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—— Abstract

We consider a game of persuasion with evidence between a sender and a receiver. The sender has

private information. By presenting evidence on the information, the sender wishes to persuade the
receiver to take a single action (e.g., hire a job candidate, or convict a defendant). The sender’s
utility depends solely on whether or not the receiver takes the action. The receiver’s utility depends
on both the action as well as the sender’s private information. We study three natural variations.
First, we consider sequential equilibria of the game without commitment power. Second, we consider
a persuasion variant, where the sender commits to a signaling scheme and then the receiver, after
seeing the evidence, takes the action or not. Third, we study a delegation variant, where the
receiver first commits to taking the action if being presented certain evidence, and then the sender
presents evidence to maximize the probability the action is taken. We study these variants through
the computational lens, and give hardness results, optimal approximation algorithms, as well as
polynomial-time algorithms for special cases. Among our results is an approximation algorithm
that rounds a semidefinite program that might be of independent interest, since, to the best of
our knowledge, it is the first such approximation algorithm for a natural problem in algorithmic
economics.
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1 Introduction

Persuasion is a fundamental challenge arising in diverse areas such as recommendation prob-
lems in the Internet, consulting and lobbying, employee hiring, and many more. Persuasion
problems occupy a central role in economics and received significant interest over the last
two decades. A prominent approach is persuasion with evidence as introduced by Glazer and
Rubinstein [13, 14], which has attracted a lot of subsequent work. In this problem, a sender
wishes to persuade a receiver to take a single action by presenting evidence. The sender’s
utility depends solely on whether or not the action is taken, while the receiver’s utility
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depends on both the action as well as the sender’s private information. Consider, for example,
a prosecutor trying to convince a judge that a defendant is guilty and should be convicted,
or a job candidate trying to convince a company that she has the best qualifications and
should be hired. How should these pairs of agents interact?

The literature on persuasion games in economics and game theory is vast; see Sobel [27]
for a survey. In sharp contrast, very little is known about computation in this domain,
especially for the persuasion problem with evidence. How does the restriction to evidence
impact the computational complexity of the problem? Our main contribution of this paper
is to initiate the systematic study of persuasion with evidence though a computational lens.
We examine three natural model variants that arise from the power to commit to certain
behavior.

If there is no commitment power, the scenario is an extensive-form game. We prove that
finding a sequential equilibrium is always possible in polynomial time. However, the sender
and the receiver can significantly improve their utility when they enjoy commitment power.

If the sender has commitment power, then she can commit in advance which evidence is
presented in each possible instantiation of her private information, and the receiver seeing the
evidence then takes the action or not. We refer to this situation as constrained persuasion,
since the sender with commitment power wants to persuade the rational receiver to take the
action. The sender is constrained to providing concrete evidence instead of just making a
recommendation as is the case in the so called Bayesian persuasion paradigm [19]. Constrained
persuasion is a natural model in the example of prosecutor and judge, where the prosecutor
(sender) with private information would first present evidence before the judge (receiver)
makes a decision. Although this scenario seems structurally rather simple, we show that
the sender’s task in constrained persuasion is computationally (highly) intractable. Unless
P = NP, optimal persuasion can become hard to approximate within a polynomial factor of
the input size.

If the receiver has commitment power, she commits to taking the action if and only
if being faced with a specific set of evidence. We refer to this situation as constrained
delegation, since we assume that the receiver with commitment power delegates inspection of
the state of nature to a sender, whose incentive becomes to provide convincing evidence to
support taking the action. Constrained delegation better fits the second example, where the
company (receiver) can give the candidate (sender) a test to present evidence on the private
information about qualifications, and commit to hiring her if she performs well. We show
that the receiver’s task in delegation is also intractable — unless P = NP, optimal delegation
can become hard to approximate within a factor of 2 — ¢, for any constant € > 0.

These computational differences nicely reflect conceptual differences known from the
economics literature. Namely, persuasion lacks a condition termed “credibility” that was
shown for delegation. Formally, credibility implies that there is a deterministic optimal
solution that does not require randomization, see Glazer and Rubinstein [14] for details.
We proceed to study algorithms with matching approximation guarantees for constrained
persuasion and delegation, as well as a number of exact and approximation algorithms for
various special cases. This includes, in particular, an approximation algorithm for a class of
delegation problems that solves and rounds a semidefinite program (SDP). This last result
might be of independent interest and, to the best of our knowledge, it is the first natural
problem in information structure design, as well as mechanism design, where the SDP toolbox
is used.
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2 Preliminaries

Following [13, 14, 25], we study the fundamental problem of persuasion with evidence. There
are two players, a sender and a receiver. The receiver is tasked with either taking a specific

action and “accept” (henceforth A), or sticking to the status quo and “reject” (henceforth R).

The sender wants to convince the receiver to take action A. There is a state of nature 6
drawn from a distribution D with support © of size n. We denote the probability that 6
is drawn by gy. The set © is partitioned into the set of acceptable states © 4 and the set
of rejectable ones O = © \ © 4. We denote the total probability on acceptable states by
qA =D _peo, 0, and the total probability on rejectable states by gr = > _ycq . qo-

Both players know D. The sender knows the realization of the state of nature, the receiver

does not. The sender has utility 1 whenever the receiver takes action A, and 0 otherwise.

Formally, for the sender utility we have us(A,0) = 1 and us(R,0) =0, for all § € O.

The utility of the receiver depends on the combination of the chosen action a € {A, R}
and the state of nature . She has utility 1 if she makes the “right” decision — accept in an
acceptable state of nature or reject in a rejectable state of nature — and 0 otherwise. Formally,

ur(a,0) =1 when (1) a = A and 0 € Oy4, or (2) a = R and 6 € Or. Otherwise, u,(a,d) = 0.

The sender strives to send a message to the receiver according to a public signaling
strategy. This message should persuade the receiver to accept. On the other hand, upon
receiving the message, the receiver strives to infer the state of nature and make the right
accept/reject decision. We focus on games with evidence, where the messages that can be
sent are not arbitrary. Every state of nature has intrinsic characteristics (e.g., a candidate
for a position has grades, degrees, or test scores) that can be (but don’t have to be) revealed
to the receiver and cannot be forged.

More formally, there is a set X of m possible messages or signals that the sender can
report to the receiver. We are given as input a bipartite graph H = (0 U X, E), where an
edge e = (0, 0) € E implies that signal o is allowed to be sent in state §. We use N(0) C ¥ to
denote the neighborhood of 6, i.e., the set of allowed signals for state 6. Similarly, N(c) C ©
is the set of states in which signal o can be sent. To avoid trivialities, we assume that none
of the neighborhoods N(-) are empty, i.e., there are no isolated nodes in H.

We study the computational complexity of games with evidence for different forms of
interaction between the sender and the receiver. In particular, in the case of constrained
persuasion, the game starts with the sender committing to a signaling scheme. A signaling
scheme ¢ is a mapping ¢ : E — [0,1], where ¢(0,0) is the joint probability that state
0 is realized and signal o is sent in state 6. Clearly, for any signaling scheme we have
ZUGN(Q) ©(0,0) = gy for every state § € ©. After the sender has committed to a scheme ¢,
nature draws 6 € © with probability gg, and 6 is revealed to the sender. Then, the sender

sends signal o with probability ¢(6,0)/qg. The receiver then decides on an action A or R.

Finally, depending on the (state of nature, action)-pair, the sender and receiver get payoffs
as described by the utilities above.

» Problem 1 (CONSTRAINED PERSUASION). Find a signaling scheme ¢* for commitment
of the sender such that, upon a best response of the receiver, the sender utility is as high as
possible.

In the case of constrained delegation, the game starts with the receiver committing to an
action for every possible signal o € ¥, according to a decision scheme. A decision scheme
1 is a mapping ¢ : ¥ — [0, 1], where (o) is the probability to choose action A. After the
receiver has committed to a scheme i, nature draws 6 € © with probability gy, and 6 is
revealed to the sender. Then, the sender decides which signal ¢ she will report (under the

3:3

ITCS 2021



3:4

Algorithmic Persuasion with Evidence

constraint that o € N(6)). The receiver then takes action A with probability (o), and R
otherwise. Finally, depending on the (state of nature, action)-pair, the sender and receiver
get payoffs as described by the utilities above.

» Problem 2 (CONSTRAINED DELEGATION). Find a decision scheme * for commitment of
the receiver such that, upon a best response of the sender, the receiver utility is as high as
possible.

Finally, in the game without commitment power, we look for a pair (¢, ) of signaling
and decision schemes that constitute a sequential equilibrium in the extensive-form game,
where nature first determines the state of nature, the sender then picks ¢ to provide evidence,
and then the receiver uses ¢ to accept or reject based on the evidence provided. Given that
the sender picks ¢, the receiver shall pick ¢/ as a best response for every given evidence.
Similarly, given that the receiver responds to evidence with 1), the signaling scheme ¢ shall
be a best response for the sender.

» Problem 3 (CONSTRAINED EQUILIBRIUM). Find a pair of signaling scheme ¢ and decision
scheme 1 that represents a sequential equilibrium in the persuasion game with evidence and
without commitment power.

2.1 Structural Properties

While the persuasion problem with evidence appears rather elementary, it turns out that
both persuasion and delegation variants are NP-hard, and even NP-hard to approximate in
polynomial time. Hence, even in this seemingly simple domain, it is necessary to identify
additional structure to obtain positive results. We mostly consider structural properties of
the neighborhoods of the states of nature.

Unique Accepts and Rejects. In an instance with unique accepts, there is a single acceptable
state, i.e., |©4] = 1. Similarly, for unique rejects we have |©p| = 1. This is equivalent to
assuming that every acceptable (rejectable, resp.) state 6 has the same neighborhood N (0).

Degree-bounded States. In an instance with degree-k states, every state § € © has
|N(0)| < k. Similarly, for degree-k accepts, every acceptable state § € © 4 has |[N(9)| < k,
and for degree-k rejects every rejectable state § € O has [N(0)| < k.

Foresight. Sher [25] considers instances with foresight defined as follows. For an acceptable
state 6 € ©4, a signal o € N(6) is called minimally forgeable for 0 if o € N (') implies
o’ € N(#') for every other signal o’ € N(6) and every rejectable state §’ € Og. In an instance
with foresight every acceptable state has a minimally forgeable signal. Intuitively, in such
a problem every acceptable state 6 has a (not necessarily unique) signal that is maximally
informative about 6 with respect to the set of rejectable states. Foresight strictly generalizes
other properties studied in previous work, e.g. normality [4]. Normality requires a signal for
every state (not only the acceptable ones) that satisfies the condition of minimally forgeable,
and it satisfies the condition w.r.t. all states (not only w.r.t. rejectable ones). In addition,
foresight is a generalization of instances with unique rejects, as well as a generalization the
class of degree-1 accepts.
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Table 1 Approximation results shown in this paper, as well as results shown or implied by [25].

Scenario Constrained Delegation Constrained Persuasion
Upper ‘ Lower Upper ‘ Lower
General 2 2—¢ (P#NP) O(n) n'™% (P # NP)
Degree-2 States 1.1 APX-hard [25] O(n) n'=% (P # NP)
Degree-d States 2 —1/d*> | APX-hard [25] O(n) n'™¢ (P # NP)
Degree-1 Rejects 2 APX-hard [25] O(n) n*~¢ (P # NP)
Degree-1 Accepts 1 [25] O(n) n'=% (P # NP)
Foresight 1 [25] O(n) n'™¢ (P # NP)
Unique Rejects 1 [25] 1
Unique Accepts 1 PTAS | Strongly NP-hard

2.2 Results and Contribution

We provide polynomial-time exact and approximation algorithms as well as hardness results
for the general problems and the domains with more structure described above.

We first consider the case of the constrained equilibrium problem. The existence of
a sequential equilibrium is implied by [14]; we show that it can always be computed in
polynomial time by repeatedly solving a maximum flow problem. We compare the utility
obtained in an equilibrium with the one achievable with commitment power, for the sender
and the receiver, respectively. Formally, we define and bound the ratio of the utilities for best
and worst-case equilibria, in the spirit of prices of anarchy and stability. For the receiver,
it is known that the price of stability is 1 [14]; we show that the price of anarchy is 2. For
the sender we show that both ratios are unbounded. This substantial utility gain provides
further motivation to study problems with commitment power.

Our results for constrained delegation and persuasion are summarized in Table 1. We

discuss a selected subset of our most interesting contributions in the main part of the paper.

All missing proofs are deferred to the full version of this paper. In addition, in the full
version, we prove additional results that omitted from this version due to spatial constraints.

For the constrained delegation problem, we show two interesting non-trivial approximation
results. For degree-2 states, we propose a semidefinite-programming algorithm to compute
a 1.1-approximation. To the best our knowledge, this is the first application of advanced
results from the SDP toolbox in the context of information design, as well as mechanism
design. For instances with degree-d states we give a (2 — d—lz)—approximation algorithm via
LP rounding.

For constrained persuasion, the strong hardness arises from deciding which action should
be preferred by the receiver for each signal. It holds even in several seemingly special
cases with degree-1 accepts, degree-1 rejects and degree-2 states. As a consequence, good
approximation algorithms can be obtained only in significantly more limited scenarios than
for delegation. For unique accepts, we prove strong NP-hardness (i.e. there is no FPTAS
unless P= NP) and provide a polynomial-time approximation scheme (PTAS).

2.3 Related Work

There is a large literature on strategic communication, see Sobel [27] for an extensive review.

The works most closely related to ours are [14, 25]. Glazer and Rubinstein [14] introduce the
problem of constrained delegation. They show, among other things, that the optimal decision
scheme in constrained delegation is deterministic. Furthermore, they prove that there is
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always a sequential equilibrium where the receiver plays the optimal decision scheme from
constrained delegation, i.e., the price of stability for the receiver is 1. This condition is termed
“credibility”. It is easy to see that this is not true when sender moves first. This conceptual
difference between persuasion and delegation is reflected as a difference in the problems’
computational complexity. Deterministic optimal strategies and “credibility” hold also beyond
the simple model with 2 actions — when receiver utility is a concave transformation of sender
utility, see [24]. Sher [25] builds on the model of [14] and characterizes optimal rules for static
as well as dynamic persuasion. Furthermore, and more relevant to our interest here, he proves
an NP-hardness result for constrained delegation, as well as provides a polynomial-time
algorithm for optimal delegation in instances with foresight. Here we strengthen this hardness
result to a hardness of approximation within a factor of 2 — ¢ (and provide a matching, alas
trivial, approximation algorithm). While this subsumes NP-hardness in general, we observe
that his hardness proof applies in case of degree-2 states and degree-1 rejects, and that it
even implies APX-hardness for such instances.

Glazer and Rubinstein [13] study a related setting, where the state of nature is multi-
dimensional, and the receiver can verify at most one dimension. The authors characterize
the optimal mechanism as a solution to a particular linear programming problem, show
that it takes a fairly simple form, and show that random mechanisms may be necessary
to achieve the optimum. Carroll and Egorov [5] study the problem of fully revealing the
sender’s information in a setting with multidimensional states, where the receiver can verify
a single dimension. Importantly, the dimension the receiver chooses to reveal depends on the
sender’s message.

A number of works in the algorithmic economics literature investigate the computational
complexity of persuasion and information design. Computational aspects of the Bayesian
persuasion model [19] are studied in, e.g., [10, 6, 9, 8, 11, 18, 17], but in these works there
are no limits on the senders’ signals, i.e., H is the complete bipartite graph. More closely
related to our work are [7, 16] who study computational problems in Bayesian persuasion
with limited signals, where the number of signals is smaller than the number of actions.

3 Sequential Equilibria

We first study the scenario without commitment power. Our interest here is to obtain a
signaling scheme ¢ : E — [0,1] and a decision scheme v : ¥ — [0, 1], such that the pair (¢, )
forms a sequential equilibrium.

» Theorem 4. A sequential equilibrium can be computed in polynomial time.

Our algorithm repeatedly sets up a flow network based on the graph H. In each iteration, it
computes a maximum s-t flow and identifies suitable regions of the graph where it fixes the
equilibrium schemes of sender and receiver. Then it removes the fixed regions and repeats the
construction on the graph with the remaining states and signals. After at most min{n,m}
iterations, the algorithm finishes the construction of the equilibrium.

How desirable is an equilibrium for the sender and the receiver? By how much can each
player benefit when he or she enjoys commitment power? Towards this end, we bound the
ratios of the optimal utility achievable with commitment power over the utilities in the worst
and best equilibrium. Intuitively, commitment power might be interpreted as a form of
control over the game, so we use the term price of anarchy and price of stability to refer to
the ratios, respectively.
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More formally, for the price of anarchy we bound the ratio of the optimal utility achievable
with commitment over the worst utility in any sequential equilibrium. For the price of stability
we bound the ratio of the optimal utility achievable with commitment over the best utility in
any sequential equilibrium.

For the receiver, the optimal scheme with commitment leads to an equilibrium [14], so
the price of stability is 1. The price of anarchy is 2 (c.f. Proposition 7 below). For the sender,
both prices of anarchy and stability are unbounded.

» Proposition 5. The price of anarchy for the receiver is 2 and this is tight. The prices of
anarchy and stability for the sender are unbounded.

4 Constrained Delegation

In constrained delegation, the game starts with the receiver committing to a decision scheme
¥ : ¥ — [0,1], where ¢(o) is the probability to choose action A if the sender reports signal
o. The first insight is due to [14, Proposition 1].

» Lemma 6 (Glazer and Rubinstein [14]). In constrained delegation, there is an optimal
decision scheme ¢* that is deterministic, i.e., ¥*(o) € {0,1} for all o € X.

Given a deterministic decision scheme 1), the sender’s problem is trivial: after learning
0, report an arbitrary signal o € N () such that 1)(c) = 1 if one exists. Otherwise, report
an arbitrary signal o € N(6). In the following, we focus on the computational complexity
of the receiver’s problem: How hard is it to compute the optimal ¢? What about a good
approximation algorithm?

This problem turns out to be much easier than the sender’s problem in constrained
persuasion studied below. It readily admits a trivial 2-approximation algorithm. Let ¥4 be
the scheme that accepts all signals, i.e., ¥ 4(0) =1 for all o, and ¥ g the scheme that rejects
all signals. The better of ¥4 and ¥ results in utility max{qa,gr} for the receiver, which is
at least 1/2. Clearly, the receiver can obtain at most a utility of 1.

» Proposition 7. For constrained delegation, the better of ¥4 and Vg is a 2-approximation
to the optimal decision scheme ¥*.

In Section 4.1 we show that the factor 2 is essentially optimal in the worst case, unless P
= NP. In Section 4.2 we present our results on approximation algorithms.

4.1 Hardness

Sher [25, Theorem 7] shows NP-hardness of constrained delegation, even in the special case
with degree-1 rejects and degree-2 states. His construction can be extended easily to show
APX-hardness (we provide the details in the full version of this paper). Our main result in
this section is a stronger hardness result that matches the guarantee of the trivial algorithm
in Proposition 7.

» Theorem 8. For any constant ¢ € (0,1), it is NP-hard to approrimate constrained
delegation within a factor of (2 —¢€).

For simplicity, we sketch below an outline for a reduction that does not give the NP-
hardness, but nonetheless encapsulates the main ideas of the proof. After the outline, we
roughly explain the changes needed to achieve the NP-hardness; the full proof is deferred to
the full version of this paper.
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We reduce from the BIPARTITE VERTEX EXPANSION problem. In this problem, we are
given a bipartite graph (U, V, FE) and positive real number 8. The goal is to select (at least)
B|U| vertices from U such that their neighborhood (in V') is as small as possible. Khot and
Saket [20] show the following strong inapproximability result:

» Theorem 9 ([20]). Assuming NP € N5 DTIME(2"6), for any positive constants T,y > 0,
there exists € (0,1) such that no polynomial-time algorithm can, given a bipartite graph
(U, V, E), distinguish between the following two cases:

(YES) There exists S* C U of size at least B|U| where |[N(S*)| < ~|V].

(NO) For any S C U of size at least 7G|U|, IN(S)| > (1 —v)|V].

The main idea of our reduction is as follows. Roughly speaking, given a bipartite graph
(U, V,E), we set ¥ = U, Or = V and the edge set between them is exactly F. To get a high
utility on O, we must pick a signal set T C ¥ such that |[N(T)| is small, and set ¢(c) =1
for all o € T'; this does not mean much so far, since we could just pick T'= (). This is where
the set of acceptable states comes in: we let © 4 be equal to U = {(u1,...,us)|u; € U} for
some appropriate £ € N, and there is an edge between 0 = (u,...,up) and o =w if u; = u
for some i € [¢]. Intuitively, this forces us to pick T that is not too small as otherwise © 4
won’t contribute to the total utility. Finally, we need to pick a distribution D over © such
that g4 = qgr, as otherwise the trivial algorithm already gets better than a 2-approximation.

As stated earlier, the above reduction does not yet give NP-hardness, because Theorem 9
relies on a stronger assumption® that NP & (M-, DTIME(2"6). To overcome this, we instead
use a “colored version” of the problem, where every vertex in U is colored and the subset
S C U must only contain vertices of different colors (i.e., be “colorful”). It turns out that
the above reduction can be adapted to work with such a variant as well, by changing the
acceptable states ©4 to “test” this condition instead of the condition that |S| is small.
Furthermore, we show, via a reduction from the Label Cover problem, that this colored
version of BIPARTITE VERTEX EXPANSION is NP-hard to approximate. Together, these
imply Theorem 8. Our proof formalizes this outline; see the full version for details.

4.2 Approximation Algorithms for Constrained Delegation

By Theorem 8 there is no hope for a (2 — €)-approximation algorithm for the constrained
delegation problem. Proposition 7 provides a matching guarantee.

As a consequence, we examine in which way instance parameters influence the existence
of polynomial-time approximation algorithms. In particular, the maximum degree d is a
main force that drives the hardness result. For the case of degree at most d, we give a 2 — d%
approximation algorithm via LP rounding. When d = 2, we improve upon this by giving a
1.1-approximation algorithm via SDP rounding.

4.2.1 Better than 2 via LP Rounding

For instances with degree-d-states we take the better of (1) rounding the natural linear
program for constrained delegation and (2) the trivial scheme of Proposition 7.

» Theorem 10. For constrained delegation with degree-d states there is a polynomial-time
(2 — ?12) -approzimation algorithm.

1 We remark that it is entirely possible that Theorem 9 holds under NP-hardness (instead of under the
assumption NP ¢ ﬂ6>0 DTIME(2"5)) but this is not yet known.
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Proof. Consider the following integer program for constrained delegation (c.f. [14, 25]).

max Z Coqe (1a)

6co
st. > e >cp,  forallf €O, (1b)
oceN(0)
> Yo <IN@O)|(1—cp) forallfcOp (Lc)
ocEN(0)

Y, € {0,1},forallc € ¥ and ¢y € {0,1},forall @ € © (1d)

The variable 1, encodes whether the action is accept or reject for signal o. The variable

cp encodes whether the receiver makes the correct choice when the state of nature is 6.

Constraint (1b) states that, if § € © 4, she can’t make the correct choice when she rejects all
signals available from 6. Constraint (1c) states that, if § € © g, making the correct choice
means rejecting all signals available from ; the |N ()| term ensures that the constraint can
still be satisfied even when ¢y = 0.

Our algorithm first solves the linear relaxation of this integer program; let ¥y and & be
the fractional optimum. We round this solution by setting ¢, = 1 with probability 7]10, and
0 otherwise. We can optimally pick cy given the 1,’s. The rounded solution is feasible by

definition; we show that it is a good approximation to the optimal LP value, i.e., > 4cq Cogo-

Let G = @ Z%@A Coqp and B = ﬁZ%@R Cgpqs be the average contribution to
the LP objective from the acceptable and rejectable states, respectively. The LP value is
G|© 4| + B|Og|. We start by showing the following lower bound on the expected value of
the rounded solution.

» Lemma 11. E[Y, o coqs] > Z94! 4 gr(1 - d) + dB|Og|.

Proof. First, consider a state 8 € © 4. The probability that cy = 1 is at least the probability
that we rounded one of the 1, variables to 1, for o € N(0), i.e.,

Prcy =1] > max Vo > co

>
ceN(0) T [N(O)] T

(2)

e

where we used the fact that ¢y satisfies Constraint (1b). For a state 8 € O, the probability
that ¢y = 1 is exactly the probability that none of its signals were selected, which is

HJGN(O)(l - 12}0') >1- ZUEN(Q) '@[Ajo—. Thus

Pricg=1]>1— Y e >1—-|N(O)|(1—¢)>1—d+dé , (3)
oc€eN(0)

where we used the fact that ¢y satisfies Constraint (1¢). Adding up (2) and (3), the expected
value of our rounded solution is

qoCo N G|O.4]
ElZngQ‘| > Z 7+ Z q€(17d+d09)2 T+QR(17d)+dB‘@R|. |
0cO €O 4 0cORr
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Our final algorithm, i.e., the better of the trivial scheme and the rounded LP solution,
has expected value at least max{qa, qr, E[Y ,cq coqo]}. We have that

<2d - Cll> max {QAaQRaE lZ 09%] } > (d ;) gat(d—1)gr +E

0c©

e

0co

Lemma 11 1 GO
s <dd)qA+(d1)qR+ |dA|+QR(1—d)+dB|@R|

(G|©al<qa)
> dG|© 4| + dB|Og| ,

which is d times the value of the optimum fractional value of the LP. The theorem follows. <

4.2.2 Better than 2 via Semidefinite Programming

In this subsection we give a 1.1-approximation algorithm for constrained delegation with
degree-2 states, where every state of nature # has at most two allowed signals, o, and o,,.
The approach stems from an observation that the problem belongs to the class of constraint
satisfaction problems (CSPs); we make use of the toolbox for semidefinite program (SDP)
rounding in approximating CSPs (e.g. [15, 12, 21]).

Consider the integer program (4a) for our problem below. We assume w.l.0.g. that every
state has ezxactly two adjacent signals; if there is a state 6 with a single neighbor o, we
can add a parallel edge (6,0) in H and the analysis remains valid. Note that the integer
program here is not the same as the one used in the previous subsection. An intuitive reason
for the change is that the variables ¢y there are redundant: given {¢,},ex, the values of
{co}oco are already fixed. In particular, each cgy can be expressed as a degree-d polynomial?
in {5 }sen(p), which is exactly how the integer program below is written.

1 1
max - 7 Z (3fxiijfxixj)qg+1 Z 1+ +x; +x:x5)q0
ze{-11} 0€6 A fcor
0=(ci,0;) 0=(0i,05)
(4a)
In the program above x; = —1 is interpreted as accepting when the signal is o;. One can check

that 1 (3 —2; — z; — z;2;) is equal to 1 iff at least one of 2;,z; is —1 (and zero otherwise),
i.e., a state of nature 6 € © 4 contributes to the objective only when at least one of its allowed
signals is accepted. Similarly, %(1 +x; +2; + x;x;) is equal to 1 if and only if both z; and
x; are equal to 1.

We will solve the semidefinite relaxation of this program, and give a rounding algorithm.
The SDP is the following, where we replaced x; by w;, to distinguish these vector variables
from the variables of our integer program above.

2 Note that linear functions do not suffice to express cp. In particular, if we rewrite (1c) for 6 = (a:,0;)

asco < 1— %, then it is still possible to have cg = 1/2 when s, = 1,95, = 0.
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1
max Z (3 —w; - wo —wj - wo — w; - W;)qa
9:(0’i70'j)€@,4
1
+Z Z (14 w; - wo + wj - wo + w; - wj)ge (5a)
9=(U¢,U;‘)€®R
st. w;-w; =1 forallie[m]U{0} (5b)
w; - wo +wj - wo +w; -w; > —1 foralli,j € [m] (5¢)
—w; - wo +wj - wo —w; -wj > —1  forall i,j € [m)] (5d)
—w; - wo —wj-wo +w; -w; > —1 foralli,j € [m)] (5e)

w; € R™TL for all i € [m] U {0}

Constraint (5b) is standard. Constraints (5c)-(5e) encode the triangle inequalities, which
are satisfied by every valid solution to the original program; these strengthen the relaxation

a bit (see [12, 21]). Let Vgpp denote the optimal value of this semidefinite program (SDP).

We generally cannot find the exact solution to an SDP, but it is possible to find a feasible
solution with value at least Vgpp — € in time polynomial in 1/e (see [1]). In our analysis we
will (as is typically the case) ignore the e factor as it can be made arbitrarily small given
sufficient time.

It is known that the SDP written above provides the optimal approximation achievable
in polynomial time for any 2-CSPs [22, 23] including our problem, assuming the Unique
Games Conjecture (UGC). However, a generic rounding algorithm from this line of work (see

g. [23]) does not give a concrete approximation ratio. Below, we describe a specific family
of rounding algorithms for which we can provide the concrete approximation ratio of 1.1.

Rounding Algorithm

Given solution vectors {wg,wy, ... wy,}, w; € R™TL for this SDP we produce a feasible
solution x; € {—1,1} (for i € [m]) to the original integer program as follows. Let & = wy - w;,
— WiSi% he the part of w; orthogonal to wo, normalized to a unit vector. Our

and w; = o=y

rounding algorithm mostly follows the rounding procedure of [21], which they call THRESH ™.

First, pick a (m + 1)-dimensional vector® r ~ AN(0,1) 7 € R™*1. Then, set z; = —1 (which
corresponds to accepting signal o;) if and only if w; - r < T'(§;), where T'(.) is a threshold
function, and set x; = 1 otherwise. Specifically, T'(x) = @,1(%@))’ where ®~1(.) is the
inverse of the normal distribution function, and v : [-1,1] — [—1,1] is a function. Later in
the analysis — and this is essentially the point in which various SDP rounding methods diverge
from each other, e.g. see [26] for the different choices for MAX-2-SAT and MAX-2-AND — we
will optimize over a family of v(.), exploiting structure in our problem, in order to improve
our approximation ratio.

Generic Analysis

We now derive a generic analysis for THRESH ™ algorithms; note that these are similar
arguments as in [21, 2]. However, in the end, we will pick a different function v than previous
works, which results in better approximation ratios for our problem.

3 In other words, the i-th dimension r; is sampled independently from a Gaussian with zero mean and
variance one.
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First, notice that w; - r is a standard A/(0, 1) variable, and therefore by the choice of T'(.)
we have that Pr[z; = —1] = 1_%(51.)7 which implies that

E[z;] = v(&) - (6)

Now, we need to also analyze the quadratic terms. Let T'c(p1, o) = Pr[X; < t; and X5 < #5],
where t; = @‘1(%), and X1, Xo € N(0,1) with covariance ¢ (in other words, T, is the
bivariate normal distribution function with covariance ¢, with a transformation on the input).

Let p = wyw; and p = w;w; = ﬁjﬁ
are M (0,1) random variables with covariance p. Thus, the probability that @w; - r < T(&;)
and w; -r < T(&;) (i.e., both z;, z; are set to —1) is exactly I';(v(&), ¥(§;)). The probability
that 2; = x; = 1 is equal to I';(—v(&), —v(&;)). Austrin [2, Proposition 2.1] shows that
De(—p1, —p2) = De(pr, p2) + p1/2 4 po/2. Using this fact we can calculate the probability
that x; = x;, which, in turn, gives that

E [z;x;] = 4T5(v(&), v(§5)) +v(&) +v(§) — 1 . (7)

Observe that the products @; - » and w; - r

With Equations (6) and (7) at hand we can calculate the expected value of our rounding
algorithm (i.e., the expected value of (4a)) for every choice of v, and compare it against the
value of the SDP in (5a). Specifically, we will aim for a term-by-term approximation. Define
the following quantities:

3—-&—& —p
€OR REYE] = ’
1+&+&+p
éAND IEEYE) = : ’
v (& & p) 2u(£i) + 2y(€j) + 4l—‘p(u(€i), V(fg))
and let
OF) = auin 296 Gop) and YP0) = anin P (68p)

where the minimization is over all choices of &;,§;, p € [—1, 1] that satisfy the triangle inequal-
ities (Constraints (5¢)-(5e)). It is now straightforward to see that the term-by-term analysis
implies that, for any choice of v, our approximation ratio is at most max{¢F(v), ¢(ANP (1)}.

Choosing v and Putting Things Together

We are left to choose the function v that results in the smallest approximation ratio
max{(OF(v), (ANP(v)}. We consider a rounding function of the form v(y) = a -y + 3
for parameters «, 8 to be chosen. Using extensive computational effort, we found that
a = 0.8825 and 8 = 0.0384 perform well. Once we have a choice for « and 3, it remains to
prove the approximation ratio.

We have a computer-assisted proof showing that the approximation ratio is at most
1.1; our computer-based proof approach is similar to that of [26]. Roughly speaking, we
divide the cube (&;,&;, p) € [—1,1]3 into a certain number of subcubes. For each subcube, we
(numerically) compute an upper bound to max{¢Q%(&;,&;, p), ¢2NP(&;,€;, p)}. If this upper
bound is already at most 1.1, then we are finished with the subcube. Otherwise, we divide it
further into a certain number of subcubes. By continuing this process, we eventually manage
to show that for the whole region [—1,1]3 that satisfies the triangle inequalities, the ratio
must be at most 1.1, as desired. (The smallest subcube our proof considers has edge length
0.00078.)
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Comparison to Prior Work

As stated earlier, our algorithm, with the exception of the choice of v, is similar to [21]
and the follow-up works (e.g. [2, 26]). However, perhaps surprisingly, we end up with a
better approximation ratio than the MAX 2-AND problem?, whose approximation ratio
is known to be at least 1.143 assuming the UGC [3]. To understand the difference, recall
that MAX 2-AND can be written as max i Z(i,j,b,;,bj)(]‘ + bix; + bjz; + bibjx;x;) where
b;,bj € {£1} (representing whether the variable is negated in the clause). This is very
similar to our problem (4a), except that MAX 2-AND has the aforementioned b;, b;-terms for
negation. It turns out that this is also the cause that we can achieve better approximation
ratio. Specifically, these negation terms led previous works [21, 2, 26, 3] to only consider
v that is an odd function, i.e., v(y) = v(—y) for all € [—1,1]. For example, Austrin [2]
considers a function of the form v(y) = « - y. We note here that, due to the aforementioned
UGC-hardness of MAX 2-AND, we cannot hope to get an approximation ratio smaller than
1.143 using odd v. Nonetheless, since we do not have “negation” in our problem, we are
not only restricted to odd v, allowing us to consider a more general family of the form
v(y) = a-y+ p for § # 0. This ultimately leads to our better approximation ratio.

5 Constrained Persuasion

Let us now turn to the constrained persuasion problem. The sender first commits to a
signaling scheme ¢, which she then uses to transmit information to the receiver, once the
state of nature is revealed. Given that the sender has commitment power and the receiver
knows ¢, the receiver picks action A if and only if conditioned on receiving signal o, the
expected utility of A is more than R, i.e.,

Z p(0,0) = Z ©(6,0)

0EN (0)NO 4 0EN (c)NOR

or, equivalently, 2+ 3o v (,)ne . P(0:0) = D gen (o) (0, 0).

In this case, we say that o is an accept signal, otherwise we call o a reject signal. An
optimal signaling scheme ¢* maximizes the expected utility of the sender, i.e., the total
probability associated with accept signals. Note that if both accepting and rejecting are
optimal actions for the receiver, we assume that she breaks ties in favor of the sender (so, in
our case, accept). This mild assumption is standard in economic bilevel problems (e.g., when
indifferent between buying and not buying, a potential customer is usually assumed to buy)
and is often without loss of generality. This way we avoid obfuscating technicalities in the
definition of optimal schemes ¢*.

We study the computational complexity of finding ¢* and polynomial-time approximation
algorithms. In general, approximating ¢* can be an extremely hard problem, even in the
constrained persuasion problem. Our first insight in Section 5.1 is that the main source of
hardness in the problem is deciding the optimal set of accept signals. We then provide a
simple 2n-approximation algorithm and a n'~¢-hardness in Section 5.2. The PTAS and the
matching strong NP-hardness for instances with unique accepts is discussed in Section 5.3.

4 This is the problem where we are given a set of clauses, each of which is an AND of two literals. The
goal is to assign the variables as to maximize the number of satisfied clauses.
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5.1 Signal Partitions

A signaling scheme ¢ partitions the signal space ¥ into (X 4,%g), in the sense that the
receiver takes action A if and only if she gets signal 0 € ¥4 (and R for ¥g). Determining
this partition of the signal set turns out to be the main source of computational hardness of
finding ¢*: Given an optimal partition of the signal set, the reduced problem of computing
appropriate optimal signaling probabilities is solved with a linear program.

We prove this result in a general case of the persuasion problem, in which the receiver
has an arbitrary finite set A4 of actions. Moreover, sender and receiver can have utilities
Ug, U+ A X © — R that yield arbitrary positive or negative values for every (state of nature,
action)-pair.

» Proposition 12. Given a partition P = (X,)aca of the signal space such that the receiver’s
best action for a signal o € X, is action a, an optimal signaling scheme ¢} for the general
persuasion problem that (1) implements these receiver preferences and (2) mazximizes the
sender utility, can be computed by solving a linear program of polynomial size.

Proof. Given P = (X,)4c, consider the following linear program (8).

Max. Z Z Z zo,0 - us(a,b)

a€A0ES, 6EN (o)

s.t. Z Zo,o - Up(a,0) > Z zg,0 - ur(a’,0) forallac A,oc e X,,d € A
6EN(0) 6EN(0)
Z Too = Qo forall 6 € ©
oceN(0)
oo > 0 for all o € 3,0 € N(o)

(®)

For each o € ¥, and every action o’ # a we must satisfy that E[u.(a,0) | o] >
E[u.(a’,0) | o], encoded by the first constraint. The other two constraints encode the
feasibility of the scheme. Subject to these constraints, the objective is to maximize the ex-
pected utility of the sender. An optimal LP-solution z* directly implies an optimal signaling
scheme ¢} (0,0) =z . <

5.2 A 2n-Approximation Algorithm and Hardness

Going back to constrained persuasion with binary actions, we start by giving a simple
2n-approximation algorithm. First, we give a useful benchmark for the optimal scheme.

» Lemma 13. An optimal signaling scheme o* yields a sender utility of at most min{1,2q,}.

Proof. The upper bound of 1 is trivial. ¢* partitions the signal space into (X4, Xg), the
accept and reject signals, respectively. The expected utility of the sender is

> w00 > DY 297 (0,0)<2 ) qp=2-qa . <

oc€X A 0eN (o) oc€EXAHEN(0)NO 4 0€0 4

Our simple algorithm considers the m partitions with a single accept signal ¥4 = {o},
for every o € X. For each such partition, the algorithm determines an optimal scheme and
then picks the best one, among all m partitions. Instead of solving the LP of Proposition 12,
given a proposed partition we proceed as follows. Assign as much probability mass from
©4 N N(o) to o and at most the same amount from ©g N N (o) — this ensures that o is an
accept signal. The remaining probability mass is assigned arbitrarily to other signals. Note
that if this is impossible, there is no scheme that makes o an accept signal.
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» Proposition 14. For constrained persuasion there is a 2n-approximation algorithm that
runs in polynomial time.

Proof. Suppose 6’ € © 4 is an acceptable state from which ¢* assigns the largest amount to
accept signals, i.e., ' = arg maxgco, ZaezAmN(e) ©*(0,0). Clearly, the optimum accumu-
lates on the accept signals at most n times this probability mass from the set of acceptable
states, and at most the same from rejectable states. Hence, > v n(o) ©"(0',0) < gor is
at least a 1/(2n)-fraction of the optimal sender utility.

Consider the accept signals X4 in ¢* and any such signal ¢/ € N(6') N3 ,4. When our
algorithm checks the partition with ¢’ as the unique accept signal, it finds a feasible scheme,
since the optimum scheme makes ¢’ an accept signal and the algorithm only assigns more
probability from © 4 to ¢’. The value of this solution is at least ggr. |

In addition to this simple algorithm, we show a number of strong hardness results for
constrained persuasion. The proofs of the following two theorems can be found in the full
version.

» Theorem 15. For any constant € > 0, constrained persuasion is NP-hard to approximate
within a factor of n'=¢, even for instances with degree-2 states and degree-1 accepts.

For instances with degree-1 rejects a similar result follows with a slightly different reduction.

» Theorem 16. For any constant € > 0, constrained persuasion is NP-hard to approximate
within a factor of n'=¢, even for instances with degree-1 rejects.

5.3 Unique Accepts

In this section, we examine instances in which there is only a single acceptable state, for
which we prove NP-hardness and give a PTAS. It will be convenient to state a lemma which
allows us to get a better handle on the sender utility in an optimal signaling scheme for
a given signal partition. This lemma will be helpful in both our hardness and algorithm
analyses.

To state this lemma, we need some additional notation: for every subset Y C ¥, we use
Or(X) to denote {# € Ok | N(0) C £}; when ¥ = {0} is a singleton, we write O (o) in

place of ©r({c}) for brevity. Moreover, let N(X) denote | J, .5 N (o). The lemma can now
be stated as follows.

» Lemma 17. Suppose that there exists a unique accept state 8,. For any partition P =

(3X4,XR) of the signal space such that X4 # 0, we have

1. There exists a signaling scheme @ such that every signal in 34 is accepted and every signal
in YR is rejected by the receiver if and only if ¥4 C N(6,) and ZeeeR(ZA) g0 < qo, -

2. When the above condition holds, any optimal signaling scheme ©* for the sender has
utility equal to min{2qy,, ZeeN(EA) qo}, and, such a signaling scheme can be computed
in polynomial time.

We remark that the algorithm for finding ¢* in the above lemma is a simple greedy
algorithm that tries to “put as much probability mass from rejectable states as possible”
in 34 and then use the probability mass of the acceptable state 6, to “balance out” the
mass from the rejectable states, so that eventually the signals in > 4 are accepted. This is
in contrast to the generic linear program-based algorithm in Proposition 12. The simpler
greedy algorithm allows us to consider more concrete conditions and exactly compute the
utility as stated in Lemma 17.
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Proof of Lemma 17.

1. (=) First, assume that there is such a signaling scheme ¢. Clearly, every signal not in
N(6,) must be rejected, which implies that X 4 C N(6,). Furthermore, for all 0 € X4,
we must have ©(04,0) = 3 pe n(o)ne, (0, 0). Summing up over all o € ¥, gives

40, > Z Z 90(0’0—)

oc€X A 0EN(0)NOR

>3 X elbo)= 3 P elbo)= Y @

oEX A QE@R(ZA) Ge@R(ZA)UEEA QEGR(ZA)

(<) Assume that 0 # X4 C N(6,) and Y 0con(sa) 90 < Go,- We may construct
a desired signaling scheme ¢ as follows. First, we assign ¢(6,0) arbitrarily for all
6 € Or(24). Then, we assign ¢(0,,0) such that ¢(0,,0) = 0 for all o ¢ 34 and that
(00, 0) = D pcon(na) p(0,0) for all 0 € $4. The former is possible because ¥4 # 0
and the latter possible because Z@E@R(ZA) qo < qp,. Finally, for each 0 € O\ Or(X4),
assign p(0,0) =0 for all 0 € ¥ 4. It is straightforward from the construction that this ¢
is a desired signaling scheme.

2. First, we will show that any signaling scheme ¢ has utility at most min{2qs, , Y 4 N(Sa) q0}
for the sender. Observe that the upper bound 2¢g, follows trivially from Lemma 13.
Thus, it suffices for us to prove that the utility is at most ZGGN(EA) qo. To do so, let us
rearrange the utility as follows:

S Y v Y Y wlbo)= Y w.

0EX A EN (o) HEN(S4) cEN(H) AEN(ZA)

Finally, we construct a signaling scheme ¢* with utility equal to min{2gs,, > 5c N(Sa) qo}
The algorithm is a modification of the algorithm from the first part, and it works in four
steps:

For every 0 € ©Or(X4), assign ¢(0, o) arbitrarily.

For every 0 € (N(X4)NORr)\ Or(Xa4), assign ¢(6,0) so that

> > e0,0)=min{ge,, Y ao}

0€XA0EN(0)NOR 0EN (T A)NOR

Note that this step is possible because ZGGGR(EA) a0 < qo,-
Assign ¢(0,,0) so that ¢(0,,0) =0 for all 0 ¢ X 4, and that

p(0a0)> Y ¢(0,0)
0eN(0)NOR
for all 0 € ¥ 4. Note that this is possible because, from the previous step, we must

have 3 5, ZGGN(U)D@R ¢(0,0) < qo,-
All other remaining assignments are made arbitrarily in order to turn ¢ into a feasible
signaling scheme.
It is straightforward to check that ¢* is the desired signaling scheme with utility equal to
G0, +min{qo,, > pen(sayno, 03 = min{2q0,, > pen (s, W0} <

With Lemma 17 ready, we now prove NP-hardness of the problem.

» Theorem 18. Constrained persuasion with unique accepts is NP-hard.
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Proof. We reduce from the MAX-K-VERTEX-COVER problem, where we have a graph
G = (V, E). The goal is to choose a set V' of k vertices in order to maximize the number of
edges incident to at least one vertex in V’. For every vertex v € V, let E(v) be the set of
incident edges, then we try to pick a subset V' of k vertices to maximize |{J, ¢ E(v)].
For each edge e € E, we introduce a rejectable state 0, with gg, = (|V|+k’)(‘E1|+1)+2|E|. Fo
each vertex v we introduce a signal o,. The graph H between states and signals expresses

T

the incident property of edges and vertices. In addition, for each signal o, we introduce an
auxiliary rejectable states that have o as their unique signal. Each auxiliary state 6 has
9% = v +k)|(J|EE‘T+11) A Finally, the unique acceptable state 6, is incident to all signals and

has probability

¢ FIEI+1) + |E]
0, = .
(IVI+E)(1E[+ 1) + 2|E]

From Lemma 17, the optimal signaling scheme has sender utility equal to

max min 26, Y. @},
0EN(Z4)
where the maximum is over non-empty ¥4 C ¥ such that Zee@R(EA) g0 < qp,. Notice that,
in our construction, this condition is satisfied iff |[X 4] < k. This means that X4 = {0y }vev-
for some subset V' of size at most k. It is also not hard to see that

. B (VI +R)(EI + 1) + |Uyeys B())
min g2, D, G00= D, =T mrpiE L e

0EN(Z4) 0EN(Za)

In other words, the utility is maximized iff V' is an optimal solution to the instance of
MAX-K-VERTEX-COVER. Since the latter is NP-hard, we can conclude that constrained
persuasion with unique accepts is also NP-hard. <

We next give a PTAS for the problem. Before we formalize our PTAS, let us give
an informal intuition. Observe that the condition in Lemma 17 implies that gg, >
ZUEEA (Z(,e@R(U) qg). This latter constraint is a knapsack constraint. One generic strategy
to solve knapsack problems is to first brute-force enumerate all possibilities of selecting
“heavy items”, which in our case are the signals with large Zeeeﬁ(a) qo- Then, use a simple
greedy algorithm for the remaining “light items”. Our PTAS follows this blueprint. However,
since neither our constraints nor our objective function are exactly the same as in knap-
sack problems, we cannot use results from there directly and have to carefully argue the
approximation guarantee ourselves.

» Theorem 19. For constrained persuasion with unique accepts, for every fized ¢ € (0,1],
Algorithm 1 runs in time m© /O and outputs a (1+¢) approzimate solution.

Proof. It is clear that our algorithm runs in time m@(/&)p0M),
signaling scheme, with utility OPT for the sender. We prove that the utility of parg is at
least (1 — 0.5¢)OPT.

Without loss of generality we assume that the utility of ¢* is non-zero. Now, let (X%, X%)
denote the signal partition of ¢*; since the utility of ¢* is non-zero, we must have X% # 0.
Furthermore, the first item of Lemma 17 implies that ¥% N ¥>. must be of size at most
1/e. As a result, our algorithm must consider S = (X% N X>.) in the for-loop (3). For this
particular S, let 77 denote the largest T for which Line (6) is executed. We next consider
two cases, based on whether or not we have T = S U (<. N N(6,)).

Let ¢* be any optimal
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Algorithm 1 A PTAS for constrained persuasion with unique accepts.

Input: Graphs H with a single acceptable state 6,, and € > 0.
1 Let ¥>. be the set of all signals o € ¥ such that Z@G@R(a) qo > €qp, . Then, let
E<E:E\\2255
2 Let parg be an arbitrary signaling scheme;
3 for every (possibly empty) subset S C ¥, of size at most 1/¢ do
4 Let T =S;
5 while 37 o )40 < o, do
6 If the utility of g is less than min{2qea729€N(T) go}, then let parc be
the optimal signaling scheme consistent with signaling partition >4 =T,
which can be computed in polynomial time due to Lemma 17 ;

7 IfT=%X..NN(0,), break from the loop;
8 Otherwise, add an arbitrary signal from (X, NN (6,)) \ T to T}
9 end

10 end

Output: parc.

Case I: T! = SU (X< N N(6,)). Notice that 7" O ¥%. Lemma 17, implies that the utility
of par,g must be at least OPT.

Case II: T" # S U (X< N N(f,)). This means that there exists a signal o* € (X, N
N(6,)) whose addition to T’ breaks the condition of the while-loop (5), i.e., gy, <
Z%@R(T,U{U*}) qgp. The right hand side of this inequality is equal to

Z g0 < Z g0 + Z 0
0

0eORr 6eORr €EOR
N(0)C(T'U{c*}) N(O)NT'#0 N(@©@)={c"}
= 2wt ) w
0EN(T")NOR 0€ORr(c*)
< Y a+teq,
AEN(T")NOR

where the last inequality since o belongs to ¥ ... Combining the two inequalities we have

> > (1-e)g, (9)

0EN(T")NOR

On the other hand, from Lemma 17, when we execute line Line (6) for T = T", it must
result in a signaling scheme of utility

. : )
min{ 2s,, > o p =min{ 2,90, + Y. o > (2— €, ,
0EN(T) EN(T)NOR

which is at least (1 — 0.5¢)OPT due to Lemma 13.
Hence, we can conclude that our algorithm always outputs a signaling scheme with sender
utility at least (1 — 0.5¢)OPT. In other words, its approximation ratio is at most (= <
1+4e. <
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