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—— Abstract

In the masked low-rank approzimation problem, one is given data matrix A € R™*™ and binary mask
matrix W € {0,1}"*". The goal is to find a rank-k matrix L for which:

cost(L) = > D Wi+ (Aiy — L)’ < OPT + || A7,
=1 j=1

where OPT = min_,, , ; cost(L) and € is a given error parameter. Depending on the choice of W,
the above problem captures factor analysis, low-rank plus diagonal decomposition, robust PCA,
low-rank matrix completion, low-rank plus block matrix approximation, low-rank recovery from
monotone missing data, and a number of other important problems. Many of these problems are
NP-hard, and while algorithms with provable guarantees are known in some cases, they either 1)
run in time n2**/9) or 2) make strong assumptions, for example, that A is incoherent or that the
entries in W are chosen independently and uniformly at random.

In this work, we show that a common polynomial time heuristic, which simply sets A to 0
where W is 0, and then finds a standard low-rank approximation, yields bicriteria approximation
guarantees for this problem. In particular, for rank k' > k depending on the public coin partition
number of W, the heuristic outputs rank-k' L with cost(L) < OPT + ¢||A||%. This partition number
is in turn bounded by the randomized communication complexity of W, when interpreted as a
two-player communication matrix. For many important cases, including all those listed above, this
yields bicriteria approximation guarantees with rank k¥’ = k - poly(logn/e).

Beyond this result, we show that different notions of communication complexity yield bicriteria
algorithms for natural variants of masked low-rank approximation. For example, multi-player number-
in-hand communication complexity connects to masked tensor decomposition and non-deterministic
communication complexity to masked Boolean low-rank factorization.
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1 Introduction

The goal of low-rank approximation is to approximate an n X n matrix A with a rank-k matrix
L. L can be written as the product L = U -V of a “tall-and-thin” matrix U and a “short-
and-wide” matrix V with k£ columns and rows respectively. For k < n this approximation
can lead to computational speedups: one can store the factors U and V' with less memory
than storing A itself, and can compute the product U - V - x with a vector z faster than
computing A - z. Additionally, low-rank approximation is useful for denoising and can reveal
low-dimensional structure in high-dimensional data (it is e.g., the basis behind principal
component analysis). It thus serves as a preprocessing step in many applications, including
clustering, data mining, and recommendation systems. The optimal low-rank approximation
to A with distance measured in the Frobenius, spectral, or any unitarily invariant norm can
be computed in polynomial time using a singular value decomposition (SVD). There are also
extremely efficient approximation algorithms for finding a near optimal L under different
measures, including the Frobenius norm, spectral norm, and various entrywise norms. For a
comprehensive treatment, we refer the reader to the surveys [36, 47, 70].

Despite its wide applicability, in many situations standard low-rank approximation does
not suffice. For example, it is common that certain entries in A either don’t obey underlying
low-rank structure or are missing. For example, A may be close to low-rank but with a small
number of corrupted entries, or may be the sum of a low-rank matrix plus a high-rank, but
still efficiently representable, diagonal or block diagonal matrix. In both cases, one must
compute a low-rank approximation of A ignoring the outlying entries. One can formalize
this problem, considering a binary matrix W with W; ; = 0 for each outlying entry (i, j) of
A and W; ; = 1 otherwise.

» Problem 1 (Masked Low-Rank Approximation). Given A € R™*™, binary W € {0,1}"*™,
and rank parameter k, find rank-k L minimizing:

Wo(A-L)|F= > Wi, (Aij— Li;)*

i,j€[n]

where for two matrices M and N of the same size, M o N denotes the entrywise (Hadamard
product): with (M o N); j = M; j - N; ; and for integer n, [n] denotes {1,...,n}.

As stated, Problem 1 minimizes the squared Frobenius norm of W o (A — L). However
any matrix norm can be used. In any case, is unclear how to extend standard low-rank
approximation algorithms to solving Problem 1, since they optimize over the full matrix A,
without the ability to take into account W encoding entries that should be ignored. We note
that Problem 1 is equivalent to minimizing |A — (L + S)||% where L is rank-k and S is any
matrix with support restricted to the 0 entries of W. If these zeros are on the diagonal, then
S is diagonal. If they are sparse, then S is sparse, etc. This is how Problem 1 is traditionally
stated in many applications.

1.1 Existing Work

A common approach to solving Problem 1 is to apply alternating minimization or the EM
(Expectation-Maximization) algorithm. In fact, factor analysis, a slight variant of Problem
1 when W is 0 on its diagonal and 1 off the diagonal, was one of the original motivations
of the EM algorithm [21, 56]. Much recent work studies when alternating minimization for
Problem 1 converges in polynomial time under the assumptions that (1) there is a solution
L =U-V = A which is incoherent, meaning that the squared row norms of U and column
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norms of V' are small and (2) the entries of W are selected at random or have pseudorandom
properties [73, 40, 51]. Under similar assumptions it can be shown that Problem 1 and
the related problem of robust PCA can be solved via convex relaxation in polynomial time
[13, 71, 12]. In many cases, these algorithms perform well in practice even when the above
assumptions do not hold. Additionally, they can be proven to run in polynomial time in
some common settings when the entries of W are not random — e.g., when W is zero only on
its diagonal or at a few arbitrary locations. That is, when we want to approximate A as a
low-rank plus diagonal component, or a low-rank matrix with arbitrary sparse corruptions
respectively. However, these results still require assuming the existence of U - V' that is
incoherent and further that is ezact — with U - V

A natural question is if for common mask patterns, one can obtain provable algorithms
without incoherence or other strong assumptions. This approach was taken in [54] in the
context of weighted low-rank approximation, where W is a nonnegative matrix and the

objective is still to minimize ||W o (A — L)||%. When W is binary, this reduces to Problem 1.

In [54] it was shown that if W has at most r distinct columns, then it is possible to obtain a
relative error guarantee in 2POW(7k/€) - poly(n) time. More generally, if the rank of W over
the reals is at most r, then nP°Y("%/€) time is achievable. Note that such algorithms are
only polynomial time if k, 7, and 1/e are very small. In many common use cases, such as
when W is all Os on the diagonal and 1 off-diagonal (corresponding to low-rank plus diagonal
decomposition), or when W is all 0s above the diagonal and 1s on or beneath the diagonal, r
is large: in fact rank(WW) = r = n in these cases.

When A is low-rank with sparse corruptions, i.e., when W has at most ¢ zero entries per
row and column, the algorithms of [54] can be applied if there is an exact solution (with
A = L on all non-corrupted entries). [54] referred to this problem as adversarial matriz
completion and gave an nO*) time algorithm. This is only polynomial time for constant
values of ¢t and k, and even for constant ¢ and k is very large. Moreover, their method cannot
be used in the approximate case since it requires creating a low-rank weight matrix W’ whose
support matches that of W. Since W may be far from low-rank, the non-zero entries of W
and W' necessarily have very different values. This introduces significant error, unless A = L
exactly on the support of W.

1.2 QOur Contributions

With the goal of obtaining fast masked low-rank approximation algorithms, we consider
bicriteria approzimation with additive error. That is, we allow the rank &’ of the output L to
be slightly larger than &, but one still compares to the best rank-k approximation. Formally,
given A € R™*™ W € {0,1}"*", and an error parameter €, we would like to find a rank-%’
matrix L for which:

IW o (A~ L)|[F < OPT + ¢l Al %, (1)

where OPT =min_, , , ; [|[Wo(A— L)||3 is the optimal value of Problem 1.

Assuming a variant of the Exponential Time Hypothesis, [54] shows a lower bound of
29(") time for finding rank-k L achieving (1) with constant e when W is rank-r. Thus
the relaxation to bicriteria approximation seems necessary. In many applications it is not
essential for the output rank &’ to be exactly k — as long as k’ is small, one still obtains
significant compression. Indeed, bicriteria algorithms for low-rank matrix approximation are
widely studied [22, 23, 18, 17, 63, 9]. The starting point of our work is the question:

For which mask patterns W € {0,1}"*™ can one obtain efficient bicriteria low-rank
approximation algorithms with k' < k - poly((logn)/¢) satisfying (1)?

6:3
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Main Results

We show that the answer to this question is related to the randomized communication
complexity of W.1 If the rows and columns of W € {0,1}"*" are indexed by strings = €
{0,1}°8" and y € {0,1}!°8™  respectively, we can think of W as a two-player communication
matrix for a Boolean function f, where f(z,y) = W, ,. Here Alice has z, Bob has y, and the
two parties want to exchange messages with as few bits as possible to compute f(z,y) with
probability at least 1 — §. The number of bits required is the randomized communication
complexity Rs(f). If we further require that the protocol never errs when f(x,y) = 1, but
for any fixed pair (z,y) with f(x,y) =0, it errs with probability at most §, then the number
of bits required is the 1-sided randomized communication complexity Ri~**“4(f). We show:

» Theorem 1. Letting f be the function computed by W € {0,1}"*™ and —f be its negation,

there is a bicriteria low-rank approximation L with rank k' =k - QRIS achieving:

|[Wo(A—L)|% < OPT +2¢||Ao W||%,

where OPT = min
rank-k L

Wo(A—L)|%. L is computable in O(nnz(A)) +n - poly(k’/e) time.

As we will see, for many common W, R}~%%ed(=f) is very small — with 2R () at most
poly(logn/e). Note that our additive error is in terms of ||A o W||% which is only smaller
than ||A]|%, and may be much smaller, if e.g., the zeros in W correspond to corruptions in A.

We also show a bound in terms of the communication complexity with 2-sided error.

» Theorem 2. Letting f be the function computed by W € {0,1}"*", there is a bicriteria
low-rank approzimation L with rank k' = k - 28<(F) achieving:

W o (A= L)% < OPT +2¢| Ao W|E + €l Lope © (1 = W),

where OPT = min,_, ., ; |[Wo (A - D)% and Loy is any rank-k matriz achieving OPT.
L is computable in O(nnz(A)) 4+ n - poly(k'/e) time.

Further, the algorithm achieving Theorems 1 and 2 is extremely simple: just zero out the
entries in A corresponding to entries in W that are 0 (i.e., compute A o W), and then output
a standard rank-k’ approximation of the resulting matrix. This is already a widely-used
heuristic for solving Problem 1 [3, 74], and we obtain the first provable guarantees. An
optimal low-rank approximation of A o W can be computed in polynomial time via an SVD.
An approximation achieving relative error (1 + €) can be computed with high probability in
O(nnz(A)) + n - poly(k/e) time, giving the runtime bounds of Theorems 1 and 2 [19].

1.2.1 Applications

Theorems 1 and 2 provide the first bicriteria approximation algorithms for Problem 1 with

small k&’ for a number of important special cases of the mask matrix W:

1. If W has at most ¢ zero entries in each row, this is Low-Rank Plus Sparse (LRPS) matrix
approximation, which captures the challenge of finding a low-rank approximation when a
few entries are not known, or do not obey underlying low-rank structure. It has been
studied in the context of adversarial matrix completion [58], robust matrix decomposition
[31, 12], optics, system identification [7], and more [15].

L Our bounds actually hold for the public coin partition number of W, which is upper bounded by the
randomized communication complexity [34]. See Section 1.2.4 for a more detailed discussion.
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2. If W is zero exactly on the diagonal entries, this is Low-Rank Plus Diagonal (LRPD) matrix
approximation. This problem arises since in practice, many matrices that are not close to
low-rank are close to diagonal, or contain a mixture of diagonal and low-rank components
[15]. This observation has been used e.g., to construct compact representations of kernel
matrices [61, 69], weight matrices in neural networks [48, 74], and covariance matrices
[66, 65]. LRPD approximation also arises in applications related to source separation [44]
and variational inference [49] and is closely related to factor analysis [64, 57], which adds
the additional constraints that L and A — L are PSD.

3. If W is the negation of a block-diagonal matrix with blocks of varying sizes, meaning that
W is 0 on entries in the blocks and 1 on entries outside of the blocks, this is Low-Rank
Plus Block-Diagonal (LRPBD) matrix approximation. This is a natural generalization of
the LRPD problem and has been studied in the context of anomaly detection in networks
[4], foreground detection [29], and robust principal component analysis [41]. We also
consider the natural generalization of LRPS approximation discussed above, which we
call the Low-Rank Plus Block-Sparse (LRPBS) matrix approximation problem.

4. If each row of W has a prefix of ones, followed by a suffix of zeros, this is the Monotone
Missing Data Pattern (MMDP) problem. This is a common missing data pattern, arising
in the event that when a variable is missing from a sample, all subsequent variables are
also missing. Methods for handling this pattern are, e.g., included in the SAS/STAT
package for statistical analyses [1]. We refer the reader to [68] for more examples of
common missing data patterns, such as “connected” and “file matching” patterns.

5. If W is the negation of a banded matrix where W; ; = 0 iff |¢ — j| < p for some distance p,
this is Low-Rank Plus Banded (LRPBand) matrix approximation. Variants of this problem
arise in scientific computing and machine learning, in particular in the approximation
of kernel matrices via fast multipole methods [55, 28, 72]. These methods approximate
a kernel matrix using a low-rank “far-field” component, and a “near-field” component,
which explicitly represents the kernel function between close points. If points are in
one dimension and sorted, this corresponds to approximating A with a low-rank plus
banded matrix. Many methods compute the low-rank component analytically (using
polynomial approximations of the kernel function). A natural alternative is to seek an

optimal decomposition via Problem 1. Many applications involve higher dimensional data.

E.g., in the two-dimensional case, each i € [n] can be mapped to (i1,42) € [v/n] X [v/n]
where 41,49 correspond to the first and second halves of i’s binary expansion. W; ; = 0 iff
liv — j1| + |i2 — j2] < p. We give similar bounds for this multidimensional variant.
We summarize our results for the above weight patterns in Table 1. We detail the specific
functions f used in these applications in Sections 2 and 3, but note that (1), (2), and (3)
use variants of Equality, which has O(log(1/¢)) randomized 1-sided error communication
complexity, (4) and (5) use a variant of the Greater-Than problem with O(loglogn+log(1/¢))
randomized 2-sided error communication complexity for logn bit inputs.

1.2.2 Relation to Matrix Completion

Masked low-rank approximation is closely related to the well-studied matrix completion
problem [13, 32, 37], however the goal is different. In masked low-rank approximation, we
want to approximate A as accurately as possible on the non-masked entries (i.e., where
W;; = 1). In matrix completion, the support of W represents entries in A that are observed
and the goal is to approximate A on the missing entries (i.e., where W;; = 0). The most
common approach to solving this problem is in fact to find a low-rank approximation fitting

the non-missing entries (i.e., to solve Problem 1), however the two problems are not equivalent.

6:5
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Table 1 Summary of applications of Theorems 1 and 2.

Mask Pattern K’ Communication Problem Ref.
LRPD/LRPBD O(k/e) Equality Cor. 15 & 16
LRPBand k - poly (1"%) Variant of Greater-Than Cors. 17
LRPS/LRPBS (w/ sparsity t) O(kt/e) Variant of equality Full paper
MMDP k - poly (l“’%) Greater-Than Cor. 18
Subsampled Toeplitz O(min(pk, k/¢€)) Equality mod p Full paper

For example, it is not clear that a bicriteria solution to Problem 1, as given by Theorems 1
and 2, will give anything interesting for the matrix completion problem. In fact, our proof
technique implies that it likely will not.

We further note that in matrix completion, the mask W is typically assumed to be
random and the goal is to recover the missing entries of A when W has as few sampled ones
as possible. We do not expect that a random matrix will have low-communication complexity,
unless it has further structure (e.g., few zeros or ones per row).

1.2.3 Other Communication Models

Theorems 1 and 2 connect communication complexity to the analysis of a simple heuristic
for masked low-rank approximation. A natural question is:

Can other notions of communication complexity, such as multi-party communication
complezity, non-deterministic communication complexity, and communication complexity of
non-Boolean functions yield algorithms for masked low-rank approximation?

We answer this question affirmatively. We first look at multi-party communication complexity,
which we show corresponds to masked tensor low-rank approximation. Here we focus on
order-3 tensors, though our results are proven for arbitrary order-¢ tensors. A tensor is just
an array A € R™"™*" In masked low-rank tensor approximation we are given such an A
and a mask tensor W € {0,1}"*"*™ and the goal is to find rank-k tensor L minimizing
|[W o (A — L)||%. This problem has been widely studied in the context of low-rank tensor
completion [25, 43, 50] and robust tensor PCA [42, 45], which corresponds to the setting
where W’s zeros represent sparse corruptions of an otherwise low-rank tensor. Applications
include color image and video reconstruction along with low-rank plus diagonal tensor
approximation [8], where W is zero on its diagonal and one everywhere else. In the full paper
we show:

» Theorem 3 (Multiparty Communication Complexity — Tensor Low-Rank Approx). Let f
be the function computed by W € {0,1}"*"X"  —f be its negation, and R>'1=%ided(f)
be the randomized 3-party communication complexity of —f in the number-in-hand black-
board model with 1-sided error. A bicriteria low-rank approrimation L with rank k' =

) ((k/e)2 : 4R§’1_Sidﬁd(ﬁf)> achieving:
IW o (A~ L)% < OPT + 2¢[| Ao W],

where OPT = inf |[W o (A — L)||%, can be computed in O(nnz(A)) +n - poly(k/e) time.
rank-k L
We give applications of Theorem 3 to low-rank plus diagonal tensor approximation, achieving

k' = O(k*/e*) and the low-rank plus sparse tensor approximation problem achieving k' =

2 .4 . .
0] (”c L ), where t is the maximum number of zeros on any face of W.

€
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We also consider a common variant of low-rank approximation studied in data mining
and information retrieval: Boolean low-rank approzimation (binary low-rank approximation).
Here one is given binary A € {0,1}"*™ and seeks to find U € {0,1}"** and V € {0, 1}+*"
minimizing |4 — U - Vo where U - V denotes Boolean matrix multiplication and || - ||o is
the entrywise ¢y norm, equal to the squared Frobenius norm in this case. While Boolean
low-rank approximation is NP-hard [20, 26], there is a large body of work studying heuristic
algorithms and approximation schemes, when no entries of A are masked [46, 59, 67, 10, 24].
We show in the full paper that any black-box algorithm for standard Boolean low-rank
approximation yields a bicriteria algorithm for masked Boolean low-rank approximation,
with rank depending on the nondeterministic communication complezity of the mask W.

» Theorem 4 (Nondeterministic Communication Complexity — Boolean Low-Rank Approx).
Let f be the function computed by W and N(f) be the nondeterministic communication
complezity of f. For any k' > k- 2N if one computes U,V € {0,1}"”/ satisfying
[AeW = U-Vllo <ming g yynew [AoW =T Vljo+ A then:

[Wo(A-U-V)|o<2VU)-OPT + A,

where OPT = min IWo(A—=U-V)|o and U-V denotes Boolean matriz multiplication.
U,Ve{0,1}kxn

We can apply Theorem 4 for example, to the low-rank plus diagonal Boolean matrix approx-

imation problem, where W is zero on its diagonal and one everywhere else. In this case we

have 2V(f) = logn and correspondingly k' = klogn.

1.2.4 Connections to Approximate Rank and Other Communication
Lower Bounds

In Section 1.3 we sketch the proof of Theorem 1, which is very simple (Theorems 2, 3,
and 4 are proved similarly.) The proof is based on covering W with QR disjoint
monochromatic rectangles, which match W on all but a small random subset of its 1
entries. The existence of a 1-sided error randomized communication protocol for —f using
RI—sided( f) bits of communication is well known to imply the existence of such a covering
with 28 rectangles. However, the optimal size of such a covering, which is known
as the “public-coin partition bound” [34], may be lower than this. In fact, recent work has
shown that it is provably smaller for some problems [27]. Thus, our algorithm can be stated
in terms of this bound, giving improved results for these problems. However, as far as we
are aware, this bound does not give any improvements for the communication problems we
consider (corresponding to natural weight matrices W).

The public coin partition bound is a strengthening of the well-studied partition bound
[33] for randomized communication complexity, which is itself a strengthening of the smooth
rectangle bound [33]. This logarithm of the smooth rectangle bound is equivalent to the
log approximate nonnegative rank of W up to constants [38]. It has been shown that the
randomized communication complexity can be polynomially larger than the log partition
bound [27]. Additionally, recent work refuting the log approximate rank conjecture [16] has
shown that the randomized communication complexity can be exponentially larger than
the log approximate nonnegative rank. Thus, improving our results to depend on these
communication complexity lower bounds rather than the communication complexity itself
would lead to potential improvements for some weight matrices W. However, all known
separations are for W with complex structure and relatively high communication complexity,
and thus not relevant to common applications. Additionally, it is unclear how to extend
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our techniques to these weaker notions, or to other related notations, such as information
complexity [14]. Such extensions would be interesting, e.g., connecting the difficulty of
masked low-rank approximation to the approximate rank of the mask.

1.2.5 Lower Bounds

Given our results, and the above discussion, a natural question to ask is:

Is there a natural notion of the complezity of the mask W that characterizes the difficulty of
the masked low-rank approximation problem?

We give some initial results, focused on how communication complexity in particular relates
to the best bicriteria approximation factor for masked low-rank approximation achievable
in polynomial time. We note that, since our results actually hold with rank depending
on the public-coin partition bound [34], which has been separated from the randomized
communication complexity, the communication complexity itself certainly does not tightly
characterize the difficulty of masked low-rank approximation. However, we view our lower
bounds in terms of communication complexity as a step in understanding this difficulty.
We prove two bounds based on a conjecture of the hardness of approximate 3-coloring.
We show that there is a class of masks W such that any polynomial time algorithm achieving

guarantee (1) and small enough € requires bicriteria rank &' = (1051(:{()”) where D(f) is

the deterministic communication complexity of f. Note that D(f) is only greater than
R;=*1ed(=f) and Re(f).

We strengthen this bound significantly for two natural variants of the masked low-rank
approximation problem: when the low-rank approximation L is required to have a non-
negative or binary factorization. We note that our techniques yield matching algorithmic
results analogous to Theorems 1 and 2 for these variants. We show that for these variants
on Problem 1, there is a class of masks W such that any polynomial time algorithm
achieving guarantee (1) for small enough € requires bicriteria rank which is exponential
in the deterministic communication complexity, k' = 22(P(=f)_ This bound matches our
algorithmic results for these variants. We note that in the parameter regimes considered
(we just require rank k = 3), there exist polynomial time algorithms for the non-masked
versions of binary and non-negative low-rank approximation. Thus, the hardness in terms of
communication complexity comes from adding the mask to the low-rank cost function rather
than the binary and non-negativity constraints themselves.

Our lower bounds are closely related to those of [30] on the hardness of bicriteria low-rank
matrix completion. We note that for any n x n mask matrix W, we can always bound
D(f) = O(logn). Thus, achieving a 2°(P(/) bicriteria approximation factor means achieving
an approximation factor sub-polynomial in n. [30] leaves open if achieving a \/n bicriteria
approximation to rank-3 matrix completion is hard (Question 4.3 in [30]), and more generally
asks what bicriteria approximation is achievable in polynomial time (Question 4.2 in [30]).

1.3 Our Techniques

The key ideas behind Theorems 1 and 2 are similar. We focus on Theorem 1 for exposition.
We want to argue that any near optimal rank-k’ approximation of A o W, gives a good
bicriteria solution to the masked rank-k approximation problem. For simplicity, here we focus
on showing this for the actual optimal rank-%" approximation, L = argmin___, ., ; [[(Ao
W) — L||%. We show that |[W o (A — L)||% < OPT +O(e)|| Ao W ||% via a comparison method.

Namely, we exhibit a rank k¥’ matrix L that:
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1. Nearly matches how well the optimum rank-£ solution L,y to Problem 1 approximates A
on the support of W. In particular, ||(A—L)oW||% < ||(A— Lopt) o W |Z4+O(e)|| Ao W%

2. Places no mass outside the support of W. In particular, ||L o (1 — W)||% = 0.

Since L minimizes the distance to (A o W) among all rank-k’ matrices, we have ||(Ao W) —

L||%2 < |[(AoW) — L||%. However, by (2), L eractly matches Ao W outside the support of

W — both matrices are 0 there. Thus L must have at least as large error outside the support

of W, and in turn cannot have larger error on the support of W. That is, we must have
(A= L)oW|% < ||[(A— L) o W|/%. Then by (1), L satisfies the desired bound.

1.3.1 From Communication Protocols to Low-Rank Approximations

The key question becomes how to exhibit L, which we do using communication complexity.

We view W as the communication matrix of some function f : {0,1}'°8™ x {0,1}!°8" — {0, 1},
with Wy, = f(x,y), where in f we interpret x,y € [n] as their binary representations. It is
well-known that the existence of a deterministic communication protocol II that computes
f with D(f) total bits of communication implies the existence of a partition of W into
2P(F) monochromatic combinatorial rectangles. That is, there are 2P(f) non-overlapping sets
R; =S xT for S,T € [n] that partition W and that satisfy W (R;) is either all 1 or all 0. We
could construct L by taking the best k-rank approximation of each A(R;) where R; is colored
1 (i.e., contains inputs with f(z,y) = 1). We could then sum up these approximations to
produce L with rank < k- 2P, Note that L is 0 outside the rectangles colored 1 —i.e.,
outside the support of W. Thus condition (2) above is satisfied. Further, L matches the
optimal rank-k approximation on each R; colored 1. So it approximates A at least as well as
Loyt on these rectangles, and since these rectangles fully cover the support of W we have
[(A—=L)oW|2% < ||(A— Lopt) o W||2, giving the requirement of (1).

Unfortunately, essentially none of the W that are of interest in applications admit
efficient deterministic communication protocols. k' = k - 2P() will typically be larger than
n, giving a vacuous bound. Thus we turn to randomized communication complexity with
error probability €, R.(f), which is much lower in these cases. A randomized protocol II
achieving this complexity corresponds to a distribution over partitions of W into 2%7(f)
rectangles. These rectangles are not monochromatic but are close to it — letting Wy be the
communication matrix of the (random) function computed by the protocol, Wiy is partitioned
into 2%<(f) monochromatic rectangles and further matches W on each (z,y) with probability
at least 1 — e. We prove that, even with this small error, constructing L as above using the
partition of Wiy instead of W itself gives a solution nearly matching L,,; up to small additive
error. This error will involve ||A o W||% and || Loy o (1 — W)||%, depending on whether the
protocol makes 1 or 2-sided error, as seen in Theorems 1 and 2.

1.3.2 Low-Rank Approximation to W Does Not Suffice

A natural view of our argument above is that the existence of an efficient randomized protocol
for W implies the existence of a distribution over low-rank matrices (induced by partitions
into near monochromatic rectangles) that match W on each entry with good probability. We
note that this distributional view is critical — simply having a low-rank approximation to W
matching all but a small fraction of entries does not suffice. The mistaken entries could in
the worst case align with very heavy entries of A, which must be approximated well to solve
masked low-rank approximation to small error. An approximation with small entrywise error
(in the ¢ sense) would suffice. However, for important cases, e.g., when W is zero on the
diagonal and one off the diagonal, such approximations provably require higher rank thank
28<(f) and thus relying on them would lead to significantly weaker bounds [2].
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1.3.3 Other Communication Models

In extending our results to other communication models, we first consider the connection
between multiparty number-in-hand communication and tensor low-rank approximation. Pro-
tocols in this model correspond to a partition of the communication tensor W € {0, 1}m*m*"
into 28¢(f) monochromatic (or nearly monochromatic) rectangles of the form R, = S xT x U
for S,T,U C [n], where R3(f) is the randomized 3-player communication complexity of W.
We can again argue the existence of a rank k' = k - 2R () tensor L, obtained by taking a
near optimal low-rank approximation to each rectangle colored 1 in Wiy, which is mostly
0 outside the support of W and at the same time competes with the best rank-k tensor
approximation L.y, on the support of W. There are different notions of rank for tensors;
here we mostly discuss canonical or CP rank. This lets us argue, as in the two player case,
that the best rank-k’ approximation of A o W also competes with L,y It is not known how
to find this best rank-k" approximation efficiently, however using an algorithm of [63] we can
find a rank k” = O((k’/€)?) bicriteria approximation achieving relative error 1+ €. Overall
we have k" = O ((l@/e)2 . 22R§(f)>, giving Theorem 3.

We next consider the nondeterministic communication complexity. In a nondeterministic
communication protocol for a function f, players can make “guesses” at any point during
the protocol II. The only requirement is that, (1) for every x,y with f(z,y) =1, for some
set of guesses made by the players, the protocol outputs II(z,y) = 1 and (2) the protocol
never outputs II(x,y) = 1 for z,y with f(z,y) = 0. Such a protocol using N(f) bits of
communication corresponds to covering the communication matrix W with 2V possibly
overlapping monochromatic rectangles. In many cases, the nondeterministic complexity
is much lower than the randomized communication complexity. However, for low-rank
approximation in the Frobenius norm, the overlap is a problem. We cannot construct L
simply by approximating each rectangle and adding these approximations together. L will be
too “heavy” where the rectangles overlap. However, for the Boolean low-rank approximation
problem, the overlap is less of a problem. We simply construct L in the same way, letting it
be the AND of the approximations on each rectangle. In the end, we obtain an error bound
of roughly 2V(f) . OPT, owing to the fact that error may still build up on the overlapping
sections. Since there are 2V(/) rectangles total, each entry is overlapped by at most 2V of
them. However, since N(f) can be very small, this result gives a tradeoff with Theorems 1
and 2 (which can also be extended to the Boolean case). For example, we show how to obtain
error =~ O(logn - OPT) for the Boolean low-rank plus diagonal approximation problem, with
rank k' = O(klogn). This is smaller than the O(k/e) achieved by Theorem 1 for small ¢,
which may be required to achieve good error if, e.g., ||A]|% is large.

1.3.4 An Alternative Approach

In the important cases when W is zero on its diagonal and one elsewhere or has a few non-
zeros per row (the low-rank plus diagonal and low-rank plus sparse approximation problems,
respectively) the existence of L satisfying the necessary conditions (1) and (2) above can be
proven via a very different technique. The key idea is a structural result: that any low-rank
matrix cannot concentrate too much weight on more than a few entries of its diagonal, or
more generally, on a sparse support outside a few rows. Thus we can obtain L from Lopt
by explicitly zero-ing out these few large entries falling outside the support of W (e.g., on
its diagonal when W has zeros just on its diagonal). We detail this approach in the full
paper, giving a bound matching Theorem 1 in this case. We show that the same structural
result can also be used to obtain a fixed-parameter-tractable, relative error, non-bicriteria



C. Musco, C. Musco, and D. P. Woodruff

approximation algorithm for Problem 1 in the low-rank plus diagonal case, as well as for the
closely related factor analysis problem. We are unaware of any formal connection between
this structural result and our communication complexity framework; however, establishing
one would be very interesting.

1.4 Road Map

In Section 2 we give preliminaries, defining the communication models we use and giving
communication complexity bounds for common mask matrices in these models. In Section
3 we then prove our main results, Theorems 1 and 2. We instantiate these results for the
common mask matrices shown in Table 1. We defer our results connecting masked tensor
approximation to multiparty communication complexity and Boolean low-rank approximation
to nondeterministic communication complexity to the full paper — available at https:
//arxiv.org/abs/1904.09841. We also defer our lower bound results to the full version.

2 Preliminaries

2.1 Notation and Conventions

Throughout we use log z to denote the base-2 logarithm of z. For simplicity, so that we can
associate any W € R™*" with a function f : {0,1}1°8™ x {0,1}!°8™ — {0, 1} we assume that
n is a power of 2 and so logn is an integer. Our results can be easily extended to general
n. Given a matrix M € R™*™ and a combinatorial rectangle R =S x T for S,T C [n], we
let My denote the submatrix of M indexed by R. For matrix M we let 1 — M denote the
matrix N with N; ; =1 — M; ;. E.g., 1 — I is the matrix with all zeros on diagonal and all
ones off diagonal.

While in the introduction we focus on low-rank approximation in the Frobenius norm,
many of our results will apply to any entrywise matrix norm of the form:

» Definition 5. An entrywise matriz norm || - ||« : R™*™ — R is a function of the form:
n n
1ML =" g(IMig)),
i=1 j=1

where g : R — R s some monotonically increasing nonnegative function.

g(x) = 22 gives the squared Frobenius norm, g(z) = 2P gives the entrywise £, norm, g(z) = 1
iff 2 # 0 gives the entrywise £y norm, etc. See [62, 10, 17, 5] for a discussion of standard
low-rank approximation algorithms for these norms. As discussed, our bicriteria results
will simply require applying one of these algorithms to compute a near-optimal low-rank
approximation to A o W (i.e., A with the masked entries zeroed out).

2.2 Communication Complexity Models

We give a brief introduction to the communication models we consider, and refer the reader
to the textbooks [39, 53] for more background. We mostly consider two-party communication
of Boolean functions, though in the full paper discuss extensions to more than two parties.

Consider two parties, Alice and Bob, holding inputs x € X and y € Y respectively.

They exchange messages in order to compute a function f : X x Y — {0,1} evaluated at
(z,y). They would like to do this while minimizing the total number of bits exchanged. The
communication between the parties is determined by a possibly randomized protocol, which
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specifies the message of the next player to speak as a function of previous messages received by
that player and that player’s input. For a given protocol II, we let |II(x, y)| denote the number
of bits transmitted by the players on inputs = and y, and we let |II| = max, , [II(z,y)|.

Let M be the communication matrix of f, that is, the matrix whose rows are indexed by
elements of X and columns by elements of ), and for which M, , = f(z,y). A well known
and useful property is that II partitions M into rectangles R = S x T, where S C X and
T C Y, and every pair (z,y) of inputs with (x,y) € S x T has the same output when running
protocol II. The number of rectangles in the partition is equal to 2", We call the unique

output of IT on a rectangle S x T the label of the rectangle.

» Definition 6 (Deterministic Communication Complexity). The deterministic communication
complezity D(f) = ming |II|, where the minimum is taken over all protocols I1 for which
(xz,y) = f(x,y) for every pair (x,y) of inputs. Equivalently, D(f) is the minimum number
so that M can be partitioned via a protocol 11 into 2PU) rectangles for which for every
rectangle R and b € {0,1}, if R is labeled b, then for all (z,y) € R, f(x,y) = b.

We next turn to randomized communication complexity. For the purposes of this paper, we
will consider public coin randomized communication complexity, i.e., there is a shared random
string r that both Alice and Bob have access to. In a randomized protocol II, Alice and
Bob see r and then run a deterministic protocol II,.. We say a protocol II is a (81, d2)-error
protocol if for all z,y € X x Y, with f(z,y) = 1, P.[II,(z,y) = f(z,y)] > 1 — ¢; and for all
x,y € X x Y with f(x,y) =0, P.[IL.(z,y) = f(x,y)] > 1 — d2. We can then define a general
notion of randomized communication complexity:

» Definition 7 (Randomized Communication Complexity — General). The (1, 02)-error ran-
domized communication complexity Rs, s,(f) = ming |II|, where the minimum is taken over
all (61, 62)-error protocols II. Equivalently, Rs, 5,(f) is the minimum number so that there
is a distribution over protocols inducing partitions of M, each containing at most 2%s1.62(f)
rectangles, such that (1) for every (x,y) € X x Y with f(x,y) = 1, with probability at least
1 =01, (x,y) lands in a rectangle which is labeled 1 and (2) for every (x,y) € X X Y with
f(z,y) =0, with probability at least 1 — o, (z,y) lands in a rectangle which is labeled 0.

Definition 7 is typically specialized to two cases: the randomized communication complexity
with 2-sided error and the randomized communication complexity with 1-sided error.

» Definition 8 (Randomized Communication Complexity — 2-sided). The d-error randomized

communication complexity of f is Rs(f) def Rss(f).

» Definition 9 (Randomized Communication Complexity — 1-Sided). The §-error 1-sided

randomized communication complexity of f is R}fgided(f) def Ro5(f)-

In Theorem 1 we consider the 1-sided communication complexity of —f: Rso(f).

2.3 Specific Communication Bounds

We discuss a few problems that will be particularly useful for our applications. We only
need communication upper bounds and in specific models. Note that in this section, as is
standard, we state bounds for communication problems with n-bit inputs. In our applications
to masked low-rank approximation, we will typically apply the bounds with input size logn.
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Equality

In the Equality problem, denoted EQ, there are two players Alice and Bob, holding strings
x,y € {0,1}", and the function EQ(z,y) =1 if z =y, and EQ(x,y) = 0 otherwise.

» Theorem 10 ([39], combining Corollaries 26 and 27 of [11]). Ry “™(EQ) < (1—6)log((1—
8)2/8) + 5, and Ry~ "V U BQ) < log(1/68) + 5.

We also can bound the nondeterminitic communication complexity of inequality, i.e., the
function NEQ(z,y) with NEQ(x,y) = 1iff z # y.

» Theorem 11. N(NEQ) < [logn] + 2.

Proof. Alice simply guesses an index at which = and y differ and sends this index (using
[logn] bits) along with the value of x at this index to Bob. Bob sends the value of y at this
index and the players check if x and y differ at the index. <

Essentially the same protocol can be used to solve the negation of the disjointness problem,
with =DISJ(x,y) =1 only if there is some k € [n] with z(k) = y(k) = 1. We thus have:

» Theorem 12 ([60]). N(=DISJ) < [logn] + 2.

Greater-Than

In Greater-Than, denoted GT, there are two players Alice and Bob, holding integers x,y €
{0,1,...,n — 1}, and the function GT(z,y) = 1 if x > y, and GT'(x,y) = 0 otherwise.

» Theorem 13 ([52]). Rs(GT) = O(log(n/d)).

3 Bicriteria Approximation from Communication Complexity

In this section we prove our main results, Theorems 1 and 2, which connect the randomized
communication complexity of the binary matrix W to the rank required to solve Problem
1 efficiently up to small additive error. We prove a general theorem connecting the rank
to Rs, s,(f). Both Theorems 1 and 2 follow as corollaries if we consider the 1-sided er-
ror complexity R~ *““(—f) = Rso(f) and the 2-sided error complexity Rs(f) o Rss(f)
respectively (Definitions 8 and 9).

» Theorem 14 (Randomized Communication Complexity — Bicriteria Approximation). Consider
W e {0,1}"*™ and let f be the function computed by it. For k' > k - 2R 2 () and any
entrywise norm || - || (Def. 5), for any L satisfying ||AoW — L|, <min__ . ., j[|[AcW —
Ll + A:

(A= L)oW|. < OPT + e1[|Ao Wil + e Lopt o (1 = W)lx + A,

where OPT =min . ; [[(A— LYo W]||, and Lopt is any rank-k matriz achieving OPT.

Proof. As discussed (Def. 7), Re, e, (f) is the minimum number so that there is a distribution
on protocols inducing partitions of W, each containing at most 2%1.<2(f) rectangles, such
that (1) for every z,y € {0,1}!°8™ with f(z,y) = 1, (z,y) lands in a rectangle labeled 1 with
probability > 1 — ¢; and (2) for every x,y € {0,1}°¢" with f(z,y) = 0, (z,y) lands in a
rectangle labeled 0 with probability > 1 — €. In other words, letting Wiy be the (random)
matrix corresponding to the function computed by the protocol: (1) W o (1 — Wpp) has each
entry equal to 1 with probability < e; and (2) Wiy o (1 — W) has each entry equal to 1 with
probability < e;. Thus, fixing some Lp;:
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E [JAoWo(1—Wn)ll+ [[Lopt © Wiro (1 —W)|.]

protocol 11

< eflAo Wil + e Lopt o (1 = W)l
Thus, there is at least one protocol IT (inducing a partition with < 2Ber 2 () rectangles) with:
[AeWo (1 —Wn)lls+ || Lopt o Wit o (1 = W)l < erl|[Ao Wl + €2 Lopt © (1 = W)l )

Let P; be the set of rectangles on which the protocol achieving (2) returns 1 and Py be the
set on which it returns 0. For any R € Py let L® =argmin__, , ; [|[Aro Wg — Ll|, (note
that L' is the size of R). Let L™ be the n x n matrix equal to L on R and 0 elsewhere. Let
L= Y Rrep, L%. Note that L has rank at most > Rrep: rank(L®) < k- |P| < k- 2B (),
Thus, by the assumption that L satisfies [|[Ao W — L[|, <min_, , , ; |AoW — L||, + A:

(A= L)oWl. < AoW — Ljl. < AW — L]l + A
= ||(AOW—E)OWHH*+H(AoW—E)o(l—WH)H*—I—A
(Ao W —L)oWul. + A0 Wo (1 - Wil +4,  (3)

where the third line follows since L is 0 outside the support of Wy (i.e., outside of the
rectangles in P;). Since L is equal to the best rank-k approximation to Ag o Wg on each
rectangle R in P;, and since these rectangles partition the support of Wiy:

(Ao W — L) oWl < (Ao W — Lop) o Wi«
= [[(A = Lopt) o W o Willx + || Lope © (1 = W) o Wl
< OPT + || Lops o (1 — W) 0 W

Plugging back into (3) and applying (2):

(A=L)oW|, <OPT 4+ ||Lopt o (1 = W) o Wr|l« + |[AoWo (1 —Wn)|l« + A
< OPT + €e||[Ao W« + €2||Lopt 0 (1 — W)« + A,

which completes the theorem. <

Proof of Theorems 1 and 2. Theorems 1 and 2 follow by applying Theorem 14 with ¢; =
€2 = € and €; = €, e = 0 respectively, and noting that ||A o W||, < ||A|. and ||Lop o (1 —
W)llx < || Lopt|l«. When || - ||+ is the squared Frobenius norm, L satisfying [|[Ao W — L||, <

min__ ., ;i [AoW — Ll + A for A = ¢[|(AoW) — (Ao W) |3 < e]|Ao W|?% can be
computed with high probability in O(nnz(A)) + n - poly(k’/e) time. <

3.1 Applications of Main Theorem

We can instantiate Theorem 14 for a number of common mask patterns, yielding the results
summarized in Table 1. Note that the additive error bounds achieved are stated in terms of
|A oW, and ||Lopt © (1 — W)||«, which are only smaller than || A||. and || Lopt||« respectively.

We start with the case when W is the negation of a diagonal matrix or a block diagonal
matrix, corresponding to the Low-Rank Plus Diagonal (LRPD) and Low-Rank Plus Block
Diagonal (LRPBD) matrix approximation problems. The argument uses the communication
complexity of Equality (EQ). A variant on this problem is also used when W has at most
t nonzeros (or nonzero blocks) per row. This corresponds to the Low-Rank Plus Sparse
(LRPS) and Low-Rank Plus Block Sparse (LRPBS) approximation problems, which strictly
generalize the Low-Rank Plus (Block) Diagonal Problem. Proofs are given in the full paper.
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» Corollary 15 (Low-Rank Plus Diagonal Approximation). Let W =1 — I where I is then xn
identity matriz. Then for k' = O (%) and L with [[AoW — L[|, <min_, , ;[[AoW —
Ll +eldoW],:

|[(A—L)oW|, < OPT +2¢|| Ao W|,.
If | [« = || - |%, L can be computed with high probability in O(nnz(A)) + npoly(k/e) time.
Proof. The function f corresponding to W is the inequality function NE@Q. We have

Rl=sied(“NEQ) = RL~*"¢4(EQ), which by Theorem 10 is bounded by log(1/€) + 5. Thus
gR: " (SNEQ) < % The corollary then follows directly from Theorem 14. |

» Corollary 16 (Low-Rank Plus Block Diagonal Approximation). Consider any partition
BiUByU...UBy =[n] and let W be the matriz with W; ; =0 if i, j € By, for some k and
Wi ; = 1 otherwise. Then for k' = O (%) and L with [AoW — L|, <min__, ,, ;[|Ao
W —L||s+el|AoW|,:

|(A—L)o W], < OPT + 2¢||A o W|.
If | - |« = || - |%, L can be computed with high probability in O(nnz(A)) + npoly(k/e) time.

Proof. The function f corresponding to W is the inequality function NEQ where z,y € [n]
are identified with j,k € [b] if block B; contains x and By contains y. The randomized
communication complexity —f is thus bounded by the complexity of equality. By Theorem
10, R1=%ed(EQ) < log(1/e€) + 5 and so 28 """ < 32 which gives the corollary. <

Beyond equality, a number of common sparsity patterns are related to the communication
complexity of Greater-Than (GT), which is bounded by Theorem 13. Since two-sided error
is required to give efficient GT protocols, we incur an additional error term depending on
Lopt. An interesting question is if this is necessary for efficient bicriteria approximation.

» Corollary 17 (Low-Rank Plus Banded Approximation). For any integer p < n, let W €
{0,1}"*™ be the banded Toeplitz matriz with W;; = 0 iff |i — j| < p. Then for k' =

k- min (g,poly (1&)) and L with ||AoW — L, <min__,_,, ; [AoW —L|l, + €| AoW |,

€

I(A=L)oW|, < OPT +2¢||A o W/, + || Lopt 0 (1 — W)

If | - [« = || - |%, L can be computed with high probability in O(nnz(A)) + npoly(k'/e) time.

Proof. The function f corresponding to W is the negation of the AND of i + p < j and
j+p>i. Thus, it can be solved with two calls to a protocol for Greater-Than (GT). By

Theorem 13, for logn bit inputs, R.(GT) = O (log (@)) Thus R.(f) =0 <log (10%))
logn )

When p is small, we can apply

€

and 2F<(/) = poly (log"), giving k' = k - poly(
our result for W with sparse rows (see full paper), which gives &' = k - 2, completing the
corollary. <

In the full paper, we also consider a “multi-dimensional” banded pattern. Here each
i € {0,1}°8" corresponds to a point (iy,i2) in a \/n X /0 grid (i; and iy are determined

by the first 10% and last 10% bits of 4 respectively). We focus on the two-dimensional

case, achieving rank k' = k - poly (loﬁ

2 ) as in the 1-dimensional case. This set up can

easily be generalized to higher dimensions. We can also imagine generalizing to different
distance measures over the points (i1,i2) using efficient sketching methods (which yield
efficient communication protocols) for various distances [6, 35].

A similar result holds for low-rank approximation with monotone missing data.
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» Corollary 18 (Monotone Missing Data Problem (MMDP)). Let W € {0,1}™*™ be any matriz
where each row of W has a prefix of an arbitrary number of ones, followed by a suffice of

zeros. Then for k' = k - poly (lofn) and L with ||[AoW — L|l, <min_ 4 ; [[AoW —
Ells+ el Ao W],

(A= L)o W], < OPT + 2¢||[Ao W/, + €| Lopt © (1 — W)]|..
If I - I« =1l - |%, L can be computed with high probability in O(nnz(A)) + npoly(k'/e) time.

Proof. Let p, be the length of the prefix of ones in the 2" row of W. Then the function f
corresponding to W is f(z,y) = 1 iff p, > y. That is, it is just the Greater-Than function

where Alice maps her input « to p,.. Thus by Theorem 13, R.(f) < R.(GT) = O <log <1°g")).

€

€

So 2B()) = poly (log"), which gives the corollary. <

4 Open Questions

By focusing on bicriteria approximation, we show how to solve masked low-rank approximation
in polynomial time using a simple heuristic. A number of open questions remain. It would be
very interesting to improve the bicriteria ranks we achieve for common masks (summarized in
Table 1). It would also be interesting to give relative error bounds achieving error (1+¢€)-OPT
instead of our additive error bounds. This is challenging sinces it requires achieving zero
error when there is an exact masked low-rank factorization of A.

Relatedly, while we have connected bicriteria masked low-rank approximation to the
randomized communication complexity of the mask matrix W (in fact, the public coin
partition number of W), it would be very interesting to find a notion of W’s complexity that
tightly characterizes the bicriteria rank achievable in polynomial time. We make some initial
steps via lower bounds in terms of the communication complexity in the full paper, however
the question remains mostly unanswered.

Finally, a related problem is weighted low-rank approximation — when W is real valued
and we seek to minimize |[W o (A— L)||%. Approximation algorithms depending exponentially
on the rank k, error parameter €, and notions of W’s complexity, such as its rank or number
of distinct columns are known [54]. However, it would be very interesting to give polynomial
time bicriteria approximation algorithms as we have done in the special case of binary W.
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