i.e. that ‖T1−εf‖p 6 ‖f‖2 for any f : {0, 1}n → R. The
inequality has an equivalent form (which is often times used) that does not involve the noise
operator T1−ε, and is instead concerned with bounded degree functions.

The degree of a function f , denoted deg(f), is the maximum of |S| over all S such
that f̂(S) 6= 0. The Bonami-Beckner hypercontractive inequality [2, 1] asserts that the
Lp-norm and the L2-norm of a low-degree function are comparable. More precisely, for any
f : {0, 1}n → R and any p > 2,

I Theorem 9. ‖f‖p 6 (p− 1)deg(f)/2‖f‖2.

To motivate the Log-Sobolev inequality and its relationship to the hypercontractive inequality,
let us rewrite the above as

deg(f) > 2
log(p− 1) log

(
‖f‖p
‖f‖2

)
. (1)

Instead of looking at the maximal degree of a non-zero monomial that appears in f ,
one may consider the average degree of f , defined as

∑
S |S| f̂(S)2, where the weight given

to a characters S equals the squared Fourier coefficient f̂(S)2. When f is {−1, 1}-valued,
the squared Fourier coefficients sum up to 1, giving a probability distribution over them,
explaining the term “average degree”. As noted, the average degree is same as the total
influence I[f ] (up to the factor 4). The Log-Sobolev inequality, established by Gross [12],
can be seen as the limiting case of the above inequality as p→ 2 and replacing the degree
by average degree (see [12], [17, Chapter 10.1] and [17, Pages 319-320] for the equivalence
between the two inequalities and also separate inductive proofs). Towards stating this
inequality, one needs the notion of entropy of a non-negative function h : {0, 1}n → [0,∞):

Ent(h) := E
x

[h(x)] log
(

1
E [h(x)]

)
− E

x

[
h(x) log

(
1

h(x)

)]
,

with the convention that 0 log(1/0) = 0. The Log-Sobolev inequality is (note that the entropy
is of the non-negative function f2):

I Theorem 10. For any f : {0, 1}n → R, we have I[f ] > 1
2Ent(f2).

A simple corollary of this inequality, when f : {0, 1}n → {0, 1} is Boolean, is below. This is
also known as the standard isoperimetric inequality for the Boolean hypercube.

I Lemma 11. For any f : {0, 1}n → {0, 1}, β = E [f ] 6 1
2 , we have I[f ] > 1

2β log(1/β).

It will be more convenient for us to use the following easy consequence of the Log-Sobolev
inequality.

I Lemma 12. There exists an absolute constant K > 0, such that for any f : {0, 1}n →
[−1, 1], we have

I[f ] & ‖f‖22 log
(

1
‖f‖22

)
−K · ‖f‖

1
2
1 ‖f‖2.

Proof. By Theorem 10, I[f ] & Ent(f2), so it is enough to show that the entropy of f2 is at
least the right hand side. Indeed, the first term in the definition of the entropy is precisely
‖f‖22 log(1/‖f‖22). The second term is (using Cauchy-Schwarz and that t2 log2(1/t2) . |t| for
t ∈ [−1, 1])

ITCS 2021
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E
x

[
f(x)2 log

(
1

f(x)2

)]
6

√
E
x

[
f(x)2 log2

(
1

f(x)2

)]
E
x

[f(x)2] .
√
E
x

[|f(x)|]E
x

[f(x)2]

= ‖f‖
1
2
1 ‖f‖2.

J

2.4 Random Restrictions
Let J ⊆ [n] be a subset of coordinates thought of as “alive” and coordinates in J̄ =
[n] \ J thought of as “restricted”. Given a function f : {0, 1}n → R and a setting z ∈
{0, 1}J̄ , we denote by fJ̄→z, the restriction of f to the domain z × {0, 1}J . More precisely,
fJ̄→z : {0, 1}J → R is defined as fJ̄→z(y) = f(xJ̄ = z, xJ = y). The following standard fact
gives the Fourier coefficients of the restricted function:

I Fact 13. For any T ⊆ J , we have f̂J̄→z(T ) =
∑
S⊆J̄ f̂(S ∪ T )χS(z).

For a parameter δ > 0, a δ-random restriction is the function fJ̄→z after choosing J to
be a random subset of [n] in which each j ∈ [n] is included with probability δ independently
and choosing z ∈ {0, 1}J̄ uniformly. Using Fact 13 and Parseval, one can easily compute the
expectated squared Fourier coefficient of a random restriction and then the expected level d
Fourier weight.

I Fact 14. Let f : {0, 1}n → R and T ⊆ J . Then Ez
[
|f̂J̄→z(T )|2

]
=
∑
S⊆J̄ f̂(S ∪ T )2.

I Fact 15. Let f : {0, 1}n → R, d > 1 be an integer, and δ ∈ [0, 1]. Let fJ̄→z denote the
δ-random restriction. Then

E
J,z

[W=d[fJ̄→z]] =
∑
S

f̂(S)2 · Pr
J

[|J ∩ S| = d].

3 A Basic Argument towards the KKL Theorem

In this section, we prove the lemma below. It proves the KKL Theorem in the special
case when the function f : {0, 1}n → [0, 1] has a constant fraction of its Fourier weight on
some “chunk”. Alternately, it proves the KKL Theorem at a loss of log logn factor. More
importantly, the proof illustrates the basic approach underlying all the subsequent proofs.

I Lemma 16. Let f : {0, 1}n → [0, 1] be a function and d > 1 be an integer. Then there
exists a coordinate i ∈ [n] such that I1

i [f ] & logn
n W≈d[f ].

We make some remarks before proceeding to the proof. Firstly, we note that the lemma
holds for bounded functions and with respect to the L1-influences. Secondly, we note
that if a constant fraction of the Fourier weight is on some chunk, i.e. if for some d,
W≈d[f ] & var(f), then there is a coordinate i ∈ [n] with I1

i [f ] & logn
n var(f), proving the

KKL Theorem. Thirdly, we note that it proves the KKL Theorem at a loss of factor log logn
as follows. We may assume that I[f ] 6 1

2 logn var(f). Since var(f) =
∑

16|S| f̂(S)2 and
I[f ] = 4

∑
S |S|f̂(S)2, by Markov’s inequality, we have∑

16|S|6logn

f̂(S)2 >
1
2 var(f).
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Thus, by partitioning the interval [1, logn] into log logn dyadic intervals
⋃log logn
k=0 [2k, 2k+1),

it follows that there is some 1 6 d 6 logn such that W≈d & var(f)
log logn . Hence by the lemma,

there is a coordinate i ∈ [n] such that I1
i [f ] & logn

n W≈d[f ] & logn
n

var(f)
log logn .

3.1 Proof of Lemma 16
We now prove Lemma 16. The proof formalizes the intuition described at the end of the
introductory section. One begins by considering a 1

d -random restriction of the function,
notes that the expected Fourier weight at the first level of the restricted function is at least
W≈d[f ], and then one examines the coefficients at the first level and applies Log-Sobolev
appropriately.

Weight on the First Level after Random Restriction
Let fJ̄→z be a 1

d -random restriction, J being the set of coordinates left alive. We have by
Fact 15 that

E
J,z

[W=1[fJ̄→z]] >
∑

d6|S|<2d

f̂(S)2 · Pr
J

[|S ∩ J | = 1] &W≈d[f ], (2)

where we used the simple fact that for any set S with d 6 |S| < 2d, the probability it
intersects J in a single element is constant. For the rest of the argument, we fix some J ⊆ [n]
such that (it exists due to Equation (2))

E
z

[W=1[fJ̄→z]] &W≈d[f ]. (3)

Relating First Level Coefficients after Restriction and Influences of f

We now consider the first level coefficients of the restricted function fJ̄→z and somehow
relate them to the influences of the original function f . We note that J is the set of alive
coordinates. For each j ∈ J , define a function gj : {0, 1}J̄ → R by gj(z) = f̂J̄→z({j}). That
is, gj(z) is the jth coefficient of the first level (= linear part) of the restricted function. By
definition, W=1[fJ̄→z] =

∑
j∈J gj(z)2. Let pj = ‖gj‖22 = Ez

[
gj(z)2]. For the sake of future

reference, let qj = ‖gj‖1. Thus (3) can be re-stated as

E
z

[W=1[fJ̄→z]] =
∑
j∈J

pj &W≈d[f ]. (4)

Since f is bounded, so is its restriction, and hence |gj(z)| 6 1 for every z, j.

I Lemma 17. pj = ‖gj‖22 and qj = ‖gj‖1 satisfy
qj = ‖gj‖1 6 1

2 · I
1
j [f ].

pj = ‖gj‖22 6 1
4 · Ij [f ].

pj 6 qj 6
√
pj .

Proof. The third item is because of the boundedness |gj(z)| 6 1 and Cauchy-Schwartz.
Towards the first two items, we note that

gj(z) = f̂J̄→z({j}) = E
y

[
f(z, y)χ{j}(yj)

]
= E
y−j

[
f(z, y−j , yj = 0)− f(z, y−j , yj = 1)

2

]
.

ITCS 2021
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Taking expectation over z gives (and using Cauchy-Schwartz in the second case)

‖gj‖1 = E
z

[|gj(z)|] 6 E
z,y−j

[∣∣∣∣f(z, y−j , yj = 0)− f(z, y−j , yj = 1)
2

∣∣∣∣] = 1
2 · I

1
j [f ].

‖gj‖22 = E
z

[
|gj(z)|2

]
6 E
z,y−j

[∣∣∣∣f(z, y−j , yj = 0)− f(z, y−j , yj = 1)
2

∣∣∣∣2
]

= 1
4 · Ij [f ]. J

Summing the previous inequality over all j ∈ J , we conclude that:

I Lemma 18.
∑
j∈J qj =

∑
j∈J
‖gj‖1 6 1

2 · I
1[f ].

The following lower bound on I[f ] is a key observation.

I Lemma 19.
∑
j∈J

I[gj ] 6 I[f ].

Proof. We lower bound I[f ] by
∑
i∈J̄ Ii[f ]. Fix some i ∈ J̄ for now. As before, z and y

denote the inputs on the parts J̄ and J respectively.

Ii[f ] = E
z,y

[
|f(z, y)− f(z ⊕ ei, y)|2

]
= E

z

[
‖fJ̄→z − fJ̄→z⊕ei

‖22
]
.

By Parseval, we express the squared norm in terms of Fourier coefficients and then lower
bound by considering only coefficients of size one.

Ii[f ] = E
z

∑
T⊆J

|f̂J̄→z(T )− f̂J̄→z⊕ei
(T )|2

 > E
z

∑
j∈J
|f̂J̄→z({j})− f̂J̄→z⊕ei

({j})|2
.

The latter are simply gj(z) and gj(z ⊕ ei) by definition and hence

Ii[f ] >
∑
j∈J

E
z

[
|gj(z)− gj(z ⊕ ei)|2

]
=
∑
j∈J

Ii[gj ].

Summing over i ∈ J̄ gives

I[f ] >
∑
i∈J̄

Ii[f ] >
∑
i∈J̄

∑
j∈J

Ii[gj ] =
∑
j∈J

∑
i∈J̄

Ii[gj ] =
∑
j∈J

I[gj ]. J

The Main Argument
Our main argument tries to obtain a lower bound on I[f ] as follows. Using Lemma 19 and
the Log-Sobolev Lemma 12,

I[f ] >
∑
j∈J

I[gj ] >
∑
j∈J

(
pj log(1/pj)−K

√
qj ·
√
pj
)
.

Using Cauchy-Schwartz, we get

I[f ] >
∑
j∈J

pj log(1/pj)−K
√∑
j∈J

qj ·
√∑
j∈J

pj .

By Lemma 18,
∑
j∈J qj 6 I1[f ], so we get our main technical inequality

I[f ] >
∑
j∈J

pj log(1/pj)−K
√
I1[f ] ·

√∑
j∈J

pj . (5)
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We recall that pj 6 1
2I

1
j [f ] by Lemma 17. Letting W :=

∑
j∈J pj = Ez [W=1[fJ̄→z]], we

rewrite this inequality, for future reference, as below. We note that in application, J is the
subset of alive coordinates after a random restriction. In our proof of KKL and Friedgut
Theorems, the set J is fixed so as to maximizes the expected first level Fourier weight. In
the proof of Talagrand Theorem, we average over the choice of J as well.

I Lemma 20. Let f : {0, 1}n → [0, 1] be a function and J ⊆ [n]. Then

I[f ] > log
(

1
maxj∈J I1

j [f ]

)
·W −K

√
I1[f ] ·

√
W,

W = E
z

[W=1[fJ̄→z]] =
∑

S⊆[n],|S∩J|=1

f̂(S)2.

The proof of Lemma 16 is now completed immediately. We may assume that for all
coordinates i ∈ [n], I1

i [f ] 6 logn
n W≈d[f ] 6 1√

n
as otherwise we are done already. This

implies that the total L1-influence I1[f ] 6 logn W≈d[f ]. Lemma 20 (= Equation (5)) then
gives (the log-factor therein is at least 1

2 logn since all L1-influences are at most 1√
n
)

I[f ] > 1
2 logn ·W −K

√
logn ·W≈d[f ] ·

√
W, W &W≈d[f ].

Clearly, the first term above dominates the second, giving I[f ] > 1
4 logn ·W & logn ·W≈d[f ],

implying now that there is a coordinate with in fact L2-influence & logn
n W≈d[f ].

4 The KKL Theorem

We now prove the KKL Theorem, stated below for a bounded function, with respect to
L1-influences, and in a slightly different form.

I Theorem 21. There exists an absolute constant c > 0 such that the following holds. Let
f : {0, 1}n → [0, 1] be a function. Then either I1[f ] > c · logn var(f), or there is a coordinate
i ∈ [n] such that I1

i [f ] > 1√
n
.

It will be more convenient for us to prove a dimension-independent version of the KKL
Theorem below. It is easily seen to imply the statement above.

I Theorem 22. There exists an absolute constant C > 0 such that the following holds.
Let f : {0, 1}n → [0, 1] be a function. Then there is a coordinate i ∈ [n] such that I1

i [f ] >

2−C·
I1[f]
var(f) .

In the proof of Lemma 16, we only “utilized” Fourier weight from a single chunk of Fourier
coefficients, i.e. those of size in the range [d, 2d), and this led to a loss of factor log logn if
used towards the KKL Theorem. In this section, we show how to utilize and combine the
Fourier weight from multiple chunks, avoiding this loss. The idea is to “partition” f into
chunks as f = f̂(∅) +

∑
d=2k,k>0 h

∗
d, apply the main technical inequality (5) to each chunk

h∗d, and then “sum up”. A natural way to partition is to let h∗d =
∑
d6|S|<2d f̂(S)χS . The

problem with this approach however is that the chunk functions h∗d as here are not necessarily
bounded functions and the earlier arguments cannot be applied directly. To get around this,
we instead consider a soft notion of chunks, f ≈ f̂(∅) +

∑
d=2k,k>0 hd, that behaves similarly,

that is∑
d

var(hd) = Θ(var(f)),
∑
d

Ii[hd] = Θ(Ii[f ]),
∑
d

I[hd] = Θ(I[f ]),

and in addition, preserves boundedness and the L1-influences of each soft chunk hd are
bounded by those of the original function!
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4.1 Soft Chunks
I Definition 23. Let f : {0, 1}n → [0, 1] be a function and let d > 1 be integer (thought of as
a power of 2). The soft chunk of f of degree d is given by the function hd : {0, 1}n → [0, 1]
defined by hd = (T1− 1

2d
− T1− 1

d
)f .

The following lemma summarizes the useful properties of soft chunks (the proof appears in
Appendix A.1). We point out, in particular, that the L1-influences of the soft chunk are
upper bounded by those of the original function (up to a factor 2).

I Lemma 24. Let f : {0, 1}n → [0, 1] and for integer d = 2k, k > 0, let hd = (T1− 1
2d
−T1− 1

d
)f

denote the soft chunk of f of degree d. Then (the sums are over d = 2k, k > 0 and i ∈ [n] is
arbitrary)

hd is bounded in [−1, 1], ĥ(∅) = 0.
I1
i [hd] 6 2I1

i [f ].
For any S ⊆ [n], d 6 |S| < 2d, we have |f̂(S)| . |ĥd(S)| 6 |f̂(S)|. In particular, we have
lower bounds

‖hd‖22 >W≈d[hd] & W≈d[f ],
∑
d

Ii[hd] & Ii[f ],
∑
d

I[hd] & I[f ].

And the upper bounds,∑
d

‖hd‖22 6 var(f),
∑
d

I[hd] 6 I[f ].

For technical reasons, we will be able to “utilize” only those chunks that have a significant
amount of Fourier weight, referred to as the good chunks. It will turn out that the good
chunks still capture a constant fraction of the variance of f , so this will not be a problem.
Towards this end, we have (proof appears in Appendix A.2)

I Lemma 25. Let

Dgood :=
{
d = 2k, k > 0 | W≈d[f ] > var(f)2

16 · I1[f ]

}
.

Then∑
d∈Dgood

W≈d[f ] & var(f).

4.2 Proof of Theorem 22

Assume, for the sake of contradiction, that for all coordinates i ∈ [n], I1
i [f ] 6 2−C·

I1[f]
var(f) where

C is a large enough constant chosen later. Let hd, d ∈ Dgood be any good soft chunk. We
recall that

hd is a bounded function.
Its L1-influences are upper bounded by those of f up to a factor 2 (and hence also the
total L1-influence).
W≈d[hd] &W≈d[f ] > var(f)2

16·I1[f ] .
We apply Lemma 20 to the function hd, considering 1

d -random restriction, and letting J to
be the subset of alive coordinates (fixed so as to maximize expected weight at first Fourier
level). This yields the inequality

I[hd] > log
(

1
maxj∈J I1

j [hd]

)
·W−K

√
I1[hd]·

√
W, W &W≈d[hd] &W≈d[f ] > var(f)2

16 · I1[f ] .
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Since the L1-influences of hd are bounded by those of f , in particular all of them at most
2−C·

I1[f]
var(f) , we get

I[hd] > C · I
1[f ]

var(f) ·W −K
√
I1[f ] ·

√
W, W &W≈d[f ] > var(f)2

16 · I1[f ] .

It is easily seen that for a large enough constant C, the first term dominates the second term
(this is why we considered only the good chunks) and thus

I[hd] & C · I
1[f ]

var(f) ·W≈d[f ].

Now summing over all good d gives a contradiction:

I1[f ] > I[f ] >
∑

d∈Dgood

I[hd] & C · I
1[f ]

var(f)
∑

d∈Dgood

W≈d[f ] & C · I
1[f ]

var(f) · var(f) = C · I1[f ].

We used Lemma 24 in the second step and Lemma 25 in the second-last step. Taking the
constant C large enough gives a contradiction.

5 The Friedgut’s Junta Theorem

Friedgut’s Junta Theorem (restated below) is proved by a careful adjustment to the argument
in the previous section.

I Theorem 26. There is an absolute constant C > 0 such that the following holds. For every
function f : {0, 1}n → [0, 1] and for every ε > 0, there exists a function g : {0, 1}n → [0, 1]
depending on at most 2C·I1[f ]/ε variables such that ‖f − g‖22 . ε.

We provide a proof sketch. While in the proof of the KKL Theorem, we may assume that all
influences are small, this is not the case with Friedgut’s Theroem. Here we “separate out”
the set L of coordinates with “non-negligible” influence and apply the previous argument to
the remaining set L̄ = [n] \ L. Towards this end, let

L =
{
i | I1

i [f ] > τ := 2−C·I
1[f ]/ε

}
.

Clearly, |L| 6 I1[f ]
τ 6 22C·I1[f ]/ε. Let g =

∑
S⊆L

f̂(S)χS . It is easily observed that

g depends only on the coordinates of L.
g is also bounded in [0, 1] since g is simply the average of f over coordinates in L̄ and
for the same reason, L1-influences of g are bounded by those of f .

Let ϕ = f − g. We will show that ‖ϕ‖22 . ε. Clearly, ϕ is bounded in [−1, 1] and its L1
influences are also bounded by those of f up to a factor 2. We intend to apply the same
argument used to prove the KKL Theorem to ϕ, except that all “action” happens only on
the set of coordinates L̄. More specifically:

The “size” of any Fourier term is counted as |S ∩ L̄| instead of as |S|.
For an integer d > 1 (thought of as power of 2), the Fourier weight on the corresponding
chunk is defined as

W L̄
≈d[ϕ] :=

∑
d6|S∩L̄|<2d

f̂(S)2.
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Towards defining the soft chunk hd of ϕ, the noise operator is applied only to coordinates
in L̄. We denote this as

hd =
(
T L̄1− 1

2d
− T L̄1− 1

d

)
ϕ.

In a random restriction, only coordinates in L̄ may stay alive. That is, a 1
d -random

restriction amounts to letting J to be a random subset of L̄ where every coordinate in L̄
is included with probability 1

d and then the coordinates outside J (including those in L)
are set uniformly at random.
Since J ⊆ L̄, we have I1

j [ϕ] 6 2−C·I1[f ]/ε for all j ∈ J .
Modulo these considerations, we repeat the proof in Section 4.2. We apply Lemma 20 to the
function hd, considering 1

d -random restriction, and letting J be the subset of alive coordinates
(fixed so as to maximize expected weight at first Fourier level). This yields the inequality

I[hd] > log
(

1
maxj∈J I1

j [hd]

)
·W −K

√
I1[hd] ·

√
W, W &W L̄

≈d[hd] &W L̄
≈d[ϕ].

Since the L1-influences of hd are bounded by those of ϕ which are in turn bounded by those
of f and those for coordinates in J ⊆ L̄ are at most 2−C·

I1[f]
ε , we get

I[hd] > C · I
1[f ]
ε
·W −K

√
I1[f ] ·

√
W, W &W L̄

≈d[ϕ].

Let Dgood be the subset of d = 2k such that W L̄
≈d[ϕ] > ε2

16I1[f ] so that for such good d and
for large enough constant C, the first term above dominates the second and we get

I[hd] & C · I
1[f ]
ε

W L̄
≈d[ϕ].

Now summing over all good d ∈ Dgood gives:

I1[f ] > I1[ϕ] > I[ϕ] >
∑

d∈Dgood

I[hd] & C · I
1[f ]
ε
·
∑

d∈Dgood

W L̄
≈d[φ].

By Lemma 25 (applied to ϕ), the last sum is at least & var(ϕ) and we get var(ϕ) . ε as
desired. An astute reader might object that the definition of the good soft chunks here seems
different than that in Lemma 25, i.e. the threshold is set at ε2

16I1[f ] instead of var(ϕ)2

16I1[ϕ] therein.
However since I1[ϕ] 6 I1[f ] and we could assume a priori that var(ϕ) > ε (otherwise we
would already be done), this slight difference only works in our favor.

6 The Talagrand’s Theorem

In this section, we prove Talagrand’s Theorem, restated as Theorem 28 later. For now we
prove the following weaker theorem to illustrate the main idea.

I Theorem 27. Let any f : {0, 1}n → [0, 1] be a function and d > 1 an integer (thought of
as power of 2). Then one of these two conclusions holds:

(Case 1):
∑
j∈[n]

Ij [f ]
log(1/I1

j
[f ]) & d(W≈d[f ])2

I[f ] .

(Case 2):
∑
j∈[n]

I1
j [f ]

log(1/I1
j
[f ]) & dW≈d[f ].
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We make a few remarks. On the left hand side of the inequalities, what appear in the
numerators are the L2-influences in Case 1 and L1-influences in Case 2. This distinction
will be important later. In both cases, in the denominator, it does not matter whether
we write L1 or L2 influences since their logarithms are the same up to a factor 2 (since
Ij [f ] 6 I1

j [f ] 6
√
Ij [f ]). If one pretends that all non-zero Fourier coefficients of f have size

between d and 2d, we have W≈d[f ] = var(f) and I[f ] = Θ(d ·var(f)) and we get var(f) on the
right hand side in Case 1 and (even better) d · var(f) in Case 2, giving Talagrand’s Theorem.

We now prove Theorem 27. Consider a 1
d -random restriction as in Section 3 letting J to

be the set of coordinates alive. As therein, let gj(z) = f̂J̄→z({j}), pj = ‖gj‖22, qj = ‖gj‖1.
Unlike therein however, we will not fix the set J and instead take expectation over its choice.
Exactly as in Equation (5), we get

I[f ] >
∑
j∈J

pj log(1/pj)−K
∑
j∈J

√
qj
√
pj .

We now divide into two cases depending on whether or not, on the right hand side, the
first term dominates the second. It will be more convenient to do this after considering
expectation over choice of J .

Case 1: EJ

[∑
j∈J pj log(1/pj)

]
> 2 · EJ

[
K
∑

j∈J
√

qj
√

pj

]
.

In this case, we get

I[f ] & E
J

∑
j∈J

pj log(1/pj)

.
Cauchy-Schwartz gives,

E
J

∑
j∈J

pj
log(1/pj)

 · E
J

∑
j∈J

pj log(1/pj)

 >

E
J

∑
j∈J

pj

2

.

The second term is bounded by I[f ] (as above) and on the right hand side we have,
EJ
[∑

j∈J pj

]
&W≈d[f ]. This gives

E
J

∑
j∈J

pj
log(1/pj)

 &
(W≈d[f ])2

I[f ] .

Replacing pj by its upper bound Ij [f ] in the numerator and its upper bound I1
j [f ] in the

denominator, and noting that each coordinate appears in J with probability 1
d , gives the

desired inequality

∑
j∈[n]

Ij [f ]
log(1/I1

j [f ]) &
d(W≈d[f ])2

I[f ] .
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Case 2: EJ

[∑
j∈J
√

qj
√

pj

]
& EJ

[∑
j∈J pj log(1/pj)

]
.

In this case, Cauchy-Schwartz gives

E
J

∑
j∈J

qj
log(1/pj)

 · E
J

∑
j∈J

pj log(1/pj)

 >

E
J

∑
j∈J

√
qj
√
pj

2

&

E
J

∑
j∈J

pj log(1/pj)

2

.

Canceling EJ
[∑

j∈J pj log(1/pj)
]
from both sides gives

E
J

∑
j∈J

qj
log(1/pj)

 & E
J

∑
j∈J

pj log(1/pj)

 > E
J

∑
j∈J

pj

.
As before, the right hand side is &W≈d[f ], and qj , pj are upper bounded by I1

j [f ], and each
coordinate appears in J with probability 1

d . This gives the desired inequality

∑
j∈[n]

I1
j [f ]

log(1/I1
j [f ]) & d W≈d[f ].

6.1 Talagrand’s Theorem by Combining Chunks: First Attempt
We (re-)state Talagrand’s Theorem below.

I Theorem 28. For any f : {0, 1}n → [0, 1], we have
∑
j∈[n]

I1
j [f ]

log(1/I1
j
[f ]) & var(f).

We attempt to prove this result by splitting

f = f̂(∅) +
∑

d=2k,k>0

hd,

where hd =
∑
d6|S|<2d f̂(S)χS are the chunks of f . The strategy is to apply Theorem 27 to

each chunk hd separately and “sum up” or “combine” the outcomes. A crucial observation is
that the L2-influences indeed sum up, that is

Ii[f ] =
∑
d

Ii[hd].

This strategy (almost) works with a careful consideration of whether the Case 1 or the Case
2 applies for different chunks. The catch, as before, is that the chunks hd are not necessarily
bounded functions and their L1-influences might not be under control. To get around this
issue, we instead work with the soft chunks as before and the full proof is completed in the
next sub-section. For now, we pretend that the chunks hd are bounded functions and see
how the proof proceeds. We also pretend that the L1-influences of hd are upper bounded by
those of f (both these conditions do hold when soft chunks are considered!).

We apply Theorem 27 to hd. Noting that W≈d[hd] > W≈d[f ], I[hd] = Θ(d ·W≈d[f ]),
and that L1-influences of hd are upper bounded by those of f , we conclude that for every
d = 2k, k > 0, one of these conclusions holds (perhaps both conclusions hold and if so, we
pick one arbitrarily):
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(Case 1):
∑
j∈[n]

Ij [hd]
log(1/I1

j
[f ]) &W≈d[f ]. Let D′ be the set of such d.

(Case 2):
∑
j∈[n]

I1
j [f ]

log(1/I1
j
[f ]) & d W≈d[f ]. Let D′′ be the set of such d.

Now we complete the proof as follows. Since var(f) =
∑
d∈D′W≈d[f ] +

∑
d∈D′′W≈d[f ],

either of the two sums is at least 1
2var(f). If the first sum is, then (crucially using the fact

that L2-influences sum up)∑
j∈[n]

Ij [f ]
log(1/I1

j [f ]) >
∑
j∈[n]

∑
d∈D′

Ij [hd]
log(1/I1

j [f ]) =
∑
d∈D′

∑
j∈[n]

Ij [hd]
log(1/I1

j [f ]) &
∑
d∈D′

W≈d & var(f),

as desired. Otherwise, we may assume
∑
d∈D′′W≈d[f ] > 1

2var(f). Since d ranges only over
powers of 2, it follows that there is some d ∈ D′′ such that d W≈d[f ] & var(f) (why!). Using
this particular choice of d in the Case 2 above, we get as desired

∑
j∈[n]

I1
j [f ]

log(1/I1
j [f ]) & var(f).

6.2 Talagrand’s Theorem by Combining Soft Chunks
We now complete the proof of Talagrand’s Theorem 28. We carry out the same proof as
in the previous sub-section, except that we use the soft chunks hd = (T1− 1

2d
− T1− 1

d
)f . It

holds that W≈d[hd] = Θ(W≈d[f ]). However one place we need to be careful about is that
we required that I[hd] = Θ(d W≈d[f ]). This need not be true in general. Hence we restrict
ourselves to only those d ∈ Dgood for which this condition holds. The lemma below shows
that there is still a constant fraction of variance on these good chunks and this is enough to
complete the proof (the sets D′ and D′′ above are subsets of Dgood now).

I Lemma 29. Let

Dgood =
{
d = 2k, k > 0 | d W≈d[f ] > 1

40I[hd]
}
.

Then∑
d∈Dgood

W≈d[f ] > 1
2var(f).

Proof. As we will see, it suffices to show that
∑
d
I[hd]
d 6 20 var(f). To see that, as

var(f) =
∑
S 6=∅ f̂(S)2, it is enough to show that for each S 6= ∅, the term f̂(S)2 appears in

the sum
∑
d
I[hd]
d with a multiplicative factor of at most 20. Note that this factor is

|S|
∑
d

1
d

((
1− 1

2d

)|S|
−
(

1− 1
d

)|S|)2

.

We analyze the contribution from d 6 |S| and d > |S| separately, showing that each one
of them contributes at most 10

|S| . Let k be such that 2k 6 |S| < 2k+1. The first part is
bounded as

∑
d6|S|

1
d

(1− 1
2d )2|S| 6

∑
d6|S|

1
d
e−|S|/d 6

k∑
j=0

1
2j e
−2k−j

6 2−k
∞∑
`=0

2`e−2`

6 5 · 2−k 6
10
|S|

.
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The second part is bounded as (we approximate 1− rα 6 (1− α)r in this range).

∑
d>|S|

1
d

(
1− (1− 1

d
)|S|
)2

6
∑
d>|S|

1
d
6
∑
r=k+1

1
2r = 2

2k+1 6
2
|S|

.

This shows that
∑
d
I[hd]
d 6 20 var(f). Now we complete the proof of the lemma as:∑

d∈Dgood

W≈d[f ] =
∑
d

W≈d[f ]−
∑

d6∈Dgood

W≈d[f ]

> var(f)− 1
40

∑
d6∈Dgood

I[hd]
d

> var(f)− 1
40 · 20 · var(f) > var(f)

2 . J
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A Missing Proofs

A.1 Proof of Lemma 24
Towards the first property, we note that both functions T1−1/2df and T1−1/df , being averages
of f , are bounded in the interval [0, 1]. Towards the second property, we note that I1

i [hd] 6
I1
i [T1−1/2df ] + I1

i [T1−1/df ] and that the latter are at most I1
i [f ], again because T1−1/2df

and T1−1/df are averages of f . Towards the third property, we note that by definition

ĥd(S) =
((

1− 1
2d

)|S|
−
(

1− 1
d

)|S|)
f̂(S).

The multiplicative factor in front of f̂(S), when d 6 |S| 6 2d, is easily seen to be a constant.
Towards the last property, we note that for each set S 6= ∅, its contribution to var(f) is f̂(S)2

and to I[f ] is |S|f̂(S)2, whereas the corresponding contributions to
∑
d ‖hd‖22 and

∑
d I[hd]

are similar up to the multiplicative factor

∑
d

((
1− 1

2d

)|S|
−
(

1− 1
d

)|S|)2

.

It is enough to show that this sum is at most 1. Indeed, since each summand is square of a
number in the range [0, 1], we can ignore the squares and then it is just a telescoping sum
upper bounded by 1.

A.2 Proof of Lemma 25
In the following, sums run over all d that are powers of 2 unless the sum is restricted explicitly
to a subset. Clearly,

∑
dW≈d[f ] = var(f), so it is enough to show that this sum over only

those d 6∈ Dgood is at most 1
2var(f). We consider two cases: those d that are “large”, that is

d > T = 4I1[f ]
var(f) , and those d that are “not large” but not in Dgood. In the first case, we use

Markov and in the second case, we note that there are only a few summands. Indeed, in the
first case (using I[f ] 6 I1[f ]),

I[f ] > T ·
∑
d>T

W≈d[f ], implying that
∑
d>T

W≈d[f ] 6
I[f ]
T

= I[f ] var(f)
4I1[f ] 6

1
4var(f).

In the second case, d 6 T , so there are at most log T chunks and when d 6∈ Dgood, we have
W≈d[f ] 6 var(f)2

16·I1[f ] = var(f)
4T . Hence∑

d6T,d 6∈Dgood

W≈d[f ] 6 log T · 1
4T · var(f) 6 1

4var(f).
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