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Abstract
Probabilistic graphical models, such as Markov random fields (MRFs), are useful for describing
high-dimensional distributions in terms of local dependence structures. The probabilistic inference
is a fundamental problem related to graphical models, and sampling is a main approach for the
problem. In this paper, we study probabilistic inference problems when the graphical model itself
is changing dynamically with time. Such dynamic inference problems arise naturally in today’s
application, e.g. multivariate time-series data analysis and practical learning procedures.

We give a dynamic algorithm for sampling-based probabilistic inferences in MRFs, where each
dynamic update can change the underlying graph and all parameters of the MRF simultaneously,
as long as the total amount of changes is bounded. More precisely, suppose that the MRF has
n variables and polylogarithmic-bounded maximum degree, and N(n) independent samples are
sufficient for the inference for a polynomial function N(·). Our algorithm dynamically maintains an
answer to the inference problem using Õ(nN(n)) space cost, and Õ(N(n) + n) incremental time
cost upon each update to the MRF, as long as the Dobrushin-Shlosman condition is satisfied by
the MRFs. This well-known condition has long been used for guaranteeing the efficiency of Markov
chain Monte Carlo (MCMC) sampling in the traditional static setting. Compared to the static case,
which requires Ω(nN(n)) time cost for redrawing all N(n) samples whenever the MRF changes,
our dynamic algorithm gives a Ω̃(min{n,N(n)})-factor speedup. Our approach relies on a novel
dynamic sampling technique, which transforms local Markov chains (a.k.a. single-site dynamics)
to dynamic sampling algorithms, and an “algorithmic Lipschitz” condition that we establish for
sampling from graphical models, namely, when the MRF changes by a small difference, samples can
be modified to reflect the new distribution, with cost proportional to the difference on MRF.
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1 Introduction

The probabilistic graphical models provide a rich language for describing high-dimensional
distributions in terms of the dependence structures between random variables. The Markov
random filed (MRF) is a basic graphical model that encodes pairwise interactions of complex
systems. Given a graph G = (V,E), each vertex v ∈ V is associated with a function
φv : Q→ R, called the vertex potential, on a finite domain Q = [q] of q spin states, and each
edge e ∈ E is associated with a symmetric function φe : Q2 → R, called the edge potential,
which describes a pairwise interaction. Together, these induce a probability distribution µ
over all configurations σ ∈ QV :

µ(σ) ∝ exp(H(σ)) = exp
(∑
v∈V

φv(σv) +
∑

e={u,v}∈E

φe(σu, σv)
)
.

This distribution µ is known as the Gibbs distribution and H(σ) is the Hamiltonian. It arises
naturally from various physical models, statistics or learning problems, and combinatorial
problems in computer science [29, 25].

The probabilistic inference is one of the most fundamental computational problems in
graphical model. Some basic inference problems ask to calculate the marginal distribution,
conditional distribution, or maximum-a-posteriori probabilities of one or several random
variables [37]. Sampling is perhaps the most widely used approach for probabilistic inference.
Given a graphical model, independent samples are drawn from the Gibbs distribution and
certain statistics are computed using the samples to give estimates for the inferred quantity.
For most typical inference problems, such statistics are easy to compute once the samples
are given, for instance, for estimating the marginal distribution on a variable subset S, the
statistics is the frequency of each configuration in QS among the samples, thus the cost for
inference is dominated by the cost for generating random samples [24, 35].

The classic probabilistic inference assumes a static setting, where the input graphical
model is fixed. In today’s application, dynamically changing graphical models naturally arise
in many scenarios. In various practical algorithms for learning graphical models, e.g. the
contrastive divergence algorithm for learning the restricted Boltzmann machine [22] and
the iterative proportional fitting algorithm for maximum likelihood estimation of graphical
models [37], the optimal model I∗ is obtained by updating the parameters of the graphical
model iteratively (usually by gradient descent), which generates a sequence of graphical
models I1, I2, · · · , IM , with the goal that IM is a good approximation of I∗. Also in
the study of the multivariate time-series data, the dynamic Gaussian graphical models [5],
multiregression dynamic model [32], dynamic graphical model [14], and dynamic chain graph
models [2], are all dynamically changing graphical models and have been used in a variety of
applications. Meanwhile, with the advent of Big Data, scalable machine learning systems
need to deal with continuously evolving graphical models (see e.g. [33] and [34]).

The theoretical studies of probabilistic inference in dynamically changing graphical models
are lacking. In the aforementioned scenarios in practice, it is common that a sequence of
graphical models is presented with time, where any two consecutive graphical models can
differ from each other in all potentials but by a small total amount. Recomputing the
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inference problem from scratch at every time when the graphical model is changed, can give
the correct solution, but is very wasteful. A fundamental question is whether probabilistic
inference can be solved dynamically and efficiently.

In this paper, we study the problem of probabilistic inference in an MRF when the
MRF itself is changing dynamically with time. At each time, the whole graphical model,
including all vertices and edges as well as their potentials, are subject to changes. Such
non-local updates are very general and cover all applications mentioned above. The problem
of dynamic inference then asks to maintain a correct answer to the inference in a dynamically
changing MRF with low incremental cost proportional to the amount of changes made to
the graphical model at each time.

1.1 Our results
We give a dynamic algorithm for sampling-based probabilistic inferences. Given an MRF
instance with n vertices, suppose that N(n) independent samples are sufficient to give an
approximate solution to the inference problem, where N : N+ → N+ is a polynomial function.
We give dynamic algorithms for general inference problems on dynamically changing MRF.

Suppose that the current MRF has n vertices and polylogarithmic-bounded maximum
degree, and each update to the MRF may change the underlying graph and/or all vertex/edge
potentials, as long as the total amount of changes is bounded. Our algorithm maintains
an approximate solution to the inference with Õ(nN(n)) space cost, and with Õ(N(n) + n)
incremental time cost upon each update, assuming that the MRFs satisfy the Dobrushin-
Shlosman condition [8, 9, 7]. The condition has been widely used to imply the efficiency of
Markov chain Monte Carlo (MCMC) sampling (e.g. see [19, 12]). Compared to the static
algorithm, which requires Ω(nN(n)) time for redrawing all N(n) samples each time, our
dynamic algorithm significantly improves the time cost with an Ω̃(min{n,N(n)})-factor
speedup.

On specific models, the Dobrushin-Shlosman condition has been established in the
literature, which directly gives us following efficient dynamic inference algorithms, with
Õ (nN(n)) space cost and Õ (N(n) + n) time cost per update, on graphs with n vertices and
maximum degree ∆ = O(1):

for Ising model with temperature β satisfying e−2|β| > 1 − 2
∆+1 , which is close to the

uniqueness threshold e−2|βc| = 1− 2
∆ , beyond which the static versions of sampling or

marginal inference problem for anti-ferromagnetic Ising model is intractable [17, 16];
for hardcore model with fugacity λ < 2

∆−2 , which matches the best bound known
for sampling algorithm with near-linear running time on general graphs with bounded
maximum degree [36, 28, 13];
for proper q-coloring with q > 2∆, which matches the best bound known for sampling
algorithm with near-linear running time on general graphs with bounded maximum
degree [23].

Our dynamic inference algorithm is based on a dynamic sampling algorithm, which
efficiently maintains N(n) independent samples for the current MRF while the MRF is
subject to changes. More specifically, we give a dynamic version of the Gibbs sampling
algorithm, a local Markov chain for sampling from the Gibbs distribution that has been
studied extensively. Our techniques are based on: (1) couplings for dynamic instances of
graphical models; and (2) dynamic data structures for representing single-site Markov chains
so that the couplings can be realized algorithmically in sub-linear time. Both these techniques
are of independent interest, and can be naturally extended to more general settings with
multi-body interactions.

ITCS 2021
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Our results show that on dynamically changing graphical models, sampling-based prob-
abilistic inferences can be solved significantly faster than rerunning the static algorithm at
each time. This has practical significance in speeding up the iterative procedures for learning
graphical models.

1.2 Related work
The problem of dynamic sampling from graphical models was introduced very recently
in [14]. There, a dynamic sampling algorithm was given for graphical models with soft
constraints, and can only deal with local updates that change a single vertex or edge at
each time. The regimes for such dynamic sampling algorithm to be efficient are much more
restrictive than the conditions for the rapid mixing of Markov chains. Our algorithm greatly
improves the regimes for efficient dynamic sampling for the Ising and hardcore models in [14],
and for the first time, can handle non-local updates that change all vertex/edge potentials
simultaneously. Besides, the dynamic/online sampling from log-concave distributions was
also studied in [31, 26].

Another related topic is the dynamic graph problems, which ask to maintain a solution
(e.g. spanners [15, 30, 38] or shortest paths [3, 21, 20]) while the input graph is dynamically
changing. More recently, important progress has been made on dynamically maintaining
structures that are related to graph random walks, such as spectral sparsifier [11, 1] or
effective resistances [10, 18]. Instead of one particular solution, dynamic inference problems
ask to maintain an estimate of a statistics, such statistics comes from an exponential-sized
probability space described by a dynamically changing graphical model.

1.3 Organization of the paper
In Section 2, we formally introduce the dynamic inference problem. In Section 3, we formally
state the main results. Preliminaries are given in Section 4. In Section 5, we outline our
dynamic inference algorithm. In Section 6, we present the algorithms for dynamic Gibbs
sampling. The conclusion is given in Section 7. The analyses of the dynamic sampling
algorithms and the proof of the main theorem on dynamic inference are provided in the full
version of the paper.

2 Dynamic inference problem

2.1 Markov random fields
An instance of (pairwise) Markov random field (MRF) is specified by a tuple I = (V,E,Q,Φ),
where G = (V,E) is an undirected simple graph; Q is a domain of q = |Q| spin states, for
some finite q > 1; and Φ = (φa)a∈V ∪E associates each v ∈ V a vertex potential φv : Q→ R
and each e ∈ E an edge potential φe : Q2 → R, where φe is symmetric.

A configuration σ ∈ QV maps each vertex v ∈ V to a spin state in Q, so that each
vertex can be interpreted as a variable. And the Hamiltonian of a configuration σ ∈ QV is
defined as:

H(σ) ,
∑
v∈V

φv(σv) +
∑

e={u,v}∈E

φe(σu, σv).

This defines the Gibbs distribution µI , which is a probability distribution over QV such that

∀σ ∈ QV , µI(σ) = 1
Z

exp(H(σ)),

where the normalizing factor Z ,
∑
σ∈QV exp(H(σ)) is called the partition function.
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The Gibbs measure µ(σ) can be 0 as the functions φv, φe can take the value −∞. A
configuration σ is called feasible if µ(σ) > 0. To trivialize the problem of constructing
a feasible configuration, we further assume the following natural condition for the MRF
instances considered in this paper:1

∀ v ∈ V, ∀σ ∈ QΓG(v) :
∑
c∈Q

exp
(
φv(c) +

∑
u∈Γv

φuv(σu, c)
)
> 0. (1)

where ΓG(v) , {u ∈ V | {u, v} ∈ E} denotes the neighborhood of v in graph G = (V,E).
Some well studied typical MRFs include:
Ising model: The domain of each spin is Q = {−1,+1}. Each edge e ∈ E is associated
with a temperature βe ∈ R; and each vertex v ∈ V is associated with a local field hv ∈ R.
For each configuration σ ∈ {−1,+1}V , µI(σ) ∝ exp

(∑
{u,v}∈E βeσuσv +

∑
v∈V hvσv

)
.

Hardcore model: The domain is Q = {0, 1}. Each configuration σ ∈ QV indicates an
independent set in G = (V,E), and µI(σ) ∝ λ‖σ‖, where λ > 0 is the fugacity parameter.
proper q-coloring: uniform distribution over all proper q-colorings of G = (V,E).

2.2 Probabilistic inference and sampling
In graphical models, the task of probabilistic inference is to derive the probabilities regarding
one or more random variables of the model. Abstractly, this is described by a function
θ : M→ RK that maps each graphical model I ∈M to a target K-dimensional probability
vector, where M is the class of graphical models containing the random variables we are
interested in and the K-dimensional vector describes the probabilities we want to derive.
Given θ(·) and an MRF instance I ∈ M, the inference problem asks to estimate the
probability vector θ(I).

Here are some fundamental inference problems [37] for MRF instances. Let I =
(V,E,Q,Φ) be an MRF instance and A,B ⊆ V two disjoint sets where A ]B ⊆ V .

Marginal inference: estimate the marginal distribution µA,I(·) of the variables in A,
where

∀σA ∈ QA, µA,I(σA) ,
∑

τ∈QV \A

µI(σA, τ).

Posterior inference: given any τB ∈ QB , estimate the posterior distribution µA,I(· | τB)
for the variables in A, where

∀σA ∈ QA, µA,I(σA | τB) , µA∪B,I(σA, τB)
µB,I(τB) .

Maximum-a-posteriori (MAP) inference: find the maximum-a-posteriori (MAP) probabil-
ities P ∗A,I(·) for the configurations over A, where

∀σA ∈ QA, P ∗A,I(σA) , max
τB∈QB

µA∪B,I(σA, τB).

1 This condition guarantees that the marginal probabilities are always well-defined, and the problem of
constructing a feasible configuration σ, where µI(σ) > 0, is trivial. The condition holds for all MRFs
with soft constraints, or with hard constraints where there is a permissive spin, e.g. the hardcore model.
For MRFs with truly repulsive hard constraints such as proper q-coloring, the condition may translate
to the condition q ≥ ∆ + 1 where ∆ is the maximum degree of graph G, which is necessary for the
irreducibility of local Markov chains for q-colorings.

ITCS 2021
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All these fundamental inference problems can be described abstractly by a function θ : M→
RK . For instances, for marginal inference, M contains all MRF instances where A is a
subset of the vertices, K = |Q||A|, and θ(I) = (µA,I(σA))σA∈QA ; and for posterior or MAP
inference, M contains all MRF instances where A ]B is a subset of the vertices, K = |Q||A|

and θ(I) = (µA,I(σA | τB))σA∈QA (for posterior inference) or θ(I) = (P ∗A,I(σA))σA∈QA (for
MAP inference).

One canonical approach for probabilistic inference is by sampling: sufficiently many
independent samples are drawn (approximately) from the Gibbs distribution of the MRF
instance and an estimate of the target probabilities is calculated from these samples. Given
a probabilistic inference problem θ(·), we use Eθ(·) to denote an estimating function that
approximates θ(I) using independent samples drawn approximately from µI . For the
aforementioned problems of marginal, posterior and MAP inferences, such estimating function
Eθ(·) simply counts the frequency of the samples that satisfy certain properties.

The sampling cost of an estimator is captured in two aspects: the number of samples it
uses and the accuracy of each individual sample it requires.

I Definition 1 ((N, ε)-estimator for θ). Let θ : M→ RK be a probabilistic inference problem
and Eθ(·) an estimating function for θ(·) that for each instance I = (V,E,Q,Φ) ∈M, maps
samples in QV to an estimate of θ(I). Let N : N+ → N+ and ε : N+ → (0, 1). For any
instance I = (V,E,Q,Φ) ∈ M where n = |V |, the random variable Eθ(X(1), . . . ,X(N(n)))
is said to be an (N, ε)-estimator for θ(I) if X(1), . . . ,X(N(n)) ∈ QV are N(n) independent
samples drawn approximately from µI such that dTV

(
X(j), µI

)
≤ ε(n) for all 1 ≤ j ≤ N(n).

In Definition 1, an estimator is viewed as a black-box algorithm specified by two functions
N and ε. Usually, the estimator is more accurate if more independent samples are drawn
and each sample provides a higher level of accuracy. Thus, one can choose some large N and
small ε to achieve a desired quality of estimate.

2.3 Dynamic inference problem
We consider the inference problem where the input graphical model is changed dynamically:
at each step, the current MRF instance I = (V,E,Q,Φ) is updated to a new instance
I ′ = (V ′, E′, Q,Φ′). We consider general update operations for MRFs that can change
both the underlying graph and all edge/vertex potentials simultaneously, where the
update request is made by a non-adaptive adversary independently of the randomness used
by the inference algorithm. Such updates are general enough and cover many applications,
e.g. analyses of time series network data [5, 32, 14, 2], and learning algorithms for graphical
models [22, 37].

The difference between the original and the updated instances is measured as follows.

I Definition 2 (difference between MRF instances). The difference between two MRF instances
I = (V,E,Q,Φ) and I ′ = (V ′, E′, Q,Φ′), where Φ = (φa)a∈V ∪E and Φ′ = (φ′a)a∈V ′∪E′ , is
defined as

d(I, I ′) ,
∑

v∈V ∩V ′

‖φv − φ′v‖1 +
∑

e∈E∩E′

‖φe − φ′e‖1 + |V ⊕ V ′|+ |E ⊕ E′|, (2)

where A⊕B = (A \B)∪ (B \A) stands for the symmetric difference between two sets A and
B, ‖φv − φ′v‖1 ,

∑
c∈Q |φv(c)− φ′v(c)|, and ‖φe − φ′e‖1 ,

∑
c,c′∈Q |φe(c, c′)− φ′e(c, c′)|.
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Given a probability vector specified by the function θ : M→ RK , the dynamic inference
problem asks to maintain an estimator θ̂(I) of θ(I) for the current MRF instance I =
(V,E,Q,Φ) ∈M, with a data structure, such that when I is updated to I ′ = (V ′, E′, Q,Φ′) ∈
M, the algorithm updates θ̂(I) to an estimator θ̂(I ′) of the new vector θ(I ′), or equivalently,
outputs the difference between the estimators θ̂(I) and θ̂(I ′).

It is desirable to have the dynamic inference algorithm which maintains an (N, ε)-estimator
for θ(I) for the current instance I. However, the dynamic algorithm cannot be efficient if
N(n) and ε(n) change drastically with n (so that significantly more samples or substantially
more accurate samples may be needed when a new vertex is added), or if recalculating the
estimating function Eθ(·) itself is expensive. We introduce a notion of dynamical efficiency
for the estimators that are suitable for dynamic inference.

I Definition 3 (dynamical efficiency). Let N : N+ → N+ and ε : N+ → (0, 1). Let E(·) be an
estimating function for some K-dimensional probability vector of MRF instances. An tuple
(N, ε, E) is said to be dynamically efficient if it satisfies:

(bounded difference) there exist constants C1, C2 > 0 such that for any n ∈ N+,

|N(n+ 1)−N(n)| ≤ C1 ·N(n)
n

and |ε(n+ 1)− ε(n)| ≤ C2 · ε(n)
n

;

(small incremental cost) there is a deterministic algorithm that maintains E(X(1), . . . ,

X(m)) using (mn + K) · polylog(mn) bits where X(1), . . . ,X(m) ∈ QV and n = |V |,
such that when X(1), . . . ,X(m) ∈ QV are updated to Y (1), . . . ,Y (m′) ∈ QV

′ , where
n′ = |V ′|, the algorithm updates E(X(1), . . . ,X(m)) to E(Y (1), . . . ,Y (m′)) within time
cost D · polylog(mm′nn′) +O(m+m′), where D is the size of the difference between two
sample sequences defined as:

D ,
∑

i≤max{m,m′}

∑
v∈V ∪V ′

1
[
X(i)(v) 6= Y (i)(v)

]
, (3)

where an unassigned X(i)(v) or Y (i)(v) is not equal to any assigned spin.

The dynamic efficiency basically asks N(·), ε(·), and E(·) to have some sort of “Lipschitz”
properties. To satisfy the bounded difference condition, N(n) and 1/ε(n) are necessarily
polynomially bounded, and they can be any constant, polylogarithmic, or polynomial
functions, or multiplications of such functions. The condition with small incremental cost
also holds very commonly. In particular, it is satisfied by the estimating functions for all
the aforementioned problems for the marginal, posterior and MAP inferences as long as the
sets of variables have sizes |A| , |B| = O(logn). We remark that the O(logn) upper bound is
somehow necessary for the efficiency of inference, because otherwise the dimension of θ(I)
itself (which is at least q|A|) becomes super-polynomial in n.

3 Main results

Let I = (V,E,Q,Φ) be an MRF instance, where G = (V,E). Let ΓG(v) denote the
neighborhood of v in G. For any vertex v ∈ V and any configuration σ ∈ QΓG(v), we use
µσv,I(·) = µv,I(· | σ) to denote the marginal distribution on v conditional on σ:

∀c ∈ Q : µσv,I(c) = µv,I(c | σ) ,
exp

(
φv(c) +

∑
u∈ΓG(v) φuv(σu, c)

)
∑
a∈Q exp

(
φv(a) +

∑
u∈ΓG(v) φuv(σu, a)

) .
Due to the assumption in (1), the marginal distribution is always well-defined. The following
condition is the Dobrushin-Shlosman condition [8, 9, 7, 19, 12].

ITCS 2021
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I Condition 4 (Dobrushin-Shlosman condition). Let I = (V,E,Q,Φ) be an MRF instance
with Gibbs distribution µ = µI . Let AI ∈ RV×V≥0 be the influence matrix which is defined as

AI(u, v) ,
{

max(σ,τ)∈Bu,v
dTV (µσv , µτv) , {u, v} ∈ E,

0 {u, v} 6∈ E,

where the maximum is taken over the set Bu,v of all (σ, τ) ∈ QΓG(v)×QΓG(v) that differ only
at u, and dTV (µσv , µτv) , 1

2
∑
c∈Q |µσv (c)− µτv(c)| is the total variation distance between µσv

and µτv . An MRF instance I is said to satisfy the Dobrushin-Shlosman condition if there is
a constant δ > 0 such that

max
u∈V

∑
v∈V

AI(u, v) ≤ 1− δ.

Our main theorem assumes the following setup: Let θ : M → RK be a probabilistic
inference problem that maps each MRF instance in M to a K-dimensional probability vector,
and let Eθ be its estimating function. Let N : N+ → N+ and ε : N+ → (0, 1). We use I =
(V,E,Q,Φ) ∈M, where n = |V |, to denote the current instance and I ′ = (V ′, E′, Q,Φ′) ∈M,
where n′ = |V ′|, to denote the updated instance.

I Theorem 5 (dynamic inference algorithm). Assume that (N, ε, Eθ) is dynamically efficient,
both I and I ′ satisfy the Dobrushin-Shlosman condition, and d(I, I ′) ≤ L = o(n).

There is an algorithm that maintains an (N, ε)-estimator θ̂(I) of the probability vector
θ(I) for the current MRF instance I, using Õ (nN(n) +K) bits, such that when I is updated
to I ′, the algorithm updates θ̂(I) to an (N, ε)-estimator θ̂(I ′) of θ(I ′) for the new instance
I ′, within expected time cost

Õ
(
∆2LN(n) + ∆n

)
,

where Õ(·) hides a polylog(n) factor, ∆ = max{∆G,∆G′}, where ∆G and ∆G′ denote the
maximum degree of G = (V,E) and G′ = (V ′, E′) respectively.

Note that the extra O(∆n) cost is necessary for editing the current MRF instance I to I ′.
Typically, the difference between two MRF instances I, I ′ is small2, and the underlying

graphs are sparse [6] , that is, L,∆ ≤ polylog(n). In such cases, our algorithm updates the
estimator within time cost Õ(N(n) + n), which significantly outperforms static sampling-
based inference algorithms that require time cost Ω(n′N(n′)) = Ω(nN(n)) for redrawing all
N(n′) independent samples.

Dynamic sampling. The core of our dynamic inference algorithm is a dynamic sampling
algorithm: Assuming the Dobrushin-Shlosman condition, the algorithm can maintain a
sequence of N(n) independent samples X(1), . . . ,X(N(n)) ∈ QV that are ε(n)-close to µI
in total variation distance, and when I is updated to I ′ with difference d(I, I ′) ≤ L =
o(n), the algorithm can update the maintained samples to N(n′) independent samples
Y (1), . . . ,Y (N(n′)) ∈ QV ′ that are ε(n′)-close to µI′ in total variation distance, using a time
cost Õ

(
∆2LN(n) + ∆n

)
in expectation. This shows an “algorithmic Lipschitz” condition

2 In multivariate time-series data analysis, the MRF instances of two sequential times are similar. In the
iterative algorithms for learning graphical models, the difference between two sequential MRF instances
generated by gradient descent are bounded to prevent oscillations. Specifically, the difference is very
small when the iterative algorithm approaches to the convergence state [22, 37].
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holds for sampling from Gibbs distributions: when the MRF changes insignificantly, a
population of samples can be modified to reflect the new distribution, with cost proportional
to the difference on MRF. We show that such property is guaranteed by the Dobrushin-
Shlosman condition. This dynamic sampling algorithm is formally described in Theorem 9
and is of independent interest [14].

Applications on specific models. On specific models, we have the following results, where
δ > 0 is an arbitrary constant.

Table 1 Dynamic inference for specific models.

model regime space cost time cost for each update

Ising e−2|β| ≥ 1− 2−δ
∆+1 Õ (nN(n) +K) Õ

(
∆2LN(n) + ∆n

)
hardcore λ ≤ 2−δ

∆−2 Õ (nN(n) +K) Õ
(
∆3LN(n) + ∆n

)
q-coloring q ≥ (2 + δ)∆ Õ (nN(n) +K) Õ

(
∆2LN(n) + ∆n

)
The results for Ising model and q-coloring are corollaries of Theorem 5. The regime for
hardcore model is better than the Dobrushin-Shlosman condition (which is λ ≤ 1−δ

∆−1 ), because
we use the coupling introduced by Vigoda [36] to analyze the algorithm.

4 Preliminaries

Total variation distance and coupling. Let µ and ν be two distributions over Ω. The total
variation distance between µ and ν is defined as

dTV (µ, ν) , 1
2
∑
x∈Ω
|µ(x)− ν(x)| .

A coupling of µ and ν is a joint distribution (X,Y ) ∈ Ω×Ω such that marginal distribution of
X is µ and the marginal distribution of Y is ν. The following coupling lemma is well-known.

I Proposition 6 (coupling lemma). For any coupling (X,Y ) of µ and ν, it holds that

Pr[X 6= Y ] ≥ dTV (µ, ν) .

Furthermore, there is an optimal coupling that achieves equality.

Local neighborhood. Let G = (V,E) be a graph. For any vertex v ∈ V , let ΓG(v) ,
{u ∈ V | {u, v} ∈ E} denote the neighborhood of v, and Γ+

G(v) , ΓG(v) ∪ {v} the inclusive
neighborhood of v. We simply write Γv = Γ(v) = ΓG(v) and Γ+

v = Γ+(v) = Γ+
G(v) for short

when G is clear in the context. We use ∆ = ∆G , maxv∈V |Γv| to denote the maximum
degree of graph G.

A notion of local neighborhood for MRF is frequently used. Let I = (V,E,Q,Φ)
be an MRF instance. For v ∈ V , we denote by Iv , I[Γ+

v ] the restriction of I on the
inclusive neighborhood Γ+

v of v, i.e. Iv = (Γ+
v , Ev, Q,Φv), where Ev = {{u, v} ∈ E} and

Φv = (φa)a∈Γ+
v ∪Ev

.
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Gibbs sampling. The Gibbs sampling (a.k.a. heat-bath, Glauber dynamics), is a classic
Markov chain for sampling from Gibbs distributions. Let I = (V,E,Q,Φ) be an MRF
instance and µ = µI its Gibbs distribution. The chain of Gibbs sampling (Algorithm 1) is
on the space Ω , QV , and has the stationary distribution µI [27, Chapter 3].

Algorithm 1 Gibbs sampling.

Initialization : an initial state X0 ∈ Ω (not necessarily feasible);
1 for t = 1, 2, . . . , T do
2 pick vt ∈ V uniformly at random;
3 draw a random value c ∈ Q from the marginal distribution µvt(· | Xt−1(Γvt));
4 Xt(vt)← c and Xt(u)← Xt−1(u) for all u ∈ V \ {vt};

Marginal distributions. Here µv(· | σ(Γv)) = µv,I(· | σ(Γv)) denotes the marginal distribu-
tion at v ∈ V conditioning on σ(Γv) ∈ QΓv , which is computed as:

∀c ∈ Q : µv(c | σ(Γv)) =
φv(c)

∏
u∈Γv

φuv(σu, c)∑
c′∈Q φv(c′)

∏
u∈Γv

φuv(σu, c′)
. (4)

Due to the assumption (1), this marginal distribution is always well defined, and its compu-
tation uses only the information of Iv.

Coupling for mixing time. Consider a chain (Xt)∞t=0 on space Ω with stationary distribution
µI for MRF instance I. The mixing rate is defined as: for ε > 0,

τmix(I, ε) , max
X0

min {t | dTV (Xt, µI) ≤ ε} ,

where dTV (Xt, µI) denotes the total variation distance between µI and the distribution
of Xt.

A coupling of a Markov chain is a joint process (Xt,Yt)t≥0 such that (Xt)t≥0 and (Yt)t≥0
marginally follow the same transition rule as the original chain. Consider the following type
of couplings.
I Definition 7 (one-step optimal coupling for Gibbs sampling). A coupling (Xt,Yt)t≥0 of
Gibbs sampling on an MRF instance I = (V,E,Q,Φ) is a one-step optimal coupling if it is
constructed as follows: For t = 1, 2, . . .,
1. pick the same random vt ∈ V , and let (Xt(u), Yt(u))← (Xt−1(u), Yt−1(u)) for all u 6= vt;
2. sample (Xt(vt), Yt(vt)) from an optimal coupling Dσ,τ

opt,Ivt
(·, ·) of the marginal distributions

µvt
(· | σ) and µvt

(· | τ) where σ = Xt−1(Γvt
) and τ = Yt−1(Γvt

).
The coupling Dσ,τ

opt,Ivt
(·, ·) is an optimal coupling of µvt

(· | σ) and µvt
(· | τ) that attains

the maximum Pr[x = y] for all couplings (x,y) of x ∼ µvt
(· | σ) and y ∼ µvt

(· | τ). The
coupling Dσ,τ

opt,Ivt
(·, ·) is determined by the local information Iv and σ, τ ∈ Qdeg(v).

With such a coupling, we can establish the following relation between the Dobrushin-
Shlosman condition and the rapid mixing of the Gibbs sampling [8, 9, 7, 4, 19, 12].
I Proposition 8 ([4, 19]). Let I = (V,E,Q,Φ) be an MRF instance with n = |V |, and
Ω = QV the state space. Let H(σ, τ) , |{v ∈ V | σv 6= τv}| denote the Hamming distance
between σ ∈ Ω and τ ∈ Ω. If I satisfies the Dobrushin-Shlosman condition (Condition 4)
with constant δ > 0, then the one-step optimal coupling (Xt,Yt)t≥0 for Gibbs sampling
(Definition 7) satisfies

∀σ, τ ∈ Ω : E [H(Xt,Yt) |Xt−1 = σ ∧ Yt−1 = τ ] ≤
(

1− δ

n

)
·H(σ, τ),

and hence the mixing rate of Gibbs sampling on I is bounded as τmix(I, ε) ≤
⌈
n
δ log n

ε

⌉
.
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5 Outlines of algorithm

Let θ : M → RK be a probabilistic inference problem that maps each MRF instance
in M to a K-dimensional probability vector, and let Eθ be its estimating function. Le
I = (V,E,Q,Φ) ∈ M be the current instance, where n = |V |. Our dynamic inference
algorithm maintains a sequence of N(n) independent samples X(1), . . . ,X(N(n)) ∈ QV which
are ε(n)-close to the Gibbs distribution µI in total variation distance and an (N, ε)-estimator
θ̂(I) of θ(I) such that

θ̂(I) = Eθ(X(1),X(2), . . . ,X(N(n))).

Upon an update request that modifies I to a new instance I ′ = (V ′, E′, Q,Φ′) ∈M, where
n′ = |V ′|, our algorithm does the followings:

Update the sample sequence. Update X(1), . . . ,X(N(n)) to a new sequence of N(n′)
independent samples Y (1), . . . ,Y (N(n′)) ∈ QV ′ that are ε(n′)-close to µI′ in total variation
distance, and output the difference between two sample sequences.
Update the estimator. Given the difference between the two sample sequences, update
θ̂(I) to θ̂(I ′) = Eθ(Y (1), . . . ,Y (N(n′))) by accessing the oracle in Definition 3.

Obviously, the updated estimator θ̂(I ′) is an (N, ε)-estimator for θ(I ′).
Our main technical contribution is to give an algorithm that dynamically maintains

a sequence of N(n) independent samples for µI , while I itself is dynamically changing.
The dynamic sampling problem was recently introduced in [14]. The dynamical sampling
algorithm given there only handles update of a single vertex or edge and works only for
graphical models with soft constraints.

In contrast, our dynamic sampling algorithm maintains a sequence of N(n) independent
samples for µI within total variation distance ε(n), while the entire specification of the
graphical model I is subject to dynamic update (to a new I ′ with difference d(I, I ′) ≤
L = o(n)). Specifically, the algorithm updates the sample sequence within expected time
O(∆2N(n)L log3 n+ ∆n). Note that the extra O(∆n) cost is necessary for just editing the
current MRF instance I to I ′ because a single update may change all the vertex and edge
potentials simultaneously. This incremental time cost dominates the time cost of the dynamic
inference algorithm, and is efficient for maintaining N(n) independent samples, especially
when N(n) is sufficiently large, e.g. N(n) = Ω(n/L), in which case the average incremental
cost for updating each sample is O(∆2L log3 n+ ∆n/N(n)) = O(∆2L log3 n).

We illustrate the main idea by explaining how to maintain one sample. The idea is
to represent the trace of the Markov chain for generating the sample by a dynamic data
structure, and when the MRF instance is changed, this trace is modified to that of the new
chain for generating the sample for the updated instance. This is achieved by both a set of
efficient dynamic data structures and the coupling between the two Markov chains.

Specifically, let (Xt)Tt=0 be the Gibbs sampler chain for distribution µI . When the chain
is rapidly mixing, starting from an arbitrary initial configuration X0 ∈ QV , after suitably
many steps X = XT is an accurate enough sample for µI . At each step, Xt−1 and Xt may
differ only at a vertex vt which is picked from V uniformly and independently at random.
The evolution of the chain is fully captured by the initial state X0 and the sequence of pairs
〈 vt, Xt(vt) 〉, from t = 1 to t = T , which is called the execution log of the chain in the paper.

Now suppose that the current instance I is updated to I ′. We construct such a coupling
between the original chain (Xt)Tt=0 and the new chain (Yt)Tt=0, such that (Yt)Tt=0 is a faithful
Gibbs sampling chain for the updated instance I ′ given that (Xt)Tt=0 is a faithful chain for
I, and the difference between the two chains is small, in the sense that they have almost the
same execution logs except for about O(TL/n) steps, where L is the difference between I
and I ′.
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To simplify the exposition of such coupling, for now we restrict ourselves to the cases
where the update to the instance I does not change the set of variables. Without loss of
generality, we only consider the following two basic update operations that modifies I to I ′.

Graph update. The update only adds or deletes some edges, while all vertex potentials
and the potentials of unaffected edges are not changed.
Hamiltonian update. The update changes (possibly all) potentials of vertices and edges,
while the underlying graph remains unchanged.

The general update of graphical model can be obtained by combining these two basic
operations.

Then the new chain (Yt)Tt=0 can be coupled with (Xt)Tt=0 by using the same initial
configuration Y0 = X0 and the same sequence v1, v2, . . . , vT ∈ V of randomly picked vertices.
And for t = 1, 2, . . . , T , the transition 〈 vt, Yt(vt) 〉 of the new chain can be generated using
the same vertex vt as in the original (Xt)Tt=0 chain, and a random Yt(vt) generated according
to a coupling of the marginal distributions of Xt(vt) and Yt(vt), conditioning respectively on
the current states of the neighborhood of vt in (Xt)Tt=0 and (Yt)Tt=0. Note that these two
marginal distributions must be identical unless (I) Xt−1 and Yt−1 differ from each other
over the neighborhood of vt or (II) the vt itself is incident to where the models I and I ′
differ. The event (II) occurs rarely due to the following reasons.

For graph update, the event (II) occurs only if vt is incident to an updated edge. Since
only L edges are updated, the event occurs in at most O(TL/n) steps in expectation.
For Hamiltonian update, all the potentials of vertices and edges can be changed, thus
I, I ′ may differ everywhere. The key observation is that, as the total difference between
the current and updated potentials is bounded by L, we can apply a filter to first select
all candidate steps where the coupling may actually fail due to the difference between
I and I ′, which can be as small as O(TL/n), and the actual coupling between (Xt)∞t=0
and (Yt)∞t=0 is constructed with such prior.

Finally, when I and I ′ both satisfy the Dobrushin-Shlosman condition, the percolation of
disagreements between (Xt)Tt=0 and (Yt)Tt=0 is bounded, and we show that the two chains
are almost always identically coupled as 〈 vt, Xt(vt) 〉 = 〈 vt, Yt(vt) 〉, with exceptions at
only O(TL/n) steps. The original chain (Xt)Tt=0 can then be updated to the new chain
(Yt)Tt=0 by only editing these O(TL/n) local transitions 〈 vt, Yt(vt) 〉 which are different from
〈 vt, Xt(vt) 〉. This is aided by the dynamic data structure for the execution log of the chain,
which is of independent interest.

6 Dynamic Gibbs sampling

In this section, we give the dynamic sampling algorithm that updates the sample sequences.
In the following theorem, we use I = (V,E,Q,Φ), where n = |V |, to denote the current

MRF instance and I ′ = (V ′, E′, Q,Φ′), where n′ = |V ′|, to denote the updated MRF instance.
And define

dgraph(I, I ′) , |V ⊕ V ′|+ |E ⊕ E′|

dHamil(I, I ′) ,
∑

v∈V ∩V ′

‖φv − φ′v‖1 +
∑

e∈E∩E′

‖φe − φ′e‖1 .

Note that d(I, I ′) = dgraph(I, I ′) + dHamil(I, I ′), where d(I, I ′) is defined in (2).
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I Theorem 9 (dynamic sampling algorithm). Let N : N+ → N+ and ε : N+ → (0, 1) be
two functions satisfying the bounded difference condition in Definition 3. Assume that
I and I ′ both satisfy Dobrushin-Shlosman condition, dgraph(I, I ′) ≤ Lgraph = o(n) and
dHamil(I, I ′) ≤ LHamil.

There is an algorithm that maintains a sequence of N(n) independent samples X(1), . . . ,

X(N(n)) ∈ QV where dTV
(
µI ,X

(i)) ≤ ε(n) for all 1 ≤ i ≤ N(n), using O (nN(n) logn)
memory words, each of O(logn) bits, such that when I is updated to I ′, the algorithm updates
the sequence to N(n′) independent samples Y (1), . . . ,Y (N(n′)) ∈ QV ′ where dTV

(
µI′ ,Y (i)) ≤

ε(n′) for all 1 ≤ i ≤ N(n′), within expected time cost

O
(
∆2(Lgraph + LHamil)N(n) log3 n+ ∆n

)
, (5)

where ∆ = max{∆G,∆G′}, and ∆G,∆G′ denote the maximum degree of G = (V,E) and
G′ = (V ′, E′).

Our algorithm is based on the Gibbs sampling algorithm. Let N : N+ → N+ and
ε : N+ → (0, 1) be two functions in Theorem 9. We first give the single-sample dynamic
Gibbs sampling algorithm (Algorithm 2) that maintains a single sample X ∈ QV for the
current MRF instance I = (V,E,Q,Φ) where n = |V | such that dTV (X, µI) ≤ ε(n). We
then use this algorithm to obtain the multi-sample dynamic Gibbs sampling algorithm that
maintains N(n) independent samples for the current instance.

Given the error function ε : N+ → (0, 1), suppose that T (I) is an easy-to-compute
integer-valued function that upper bounds the mixing time on instance I, such that

T (I) ≥ τmix(I, ε(n)), (6)

where τmix(I, ε(n)) denotes the mixing rate for the Gibbs sampling chain (Xt)t≥0 on instance
I. By Proposition 8, if the Dobrushin-Shlosman condition is satisfied, we can set

T (I) =
⌈
n

δ
log n

ε(n)

⌉
. (7)

Our algorithm for single-sample dynamic Gibbs sampling maintains a random process
(Xt)Tt=0, which is a Gibbs sampling chain on instance I of length T = T (I), where T (I)
satisfies (6). Clearly XT is a sample for µI with dTV (XT , µI) ≤ ε(n).

When the current instance I is updated to a new instance I ′ = (V ′, E′, Q,Φ′) where
n′ = |V ′|, the original process (Xt)Tt=0 is transformed to a new process (Yt)T

′

t=0 such that the
following holds as an invariant: (Yt)T

′

t=0 is a Gibbs sampling chain on I ′ with T ′ = T (I ′).
Hence YT is a sample for the new instance I ′ with dTV (YT , µI′) ≤ ε(n′). This is achieved
through the following two steps:
1. We construct couplings between (Xt)Tt=0 and (Yt)T

′

t=0, so that the new process (Yt)T
′

t=0
for I ′ can be obtained by making small changes to the original process (Xt)Tt=0 for I.

2. We give a data structure which represents (Xt)Tt=0 incrementally and supports various
updates and queries to (Xt)Tt=0 so that the above coupling can be generated efficiently.

The data structure is provided in the full version. In the following, we give the couplings.

6.1 Coupling for dynamic instances
The Gibbs sampling chain (Xt)Tt=0 can be uniquely and fully recovered from: the initial state
X0 ∈ QV , and the pairs 〈vt, Xt(vt)〉Tt=1 that record the transitions. We call 〈vt, Xt(vt)〉Tt=1
the execution-log for the chain (Xt)Tt=0, and denote it with

Exe-Log(I, T ) , 〈vt, Xt(vt)〉Tt=1 .

ITCS 2021



25:14 Dynamic Inference in Probabilistic Graphical Models

The following invariants are assumed for the random execution-log with an initial state.

I Condition 10 (invariants for Exe-Log). Fixed an initial state X0 ∈ QV , the followings hold
for the random execution-log Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for the Gibbs sampling chain
(Xt)Tt=0 on instance I = (V,E,Q,Φ):

T = T (I) where T (I) satisfies (6);
the random process (Xt)Tt=0 uniquely recovered from the transitions 〈vt, Xt(vt)〉Tt=1 and
the initial state X0, is identically distributed as the Gibbs sampling (Algorithm 1) on
instance I starting from initial state X0 with vt as the vertex picked at the t-th step.

Such invariants guarantee that XT provides a sample for µI with dTV (XT , µI) ≤ ε(|V |).
Suppose the current instance I is updated to a new instance I ′. We construct couplings

between the execution-log Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 with initial state X0 ∈ QV for
I and the execution-log Exe-Log(I ′, T ′) = 〈v′t, Yt(v′t)〉

T ′

t=1 with initial state Y0 ∈ QV
′ for I ′.

Our goal is as follows: assuming Condition 10 for X0 and Exe-Log(I, T ), the same condition
should hold invariantly for Y0 and Exe-Log(I ′, T ′).

Unlike traditional coupling of Markov chains for the analysis of mixing time, where the
two chains start from arbitrarily distinct initial states but proceed by the same transition
rule, here the two chains (Xt)Tt=0 and (Yt)Tt=0 start from similar states but have to obey
different transition rules due to differences between instances I and I ′.

Due to the technical reason, we divide the update from I = (V,E,Q,Φ) to I ′ =
(V ′, E′, Q,Φ′) into two steps: we first update I = (V,E,Q,Φ) to

Imid = (V,E,Q,Φmid), (8)

where the potentials Φmid = (φmid
a )a∈V ∪E in the middle instance Imid are defined as

∀a ∈ V ∪ E, φmid
a ,

{
φ′a if a ∈ V ′ ∪ E′

φa if a 6∈ V ′ ∪ E′;

then we update Imid = (V,E,Q,Φmid) to I ′ = (V ′, E′, Q,Φ′). In other words, the update
from I to Imid is only caused by updating the potentials of vertices and edges, while the
underlying graph remains unchanged; and the update from Imid to I ′ is only caused by
updating the underlying graph, i.e. adding vertices, deleting vertices, adding edges and
deleting edges.

The dynamic Gibbs sampling algorithm can be outlined as follows.
UpdateHamiltonian: update X0 and 〈vt, Xt(vt)〉Tt=1 to a new initial state Z0 and a new
execution log Exe-Log(Imid, T ) = 〈ut, Zt(ut)〉Tt=1 such that the random process (Zt)Tt=0 is
the Gibbs sampling on instance Imid.
UpdateGraph: update Z0 and 〈ut, Zt(ut)〉Tt=1 to a new initial state Y0 and a new execution
log Exe-Log(I ′, T ) = 〈v′t, Yt(v′t)〉

T
t=1 such that the random process (Yt)Tt=0 is the Gibbs

sampling on instance I ′.
LengthFix: change the length of the execution log 〈v′t, Yt(v′t)〉

T
t=1 from T to T ′, where

T ′ = T (I ′) and T (I ′) satisfies (6).
The dynamic Gibbs sampling algorithm is given in Algorithm 2.

The subroutine LengthFix is given in Algorithm 3. The subroutine UpdateGraph is provided
in the full version of the paper. In the following, we give the subroutines UpdateHamiltonian.

We consider the update of changing potentials of vertices and edges. The update do not
change the underlying graph. Let I = (V,E,Q,Φ) be the current MRF instance. Let X0 and
〈vt, Xt(vt)〉Tt=1 be the current initial state and execution log such that the random process
(Xt)Tt=0 is the Gibbs sampling on instance I. Upon such an update, the new instance becomes
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Algorithm 2 Dynamic Gibbs sampling.

Data :X0 ∈ QV and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for current I = (V,E,Q,Φ).
Update : an update that modifies I to I ′ = (V ′, E′, Q,Φ′).

1 compute T ′ = T (I ′) satisfying (6) and construct Imid = (V ′, E′, Q,Φmid) as in (8);
2
(
Z0, 〈ut, Zt(ut)〉Tt=1

)
← UpdateHamiltonian

(
I, Imid,X0, 〈vt, Xt(vt)〉Tt=1

)
;

// update the potentials: I → Imid

3
(
Y0, 〈v′t, Yt(v′t)〉

T
t=1

)
← UpdateGraph

(
Imid, I ′,Z0, 〈ut, Zt(ut)〉Tt=1

)
;

// update the underlying graph: Imid → I ′

4
(
Y0, 〈v′t, Yt(v′t)〉

T ′

t=1

)
← LengthFix

(
I ′,Y0, 〈v′t, Yt(v′t)〉

T
t=1 , T

′
)
, where T ′ = T (I ′) ;

// change the length of the execution log from T to T ′ = T (I ′)
5 update the data to Y0 and Exe-Log(I ′, T ′) = 〈v′t, Yt(v′t)〉

T ′

t=1;

Algorithm 3 LengthFix
(
I,X0, 〈vt, Xt(vt)〉Tt=1 , T

′).
Data :X0 ∈ QV and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for current I = (V,E,Q,Φ).
Input : the new length T ′ > 0.

1 if T ′ < T then
2 truncate 〈vt, Xt(vt)〉Tt=1 to 〈vt, Xt(vt)〉T

′

t=1;
3 else
4 extend 〈vt, Xt(vt)〉Tt=1 to 〈vt, Xt(vt)〉T

′

t=1 by simulating the Gibbs sampling chain
on I for T − T ′ more steps;

5 update the data to X0 and Exe-Log(I, T ′) = 〈vt, Xt(vt)〉T
′

t=1

I ′ = (V,E,Q,Φ′). The algorithm UpdateHamiltonian(I, I ′,X0, 〈vt, Xt(vt)〉Tt=1) updates the
data to Y0 and 〈v′t, Yt(v′t)〉

T
t=1 such that the random process (Yt)Tt=0 is the Gibbs sampling

on instance I ′.
We transform the pair of X0 ∈ QV and 〈vt, Xt(vt)〉Tt=1 to a new pair of Y0 ∈ QV and

〈vt, Yt(vt)〉Tt=1 for I ′. This is achieved as follows: the vertex sequence (vt)Tt=1 is identically
coupled and the chain (Xt)Tt=0 is transformed to (Yt)Tt=0 by the following one-step local
coupling between X and Y .

I Definition 11 (one-step local coupling for Hamiltonian update). The two chains (Xt)∞t=0 on
instance I = (V,E,Q,Φ) and (Yt)∞t=0 on instance I ′ = (V,E,Q,Φ′) are coupled as:

Initially X0 = Y0 ∈ QV ;
for t = 1, 2, . . ., the two chains X and Y jointly do:
1. pick the same vt ∈ V , and let (Xt(u), Yt(u))← (Xt−1(u), Yt−1(u)) for all u ∈ V \ {vt};
2. sample (Xt(vt), Yt(vt)) from a coupling Dσ,τ

Ivt ,I′
vt

(·, ·) of the marginal distributions
µvt,I(· | σ) and µvt,I′(· | τ) with σ = Xt−1(ΓG(vt)) and τ = Yt−1(ΓG(vt)), where
G = (V,E).

The local coupling Dσ,τ
Iv,I′

v
(·, ·) for Hamiltonian update is specified as follows.

I Definition 12 (local coupling Dσ,τ
Iv,I′

v
(·, ·) for Hamiltonian update). Let v ∈ V be vertex

and σ, τ ∈ QΓG(v) two configurations, where G = (V,E). We say a random pair (c, c′) ∈ Q2

is drawn from the coupling Dσ,τ
Iv,I′

v
(·, ·) if (c, c′) is generated by the following two steps:
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sampling step: sample (c, c′) ∈ Q2 jointly from an optimal coupling Dσ,τ
opt,Iv

of the
marginal distributions µv,I(· | σ) and µv,I(· | τ), such that c ∼ µv,I(· | σ) and c′ ∼ µv,I(· |
τ);
resampling step: flip a coin independently with the probability of HEADS being

pτIv,I′
v
(c′) ,

{
0 if µv,I(c′ | τ) ≤ µv,I′(c′ | τ),
µv,I(c′|τ)−µv,I′ (c′|τ)

µv,I(c′|τ) otherwise ;
(9)

if the outcome of coin flipping is HEADS, resample c′ from the distribution ντIv,I′
v

independently, where the distribution ντIv,I′
v
is defined as

∀b ∈ Q : ντIv,I′
v
(b) , max {0, µv,I′(b | τ)− µv,I(b | τ)}∑

x∈Q max {0, µv,I(x | τ)− µv,I′(x | τ)} . (10)

I Lemma 13. Dσ,τ
Iv,I′

v
(·, ·) in Definition 12 is a valid coupling between µv,I(· | σ) and

µv,I′(· | τ).
By Lemma 13, the resulting (Yt)Tt=0 is a faithful copy of the Gibbs sampling on instance I ′,
assuming that (Xt)Tt=0 is such a chain on instance I.

Next we give an upper bound for the probability pτIv,I′
v
(·) defined in (9).

I Lemma 14. For any two instances I = (V,E,Q,Φ) and I ′ = (V,E,Q,Φ′) of MRF model,
and any v ∈ V, c ∈ Q and σ ∈ QΓG(v), it holds that

pτIv,I′
v
(c) ≤ 2

‖φv − φ′v‖1 +
∑

e={u,v}∈E

‖φe − φ′e‖1

 , (11)

where ‖φv − φ′v‖1 =
∑
c∈Q |φv(c)− φ′v(c)| and ‖φe − φ′e‖1 =

∑
c,c′∈Q |φe(c, c′)− φ′e(c, c′)|.

By Lemma 14, for each vertex v ∈ V , we define an upper bound of the probability p·Iv,I′
v
(·)

as

pup
v , min

2

‖φv − φ′v‖1 +
∑

e={u,v}∈E

‖φe − φ′e‖1

 , 1

 . (12)

With pup
v , we can implement the one-step local coupling in Definition 11 as follows. We

first sample each vi ∈ V for 1 ≤ i ≤ T uniformly and independently. For each vertex v ∈ V ,
let Tv , {1 ≤ t ≤ T | vt = v} be the set of all the steps that pick the vertex v. We select
each t ∈ Tv independently with probability pup

v to construct a random subset Pv ⊆ Tv, and
let P ,

⋃
v∈V Pv. We then couple the two chains (Xt)Tt=0 and (Yt)Tt=0. First set X0 = Y0.

For each 1 ≤ t ≤ T , we set (Xt(u), Yt(u)) ← (Xt−1(u), Yt−1(u)) for all u ∈ V \ {vt}; then
generate the random pair (Xt(vt), Yt(vt)) by the following procedure.

sampling step: Let σ = Xt−1(ΓG(vt)) and τ = Yt−1(ΓG(vt)). We draw a random pair
(c, c′) ∈ Q2 from the optimal coupling Dσ,τ

opt,Iv
of the marginal distributions µv,I(· | σ)

and µv,I(· | τ) such that c ∼ µv,I(· | σ) and c′ ∼ µv,I(· | τ);
resampling step: If t /∈ P, set Xt(vt) = c and Yt(vt) = c′. Otherwise, set Xt(vt) = c

and

Yt(vt) =

b ∼ ν
τ
Ivt ,I′

vt
with probability pτIvt ,I′

vt
(c′)/pup

vt

c′ with probability 1− pτIvt ,I′
vt

(c′)/pup
vt
.

(13)
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Note that pup
vt
> 0 if t ∈ P. By Lemma 14, it must hold that pτIvt ,I′

vt
(c′) ≤ pup

vt
. Hence, the

probability pτIvt ,I′
vt

(c′)/pup
vt

is valid. Note that the probability that Yt(vt) is set as b is

Pr[Yt(vt) is set as b] = Pr [t ∈ P] ·
pτIvt ,I′

vt
(c′)

pup
vt

= pup
vt
·
pτIvt ,I′

vt
(c′)

pup
vt

= pτIvt ,I′
vt

(c′).

Hence, our implementation perfectly simulates the coupling in Definition 11.
Let Dt denote the set of disagreements between Xt and Yt. Formally,

Dt , {v ∈ V | Xt(v) 6= Yt(v)}.

Note that if vt /∈ ΓG(Dt−1), the random pair (c, c′) drawn from the coupling Dσ,τ
opt,Iv

must
satisfy c = c′. Thus it is easy to make the following observation for the (Xt)Tt=0 and (Yt)Tt=0
coupled as above.

I Observation 15. For any integer t ∈ [1, T ], if vt /∈ Γ+
G(Dt−1) and t /∈ P, then Xt(vt) =

Yt(vt) and Dt = Dt−1.

With this observation, the new Y0 and Exe-Log(I ′, T ) = 〈vt, Yt(vt)〉Tt=1 can be generated
from X0 and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 as Algorithm 4.

Observation 15 says that the nontrivial coupling between Xt(vt) and Yt(vt) is only needed
when vt ∈ Γ+

G(Dt−1) or t ∈ P, which occurs rarely as long as Dt−1 and P are small. This is
a key to ensure the small incremental time cost of Algorithm 4. The following lemma bounds
the expected cost for UpdateHamiltonian.

I Lemma 16 (cost of the coupling for UpdateHamiltonian). Let I = (V,E,Q,Φ) be the
current MRF instance and I ′ = (V,E,Q,Φ′) the updated instance. Assume that I satisfies
Dobrushin-Shlosman condition (Condition 4) with constant δ > 0, and dHamil(I, I ′) =∑

v∈V ‖φv − φ′v‖1+
∑
e∈E ‖φe − φ′e‖1 ≤ L. It holds that E

[∑T
t=1 1

[
t ∈ P ∨ vt ∈ Γ+

G(Dt−1)
]]

= O
(∆TL
nδ

)
, where n = |V |, ∆ is the maximum degree of graph G = (V,E).

6.2 Dynamic Gibbs sampling algorithm
The couplings constructed in Section 6.1 can be implemented as the algorithm for dynamic
Gibbs sampling. Recall dgraph(·, ·) and dHamil(·, ·) are defined in (2).

I Lemma 17 (single-sample dynamic Gibbs sampling algorithm). Let ε : N+ → (0, 1) be an
error function. Let I = (V,E,Q,Φ) be an MRF instance with n = |V | and I ′ = (V ′, E′, Q,Φ′)
the updated instance with n′ = |V ′|. Denote T = T (I), T ′ = T (I ′) and Tmax = max{T, T ′}.
Assume dgraph(I, I ′) ≤ Lgraph = o(n), dHamil(I, I ′) ≤ LHamil, and T, T ′ ∈ Ω(n logn). The
single-sample dynamic Gibbs sampling algorithm (Algorithm 2) does the followings:

(space cost) The algorithm maintains an explicit copy of a sample X ∈ QV for the
current instance I, and also a data structure using O(T ) memory words, each of O(log T )
bits, for representing an initial state X0 ∈ QV and an execution-log Exe-Log(I, T ) =
〈vt, Xt(vt)〉Tt=1 for the Gibbs sampling (Xt)Tt=0 on I generating sample X = XT .
(correctness) Assuming that Condition 10 holds for X0 and Exe-Log(I, T ) for the Gibbs
sampling on I, upon each update that modifies I to I ′, the algorithm updates X to
an explicit copy of a sample Y ∈ QV

′ for the new instance I ′, and correspondingly
updates the X0 and Exe-Log(I, T ) represented by the data structure to a Y0 ∈ QV

′ and
Exe-Log(I ′, T ′) = 〈v′t, Yt(v′t)〉

T ′

t=1 for the Gibbs sampling (Yt)T
′

t=0 on I ′ generating the
new sample Y = YT ′ , where Y0 and Exe-Log(I ′, T ′) satisfy Condition 10 for the Gibbs
sampling on I ′, therefore,

dTV (Y , µI′) ≤ ε(n′).

ITCS 2021
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Algorithm 4 UpdateHamiltonian
(
I, I′,X0, 〈vt, Xt(vt)〉Tt=1

)
.

Data :X0 ∈ QV and Exe-Log(I, T ) = 〈vt, Xt(vt)〉Tt=1 for I = (V,E,Q,Φ).
Update : an update that modifies I to I ′ = (V,E,Q,Φ′).

1 t0 ← 0, D ← ∅, and construct a Y0 ←X0;
2 for each v ∈ V , construct a random subset Pv ⊆ Tv , {1 ≤ t ≤ T | vt = v} such that

each element in Tv is selected independently with probability pup
v defined in (12);

3 construct the set P ←
⋃
v∈V Pv;

4 while ∃ t0 < t ≤ T such that vt ∈ Γ+
G(D) or t ∈ P do

5 find the smallest t > t0 such that vt ∈ Γ+
G(D) or t ∈ P;

6 for all t0 < i < t, let Yi(vi) = Xi(vi);
7 sample Yt(vt) ∈ Q conditioning on Xt(vt) according to the optimal coupling

between µvt,I(· | Xt−1(ΓG(vt))) and µvt,I(· | Yt−1(ΓG(vt)));
8 if t ∈ P then
9 with probability pτIvt ,I′

vt
(Yt(vt))/pup

vt
where τ = Yt−1(ΓG(vt)) do

10 resample Yt(vt) ∼ ντIvt ,I′
vt
, where ντIvt ,I′

vt
is defined in (10) ;

11 if Xt(vt) 6= Yt(vt) then D ← D ∪ {vt} else D ← D \ {vt};
12 t0 ← t;
13 for all remaining t0 < i ≤ T : let Yi(vi) = Xi(vi);
14 update the data to Y0 and Exe-Log(I ′, T ) = 〈vt, Yt(vt)〉Tt=1;

(time cost) Assuming Condition 10 for X0 and Exe-Log(I, T ) for the Gibbs sampling
on I, the expected time complexity for resolving an update is

O

(
∆n+ ∆

(
|T − T ′|+

(
∆ logn+ Tmax

n

)
(LHamil + Lgraph)

)
log2 Tmax

)
,

where ∆ = max{∆G,∆G′}, ∆G,∆G′ denote the maximum degrees of G = (V,E) and
G′ = (V ′, E′).

We remark that the O(∆n) in time cost is necessary because the update from I to I ′ may
change all the potentials of vertices and edges. One can reduce the O(∆n) from the time cost
if we further restrict that one update can only change constant number of vertices, edges,
and potentials.

One can extend Algorithm 2 to an Multi-sample dynamic Gibbs sampling algorithm that
maintains multiple independent random samples for the current MRF instance. By Lemma 17,
it is easy to prove that the Multi-sample algorithm is correct and efficient. Thus Theorem 9
follows immediately. The detail of the Multi-sample dynamic Gibbs sampling algorithm and
the proof of Theorem 9 are provided in the full version of the paper.

7 Conclusion

In this paper we study probabilistic inference problem in a graphical model when the model
itself is changing dynamically with time. We study the non-local updates so that two
consecutive graphical models may differ everywhere as long as the total amount of their
difference is bounded. This general setting covers many typical applications. We give a
sampling-based dynamic inference algorithm that maintains an inference solution efficiently
against the dynamic inputs. The algorithm significantly improves the time cost compared to
the static sampling-based inference algorithm.
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Our algorithm generically reduces the dynamic inference to dynamic sampling problem.
Our main technical contribution is a dynamic Gibbs sampling algorithm that maintains
random samples for graphical models dynamically changed by non-local updates. Such
technique is extendable to all single-site dynamics. This gives us a systematic approach
for transforming classic MCMC samplers on static inputs to the sampling and inference
algorithms in a dynamic setting. Our dynamic algorithms are efficient as long as the one-step
optimal coupling exhibits a step-wise decay, a key property that has been widely used
in supporting efficient MCMC sampling in the classic static setting and captured by the
Dobrushin-Shlosman condition.

Our result is the first one that shows the possibility of efficient probabilistic inference in
dynamically changing graphical models (especially when the graphical models are changed
by non-local updates). Our dynamic inference algorithm has potentials in speeding up
the iterative algorithms for learning graphical models, which deserves more theoretical and
experimental research. In this paper, we focus on discrete graphical models and sampling-
based inference algorithms. Important future directions include considering more general
distributions and the dynamic algorithms based on other inference techniques.
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