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—— Abstract

We prove several hardness results for training depth-2 neural networks with the ReLU activation
function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs.
Our goal is to output a depth-2 neural network that minimizes the square loss with respect to a
given training set. We prove that this problem is NP-hard already for a network with a single ReLLU.
We also prove NP-hardness for outputting a weighted sum of k¥ ReLLUs minimizing the squared
error (for £ > 1) even in the realizable setting (i.e., when the labels are consistent with an unknown
depth-2 ReLU network). We are also able to obtain lower bounds on the running time in terms
of the desired additive error e. To obtain our lower bounds, we use the Gap Exponential Time
Hypothesis (Gap-ETH) as well as a new hypothesis regarding the hardness of approximating the well
known Densest x-Subgraph problem in subexponential time (these hypotheses are used separately in
proving different lower bounds). For example, we prove that under reasonable hardness assumptions,
any proper learning algorithm for finding the best fitting ReLU must run in time exponential in 1/€>.
Together with a previous work regarding improperly learning a ReLU [21], this implies the first
separation between proper and improper algorithms for learning a ReLU. We also study the problem
of properly learning a depth-2 network of ReLUs with bounded weights giving new (worst-case)
upper bounds on the running time needed to learn such networks both in the realizable and agnostic
settings. Our upper bounds on the running time essentially matches our lower bounds in terms of
the dependency on e.
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1 Introduction

Neural networks have become popular in machine learning tasks arising in multiple applica-
tions such as computer vision, natural language processing, game playing and robotics [25].
One attractive feature of neural networks is being universal approximations: a network with
a single hidden layer! with sufficiently many neurons can approximate arbitrary well any
measurable real-valued function [23, 13]. These networks are typically trained on labeled
data by setting the weights of the units to minimize the loss function (often the squared loss
is used) over the training data. The challenge is to find a computationally efficient way to
set the weights to achieve low error. While heuristics such as stochastic gradient descent
(SGD) have been successful in practice, our theoretical understand about the amount of
running-time needed to train neural networks is still lacking.

It has been known for decades [8, 31, 24] that finding a set of weights that minimizes
the loss of the training set is NP-hard. These hardness results, however, only apply to
classification problems and to settings where the neural networks involved use discrete,
Boolean activations. Our focus here is on neural networks with real inputs whose neurons
have the real-valued ReLU activation function. Specifically, we consider depth-2 networks of
ReLUs, namely either a single ReLU or a weighted sum of ReLUs 2, and the optimization
problem of training them giving labelled data points, which are defined below.

» Definition 1. A rectifier is the real function [z]; := max(0,z). A rectified linear unit
(ReLU) is a function f(x):R™ — R of the form f(x) = [(w,x)]+ where w € R"™ is fized. A
depth-2 neural network with & ReLUs (abbreviated as k-ReLU) is a function from R™ to R
defined by

k
RELUy1, wha(z) = Y _ a;[(w/,2)].
j=1

Here x € R" is the input, a = (ai,...,a) € {—=1,1}* is a vector of “coefficients”, wi =
(wi,...,wl) € R" is a weight vector associated with the j-th unit. When a; = --- = aj, = 1,
we refer to RELUw1 Wk a(2) as the sum of k ReLUs, and we may omit a from the subscript.

We note that the assumption that aq,...,ax € {+1,—1} is without loss of generality
(e.g., [32]): for any non-zero ai,...,a; € R\ {0} and w',..., w* we may consider a; =
Tar -+ Gk = 7oy and wl = |ay|w!,..., W = |az|w” instead, which represent the same
depth-2 network of k& ReL.Us.

When training neural networks composed of ReLUs, a popular method is to find, given
training data, a set of coefficients and weights for each gate minimizing the squared loss.

L We also refer to such networks as depth-2 networks or shallow networks.
2 We also assume all the biases of the units are 0.
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» Definition 2. Given a set of m samples x1, ..., X, € R™ along with m labels y1, ..., ym € R,
our goal is to find w',...wF a which minimize the average squared training error of the
sample, i.e.,
1 m
i z;(RELle,...,wk,a(Xi) — i)’ (1)
1=

We refer to the optimization problem (1) as the k-ReLU training problem (aka k-ReLU
regression ).

When w? = (wl,...,wi) are assumed to have Euclidean norm at most 1 and y; are
assumed to be in [—k, k], we refer to the optimization problem above as the bounded k-ReL.U
training problem.

Sometimes we assume that the “coefficient” vector a is fixed in advance (and known to the
optimizer) and not part of the input to the training problem. We mention this explicitly
when relevant. Also observe that in the optimization problem above we are looking for a
global minimum rather than a local minimum. A multiset of samples {(X;,¥;) }ic[m) is said
to be realizable if there exist w',--- , w”, a which result in zero training error.

Our goal is to pin down the computational complexity of the training problem for depth-2

networks of ReLLUs, by answering the following question:
» Question 3. What is the worst-case running time of training a k-ReLU?

We focus on depth-2 networks which are rather involved and give rise to nontrivial
algorithmic challenges [41, 6]. Understanding shallow networks seems to be a prerequisite for
understanding the complexity of training networks of depth greater than 2.

1.1 Our results

We first consider arguably the simplest possible network: a single ReLU. We show that,
already for such a network, the training problem is NP-hard. In fact, our result even rules
out a large factor multiplicative approximation of the minimum squared error, as stated
below.

» Theorem 4 (Hardness of Training a single ReLU). The 1-ReLU training problem is NP-hard.
Furthermore, given a sample of m data points of dimension n it is NP-hard to approximate
the optimal squared error within a multiplicative factor of (nm)l/’"’ly loglog(nm)

Given such a strong multiplicative inapproximability result, a natural question is whether
one can get a good algorithm for additive approximation guarantee. Notice that we cannot
hope for additive approximation in general, because scaling the samples and their labels can
make the additive approximation gap arbitrarily large. Hence, we must consider the bounded
1-ReLU Training problem. For this, we give a simple 201/ E2)poly(n, m) time algorithm with
additive approximation e. Furthermore, it easily generalizes to the case of the bounded
k-ReLU Training problem for k > 1, but we have to pay a factor of &% in the exponent:

» Theorem 5 (Training Algorithm). There is a (randomized) algorithm that can solve
the bounded k-ReLU training problem to within any additive error ¢ > 0 in time
20(:/) poly(n, m).

Perhaps more surprisingly, we can prove a tight running time lower bound for the bounded

1-ReLU training problem, which shows that the term 1/e? in the exponent is necessary.

Our running time lower bound relies on the assumption that there is no subexponential
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time algorithm for approximating the Densest k-Subgraph problem within any constant
(multiplicative) factor. Recall that, in the Densest k-Subgraph (DxS) problem, we are given a
graph G = (V| E) and a positive integer . The goal is to select a subset 7' C V of x vertices
that induces as many edges as possible. We use den, (G) to denote this optimum? and N to
denote the number of vertices, |V|. Our hypothesis can be stated formally as follows.

» Hypothesis 6. For every constant C > 1, there exist* § = §(C) > 0 and d = d(C) € N
such that the following holds. No O(2°N)-time algorithm can, given an instance (G, k) of
DkS where each vertex of G has degree at most d and an integer £, distinguish between the
following two cases:

(Completeness) den, (G) > 4.
(Soundness) den,(G) < £/C.

While this hypothesis is new (we are the first to introduce it), it seems fair to say that
refuting it will require a breakthrough in current algorithms for the DS problem. There are
also other supporting evidences for the validity of this hypothesis. For example, it is known
that o(IV)-level of the Sum-of-Squares Hierarchies do not give constant factor approximation
for DxS even for bounded degree graphs [7, 12, 28]. Furthermore, these Sum-of-Squares
lower bounds are proved via reductions from a certain family of random CSPs, whose Sum-
of-Squares lower bounds are shown in [35, 40]. This means that, if Hypothesis 6 is false,
then one can refute this family of sparse random CSPs in subexponential time. This would
constitute an arguably surprising development in the area of refuting random CSPs, which
has been extensively studied for decades (see [1] and references therein).

As mentioned earlier, assuming Hypothesis 6, we can prove the tight running time lower
bound for the bounded 1-ReLU Training problem:

» Theorem 7 (Tight Running Time Lower Bound for 1-RelLU Training). Assuming Hypothesis 6,
there is no algorithm that, for all given € > 0, can solve the bounded 1-ReL U training problem
within an additive error € in time 2°0/<)poly(n, m).

We remark that, akin to standard conventions in the area of fine-grained and parameterized
complexity, all lower bounds are stated against algorithms that work for all values of €
with the specified running time. Indeed, it is possible to significantly speed up the time
bound 20/ 62)poly(n, m) for extreme values of ¢; for instance, enumerating all possible w
over a ©(e)-net® of B gives an algorithm that runs in time O(1/€)°™poly(m), which is

asymptotically smaller than 20/ 62)poly(n, m) when € = o < ﬁ) Nonetheless, our
nlogn

lower bounds can be extended to include a large range of “reasonable” €. Further discussion
on such an extension is provided before Section 1.3.

An interesting consequence of Theorem 7 is that it gives a separation between proper
and improper agnostic learning of 1-ReLU. Specifically, [21] shows that improper agnostic
learning of 1-ReLU can be done in 29(*/¢)poly(n) time, while Theorem 7 rules out such a
possibility for proper agnostic learning.

3 Equivalently, den,(G) := maxpcy, 1=« [ E(T)|

4 As C increases, ¢ and d decreases.

5 Recall that an §-net (also refer to as an §-cover) of a set S C R™ is a set T C R™ such that, for every
x € S, there exists y € T where ||z — y||2 < §. It is well-known that, for any ¢ € [0, 1], there is a §-net
of the unit ball B" of size (3/6)™ and that it can be found in (3/8)°™ time.
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Training k-ReLU: The Realizable Case

An important special case of the k-ReLU Training problem is the realizable case, where
there is an unknown k-ReLU that labels every training sample correctly. When k& = 1, it
is straightforward to see that the realizable case of 1-ReLLU Training can be phrased as a
linear program and hence can be solved in polynomial time. On the other hand, we show
that, once k > 1, the problem becomes NP-hard:

» Theorem 8 (Hardness of Training k-ReLU in the Realizable Case). For any constant k > 2,
the k-ReL U training problem is NP-hard even in the realizable case.

Our result is in fact slightly stronger than stated above: specifically, we show that, when
the samples can be realizable by a (non-negative) sum of k ReLUs (i.e. k-ReLU when a
is the all-one vector), it is still NP-hard to find a k-ReLU that realizes the samples even if
negative coefficients in a are allowed. Furthermore, while we assume in this theorem that
k is a constant independent of n, one can also prove an analogous hardness result, when &
grows sufficiently slowly as a function of n. We refer the full version for more details.

Observe that Theorem 8 implies that efficient multiplicative approximation for the k-ReLU
Training problem is impossible (assuming P#£NP) for k > 2. As a result, we once again turn
to additive approximation. On this front, we can improve the running time of the algorithm
in Theorem 5 when we assume that the samples are realizable, as stated below.

» Theorem 9 (Training Algorithm in the Realizable Case). When the given samples are
realizable by some k-ReLU, there is a (randomized) algorithm that can solve the bounded k-
ReL U training problem to within any additive error € > 0 in time 20((k°/€) 1Ogg(k/e))poly(n, m).

Importantly, the dependency of € in the exponent is O(1/€), instead of 1/€? that appeared
in the non-realizable case (i.e. Theorems 5 and 7). We can also show that this dependency is
tight (up to log factors), in the realizable case, under the Gap Exponential Time Hypothesis
(Gap-ETH) [17, 29], a standard complexity theoretic assumption in parameterized complexity
(see e.g. [11]). Gap-ETH states that there exists § > 0 such that no 2°(™)-time algorithm can,
given a CNF formula with n Boolean variables, distinguish between (i) the case where the
formula is satisfiable, and (ii) the case where any assignment violates at least § fraction of
the clauses. Our running time lower bound can be stated more formally as follows.

» Theorem 10 (Tight Running Time Lower Bound for the Realizable Case). Assuming Gap-
ETH, for any constant k > 2, there is no algorithm that, for all given € > 0, can solve the
bounded k-ReLU training problem within an additive error € in time 20(1/E)poly(n,m) even
when the input samples are realizable by some k-ReLU.

Relation to Learning ReLUs

k-ReLU Training is closely related to the problem of proper learning of k-ReLU. In fact,
an algorithm for the latter also solves the former. Hence, our hardness results immediately
implies hardness of proper learning of k-ReLU as well. Furthermore, our algorithm also
works for the learning problem. Please refer to the full version for more details.

Stronger Quantifier in Running Time Lower Bounds

As stated earlier, our running time lower bounds in Theorems 7 and 10 hold only against
algorithms that work for all e > 0. A natural question is whether one can prove lower bounds
against algorithms that work only for some “reasonable” values of €. As explained in more
detail below, we can quite easily also get a lower bound with this latter (stronger) quantifier,
for any “reasonable” value of e.

22:5

ITCS 2021



22:6

Tight Hardness Results for Training Depth-2 ReLU Networks

First, our lower bounds in Theorems 7 and 10 both apply in the regime where the lower
bounds themselves are 2°(™); in other words, ¢ = ©(1/,/n) in Theorem 7 and € = ©(1/n) in
Theorem 10. These are essentially the smallest possible value of € for which the lower bounds
in Theorems 7 and 10 can hold, because the aforementioned algorithm that enumerates over
an e-net of B solves the problem in time O(1/¢)?™poly(n). On the other hand, for smaller
values of ¢, we can get a running time lower bound easily by “padding” the dimension by
“dummy” coordinates that are always zero. For instance, if we start with e = ©(1/y/n),
then we may pad the instance to say n’ = n? dimensions, resulting in the relationship
e = ©(1/+/n’). To summarize, this simple padding technique immediately gives the following
stronger quantifier version of Theorem 7:

» Theorem 11. For any non-increasing and efficiently computable® function e : N —
R* such that w(y/Iogn) < Tln) < o(y/n), assuming Hypothesis 6, there is no algorithm
that can solve the bounded 1-ReL U training problem within an additive error e(n) in time

20(1/<(M)*) poly(n, m).
Notice that the constraint w(y/logn) < ﬁ is also essentially necessary, because for
€> 4/ k’lg()l% our algorithm (Theorem 5) already runs in polynomial time. A strong quantifier

version of Theorem 10 similar to above can be shown as well (but with w(logn) < ﬁ < o(n)).
We omit the full (straightforward) proof via padding of Theorem 11; interested readers may
refer to the proof of Lemma 3.4 of [16] which employs the same padding technique.

1.2 Independent and concurrent work

There have been several concurrent and independent works to ours that we mention here.
We remark that the techniques in these works are markedly different than the ones in this
paper. For a single ReLU, [14] proved that the 1-ReLU Training problem is NP-hard. With
respect to two ReLUs, [6] showed that finding weights minimizing the squared error of a
2-ReLU is NP-hard, even in the realizable case. The work of [9] considered the problem of
training a network with a slightly different architecture, in which there are two ReLUs in the
first hidden layer and the final output gate is also a ReLU (instead of a sum gate as in our
case); they showed that, for such networks with three ReLUs (two in the hidden layer, one in
the output layer), the training problem is NP-hard even for the realizable case. As a result
of having an output gate computing a ReLU, our NP-hardness result (regarding training a
sum of two ReLUs) does not imply their result and their hardness result does not imply our
hardness result for training a sum of 2 ReLUs.

1.3 Related work

The computational aspects of training and learning neural networks has been extensively
studied. Due to this, we only focus on those directly related to our results.

We are not aware of a previous work showing that the general k-ReLU training problem
is NP-hard for k£ > 2, nor are we aware of previous results regarding the hardness of
approximating the squared error of a single ReLU. The k = 2 case and the k > 2 case seem to
require different ideas and indeed our proof technique for Theorem 10 is different than those
of [9, 6]. Moreover, the question of generalizing the NP-hardness result from k£ =2 to k > 2
is mentioned explicitly in [9]. Finally, we remark that neither [14] nor [6] provides explicit

5 That is, we assume that computing e(n) can be done in time poly(n) for any n € N.
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running time lower bounds in terms of 1/e for the problem of training k¥ ReLUs within an
additive error of e. To the best of our knowledge, our work is the first to obtain such lower
bounds.

[42] has proven that finding weights minimizing the squared error of a k-ReLU is NP-
hard when a is the all-one vector (or alternatively, when all the coefficients of the units are
restricted to be positive) for every k > 2.

Some sources (e.g. [4, 5]) attribute (either implicitly or explicitly) the NP-hardness of
the k-ReLU Training problem to [8], who consider training a neural network with threshold
units. However, it is unclear (to us) how to derive the NP-hardness of training ReLUs
from the hardness results of [8]. Several NP-hardness results for training neural networks
with architectures differing from the fully connected architecture considered here are known.
For example, in [10], the training problem is shown to be hard for a depth-2 convolutional
network with (at least two) non-overlapping patches. To the best of our knowledge, these
architectural differences render those previous results inapplicable for deriving the hardness
results regarding the networks considered in this work.

Several papers have studied a slightly different setting of improper learning of neural
networks. An example is [26] who show that improper learning of depth-2 networks of w(1)
ReLUs is hard, assuming certain average case assumptions. More recently, [21] show that
even for a single ReLU, when |[(w,x)| tends to infinity with n, learning [(w,x}]+ improperly
in time g(e) - poly(n) is unlikely as it will result in an efficient algorithm for the problem
of learning sparse parities with noise which is believed to be intractable. These hardness
results for improper learning do imply hardness for the corresponding training problems.
Nonetheless, it should be noted that the fact that these results have to rely on assumptions
other than P # NP is not a coincidence: it is known that basing hardness of improper
learning on P # NP alone will result in a collapse of the Polynomial Hierarchy [3].

On the algorithmic side, Arora et al. [4] provide a simple and elegant algorithm that
exactly solves the ReLLU training problem in polynomial time assuming the dimension n
of the data points is an absolute constant; Arora et al’s algorithm is for the networks we
consider, and it has since been also extended to other types of networks [9]. Additionally,
there have also been works on (agnostic) learning algorithms for ReLUs. Specifically, Goel et
al. [21] consider the bounded norm setting where the inputs to the ReLUs as well as the
weight vectors of the units have norms at most 1. For this setting, building on kernel methods
and tools from approximation theory, they show how to improperly learn a single n-variable
ReLU up to an additive error of € in time 2°0(1/€). poly(n). Their result generalizes to depth-2
ReLUs with k& units with running time of 20(Vk/e) . poly(n) assuming the coefficient vector
a has norm at most 1. The algorithm they provide is quite general: it works for arbitrary
distribution over input-output pairs, for € that can be small as 1/logn and also for the
reliable setting.

A limitation of our hardness results is that they consider “pathologica” training data sets
that are specifically constructed to encode intractable combinatorial optimization problems.
Several works in literature have tried to overcome this issue by considering the training/learn-
ing problems on more “benign” data distributions, such as log-concave distributions or those
with Gaussian marginals. On this front, both algorithms and lower bounds have been shown
for depth-2 networks [38, 6, 22].

Using insights from the study of exponential time algorithms towards understanding
the complexity of machine learning problems as is done in this work is receiving attention
lately [36, 15, 37].
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1.4 Organization of the Paper

In the remainder of the main body of this paper, we provide high-level overviews of our
proofs (Section 2) and discuss several potential research directions (Section 3). Due to space
constraints, all proofs are deferred to the full version.

2 Proof Overview

Below we provide the informal overviews of our proofs and intuition behind them.

NP-Hardness of Training 1-ReLU

Our reduction is from the (NP-hard) Set Cover problem, in which we are given subsets
T1,...,Ty of a universe U, and the goal is to select as few of these subsets as possible whose
union covers the entire universe U. We reduce this to the problem of 1-ReLU Training,
where the dimension n is equal to M. We think of each coordinate of w as an unknown (i.e.
variable); specifically, the desired solution will have w; = —1 iff T; is picked and 0 otherwise.
From this perspective, adding a labelled sample (x,y) is the same as adding a “constraint”
[w - x|+ = y. There are two types of constraints we will add:

(Element Constraint) For each u € U, we add a constraint of the form [1 + > Tisu w;| L=

0. The point is that such a constraint is satisfied when w is covered by the selected

subsets.

(Subset Constraint) For each i € [M], we add a constraint of the form [y + w;], = v for

some small v > 0. This constraint will be violated for any selected subset.

By balancing the weights (i.e. number of copies) of each constraint carefully, we can ensure
that the element constriants are never unsatisfied, and that the goal is ultimately to violate
as few subset constraints as possible, which is equivalent to trying to pick as few subsets as
possible that can fully cover U. This completes the high-level overview of our reduction.

We remark that there is a subtle point here because we cannot directly have a constant such
that 1 or v in the constraints themselves. Rather, we need to have “constraint coordinate”
and adding the constants through this coordinate. This will also be done in the other
reductions presented below, and we will not mention this again.

The outlined proof, together with the ©(log |U|) inapproximability of Set Cover [27,
20], already gives a hardness of approximation of a multiplicative factor of ©(log(nm))
for the 1-ReLU Training problem. To further improve this inapproximability ratio to
(nm)1/polyloglog(nm) "o reduce from the Minimum Monotone Circuit Satisfiability (MMCS)
problem, which is a generalization of Set Cover. In MMCS, we are given a monotone
circuit and the goal is to set as few input wires to true as possible under the condition that
the circuit’s output must be true. Strong inapproximability results for MMCS are known
(e.g. [18]). Our reduction from MMCS proceeds in a similar manner as that of the Set
Cover reduction above. Roughly speaking, the modification is that each unknown is now
whether each wire is set/evaluated to true, whereas the constraints are now to ensure that
the evaluation at each gate is correct and that the output is true.

Tight Running Time Hardness of 1-ReLU Training

We now move on to the proof overview of the tight running time lower bound for 1-ReLLU
Training. Recall that we will be reducing from the Densest x-Subgraph (DxS) problem, in
which we are given a graph G = (V, E) and « € N. The goal is to find a set of k vertices
that induces the maximum number of edges.



S. Goel, A. Klivans, P. Manurangsi, and D. Reichman

To motivate our construction, a simple combination of dimensionality reduction and d-net
can in fact find a ReLLU that point-wise approximates the optimal ReLU to within an additive
factor of & in time 201/ 62)poly(n). That is, if the ReLU that achieves the optimal error has
weight vector w*, then we can find a weight vector w such that |[w - x|y — [w* - x]4| < ¢ for
all input samples (x,y) in time” 26(1/62)poly(n).

_ Indeed, this is an explanation why, in the realizable case, we can get € squared error in
20(1/9)poly(n) time by simply picking § = v/e. Now, since we need our hardness here (for
the non-realizable case) to hold with stronger running time lower bound of 2€(1/ Ez)poly(n),
we have to make sure that whenever § > ¢, the aforementioned point-wise approximation of
d is not sufficient to get an error of €. Suppose that, for an input labelled sample (x,y), the
optimal ReLU outputs 3’ and our approximation outputs y” (where |y” — 3’| < §). Notice
that the difference in the square error between the two for this sample is only at most
O((y' — y)8) + §2. Now, if we want this quantity to be at least € for any § > Q(e), then it
must be that |y’ — y| = Q(1). In other words, we have to make our samples so that even the
optimal ReLU is “wrong” by (1) additive factor (on average); this indeed means that, if
the ReLU we find is “more wrong” by an additive factor of ©(e), then the increase in the
average squared error would be Q(¢€) as desired.

With the observation in the previous paragraph in mind, we will now provide a rough
description of our gadget. Given a DkS instance (G = (V, E), k), our samples will have |V|
dimensions, one corresponding to each vertex. In the YES case where there is T" C V of size
% that induces many edges, we aim to have our ReLU weight assigning %ﬂ to all coordinates
corresponding to vertices in T', and zero to all other coordinates. To enforce this, we first
add a sample for every vertex v € V that corresponds to the constraint

o]

We refer to these as the cardinality constraints. While this may look peculiar at first glance,
the effect is that it ensures that roughly speaking w has k coordinates that are “approximately”
ﬁ and the remaining coordinates are “small”. To see that this is the case, observe that the
average mean squared error here is 1 — % Y wey [WU — ﬁlr + ﬁ Y wev [wv - ﬁkr
The last term is small and may be neglected. Hence, we essentially have to maximize
> vev {WU — ﬁ] R This term is indeed maximized when w has s coordinates equal to ﬁ,

and zeros in the remaining coordinates. Notice here that this also fits with our intuition
from the previous paragraph: even in the optimal ReLU, the value out put by the value
(which is either 0 or ﬁ) is Q(1) away from the input label of the sample (i.e. 1).

So far, the cardinality constraints have ensured that w “represents” a set T C V of size
roughly x. However, we have not used the fact that 7" contains many edges at all. Thus, for
every edge e = {u,v} € E, we also add the example corresponding to the following constraint

to our distribution:

L - L75]
2Wu Wy —\/E +—.

We call these the edge constraints. The point here is that, if e is not an induced edge in T,
then the output of the ReLLU will be zero. On the other hand, if e is an edge in 7', then the
output of the ReLU will be %. Hence, the more edges T induces, the smaller the error.

7 We assume throughout that m = poly(1/d), which is w.l.o.g. due to standard generalization bounds.
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By carefully selecting weights (i.e. number of copies) of each sample, one can indeed show
that the average square error incurred in the completeness and soundness case of Hypothesis 6

differs by e = Q) (1> Hence, if we can solve the 1-ReLLU Training problem to within an

VIV

additive error of € in time 2°(1/ 62)poly(n, m), we can also solve the problem in Hypothesis 6
in time 2°0VD | which breaks the hypothesis.

Hardness of Training k-ReLU in the Realizable Case

We next consider the problems of Training k-ReLU for k > 2 in the realizable case. Both
the NP-hardness result (Theorem 8) and the tight running time lower bound (Theorem 10)
employ similar reductions. These reductions proceed in two steps. First is to reduce from
the NP-hard k-coloring problem to the problem of training non-negative sum of k ReLUs, in
which we fix the coefficient vector a to be the all-one vector and only seeks to find w', ..., w*
that minimizes the squared error. Then, in the second step, we reduce this to the original
problem of k-ReLU Training (where the coefficient vector a can be negative).

Step I: From k-Coloring to Training Sum of k ReLUs. The NP-hardness of Sum of &
ReLUs Training in fact follows directly from a reduction of [42]. We will now sketch Vu’s
reduction, since it will be helpful in our subsequent discussions below. Vu’s reduction starts
from the k-coloring problem, in which we are given a hypergraph G = (V, E') and the goal is
to determine whether there is a proper k-coloring® of the hypergraph. Given an instance
G = (V, E) of k-coloring, the number of dimensions in the training problem will be n = |V/|
where we associate each dimension with a vertex. Notice that now we have k unknowns
associated to each vertex v: w}, ..., wﬁ. In the desired solution, these variables will tell us
which color v is assigned to: specifically, w! > 0 iff v is colored i and w? < 0 otherwise.

Adding a labelled sample (x,y) is the same as adding a “constraint” [w! - x|, +--- +
[w¥ - x|, = y. There are two types of constraints we will add:

(Vertex Constraint) For every vertex v € V, we add a constraint? [wl] + -+ [wh], =
This constraint ensures that, for every v € V, we must have wi* > 0 for at least one
iy € [k], meaning that the vertex v is assigned at least one color.

(Hyperedge Constraint) For every hyperedge e = {vy,...,v,} € E, we add a constraint!°
[wh +- - +wp, ]y + -+ [wk 4+ +wk ]y =0. This ensures that the hyperedge e is not
monochromatic. Otherwise, we have i,, = --- = i,, meaning that wy," + - -- 4+ wy,' > 0,
which violates the hyperedge constraint.

This finishes our summary of Vu’s reduction, which gives the NP-hardness of training a
(non-negative) sum of k¥ ReLUs.

Step II: Handling Negative Coefficients. The argument above, especially for the hyperedge
constraints, relies on the fact that the coefficient vector a is the all-one vector. In other
words, even if the input hypergraph is not k-coloring, it is still possible that there is a
k-ReLU (possibly negative weight vector a) that realizes the samples. Hence, the reduction
above does not yet work for our original problem of k-ReLU Training. To handle this issue,
we use an additional gadget which is simply a set of labelled samples with the following
properties: these samples can be realized by a k-ReLU only when the weight vectors a is the

8 A proper k-coloring is a mapping x : V — [k] such that no hyperedge is monochromatic, or equivalently
|x(e)] > 1foralleecE.
This constraint corresponds to x being the v-th vector in the standard basis and y = 1.

10 This constraint corresponds to x being the indicator vector of e and y = 0.
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all-one vector. Essentially speaking, by adding these samples also to our sample set, we have
forced a to be the all-one vector, at which point we restrict ourselves back to the case of
(non-negative) sum of k ReLUs and we can use the hard instance from the above reduction
from k-coloring. These are the main ideas of the proof of Theorem 8.

Tight Running Time Lower Bound. As stated earlier, the tight running time lower bound
for the bounded k-ReLU Training problem (Theorem 10) follows from a similar reduction,
except that we now have to (1) carefully select the number of copies of each sample and (2)
scale the labels y;’s down so that the norm of each of w', ... w” is at most one. Roughly
speaking, this means that the labels for the vertex constraints become ©(1/+/[V]) instead of
1 as before. In other words, each violated constraint roughly contributes to ©(1/|V|) squared
error. Since it is known (assuming Gap-ETH) that distinguishing between a k-colorable
hypergraph and a hypergraph for which every k-coloring violates a constant fraction of the
edges takes 221V time (e.g. [33]), we can arrive at the conclusion that solving the bounded
k-ReLU Training problem to within an additive squared error of € = ©(1/|V]) must take
2021/IVI) = 992(1/€) time as desired.

We remark here that, interestingly, [42] used the reduction from k-coloring only for the
case of k = 2 units and employed an additional gadget to handle the case k > 2. To the
best of our knowledge, this approach seems to decrease the resulting error €, which means
that the running time lower bound is not of the form 2%(1/¢). On the other hand, we argue
the hardness directly from k-coloring for any constant k& > 2. This, together with a careful
selection of the number of copies of each sample, allows us to achieve the running time lower
bound in Theorem 10.

Training and Learning Algorithms

Our k-ReLU training algorithm is based on the approach of [4]. The main idea behind the
algorithm is to iterate over all possible sign patterns (whether each ReLU is active or not) of
the inputs and subsequently solve the so formed convex optimization for each fixed pattern.
The best hypothesis over all different sign patterns is chosen as the the final hypothesis. It is
not hard to see that the run-time for such an algorithm would be 2(m+1)kpoly(n) since there
are 2 different sign patterns.

Using standard generalization bounds, one can show that the number of samples m needed
for the empirical loss to be € close to the true loss is at most O(k*/e?). Plugging this into
the above algorithm gets us the desired running time (2°*°/<)poly(n, m) as in Theorem 5)
for the agnostic setting. For the realizable setting, we use an improved generalization result
of [39], which implies that m = O(k?/e) suffices; plugging this into the above algorithm
yields us Theorem 9.

3 Conclusions and Open Questions

We have studied the computational complexity of training depth-2 networks with the ReLU
activation function providing both NP-hardness results and algorithms for training ReLU’s.
Along the way we have introduced and used a new hypothesis regarding the hardness
of approximating the Denset k-Subgraph problem in subexponential time that may find
applications in other settings. Our results provide a separation between proper and improper
learning showing that for a single ReLLU, proper learning is likely to be harder than improper
learning. Our hardness results regarding properly learning shallow networks suggest that
improperly learning such networks (for example, learning overparametrized networks whose
number of units far exceeds the dimension of the labeled vectors [2, 19]) might be necessary
to allow for tractable learning problems.
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We stress here that our hardness results apply to minimizing the population loss'! as
well, since one may simply create an instance where the population is just the training data.
Furthermore, the standard procedure for training neural networks is to perform ERM which
is essentially minimizing the training loss. In fact, a bulk of theoretical work in the field
focuses on generalization error assuming training error is small (often 0). Therefore, we
believe it is a natural question to study the hardness of minimizing training loss.

Neural networks offer many choices (e.g., number of units, depth, choice of activation
function, weight restrictions). Indicating which architectures are NP-hard to train can
prove useful in guiding the search for a mathematical model of networks that can be
trained efficiently. It should be remembered that our NP-hardness results are worst-case.
Therefor they do not preclude efficient algorithms under additional distributional or structural
assumptions [34]. Finally, as we focus on networks having significantly fewer units than
data-points, the NP-hardness results reported here are not at odds with the ability to train
neural networks in the overparmeterized regime where there are polynomial time algorithms
that can fit the data with zero error [43].

While we restrict our attention to algorithms for training networks with bounded weights,
our exponential dependency of the running time on & (the number of units) makes these
algorithms impractical. It remains an interesting question whether the dependency of the
running time on k can be improved, or alternatively whether strong running time lower
bounds can be shown in terms of k (similar to what is done for € in this work).

While we have focused on depth-2 networks, algorithms and lower bounds for deeper
networks are of interest as well, especially given the multitude of their practical applications.
It would be interesting to see whether the algorithms and hardness results extend to the setting
of depth greater than 1. An interesting concrete question here is whether training/learning
becomes harder as the network becomes deeper. For instance, is it possible to prove running
time lower bounds that grow with the depth of the network?
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