
Even the Easiest(?) Graph Coloring Problem Is
Not Easy in Streaming!
Anup Bhattacharya
Indian Statistical Institute, Kolkata, India
bhattacharya.anup@gmail.com

Arijit Bishnu
Indian Statistical Institute, Kolkata, India
arijit@isical.ac.in

Gopinath Mishra
Indian Statistical Institute, Kolkata, India
gopianjan117@gmail.com

Anannya Upasana
Indian Statistical Institute, Kolkata, India
anannya.upasana23@gmail.com

Abstract
We study a graph coloring problem that is otherwise easy in the RAM model but becomes quite
non-trivial in the one-pass streaming model. In contrast to previous graph coloring problems in
streaming that try to find an assignment of colors to vertices, our main work is on estimating the
number of conflicting or monochromatic edges given a coloring function that is streaming along
with the graph; we call the problem Conflict-Est. The coloring function on a vertex can be
read or accessed only when the vertex is revealed in the stream. If we need the color on a vertex
that has streamed past, then that color, along with its vertex, has to be stored explicitly. We
provide algorithms for a graph that is streaming in different variants of the vertex arrival in one-pass
streaming model, viz. the Vertex Arrival (VA), Vertex Arrival With Degree Oracle (VAdeg),
Vertex Arrival in Random Order (VArand) models, with special focus on the random order
model. We also provide matching lower bounds for most of the cases. The mainstay of our work is in
showing that the properties of a random order stream can be exploited to design efficient streaming
algorithms for estimating the number of monochromatic edges. We have also obtained a lower bound,
though not matching the upper bound, for the random order model. Among all the three models
vis-a-vis this problem, we can show a clear separation of power in favor of the VArand model.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Probabilistic algorithms

Keywords and phrases Streaming, random ordering, graph coloring, estimation, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.15

Related Version A full version of the paper is available at https://arxiv.org/pdf/2010.13143.pdf.

Funding Anup Bhattacharya: Funded by NPDF fellowship at ISI, Kolkata.

1 Introduction

The chromatic number χ(G) of an n-vertex graph G = (V,E) is the minimum number of
colors needed to color the vertices of V so that no two adjacent vertices get the same color.
The chromatic number problem is NP-hard and even hard to approximate within a factor
of n1−ε for any constant ε > 0 [14, 28, 20]. For any connected undirected graph G with
maximum degree ∆, χ(G) is at most ∆+1 [27]. This existential coloring scheme can be made
constructive across different models of computation. A seminal result of recent vintage is that
the ∆ + 1 coloring can be done in the streaming model [3]. Of late, there has been interest

mailto:bhattacharya.anup@gmail.com
mailto:arijit@isical.ac.in
mailto:gopianjan117@gmail.com
mailto:anannya.upasana23@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2021.15
https://arxiv.org/pdf/2010.13143.pdf

15:2 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

in graph coloring problems in the sub-linear regime across a variety of models [1, 3, 4, 8, 6].
Keeping with the trend of coloring problems, these works look at assigning colors to vertices.
Since the size of the output will be as large as the number of vertices, reseachers study the
semi-streaming model [22] for streaming graphs. In the semi-streaming model, Õ(n)1 space
is allowed.

In a marked departure from the above works that look at the classical coloring problem,
the starting point of our work is (inarguably?) the simplest question one can ask in graph
coloring – given a coloring function f : V → {1, . . . , C} on the vertex set V of a graph
G = (V,E), is f a valid coloring, i.e., for any edge e ∈ E, do both the endpoints of e have
different colors? This is the problem one encounters while proving that the problem of
chromatic number belongs to the class NP [15]. Conflict-Est, the problem of estimating
the number of monochromatic (or, conflicting) edges for a graph G given a coloring function
f , remains a simple problem in the RAM model; it even remains simple in the one-pass
streaming model if the coloring function f is marked on a public board, readable at all times.
We show that the problem throws up interesting consequences if the coloring function f on a
vertex is revealed only when the vertex is revealed in the stream. For a streaming graph, if
the vertices are assigned colors arbitrarily or randomly on-the-fly while it is exposed, our
results can also be used to estimate the number of conflicting edges. These problems also
find their use in estimating the number of conflicts in a job schedule and verifying a given job
schedule in a streaming setting. This can also be extended to problems in various domains
like frequency assignment in wireless mobile networks and register allocation [13]. As the
problem, by its nature, admits an estimate or a yes-no answer, we can try for space efficient
algorithms in the conventional graph streaming models like Vertex Arrival [11]. We
also note in passing that many of the trend setting problems in streaming, like frequency
moments, distinct elements, majority, etc. have been simple problems in the ubiquitous RAM
model as the coloring problem we solve here.

2 Preliminaries

2.1 Notations and the streaming models
Notations. We denote the set {1, . . . , n} by [n]. G(V (G), E(G)) denotes a graph where
V (G) and E(G) denote the set of vertices and edges of G, respectively; |V | = n and |E| = m.
We will write only V and E for vertices and edges when the graph is clear from the context.
We denote EM ⊆ E as the set of monochromatic edges. The set of neighbors of a vertex
u ∈ V (G) is denoted by NG(u) and the degree of a vertex u ∈ V (G) is denoted by dG(u).
Let NG(u) = N−G (u)] N+

G (u) where N−G (u) and N+
G (u) denote the set of neighbors of u

that have been exposed already and are yet to be exposed, respectively in the stream. Also,
dG(u) = d−G(u)+d+

G(u) where d−G(u) =
∣∣N−G (u)

∣∣ and d+
G(u) =

∣∣N+
G (u)

∣∣. For a monochromatic
edge (u, v) ∈ EM , we refer to u and v as monochromatic neighbors of each other. We define
dM (u) to be the number of monochromatic neighbors of u and hence, the monochromatic
degree of u.

Let E[X] denote the expectation of the random variable X. For an event E , E denotes
the complement of E . P(E) denotes the probability of an event E . The statement “event E
occurs with high probability” is equivalent to P(E) ≥ 1− 1

nc , where c is an absolute constant.
The statement “a is a 1 ± ε multiplicative approximation of b” means |b − a| ≤ ε · b. For
x ∈ R, exp(x) denotes the standard exponential function, that is, ex. By polylogarithmic,
we mean O

(
(logn/ε)O(1)

)
. The notation Õ(·) hides a polylogarithmic term in O(·).

1 Õ(·) hides a polylogarithmic factor.

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:3

Streaming models for graphs. As alluded to earlier, the crux of the problem depends on
the way the coloring function f is revealed in the stream. The details follow.
(i) Vertex Arrival (VA): The vertices of V are exposed in an arbitrary order. After

a vertex v ∈ V is exposed, all the edges between v and pre-exposed neighbors of v,
are revealed. This set of edges are revealed one by one in an arbitrary order. Along
with the vertex v, only the color f(v) is exposed, and not the colors of any pre-exposed
vertices. So, we can check the monochromaticity of an edge (v, u) only if u and f(u)
are explicitly stored.

(ii) Vertex Arrival with Degree Oracle (VAdeg) [23, 7]: This model works same
as the VA model in terms of exposure of the vertex v and the coloring on it; but we
are allowed to know the degree dG(v) of the currently exposed vertex v from a degree
oracle on G.

(iii) Vertex Arrival in Random Order (VArand) [25, 26]: This model works same as
the VA model but the vertex sequence revealed is equally likely to be any one of the
permutations of the vertices.

(iv) Edge Arrival (EA): The stream consists of edges of G in an arbitrary order. As the
edge e is revealed, so are the colors on its endpoints. Thus the conflicts can be easily
checked.

(v) Adjacency List (AL): The vertices of V are exposed in an arbitrary order. When
a vertex v is exposed, all the edges that are incident to v, are revealed one by one in
an arbitrary order. Note that in this model each edge is exposed twice, once for each
exposure of an incident vertex. As in the VA model, here also only v’s color f(v) is
exposed.

As the conflicts can be checked easily in the EA model in O(1) space, a logarithmic
counter is enough to count the number of monochromatic edges. The AL model works
almost the same as the VAdeg model. So, we focus on the three models – VA, VAdeg and
VArand in this work and show that they have a clear separation in their power vis-a-vis the
problem we solve. A crucial takeaway from our work is that the random order assumption
on exposure of vertices has huge improvements in space complexity.

2.2 Problem definitions, results and the ideas

Problem definition. Let the vertices of G be colored with a function f : V (G)→ [C], for
C ∈ N. An edge (u, v) ∈ E(G) is said to be monochromatic or conflicting with respect to f if
f(u) = f(v). A coloring function f is called valid if no edge in E(G) is monochromatic with
respect to f . For a given parameter ε ∈ (0, 1), f is said to be ε-far from being valid if at least
ε · |E(G)| edges are monochromatic with respect to f . We study the following problems.

I Problem 2.1 (Conflict Estimation aka Conflict-Est). A graph G = (V,E) and a
coloring function f : V (G)→ [C] are streaming inputs. Given an input parameter ε > 0, the
objective is to estimate the number of monochromatic edges in G within a (1± ε)-factor.

I Problem 2.2 (Conflict Separation aka Conflict-Sep). A graph G = (V,E) and a
coloring function f : V (G)→ [C] are streaming inputs. Given an input parameter ε > 0, the
objective is to distinguish if the coloring function f is valid or is ε-far from being valid.

ITCS 2021

15:4 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

I Remark 2.3. Problem 2.1 is our main focus, but we will mention a result on Problem 2.2
in Section 5. Notice that the problem Conflict-Est is at least as hard as Conflict-Sep.

The results and the ideas involved. All our upper and lower bounds on space are for
one-pass streaming algorithms. Table 1 states our results for the Conflict-Est problem,
the main problem we solve in this paper, across different variants of the VA model. The main
thrust of our work is on estimating monochromatic edges under random order stream. For
random order stream, we present both upper and lower bounds in Sections 3 and 4. There is
a gap between the upper and lower bounds in the VArand model, though we have a strong
hunch that our upper bound is tight. Apart from the above, using a structural result on
graphs, we show in Section 5 that the Conflict-Sep problem admits an easy algorithm in
the VArand model. To give a complete picture across different variants of VA models, we
show matching upper and lower bounds for constant ε > 0 in the VA and VAdeg models
in [9]2.

Table 1 This table shows our results on Conflict-Est on a graphG(V,E) across different Vertex
Arrival models. Here, T > 0 denotes the promised lower bound on the number of monochromatic
edges. This paper discusses the results mentioned in the middle column corresponding to VArand.
The other results are discussed in the full version of the paper [9].

Model VA VArand VAdeg

Upper Bound Õ
(

min{|V | , |V |
2

T
}
)

Õ
(
|V |√

T

)
Õ
(
min{|V | , |E|

T
}
)

(Thm. 3.1 in [9]) (Sec. 3, Thm. 3.1) (Thm. 3.2 in [9])

Lower Bound Ω
(

min{|V | , |V |
2

T
}
)

Ω
(|V |

T 2

)
Ω
(
min{|V | , |E|

T
}
)

(Thm. E.1 in [9]) (Sec. 4, Thm. 4.1) (Thm. E.2 in [9])

The promise T on the number of monochromatic edges is a very standard assumption for
estimating substructures in the world of graph streaming algorithm [17, 19, 18, 23, 5]. 3

We now briefly mention the salient ideas involved. For the simpler variant of Conflict-
Est in VA model, we first check if |V | ≥ T . If yes, we store all the vertices and their colors in
the stream to determine the exact value of the number of monochromatic edges. Otherwise, we
sample each pair of vertices {u, v} in

(
V
2
) 4, with probability Õ (1/T) independently 5 before

the stream starts. When the stream comes, we compute the number of monochromatic edges
from this sample. The details are in Section 3 of [9]. Though the algorithm looks extremely
simple, it matches the lower bound result for Conflict-Est in VA model, presented in
Appendix E of [9]. The VAdeg model with its added power of a degree oracle, allows us to
know dG(u) for a vertex u and as edges to pre-exposed vertices are revealed, we also know
d−G(u) and d+

G(u). This allows us to use sampling to store vertices and to use a technique
which we call sampling into the future where indices of random neighbors, out of d+

G(u)
neighbors, are selected for future checking. The upper bound result for Conflict-Est in
VAdeg model, presented in Section 3 of [9], is tight as we also prove a matching lower bound
in Appendix E of [9].

2 The reference [9] is the full version of this submission.
3 Here we have cited a few. However, there are huge amount of relevant literature.
4
(

V
2

)
denotes the set of all size 2 subsets of V (G).

5 Note that we might sample some pairs that are not forming edges in the graph.

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:5

The algorithm for Conflict-Est in VArand model is the mainstay of our work
and is presented in Section 3. We redefine the degree in terms of the number of
monochromatic neighbors a vertex has in the randomly sampled set. Here, we estimate the
high monochromatic degree and low monochromatic degree vertices separately by sampling a
random subset of vertices. While the monochromatic degree for the high degree vertices can
be extrapolated from the sample, handling low monochromatic degree vertices individually
in the same way does not work. To get around, we group such vertices having similar
monochromatic degress and treat them as an entity. We also provide a lower bound for the
VArand model, in Section 4, using a reduction from multi-party set disjointness; though
there is a gap in terms of the exponent in T .

The highlights of our work are as follows:

We show that possibly the easiest graph coloring problem is worth studying over streams.

For researchers working in streaming, the gold standard is the EA model as most problems
are non-trivial in this model. We point out a problem that is harder to solve in the VA
model as compared to the EA model.

We show that the three VA related models have a clear separation in their space
complexities vis-a-vis the problem we solve. We could exploit the random order of the
arrival of the vertices to get substantial improvements in space complexity.

We could obtain lower bounds for all the three models and the lower bounds are matching
for the VA and VAdeg models.

2.3 Prior works on graph coloring in semi-streaming model.

Bera and Ghosh [8] commenced the study of vertex coloring in the semi-streaming model.
They devise a randomized one pass streaming algorithm that finds a (1 + ε)∆ vertex coloring
in Õ(n) space. Assadi et al. [3] find a proper vertex coloring using ∆ + 1 colors via various
classes of sublinear algorithms. Their state of the art contributions can be attributed to a
key result called the palette-sparsification theorem which states that for an n-vertex graph
with maximum degree ∆, if O(logn) colors are sampled independently and uniformly at
random for each vertex from a list of ∆ + 1 colors, then with a high probability a proper
∆ + 1 coloring exists for the graph. They design a randomized one-pass dynamic streaming
algorithm for the ∆ + 1 coloring using Õ(n) space. The algorithm takes post-processing
Õ(n
√

∆) time and assumes a prior knowledge of ∆. Alon and Assadi [2] improve the palette
sparsification result of [3]. They consider situations where the number of colors available
is both more than and less than ∆ + 1 colors. They show that sampling Oε(

√
logn) colors

per vertex is sufficient and necessary for a (1 + ε)∆ coloring. Bera et al. [6] give a new
graph coloring algorithm in the semi-streaming model where the number of colors used is
parameterized by the degeneracy κ. The key idea is a low degeneracy partition, also employed
in [8]. The numbers of colors used to properly color the graph is κ+ o(κ) and post-processing
time of the algorithm is improved to Õ(n), without any prior knowledge about κ. Behnezhad
et al. [4] were the first to give one-pass W-streaming algorithms (streaming algorithms where
outputs are produced in a streaming fashion as opposed to outputs given finally at the end)
for edge coloring both when the edges arrive in a random order or in an adversarial fashion.

ITCS 2021

15:6 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

3 Conflict-Est in VArand model

In this Section, we show that the power of randomness can be used to design a better solution
for the Conflict-Est problem in the VArand model. The Conflict-Est problem is
the main highlight of our work. We feel that the crucial use of randomness in the input
that is used to estimate a substructure (here, monochromatic edges) in a graph, will be of
independent interest.

In this variant, we are given an ε ∈ (0, 1) and a promised lower bound T on |EM |,
the number of monochromatic edges in G, as input and our objective is to determine a
(1± ε)-approximation to |EM |.

I Theorem 3.1. Given any graph G = (V,E) and a coloring function f : V (G) → [C] as
input in the stream, the Conflict-Est problem in the VArand model can be solved with
high probability in Õ

(
|V |√
T

)
space, where T is a lower bound on the number of monochromatic

edges in the graph.

The proof idea
A random sample comes for free – pick the first few vertices

Let v1, . . . , vn be the random ordering in which the vertices of V are revealed. Let R be a
random subset of Γ = Θ̃

(
n√
T

)
many vertices of G sampled without replacement 6. As we

are dealing with a random order stream, consider the first Γ vertices in the stream; they can
be treated as R, the random sample. We start by storing all the vertices in R as well as their
colors. Observe that if the monochromatic degree of any vertex vi is large (say roughly more
than

√
T), then it can be well approximated by looking at the number of monochromatic

neighbors that vi has in R. As a vertex vi streams past, there is no way we can figure out its
monochromatic degree, unless we store its monochromatic neighbors that appear before it in
the stream; if we could, we were done. Our only savior is the stored random subset R.

Classifying the vertices of the random sample R based on its monochromatic degree

Our algorithm proceeds by figuring out the influence of the color of vi on the monochromatic
degrees of vertices in R. To estimate this, let κvi denote the number of monochromatic
neighbors that vi has in R. We set a threshold τ = |R|

n

√
εT
8t , where t = dlog1+ ε

10
ne. The

significance of t will be clear from the discussion below. Any vertex vi will be classified as a
high-mR or low-mR degree vertex depending on its monochromatic degree within R, i.e., if
κvi
≥ τ , then vi is a high-mR vertex, else it is a low-mR vertex, respectively. (We use the

subscripts mR to stress the fact that the monochromatic degrees are induced by the set R.)
Let H and L be the partition of V into the set of high-mR and low-mR degree vertices in G.
Let HR and LR denote the set of high-mR and low-mR degree vertices in R. Notice that,
because of the definition of high-mR and low-mR degree vertices, not only the sets HR, LR
are subsets of R, but they are determined by the vertices of R only.

Let mh and m` denote the sum of the monochromatic degrees of all the high-mR

degree vertices and low-mR degree vertices in G, respectively. So, mh =
∑
v∈H dM (v) and

m` =
∑
v∈L dM (v). Note that m̂ = |EM | = 1

2
∑
v∈V dM (v) = 1

2 (mh +m`). We will describe
how to approximate mh and m` separately. The formal algorithm is described in Algorithm 1

6 Θ̃(·) hides a polynomial factor of logn and 1
ε in the upper bound.

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:7

as Random-Order-Est(ε, T) (in Appendix D) that basically executes steps to approximate
mh and m` in parallel.

To approximate mh, the random sample R comes to rescue

We can find m̂h, that is, a
(
1± ε

10
)
approximation of mh as described below. For each vertex

vi ∈ R and each monochromatic edge (u, vi), u ∈ R, we see in the stream, we increase the
value of κu for u and κvi

for vi. After all the vertices in R are revealed, we can determine
HR by checking whether κvi

≥ τ for each vi ∈ R. For each vertex vi ∈ HR, we set its
approximate monochromatic degree d̂vi to be n

|R|κvi . We initialize the estimated sum of the
monochromatic degree of high degree vertices as m̂h =

∑
vi∈HR

d̂vi
. For each vertex vi /∈ R

in the stream, we can determine κvi , as we have stored all the vertices in R along with their
colors, and hence we can also determine whether vi is a high-mR degree vertex in G. If vi /∈ R
is a high-mR degree vertex, we determine d̂vi

= n
|R|κvi

and update m̂h by m̂h + d̂vi
. Observe

that, at the end, m̂h is
∑
vi∈H d̂vi . Recall that H is the set of all high-mR degree vertices in

G. For each vi ∈ H, we will show, as in Claim 3.3, that d̂vi
is a

(
1± ε

10
)
-approximation to

dM (vi) with high probability. This implies that(
1− ε

10

)
mh ≤ m̂h ≤

(
1 + ε

10

)
mh (1)

To approximate m`, group the vertices in L based on similar monochromatic degree

Recall that m` =
∑
vi∈L dM (vi). Unlike the high-mR degree vertices, it is not possible to

approximate the monochromatic degree of vi ∈ L from κvi . To cope up with this problem,
we partition the vertices of L into t buckets B1, . . . , Bt such that all the vertices present
in a bucket have similar monochromatic degrees, where t = dlog1+ ε

10
ne. The bucket Bj is

defined as follows: Bj = {vi ∈ L :
(
1 + ε

10
)j−1 ≤ dM (vi) <

(
1 + ε

10
)j}.

Note that our algorithm will not find the buckets explicitly. It will be used for the
analysis only. Observe that

∑
j∈[t] |Bj |

(
1 + ε

10
)j−1 ≤ m` <

∑
j∈[t] |Bj |

(
1 + ε

10
)j . We can

surely approximate m` by approximating |Bj |s suitably. We estimate |Bj |s as follows. After
the stream of the vertices in R has gone past, we have the set of low-mR degree vertices
LR in R and d̂vi = κvi for each vi ∈ LR. For each vi /∈ R in the stream, we determine
the monochromatic neighbors of vi in LR. It is possible as we have stored all the vertices
in R and their colors. For each monochromatic neighbor vi′ ∈ LR of vi, we increase the
value of d̂vi′ of vi′ . Observe that, at the end of the stream, d̂vi′ = dM (vi′) for each vi′ ∈ LR,
i.e., we can accurately estimate the monochromatic degree of each vi′ ∈ LR. So, we can
determine the bucket where each vertex in LR belongs. Let Aj (= LR∩Bj) be the bucket Bj
projected onto LR in the random sample; note that as Bj ⊆ L and LR = L∩R, Aj = R∩Bj
also. We determine m̂` = n

|R|
∑
j∈[t] |Aj |

(
1 + ε

10
)j . We can show that n

|R| |Aj | is a
(
1 + ε

10
)
-

approximation of |Bj |, with high probability, if |Bj | ≥
√
εT

10t . Also, we can show that, if
|Bj | <

√
εT

10t , then |Aj | ≤
|R|
n

√
εT
8t with high probability. Now using the fact that we consider

bucketing of only low-mR degree vertices (LR), we can show that

(
1− ε

10

)(
m` −

εT

63t

)
≤ m̂` ≤

(
1 + ε

10

)2
(
m` + εT

56t

)
. (2)

Note that ε ∈ (0, 1) and t = dlog1+ ε
10
ne. Assuming T ≥ 63t2, Equations 1 and 2 imply

that m̂ = 1
2 (m̂h + m̂`) is a (1 ± ε)-approximation to |EM |. If T < 63t2, then note that

ITCS 2021

15:8 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

n = Õ
(

n√
T

)
. So, in that case, we store all the vertices along with their colors and compute

the exact value of |EM |.

Proof of correctness
The correctness of the algorithm follows trivially if T < 63t2. So, let us assume that T ≥ 63t2.
In the VArand model, we consider the first Θ̃

(
n√
T

)
vertices as the random sample R

without replacement. Using the Chernoff bound for sampling without replacement (See
Lemma A.2 in Appendix A), we can have the following lemma (The proof is in Appendix B),
which will be useful for the correctness proof of Algorithm 1 (Random-Order-Est(ε, T))
in case of T ≥ 63t2.

I Lemma 3.2.
(i) For each j ∈ [t] with |Bj | ≥

√
εT

10t , P
(∣∣∣|Bj ∩R| − |R||Bj |

n

∣∣∣ ≥ ε
10
|R||Bj |
n

)
≤ 1

n10 .

(ii) For each j ∈ [t] with |Bj | <
√
εT

10t , P
(
|Bj ∩R| ≥ |R|n

√
εT
8t

)
≤ 1

n10 .

(iii) For each vertex vi with dM (vi) ≥
√
εT

10t , P
(∣∣∣κvi

− |R|dM (vi)
n

∣∣∣ ≥ ε
10
|R|dM (vi)

n

)
≤ 1

n10 .

(iv) For each vertex vi with dM (vi) <
√
εT

10t , P
(
κvi
≥ |R|n

√
εT
8t

)
≤ 1

n10 .

The correctness proof of the algorithm is divided into the following two claims.

B Claim 3.3.
(
1− ε

10
)
mh ≤ m̂h ≤

(
1 + ε

10
)
mh with probability at least 1− 1

n9 .

B Claim 3.4.
(
1− ε

10
) (
m` − εT

63t
)
≤ m̂` ≤

(
1 + ε

10
)2 (

m` + εT
56t
)
with probability at least

1− 1
n7 .

Assuming the above two claims hold and taking ε ∈ (0, 1), t = dlog1+ ε
10
ne and T ≥ 63t2,

observe that m̂ = 1
2 (m̂h + m̂`) is a (1 ± ε) approximation of |EM | = mh + m` with high

probability. Thus, it remains to prove Claims 3.3 and 3.4.

Proof of Claim 3.3. Note that mh =
∑

vi:κvi
≥ |R|

n

√
εT

8t

dM (vi) and m̂h =
∑

vi:κvi
≥ |R|

n

√
εT

8t

d̂vi
.

From Lemma 3.2 (iv) and (iii), κvi
≥ |R|n

√
εT
8t implies that d̂vi

is an
(
1± ε

10
)
approximation

to dM (vi) with probability at least 1− 2
n10 . Hence, we have

(
1− ε

10
)
mh ≤ m̂h ≤

(
1 + ε

10
)
mh

with probability at least 1− 1
n9 . C

Proof of Claim 3.4. Note that m` =
∑
vi∈L dM (vi) =

∑
vi:κvi

<
|R|
n

√
εT

8t

dM (vi) and

m̂` = n
|R|

∑
j∈[t]
|Aj |

(
1 + ε

10
)j . Recall that the vertices in L are partitioned into t buckets as

follows:
Bj = {vi ∈ L :

(
1 + ε

10
)j−1 ≤ dM (vi) <

(
1 + ε

10
)j}, where j ∈ [t]. By Lemma 3.2 (iv),

κvi
< |R|

n

√
εT
8t implies that dM (vi) ≤

√
εT
7t with probability 1− 1

n10 . So, we have the following
observation.

I Observation 3.5. Let j ∈ [t] be such that |Aj | 6= 0 (|Bj | 6= 0). Then, with probability at
least 1− 1

n10 , the monochromatic degree of each vertex in Aj as well as Bj is at most
√
εT
7t ,

that is,
(
1 + ε

10
)j ≤ √εT7t .

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:9

To upper and lower bound m̂` in terms of m`, we upper and lower bound m` in terms of
|Bj |’s as follows; for the upper bound, we break the sum into two parts corresponding to
large and small sized buckets:∑

j∈[t]

|Bj |
(

1 + ε

10

)j−1
≤ m` <

∑
j∈[t]

|Bj |
(

1 + ε

10

)j

∑
j∈[t]

|Bj |
(

1 + ε

10

)j−1
≤ m` <

∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(

1 + ε

10

)j

+
∑

j∈[t]:|Bj |<
√

εT
9t

|Bj |
(

1 + ε

10

)j

By Observation 3.5, we bound m` in terms of |Bj |’s with probability 1− 1
n9 .∑

j∈[t]

|Bj |
(

1 + ε

10

)j−1
≤ m` <

∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(

1 + ε

10

)j
+ t ·

√
εT

9t

√
εT

7t

This implies the following Observation:

I Observation 3.6.
∑
j∈[t]
|Bj |

(
1 + ε

10
)j−1 ≤ m` <

∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(
1 + ε

10
)j + εT

63t holds

with probability at least 1− 1
n9 .

Now, we have all the ingredients to show that m̂` is a (1±ε) approximation ofm`. To get to
m̂`, we need to focus on low-mR vertices of R, i.e., Aj ’s. Breaking m̂` = n

|R|
∑
j∈[t]
|Aj |

(
1 + ε

10
)j

depending on small and large values of |Aj |’s (recall Aj = LR ∩Bj = R ∩Bj), we have

m̂` = n

|R|

 ∑
j∈[t]:|Aj |≥ |R|

n

√
εT

8t

|Aj |
(

1 + ε

10

)j
+

∑
j∈[t]:|Aj |< |R|

n

√
εT

8t

|Aj |
(

1 + ε

10

)j (3)

Note that Aj = Bj ∩ R. By Lemma 3.2 (ii), |Aj | ≥ |R|
n

√
εT
8t implies |Bj | ≥

√
εT

10t with
probability at least 1 − 1

n10 . Also, applying Lemma 3.2 (i), |Bj | ≥
√
εT

10t implies |Aj | is an(
1± ε

10
)
-approximation to |R||Bj |

n with probability at least 1− 1
n10 . So, we have the following

observation.

I Observation 3.7. Let j ∈ [t] be such that |Aj | ≥ |R|
n

√
εT
8t . Then |Aj | is an

(
1± ε

10
)
-

approximation to |R||Bj |
n with probability at least 1 − 2

n10 , that is, n
|R| |Aj | is an

(
1± ε

10
)
-

approximation to |Bj | with probability at least 1− 2
n10

By the above observation along with Equation 3, we have the following upper bound on
m̂` with probability at least 1− 1

n9 .

m̂` ≤
∑

j∈[t]:|Aj |≥ |R|
n

√
εT

8t

(
1 + ε

10

)
|Bj |

(
1 + ε

10

)j

+
∑

j∈[t]:|Aj |< |R|
n

√
εT

8t

n

|R| |Aj |
(

1 + ε

10

)j

≤
(

1 + ε

10

)2

 ∑
j∈[t]:|Aj |≥ |R|

n

√
εT

8t

|Bj |
(

1 + ε

10

)j−1
+

∑
j∈[t]:|Aj |< |R|

n

√
εT

8t

√
εT

8t

(
1 + ε

10

)j−2


Now by Observations 3.6 and 3.5, we have the following with probability at least 1− 1

n8 .

m̂` ≤
(

1 + ε

10

)2
(
m` + t ·

√
εT

8t

√
εT

7t

)

=
(

1 + ε

10

)2
(
m` + εT

56t

)

ITCS 2021

15:10 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

Now, we will lower bound m̂`. From Equation 3, we have

m̂` ≥ n

|R|
∑

j∈[t]:|Aj |≥ |R|
n

√
εT

8t

|Aj |
(

1 + ε

10

)j
By Observation 3.7, |Aj | ≥ |R|

n

√
εT
8t implies n

|R| |Aj | is an
(
1± ε

10
)
-approximation to |Bj |

with probability at least 1− 2
n10 . So, the following lower bound on m̂` holds with probability

at least 1− 1
n9 .

m̂` ≥
(

1− ε

10

) ∑
j∈[t]:|Aj |≥ |R|

n

√
εT

8t

|Bj |
(

1 + ε

10

)j
By Lemma 3.2 (i), if |Bj | ≥

√
εT
9t , then |Aj | ≥

√
εT
8t with probability at least 1− 1

n10 . Hence,
we have the following lower bound on m̂` with probability at least 1− 1

n8 .

m̂` ≥
(

1− ε

10

) ∑
j∈[t]:|Bj |≥

√
εT

9t

|Bj |
(

1 + ε

10

)j
Now by Observation 3.6, we have the following with probability at least 1− 1

n7 .

m̂` ≥
(

1− ε

10

)(
m` −

εT

63t

)
. C

4 Lower bound for Conflict-Est in VArand model

In this Section, we show a lower bound of Ω
(
n
T 2

)
for Conflict-Est in Vertex Arrival

in Random Order via a reduction from a variation of Multiparty Set Disjointness
problem called DisjointnessR(t, n, p), played among p players: Consider a matrix of order
t×n having t (rows) vectors M1, . . . ,Mt ∈ {0, 1}n such that each entry of matrix M is given
to one of the p players chosen uniformly at random. The objective is to determine whether
there exists a column where all the entries are 1s. If t ≥ 2 and p = Ω(t2), Chakrabarti
et al. showed that any randomized protocol requires Ω

(
n
t

)
bits of communication [10].

They showed that the lower bound holds under a promise called the unique intersection
promise which states that there exists at most a single column where all the entries are
1s and every other column of the matrix has Hamming weight either 0 or 1. Moreover,
the lower bound holds even if all the p players know the random partition of the entries of
matrix M .

I Theorem 4.1. Let n, T ∈ N be such that 4 ≤ T ≤
(
n
2
)
. Any constant pass streaming

algorithm that takes the vertices and edges of a graph G(V,E) (with |V | = Θ(n) and
|E| = Θ(m)) and a coloring function f : V → [C] in the VArand model, and determines
whether the monochromatic edges in G is 0 or Ω(T) with probability 2/3, requires Ω

(
n
T 2

)
bits of space.

Proof. Without loss of generality, assume that
√
T ∈ N. Consider the

DisjointnessR
(√

T , n√
T
, p
)
problem with Unique Intersection promise when all of the

p players know the random partition of the entries of the relevant matrix M . Note that M is
of order [

√
T]×

[
n√
T

]
and p = AT for some suitable constant A ∈ N. Also, consider a graph G,

with V (G) = {vij : i ∈
[√

T
]
, j ∈

[
n√
T

]
}, having n√

T
many vertex disjoint cliques such that

{v1j , . . . , v√Tj} forms a clique for each j ∈ [n], i.e., a column ofM forms a clique. Also, notice

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:11

that each clique has Θ(T) edges. Let us assume that there is an r-pass streaming algorithm S,
with space complexity s bits, that solves Conflict-Est for the above graphG in the VArand
model. Now, we give a protocol A for DisjointnessR

(√
T , n√

T
, p
)
with communication cost

O(rsp). Using the fact that the lower bound of Disjointness
(√

T , n√
T
, p
)
is Ω

(
n/
√
T√
T

)
along with the fact that p = AT and r is a constant, we get s = Ω

(
n
T 2

)
.

Protocol A for DisjointnessR

(√
T , n√

T
, p
)

Let P1, . . . , Pp denote the set of p players. For k ∈ [p], Vk = {vij : Mij is with Pk}, where
Mij denotes the element present in the i-th row and j-th column of matrix M . Note that
there is a one-to-one correspondence between the entries of M and the vertices in V (G).
Furthermore, there is a one-to-one correspondence between the columns of matrix M and the
cliques in graph G. We assume that all the p players know the graph structure completely
as well as both the one-to-one correspondences. The protocol proceeds as follows: for each
k ∈ [p], player Pk determines a random permutation πk of the vertices in Vk. Also, for each
k ∈ [p], player Pk determines the colors of the vertices in Vk by the following rule: if Mij = 1,
then color vertex vij with color C∗. Otherwise, for Mij = 0, color vertex vij with color Ci.
Player P1 initiates the streaming algorithm and it goes over r-rounds.

Rounds 1 to r − 1: For k ∈ [p], each player resumes the streaming algorithm by exposing
the vertices in Vk, along with their colors, in the order dictated by πk. Also, Pk adds the
respective edges to previously exposed vertices when the current vertex is exposed to
satisfy the basic requirement of VA model. This is possible because all players know the
graph G and the random partition of the entries of matrix M among p players. After
exposing all the vertices in Vk, as described, Pk sends the current memory state to player
Pk+1. Assume that P1 = Pp+1.

Round r: All the players behave similarly as in the previous rounds, except that, the player
Pp does not send the current memory state to P1. Rather, Pp decides whether there is a
column in M with all 1s if the streaming algorithm S decides that there are Ω(T) many
monochromatic edges in G. Otherwise, if S decides that there is no monochromatic edge
in G, then Pp decides that all the columns of M have weight either 0 or 1. Then Pp sends
the output to all other players.

The vertices of graph G are indeed exposed randomly to the streaming algorithm. It is
because the entries of matrix M are randomly partitioned among the players and each player
also generates a random permutation of the vertices corresponding to the entries of matrix M
available to them. From the description of the protocol A, the memory state of the streaming
algorithm (of space complexity s) is communicated (r − 1)p+ (p− 1) times and p− 1 bits is
communicated at the end by player Pp to broadcast the output. Hence, the communication
cost of the protocol A is at most O(rsp).

Now we are left to prove the correctness of the protocol A. If there is a column in M
with all 1s, then all the vertices corresponding to entries of that column are colored with
color C∗. Recall that there is a one-to-one correspondence between the columns in matrix
M and cliques in the graph G. So, all the vertices of the clique, corresponding to the column
having all 1s, are colored with the color C∗. As the size of each clique in the graph G is

√
T ,

there are at most Ω(T) monochromatic edges. To prove the converse, assume that there
is no column in the matrix M having all 1s. By Unique Intersection Promise, all the

ITCS 2021

15:12 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

columns have hamming weight at most 1. We will argue that there is no monochromatic
edge in G. Consider an edge e in G. By the structure of G, the two vertices of e must be
in the same clique, say the j-th clique, that is, let e = {vi1j , vi2j}. By the coloring scheme
used by the protocols, vi1j and vi2j are colored according to the values of Mi1j and Mi2j ,
respectively. Note that both Mi1j and Mi2j belong to j-th column. As the hamming weight
of every column is at most 1, there are three possibilities:

(i) Mi1j = Mi2j = 0, that is, vi1j and vi2j are colored with color Ci1 and Ci2 , respectively;
(ii) Mi1j = 0 and Mi2j = 1, that is, vi1j and vi2j are colored with color Ci1 and C∗,

respectively;
(iii) Mi1j = 1 and Mi2j = 0, that is, vi1j and vi2j are colored with color C∗ and Ci2 ,

respectively.

In any case, the edge e = {vi1j , vi2j} is not monochromatic. This establishes the
correctness of protocol A for DisjointnessR

(√
T , n√

T
, p
)
. J

5 Conflict-Sep in VArand model

Using a structural property of the graph, we design a simple algorithm to solve the Conflict-
Sep problem in the VArand model.

I Theorem 5.1. Given any graph G = (V,E) and a coloring function f : V (G)→ [C] and a
parameter ε > 0 as input, there exists an algorithm that solves the Conflict-Sep problem

in the VArand streaming model using space Õ
(
|V |√
ε|E|

)
with high probability.

Let G′ denote the subgraph of G consisting of only monochromatic edges in G. The
lemma stated below guarantees that either there exists a large matching of size at least

√
εm

in G′ or there exists a vertex of degree at least
√
εm in G′.

I Lemma 5.2 ([16]). Let G = (V,E) be a graph and f : V (G)→ [C] be a coloring function
such that at least ε fraction of the edges of E(G) are known to be monochromatic. Then,
either there is a matching of size at least

√
εm or there exists a vertex of degree at least

√
εm

in the subgraph G′ defined on the monochromatic edges of G.

The algorithm is as simple as it can get. We sample independently and uniformly at
random the vertices in stream with probability p = min{1, 10 logn√

m
} 7 and store these vertices

along with their colors. Let S ⊆ V be the set of sampled vertices. When a vertex appears in
a stream, we check if it forms a monochromatic edge with one of the stored vertices in S.
At the end of the stream, the algorithm declares the graph to be properly colored (valid) if
it can not find a monochromatic edge, else it declares the instance to be ε-far from being
monochromatic.

We show that Theorem 5.1 follows easily using Lemma 5.2.

7 For simplicity of presentation, we assumed that, the number of edges m in graph G is known before the
stream starts. However, this assumption can be removed by a simple tweak of starting with a value of m
and increasing it in stages and adjusting the random sample accordingly. This is common in streaming
algorithms.

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:13

Proof. We consider the following two cases.
Case 1 – There exists a matching of size at least

√
εm: Note that all these matched edges

are monochromatic. Let (u, v) denote an arbitrary matched edge where u appears in
the stream before v. Now, the edge (u, v) will be detected as monochromatic if vertex u
has been sampled by the algorithm. The probability that vertex u is sampled is 10 logn√

m
.

Since, there are
√
εm matched monochromatic edges, the algorithm will detect at least

one of these matched monochromatic edges with probability at least (1− 1/n2).
Case 2 – There exists a vertex of degree at least

√
εm: In this case most of the

monochromatic edges may be incident on very few high degree vertices. To detect
these edges, we want to store either the high degree vertices or one of its neighbours.
But, if these high degree vertices appear at the beginning of the stream and we fail to
sample them, then we may not detect a monochromatic edge. This is where the random
order of vertices arriving in the stream comes into play. Now, assuming random order of
vertices in the stream, at least 1

5
√
εm neighbors of v should appear before v in the stream

with probability at least (1− e− 9
50
√
εm) . Since we sample every vertex with probability

10 logn√
m

, with high probability at least (1− 1/n2) one of its neighbors will be stored. J

6 Conclusion and Discussion

In this paper, we introduced a graph coloring problem to streaming setting with a different
flavor – the coloring function streams along with the graph. We study the problem of
Conflict-Est (estimating the number of monochromatic edges) and Conflict-Sep
(detecting a separation between the number of valid edges) in VA, VAdeg, and VArand
models. Our algorithms for VA and VAdeg are tight upto polylogarithmic factors. However,
a matching lower bound on the space complexity for VArand model is still elusive. There
is a gap between our upper and lower bound results for VArand model in terms of the
exponent in T . Our hunch is that the upper bound is tight. Specifically, we obtained an
upper bound of Õ

(
n√
T

)
) and the lower bound is Ω

(
n
T 2

)
. Here we would like to note that

the lower bound also holds in AL and VAdeg model when the vertices are exposed in a
random order. However, we feel that our algorithm for Conflict-Est in VArand model is
tight upto polylogarithmic factors. We leave this problem open.

We feel the edge coloring counterpart of the vertex coloring problem proposed in the paper
will be worthwhile to study. Let the edges of G be colored with a function f : E(G)→ [C],
for C ∈ N. A vertex u ∈ V (G) is said to be a validly colored vertex if no two edges incident
on u have the same color. An edge coloring is valid if all vertices are validly colored. Consider
the AL model for the edge coloring problem. As all edges incident on an exposed vertex
u are revealed in the stream, if we can solve a duplicate element finding problem on the
colors of the edges incident on u, then we are done! It seems at a first glance that all the
three models of VA, AL and EA will be difficult to handle for the edge coloring problem on
streams of graph and edge colors. It would be interesting to see if the edge coloring variant
of the problems we considered in this paper, admit efficient streaming algorithms. We plan
to look at this problem next.

References
1 Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) vertex coloring. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume 176 of LIPIcs,
pages 6:1–6:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
APPROX/RANDOM.2020.6.

ITCS 2021

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.6

15:14 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

2 Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) vertex coloring. CoRR,
abs/2006.10456, 2020. arXiv:2006.10456.

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆ + 1) vertex
coloring. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 767–786. SIAM, 2019. doi:10.1137/1.9781611975482.48.

4 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and
Hamed Saleh. Streaming and massively parallel algorithms for edge coloring. In Michael A.
Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium
on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144
of LIPIcs, pages 15:1–15:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ESA.2019.15.

5 Suman K. Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles
and other substructures in graph streams. In Heribert Vollmer and Brigitte Vallée, editors,
34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany, volume 66 of LIPIcs, pages 11:1–11:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.11.

6 Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in
streaming and other space-conscious models. CoRR, abs/1905.00566, 2019. arXiv:1905.00566.

7 Suman K. Bera and C. Seshadhri. How the degeneracy helps for triangle counting
in graph streams. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of
the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 457–467. ACM, 2020. doi:
10.1145/3375395.3387665.

8 Suman Kalyan Bera and Prantar Ghosh. Coloring in graph streams. CoRR, abs/1807.07640,
2018. arXiv:1807.07640.

9 Anup Bhattacharya, Arijit Bishnu, Gopinath Mishra, and Anannya Upasana. Even the
easiest(?) graph coloring problem is not easy in streaming! CoRR, abs/2010.13143, 2020.
arXiv:2010.13143.

10 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for
communication and stream computation. Theory Comput., 12(1):1–35, 2016. doi:10.4086/
toc.2016.v012a010.

11 Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival
streams. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 45:1–45:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.45.

12 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.
org/gb/knowledge/isbn/item2327542/.

13 Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling with
conflicts: online and offline algorithms. J. Sched., 12(2):199–224, 2009. doi:10.1007/
s10951-008-0089-1.

14 Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J. Comput. Syst. Sci.,
57(2):187–199, 1998. doi:10.1006/jcss.1998.1587.

15 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

16 Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2011. doi:10.1007/
978-3-642-17364-6.

http://arxiv.org/abs/2006.10456
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.4230/LIPIcs.ESA.2019.15
https://doi.org/10.4230/LIPIcs.ESA.2019.15
https://doi.org/10.4230/LIPIcs.STACS.2017.11
http://arxiv.org/abs/1905.00566
https://doi.org/10.1145/3375395.3387665
https://doi.org/10.1145/3375395.3387665
http://arxiv.org/abs/1807.07640
http://arxiv.org/abs/2010.13143
https://doi.org/10.4086/toc.2016.v012a010
https://doi.org/10.4086/toc.2016.v012a010
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://doi.org/10.1007/s10951-008-0089-1
https://doi.org/10.1007/s10951-008-0089-1
https://doi.org/10.1006/jcss.1998.1587
https://doi.org/10.1007/978-3-642-17364-6
https://doi.org/10.1007/978-3-642-17364-6

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:15

17 John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity of graph and
hypergraph counting. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 556–567. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00059.

18 John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The complexity of
counting cycles in the adjacency list streaming model. In Dan Suciu, Sebastian Skritek, and
Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July
5, 2019, pages 119–133. ACM, 2019. doi:10.1145/3294052.3319706.

19 Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary
subgraphs in data streams. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes
in Computer Science, pages 598–609. Springer, 2012. doi:10.1007/978-3-642-31585-5_53.

20 Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for maxclique,
chromatic number and min-3lin-deletion. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,
and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International
Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of
Lecture Notes in Computer Science, pages 226–237. Springer, 2006. doi:10.1007/11786986_21.

21 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

22 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

23 Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting
triangles in data streams. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 401–411. ACM, 2016.
doi:10.1145/2902251.2902283.

24 Wolfgang Mulzer. Five proofs of chernoff’s bound with applications. Bull. EATCS, 124, 2018.
URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/525.

25 Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs.
In Qiang Yang, Deepak Agarwal, and Jian Pei, editors, The 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16,
2012, pages 1222–1230. ACM, 2012. doi:10.1145/2339530.2339722.

26 Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic.
FENNEL: streaming graph partitioning for massive scale graphs. In Ben Carterette, Fernando
Diaz, Carlos Castillo, and Donald Metzler, editors, Seventh ACM International Conference
on Web Search and Data Mining, WSDM 2014, New York, NY, USA, February 24-28, 2014,
pages 333–342. ACM, 2014. doi:10.1145/2556195.2556213.

27 V. G. Vizing. On an estimate of the chromatic class of a p-graph, 1964.

28 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/toc.2007.
v003a006.

ITCS 2021

https://doi.org/10.1109/FOCS.2018.00059
https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1007/978-3-642-31585-5_53
https://doi.org/10.1007/11786986_21
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2902251.2902283
http://eatcs.org/beatcs/index.php/beatcs/article/view/525
https://doi.org/10.1145/2339530.2339722
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

15:16 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

A Some probability results

I Lemma A.1 ([12], Chernoff-Hoeffding bound). Let X1, . . . , Xn be independent random
variables such that Xi ∈ [0, 1]. For X =

n∑
i=1

Xi and µ = E[X], the following holds for any

0 ≤ δ ≤ 1:

P(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2

3

)
I Lemma A.2 ([24]). Let I = {1, . . . , N}, r ∈ [N] be a given parameter. If we sample a
subset R without replacement, then the following holds for any J ⊂ I and δ ∈ (0, 1).
(i) P

(
|J ∩R| ≥ (1 + δ) |J | rN

)
≤ exp

(
− δ

2|J|r
3N

)
;

(ii) P
(
|J ∩R| ≤ (1− δ) |J | rN

)
≤ exp

(
− δ

2|J|r
3N

)
;

(iii) Further more, we have the following if |J | ≤ k, then the following holds.

P
(
|J ∩R| ≥ (1 + δ)k r

N

)
≤ exp

(
−δ

2kr

3N

)

B Proof of Lemma 3.2

I Lemma B.1 (Restatement of Lemma 3.2).
(i) For each j ∈ [t] with |Bj | ≥

√
εT

10t , P
(∣∣∣|Bj ∩R| − |R||Bj |

n

∣∣∣ ≥ ε
10
|R||Bj |
n

)
≤ 1

n10 .

(ii) For each j ∈ [t] with |Bj | <
√
εT

10t , P
(
|Bj ∩R| ≥ |R|n

√
εT
8t

)
≤ 1

n10 .

(iii) For each vertex vi with dM (vi) ≥
√
εT

10t , P
(∣∣∣κvi −

|R|dM (vi)
n

∣∣∣ ≥ ε
10
|R|dM (vi)

n

)
≤ 1

n10 .

(iv) For each vertex vi with dM (vi) <
√
εT

10t , P
(
κvi
≥ |R|n

√
εT
8t

)
≤ 1

n10 .

Proof. Let us take N = n, r = |R| = Γ = Θ̃
(

n√
T

)
, I = {v1, . . . , vn} in Lemma A.2.

(i) Setting J = Bj and δ = ε
10 in Lemma A.2 (i) and (ii), we have

P
(∣∣∣∣|Bj ∩R| − |R| |Bj |n

∣∣∣∣ ≥ ε

10
|R| |Bj |

n

)
≤ 2 exp

(
− (ε/10)2 |Bj |Γ

3n

)
≤ 1
n10 .

The last inequality holds as |Bj | ≥
√
εT

10t , t = dlog1+ ε
10
ne = Θ

(
logn
ε

)
and Γ = Θ̃

(
n√
T

)
.

(ii) Set J = Bj , k =
√
εT

10t , δ = 1
4 in Lemma A.2 (iii). As |Bj | ≤

√
εT

10t , |J | ≤ k. Hence,

P

(
|Bj ∩R| ≥

|R|
n

√
εT

8t

)
≤ exp

(
− (1/4)2(

√
εT/10t)Γ

3n

)
≤ 1
n10 .

(iii) Setting J as the set of monochromatic neighbors of vi in R and δ = ε
10 in Lemma A.2

(i) and (ii), we get

P
(∣∣∣∣κvi

− |R| dM (vi)
n

∣∣∣∣ ≥ ε

10
|R| dM (vi)

n

)
≤ exp

(
− (ε/10)2|J |Γ

3n

)
≤ 1
n10 .

The last inequality holds as |J | = dM (vi) ≥
√
εT

10t , t = dlog1+ ε
10
ne = Θ

(
logn
ε

)
and

Γ = Θ̃
(

n√
T

)
.

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:17

(iv) Set J as the set of monochromatic neighbors of vi in R, k =
√
εT

10t , δ = 1
4 in Lemma A.2

(iii). Note that |J | = dM (vi) ≤
√
εT

10t = k. Hence,

P

(
κvi
≥ |R|

n

√
εT

8t

)
≤ exp

(
− (1/4)2(

√
εT/10t)Γ

3n

)
≤ 1
n10 . J

C Communication Complexity

Communication Complexity [21] deals with finding the minimum amount of space that is
needed to communicate in order to compute a function when the input to the function is
distributed among multiple parties. For the purpose of our work, we are concerned with two
player games with one-way communication protocol. The players are traditionally called
Alice and Bob. Both of them have a n-bit input string and are unaware of each other’s input.
The goal is to minimize the bits Alice needs to communicate to Bob so that he can compute
a function on both their inputs. No assumption is made on their computational powers and
there is no restriction on the amount of time needed for computing the function.

C.1 INDEX problem in the communication complexity model

Lower bound results in the streaming model of computation are proved by reduction from a
problem in communication complexity model. We determine our lower bounds by considering
a reduction from the INDEX problem in the one-way communication protocol for two players
to the specific problem in graphs in the VA model. The INDEX problem is defined as follows:
There are two parties, Alice and Bob. Alice has a N -bit input string X ∈ {0, 1}N and Bob
has an integer j ∈ [N]. Both are unaware of each other’s input and the goal is to compute
Xj , the jth bit of X. The lower bound for space complexity to solve the INDEX problem in
the one-way deterministic communication model is Ω(N).

I Lemma C.1 ([21]). The deterministic communication complexity of INDEX is Ω(N)

D Algorithm for Conflict-Est in VArand model

Γ = Θ̃
(

n√
T

)
; v1, . . . , vn be the random ordering in which vertices are revealed and

R = {v1, . . . , vΓ};

κvi
, i ∈ [n], denotes the number of monochromatic neighbors of vi in R,

d̂vi
, i ∈ [n], denotes the (estimated) monochromatic neighbors of vertices in G.

H denotes the set of high degree vertex in R, i.e., H = {vi : κvi
≥ |R|n

√
εT
8t } and L = V \H;

LR = L ∩R and HR = H ∩R;

The vertices in L are partitioned into t buckets as follows:
Bj = {vi ∈ L :

(
1 + ε

10
)j−1 ≤ dM (vi) <

(
1 + ε

10
)j}, where j ∈ [t].

ITCS 2021

15:18 Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!

Algorithm 1 Random-Order-Est(ε, T): Conflict-Est in VArand model.

Input: G = (V,E) and a coloring function f on V in the VArand model, parameters T
and ε.

Output: m̂, that is, a (1± ε) approximation to |EM |.
Set t = dlog1+ ε

10
ne. If T < 63t2, then store all the vertices in G along with their colors. At

the end, report the exact value of |EM |. Otherwise, we proceed through via three building
blocks described below and marked as (1),(2), (3) and (4). Refer to the notations described
above this pseudocode.

(1) Processing the vertices in R, the first Γ vertices, in the stream:
for (each vertex vi ∈ R exposed in the stream) do
Store vi as well as its color f(vi).
For each edge (vi′ , vi) that arrives in the stream, increase the values of κvi′ and κvi .
end

(2) Computation of some parameters based on vertices in R and their colors:

for (each vi ∈ R with κvi ≥
|R|
n

√
εT

8t
) do

Add vi to HR, and set d̂vi = n
|R|κvi .

end

m̂h =
∑

vi∈H

d̂vi .

Let LR = R \HR.
for (each vi ∈ LR) do
Set d̂vi = κvi .
end

(3) Processing the vertices in V (G) \R in the stream:
for (each vertex vi /∈ R exposed in the stream) do
Determine the value of κvi . If κvi ≥

|R|
n

√
εT

8t
, find d̂vi = n

|R|κvi and add d̂vi to the
current m̂h.

Also, for each vi′ ∈ LR, increase the value of d̂vi′ if (vi′ , vi) is an edge.
end

(4) Post processing, after the stream ends, to return the output:

From the values of d̂vi for all vi ∈ LR, determine the buckets for each vertex in LR.
Also, for each j ∈ [t], find |Aj | = |LR ∩Bj |. Then determine

m̂` = n

|R|
∑
j∈[t]

|Aj |
(

1 + ε

10

)j

.

Report m̂ = m̂h+m̂`
2 as the final Output.

A. Bhattacharya, A. Bishnu, G. Mishra, and A. Upasana 15:19

E Algorithm for Conflict-Sep inVArand model

Algorithm 2 Algorithm: Conflict-Sep in Vertex Arrival in Random Order model

Input: G = (V,E) and a coloring function f on V in the VArand model
Output: The algorithm verifies if f is ε-far from valid or not
Let S be the set of stored vertices and their colors. Initially, S is empty. for i← 1
to |V | do

let u be the ith vertex of the stream
Store u and its color f(u) in S with probability O

(
logn√
m

)
for every vertex v in S do

Check if (v, u) is an edge and f(v) = f(u)
end

end
Output f is valid if none of the edges sampled are conflicting, else output that f is
ε -far from being valid.

ITCS 2021

	Introduction
	Preliminaries
	Notations and the streaming models
	Problem definitions, results and the ideas
	Prior works on graph coloring in semi-streaming model.

	Conflict-Est in VArand model
	Lower bound for Conflict-Est in VArand model
	Conflict-Sep in VArand model
	Conclusion and Discussion
	Some probability results
	Proof of Lemma 3.2
	Communication Complexity
	INDEX problem in the communication complexity model

	Algorithm for Conflict-Est in VArand model
	Algorithm for Conflict-Sep inVArand model

