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—— Abstract
We consider the problem of communicating reliably in a dynamic network in the presence of up
to k Byzantine failures. It was shown that this problem can be solved if and only if the dynamic
graph satisfies a certain condition, that we call “RDC condition”. In this paper, we present the
first self-stabilizing algorithm for reliable communication in this setting — that is: in addition to
permanent Byzantine failures, there can also be an arbitrary number of transient failures. We prove
the correctness of this algorithm, provided that the RDC condition is “always eventually satisfied”.
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1 Introduction

As networks grow larger and larger, it becomes more and more likely that some of their
nodes will behave incorrectly at some point, for various reasons. Therefore, it is crucial to
design robust networks, that is: networks that still satisfy some essential properties even
when some nodes fail. There are many models of node failure, but the most general one is
the Byzantine model [13]: we assume that the failing nodes can have any arbitrary behavior.
Thus, we encompass any possible type of failure.

Here, we consider the problem of reliable communication: any two correct nodes of the
network should be able to exchange messages reliably, despite the potentially malicious
behavior of some Byzantine nodes.

One way to solve this problem is to use cryptography [6, 10]: the nodes use digital
signatures to authenticate the sender across multiple hops. However, cryptography is not
always reliable (see, for instance, the Heartbleed bug [1] discovered in the widely deployed
OpenSSL software). The Defense in Depth paradigm [14] recommends the use of multiple
security layers, including non-cryptographic layers. For instance, if the cryptographic layer
is compromised (bug, virus, ...), a cryptography-free communication layer can be used to
safely broadcast a patch, or to update cryptographic keys. Thus, even when cryptography is
available, it is interesting to develop non-cryptographic solutions. In the following, we focus
on these non-cryptographic solutions.

When it comes to non-cryptographic solutions, many solutions have been proposed for
static networks (e.g. [4, 11, 22, 15, 17, 16, 7, 21, 8]). Fewer papers consider dynamic networks
(e.g. [20, 3, 19]), where the topology changes over time. In particular, [19] showed the
necessary and sufficient condition on the graph topology to tolerate up to k Byzantine nodes
in a dynamic network. We call this condition the RDC (Reliable Dynamic Communication)
condition. (This condition is described in Section 2.3, but its exact terms do not matter at
this point.)

There already exists an algorithm for reliable communication in dynamic networks
tolerating permanent Byzantine failures [19]. Hence, the question: is it possible to go further
in terms of reliability guarantees?

© Alexandre Maurer;
37 licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 27; pp. 27:1-27:11

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:alexandre.maurer@um6p.ma
https://doi.org/10.4230/LIPIcs.OPODIS.2020.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2

Self-Stabilizing Byzantine-Resilient Communication in Dynamic Networks

The concept of multitolerance [2, 12] describes the property of a system to tolerate
multiple fault-classes. One of the strongest possible level of multitolerance is the following;:
tolerating, not only a given number of permanent Byzantine failures, but also an arbitrary
number of transient failures. This second point consists in assuming that the system can
have any arbitrary initial state. More precisely: (1) each correct node can have any arbitrary
initial state, and (2) communication channels between nodes can contain arbitrary messages,
“sent but not yet received”. In other words, such an algorithm is self-stabilizing [9]: it
can recover from any incorrect initial state. Satisfying this property in the presence of
Byzantine failures can be particularly challenging: Byzantine nodes, in addition to their
usual malicious behavior, can also actively try to prevent stabilization. The problem of
reliable communication despite transient and Byzantine failures was already considered in
[18], but for a specific class of static networks and a non-standard criteria on Byzantine
failures (i.e. the distance between Byzantine failures).

Our contribution is the following. we present the first self-stabilizing Byzantine-resilient
algorithm for reliable communication in a dynamic network. We prove the correctness of our
algorithm under the following assumption: the aforementioned RDC condition is “always
eventually satisfied” — that is: for any time ¢, there always exists a time ¢’ > t where the
RDC condition is satisfied.

The rest of the paper is organized as follows. In Section 2, we present the setting
(definitions, assumptions...). In Section 3, we describe the problem. In Section 4, we
motivate the main assumption w.r.t. the problem (i.e., that the RDC condition is “always
eventually satisfied”). In Section 5, we describe our algorithm. In Section 6, we prove its
correctness.

2 Preliminaries

The setting is mostly similar to [19]. We recall several definitions below.

2.1 Network model

We consider a continuous temporal domain RT. We model the system as a time varying
graph, as defined by Casteigts, Flocchini, Quattrociocchi and Santoro [5], where vertices
represent the processes and edges represent the communication links (or channels). A time
varying graph is a dynamic graph represented by a tuple G = (V| E, p, () where:

V' is the set of nodes.

E CV xV is the set of edges.

p: E xRt —{0,1} is the presence function: p(e,t) =1 indicates that edge e is present

at time t.

¢ : ExRT — R" is the latency function: ((e,t) = T indicates that a message sent at

time t through edge e will be received, at worst, at time ¢ + T'.

(Note: although one could imagine a simpler definition, we prefer to stick with the
standard definition of [5].)
2.2 Definitions

Informally, a dynamic path is a sequence of nodes a message can traverse, with respect to
network dynamicity and latency.
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» Definition 1 (Dynamic path). A sequence of distinct nodes (uy,...,u,) is a “dynamic
path from uy to u, starting after to” if there exists a sequence of times (t1,...,t,) such that

to <t) <ty <---<t,, and, Vi € {1,...,n — 1}, we have:

e; = (uj,ui41) € E, i.e., there exists an edge connecting u; to wit1.
Yt € [ti, ti + (e, t;)], plei, t) =1, d.e., u; can send a message to w41 at time t;.

Cles,ti) < tip1 — t;, i.e., the aforementioned message is received by time t; 1.

With this definition, we can now define the following elements:
Let Dyn(p,q,to) be the set of node sets {uy,...,u,} such that (p,uy,...,u,,q) is a
dynamic path starting after to (if (p,q) is a dynamic path starting after ¢y, Dyn(p, g, to)
contains an empty set).
For any nonempty set of nonempty node sets X = {S1,...,S,}, let Cut(X) be the set of
node sets C such that, Vi € {1,...,n}, CNS; # 0 (C contains at least one node from
each set S;).!
For any nonempty set of node sets X, we define MinCut(X) as follows:

If X contains an empty set, MinCut(X) = +o00.2

Otherwise: MinCut(X) = mincecu(x)|C| (the size of the smallest element of
Cut(X)).

We say that a node multicasts a message m when it sends m to all nodes in its current

local topology.3

2.3 Setting and assumptions

We make the same basic assumptions as previous works on the subject (e.g. [4, 7, 11, 15, 16,
17, 21, 22]):

1.
2.
3.

Each node has a unique identifier.

When a node g receives a message through channel (p, ¢), it knows that p sent the message.
Each node u is aware of its local topology at any given time ¢ (here, u knows the set of
nodes v such that p((u,v),t) = 1)%.

The time required for computation and sending messages is negligible w.r.t. the delays
between changes in the dynamic graph.

Permanent Byzantine failures. An omniscient adversary can select up to k& nodes as
Byzantine. These nodes can have a totally arbitrary and unpredictable behavior defined by
the adversary (including tampering or dropping messages, or simply crashing). Of course,

correct nodes are unable to know a priori which nodes are Byzantine.

Here, “one node” can be any node of S;.

Here, an empty set corresponds to the case where the two nodes p and ¢ trying to communicate are
directly connected at some point. Therefore, no amount of (other) nodes suppression will be sufficient
to disconnect them.

We use “multicast” instead of “broadcast” here to avoid common misunderstandings: “broadcast”
can refer to some very specific problems in distributed computing (e.g. “Byzantine Broadcast”), not
necessarily related to our problem.

Note that this assumption is necessary to ensure that each existing dynamic path can be explored. For
instance, it is possible that some edges appear during exactly the time required to send a message. In
such a situation, the sending node must be immediately aware of the topology change.
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Transient failures. In addition to Byzantine failures, for the correct nodes, any variable of
their algorithm can have any arbitrary initial value. Besides, for any two neighbor nodes u
and v, a channel connecting v and v can initially contain any set of messages “sent by u but

not yet received by v”. In the following, this set is called Sen(u,v).?

RDC condition. In [19], it was shown that the necessary and sufficient condition for
reliable communication in a dynamic network is the following: for each pair of nodes {p, ¢},
MinCut(Dyn(p, q,0)) > 2k.

We call this condition the RDC (Reliable Dynamic Communication) condition.

Main assumption. In this paper, we assume that the RDC condition is “always eventually
satisfied”, that is: for any two nodes p and ¢ and for any time to, MinCut(Dyn(p,q,to)) >
2k.% In Section 4, we motivate the “always” of “always eventually satisfied” w.r.t the problem.

3 The Problem

Let us assume that each correct node p has a fized attribute p.mg (the message that p wants
to broadcast, not part of the initial state) and a memory set p.Acc (where received messages
are stored). For each correct node ¢, when the set g.Acc contains a tuple (p,m), we say that
q accepts the message m as being from p.
The problem we try to solve is the following: finding an algorithm (for correct
nodes) such that, given the aforementioned setting, we have the two following properties:
For any two correct nodes p and ¢, there exists a time ¢ such that, after . ..

1. [Safety] There exists no m’ # p.mg such that (p,m’) € q.Acc.
2. [Liveness] (p,p.myp) € q.Acc.

The first property ensures that, after ¢, no wrong message (i.e., a message m’ pretending
to be the message p.mg from p) is accepted by ¢g. The second property ensures that, after ¢,
the correct message p.mg is accepted by gq.

Such an algorithm would be self-stabilizing w.r.t. these two properties: no matter what
the initial state is, these properties are always eventually satisfied.”

In the following, we motivate the main assumption w.r.t this problem (Section 4), then
present our algorithm (Section 5) and prove that it solves the problem (Section 6).

4 Motivation of the main assumption

In this section, we motivate the main assumption (stated in Section 2.3). In particular, we
motivate the “always” in “always eventually satisfied”. In Theorem 2 below, we show that, if
the RDC condition in just “eventually satisfied”, no algorithm can solve the desired problem
in the setting we consider. We do this by constructing two possible scenarios (allowed in this
setting) that lead to incompatible outcomes.

We do not assume any bound on the capacity of communication channels: the number of fake initial
messages “sent but not yet received” can be arbitrarily high.

If we take “always eventually satisfied” strictly, the proposition is: for any two nodes p and g and for
any time ¢, there exists to > ¢ such that MinCut(Dyn(p, q,to0)) > 2k. But this proposition immediately
implies the aforementioned (simpler) proposition.

As usually done in self-stabilization papers, we assume that the algorithm itself is “hardwired”, and
cannot be corrupted (otherwise, it would be impossible to give any guarantee: the behavior of all nodes
would be completely arbitrary). However, any variable used by the algorithm can have any arbitrary
initial value.
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Figure 1 Graph used for the proof of Theorem 2.

» Theorem 2. Let us assume the aforementioned setting (with transient failures, etc), but
with one small change: the RDC condition is just eventually satisfied (and not “always
eventually satisfied”). Then, there exists no algorithm solving the problem of Section 3.

Proof. Suppose the opposite: there exists such an algorithm. Let m; and ms be two distinct
messages.

Let us assume that £ = 0 (no Byzantine failures). Then, the RDC condition simplifies as
follows: there must exist one dynamic path between the sender and the receiver.

Consider the static network of Figure 1. In the following, we use this static network to
describe two dynamic networks, and show a contradiction. Let x be any message that can
be sent by ¢ to r.

We first describe a scenario Sy (z) (of which x is a parameter). In this scenario, p.mg = m;.
The evolution of the dynamic graph is the following:

Step 1: Edge e; appears, then disappears.
Step 2: Edge es appears, then disappears. During this time, r receives = from ¢.%

With Step 1, there exists a dynamic path from p to . Thus, as the algorithm solves the
desired problem, there exists a time ¢; after which we have (p,m;) € r.Acc.” Let y be the
state of r between Step 1 and Step 2.

We now describe a second scenario Ss. In this scenario, p.mg = mo, and the initial state
of r is y. The evolution of the dynamic graph is the following:

Step 1': Edge e appears, then disappears.
Step 2': Edge e3 appears, then disappears.

With these two steps, there exists a dynamic path from p to r. Thus, as the algorithm
solves the desired problem, there exists a time o after which we have (p, mq) € r.Acc. Let
t3 = max(ty,t2), and let 2’ be the message sent from ¢ to r during Step 2.

Now, let us consider (1) Si(z') after Step 1 and (2) S2. From the point of view of r,
what happens then is exactly the same: r starts in state y, then receives 2’ from ¢q. Thus,
according to both scenarios, after t3, we have both (p,m1) € r.Acc and (p, m2) € r.Acc.

As the algorithm solves the desired problem, it implies that p.my = m; = mo, which
contradicts our initial assumption (mq # ms). Thus, the result. |

5 Algorithm

In this section, we provide:
An explanation of the main intuition behind the algorithm (5.1).
A full description of our algorithm (5.2).
A more detailed explanation of the algorithm, to facilitate its understanding (5.3).

8 This can happen for any z, as the initial content of communication channels between nodes is arbitrary,
according to our model (see Section 2.3).

9 The fact that p sends a message to r through edge e; is implicit here, as the outcome of the algorithm
is assumed to be guaranteed by the RDC condition (in the context of this proof by contradiction).
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5.1 Intuition behind the algorithm

The initial idea of the algorithm is similar to [19]:
Broadcast each message through each possible dynamic path, and register the identifier
of the nodes forwarding the message.
Before accepting the message: check if the various instances of the same message satisfy
the RDC condition.

This is done through rules 2, 3 and 4 of the algorithm below. However, in a setting with
transient failures, this is not sufficient: for instance, it is possible that a false message has
already been accepted, or that enough messages have been sent to have a false message
accepted in the future.

To solve this problem, we associate an integer a to each message. Now, each message
looks like this: (s, m, S, a), where s is the sender (or pretending to be so), m is the content
of the message, and S is the set of nodes crossed by the message.

The key idea here is the following: the algorithm is designed so that false transient
messages are “stuck” with the value « they initially have (as shown in Lemma 3). Therefore,
if correct nodes keep broadcasting their message with increasing values of a (Rule 1), and if
we give priority to messages with the highest value of a (Rule 5), the correct messages are
eventually accepted. Of course, Byzantine nodes can still broadcast messages with arbitrarily
high values of «, but rules 2, 3 and 4 ensure that this will never be sufficient (according to
the assumptions on the topology of the network).

5.2 Full description

For each correct node u, let u.mg be the message that v wants to broadcast; v also maintains
the following variables:

An integer u.«v (with an arbitrary initial value).

Three memory sets u.Q, u.Accy and u.Acc (the initial content of these sets is completely

arbitrary).10

Let A(u, s, m) be the set of integers « such that (s, m, «) € u.Accg. Let Count(u, s,m) =
|A(u, s, m)|.
In Rule 1 below, “keep doing X” means that the algorithm will always eventually do X
(i.e., if t is the current time, there always exists a time t' > ¢ at which X is done).
Each correct node u obeys to the following rules:
Rule 1. Keep doing the following: w.c := w.cv + 1, and add {(u, u.mq, 0, u.ct)} to u.Q.
Rule 2. Whenever u.Q) or the set of neighbors of u changes!!: multicast u.(2.
Rule 3. When u receives a set Q' from a neighbor v: V(s,m,S,a) € ', if v ¢ S, add
(s,m,SU{v}, a) to u.Q.
Rule 4. When there exist s, m, a and n sets S1,...,.5, such that the following 3
conditions are satisfied:
1. Vie{l,...,n}, (s,m,S;U{s},a) € u.Qd.
2. MinCut({Si,...,Sn}) > k.
3. (s,m,a) ¢ u.Acco.
Add (s,m,a) to u.Accy.

108ee 5.3 for an explanation of the role of these memory sets.
1 See assumption 3 in Section 2.3.



A. Maurer 27:7

Rule 5. When there exist s and m such that the following 3 conditions are satisfied:
1. Count(u,s,m) > 1.
2. There exists no m’ # m such that Count(u, s, m) < Count(u, s, m’).
3. (s,m) ¢ u.Acc.
Do the following:
1. Vm/ such that (s,m’) € u.Ace, remove (s, m’) from u.Ace.
2. Add (s,m) to u.Acc.

5.3 Detailed explanation

In addition to the full description of the algorithm, we provide more detailed explanations
here, to facilitate its understanding.
First, let us explain the role of the variables of each correct node u.

The integer u.«v is a counter that can only increase. This mechanism is used to defeat
false transient messages, as we explain below.
The memory set u.{2 stores all messages received by u, without discrimination, as described
in Rule 3. The elements stored in this set are tuples (p,m, S, «), where. ..

p is supposedly the author of the message;

m is the content of the message supposedly sent by p (it can be any piece of information);

S is the set of nodes that supposedly forwarded the message;

« is an integer associated to the rest of the tuple.
The role of the memory set u.Accy is to store messages that are “pre-accepted”, that is:
messages that have been (or appear to have been) sent through several dynamic paths,
in accordance with the RDC condition. These messages are added to u.Accy in Rule 4.
The role of the memory set u.Acc is to store messages that are “truly accepted”, that is:
messages from u.Accy satisfying a particular condition w.r.t their integers «. The goal
is that, eventually, u.Acc contains each message from each correct node, and no false
message (that is: a tuple (s, m’) such that m’ # s.myg).

Now, let us provide an informal explanation for each rule, for a given node u.

Rule 1: This rule ensures that u always eventually does the following: increment its
counter u.c, and add its message u.mq (associated with the new value of u.a) to its set
u.§2.
Rule 2: This rule sends the content of .2 to all neighbors of u whenever u.) is updated
(which happens either in Rule 1 or 3).
Rule 3: Whenever u receives a set ' from a neighbor node v, it adds each tuple contained
in Q' to its own set u.(). However, before doing so, it adds v to the third element of the
tuple (i.e., the set S supposed to register all the nodes that forwarded this tuple).
Rule 4: This rule adds some elements to u.Accy (the set of “pre-accepted” messages)
when some conditions are satisfied in u.). More precisely: there must exist a node
identifier s, a message m, a value a and n sets of nodes (Si,...,S,) such that. ..
For each of these node sets, u.f) contains a tuple associating s, m, « and this node
set (enriched with s). This condition ensures that at least one of these sets actually
corresponds to the correct nodes that actually forwarded the message (as shown in the
correctness proof).
The n sets of nodes cannot be (all) cut by removing &k nodes (MinCut({S1,...,Sn}) >
u.Accy does not already contain (s, m, ).

OPODIS 2020
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The underlying idea of Rule 4 is to prevent k& Byzantine nodes from cooperating to make
u add false messages to u.Accy. Indeed, as shown in the correctness proof, & Byzantine
nodes are not sufficient to bypass the filter of Rule 4.

Rule 5: This rule adds some elements to u.Acc (the set of “truly accepted” messages)
when some conditions are satisfied in u.Accg. More precisely: when there exists a
node identifier s and a message m such that the number of tuples (s,m, ) € u.Accy is
unmatched by any other message m’, (s,m) is added to u.Ace, and replaces any previous
message (s, m’).

The underlying idea of Rule 5 is to (eventually) eliminate and replace any false transient
messages that u.Accy may initially contain: as correct messages keep being generated
with new values of « (according to Rule 1), they will eventually outnumber false messages.

6 Correctness proof

We prove the correctness of the algorithm in Theorem 9.
Before going further, we define Z, the set of values « such that a tuple (s, m, S, ) exists
somewhere in the system at t = 0:
Let Z; be the set of integers a such that, Va € Z7, the following proposition is true: at
t = 0, there exist s, m, S, u, v and Q such that € Sen(u,v) and (s,m, S, a) € Q.
Let Z5 be the set of integers « such that, Ya € Z5, the following proposition is true: at
t = 0, there exists s, m, S, and w such that (s,m, S, a) € u.Q.
Let Z = Z1 U Zg.

Overview of the proof

In Lemma 3, we show that no false message can be accepted when it is associated with
an integer a ¢ Z. Thus, the number of integers « used by false messages is bounded by
|Z| (Lemma 4).

In Lemma 5, we show that, for any aq, a correct node eventually broadcasts messages
with a > «ap.

In Lemma 6, we show that correct messages successfully broadcast along each dynamic
path. Thus, as shown in Lemma 7, each correct message with a large enough « is
eventually “pre-accepted” (that is, added to the set Accy of the receiver).

From Lemmas 5 and 7, it follows that each correct message is eventually pre-accepted
(Lemma 8).

As the number of integers a used by false messages is bounded (Lemma 4), it follows
that, eventually, the only messages accepted are the correct ones (Theorem 9).

» Lemma 3. Let a ¢ Z. Let p and q be two correct nodes. Let m’ # p.mg. Then, we never
have (p,m’, a) € q.Acco.

Proof. Suppose the opposite: (p,m’, ) € q.Accg. Then, there exists {S1,...,S,} such that,
Vie{l,...,n}, (p,m',S; U{p}, a) € ¢.Q and MinCut({Si,...,Sn}) > k.

Suppose that each node set S € {S1,...,S,} contains at least one Byzantine node. If C
is the set of Byzantine nodes, then C' € Cut({S1,...,S,}) and |C| < k. This is impossible
because MinCut({Si,...,Sn}) > k. Therefore, there exists S € {S1,...,S5,} such that S
does not contain any Byzantine node.

Now, let us use the correct dynamic path corresponding to S to show that m’ = p.my.
Let n’ = |S U {p}|. Let us show the following property P; by induction, Vi € {0,...,n’}:
there exists a correct node u; and a set of correct nodes X; such that (p,m’, X;, @) € u;.Q
and | X;| = [SU{p}| —1.
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As S e {S1,..., 5.}, (p,m,SU{p}, a) € ¢.Q. Thus, Py is true if we take ug = ¢ and
Xo=8SU {p}

Let us now suppose that P; is true, for i < n’. As (p,m’, X;, @) € u;.Q, according to Rule
3 of our algorithm, it implies that u; received €’ from a node v, with (p, ', X, o) € &,
vé X and X; = X U{v}. Thus, | X|=|X;|-1=|SU{p} — (i +1).

As v € X; and X; is a set of correct nodes, v is correct and behaves according to our
algorithm. Then, as v sent €', according to Rule 2 of our algorithm, we necessarily have
Q' Cv.Q. Thus, as (p,m', X,a) € ', we have (p,m’, X, «) € v.Q. Hence, P;y1 is true if
we take u;41 = v and X;41 = X.

By the induction principle, P,/ is true. As |X,/| =0, X,y = @ and (p,m, T, @) € Uy Q.
As u, is a correct node and follows our algorithm, and as o ¢ Z, the only possibility to have
(p,m, &, ) € uy ., according to Rule 1, is that w, = p and m’ = p.mg, which contradicts
our initial hypothesis. Thus, the result. |

» Lemma 4. For any two correct nodes p and q, YVm' # p.mg, we have Count(q,p,m’) < |Z|.

Proof. Suppose that, at some point, there exist g, p and m’ such that Count(q,p,m’) > |Z|.
It implies that there exists a ¢ Z such that (p, m’, «) € q.Accy. According to Lemma 3, this
is impossible. Thus, Count(q,p,m’) < |Z|. <

» Lemma 5. Let p be a correct node. For any integer oy, there exists a > g such that p
multicasts a set Q containing (p, p-mo, D, ).

Proof. According to the algorithm, either we initially have p.av > «g, or we eventually have
p.a > ap. Thus, according to Rule 1, p eventually adds {(p, p.mo,?, @)} to p.Q, with a > «y.
Then, according to Rule 2, p multicasts a set Q containing (p, p.mo, 0, @). <

» Lemma 6. Let p and q be two correct nodes. Let o be an integer. Suppose that p
multicasts a set Q containing (p,p.mo, 0, @) at time t. Suppose that there exists a dynamic
path (uy,...,uy,), starting after t, such that p = uy, ¢ = uy,, and Vi € {1,...,n}, u; is
correct. Then, eventually, we have (p, p.mo, {u1, ..., Up_1} a) € ¢.Q.

Proof. Let us prove the following property P; by induction, Vi € {1,...,n}: u; eventually
multicasts a set Q containing (p, p.mo, {u1,...,u;—1}, ).

Py is true, as p multicasts a set  containing (p, p.mg, 0, «).

Suppose that P; is true, for some ¢ € {1,...,n—1}. Then, u;;1 eventually receives a set 2
from u; containing (p, p.mg, {u1,...,u;—1}, @), and adds (p, p.mo, {u1,...,u;}, @) to u;.L.
Thus, according to Rule 2, u; multicasts a set ' containing (p, p.mg, {u1, ..., u;}, a), and

Piy1 is true.

As P, is true, u,, = ¢ eventually multicasts a set Q containing (p, p.mo, {u1,...,un_1}, ).
According to the algorithm, it implies that (p, p.mo, {u1,...,un—1}, ) € ¢.0. <

» Lemma 7. Let p and q be two correct nodes. Let a be an integer. Suppose that p multicasts
a set Q) containing (p, p.mo, D, a) at time t. Then, eventually, we have (p, p.mg,a) € q.Accy.

Proof. Let {S1,...,S,} be the set of node sets S € Dyn(p, ¢,t) that contain no Byzantine
node. Similarly, let {X7,..., X, } be the set of node sets X € Dyn(p,q,t) that contain at
least one Byzantine node.

27:9
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Let us suppose that MinCut({S1,...,5,}) < k. Then, there exists a node set C' €
Cut({S1,...,S,}) such that |C| < k. Let C' = C U B (where B is the set of Byz-
antine nodes). Thus, C' € Cut({S1,...,S.} U{X1,...,Xw}) = Cut(Dyn(p,q,t)), and
|C'| < 2k. Thus, MinCut(Dyn(p,q,t)) < 2k, which contradicts our hypothesis. Therefore,
MinCut({S1,...,S.}) > k.

VS ={v1,...,un} € Dyn(p,q,t), (p,v1,...,0n,q) is a dynamic path. Therefore, according
to Lemma 6, VS € {S1,...,S,}, we eventually have (p,p.mo, {p} U {v1,...,0.}, ) € ¢.Q.
Thus, according to the algorithm, we eventually have (p, p.mg, ) € q.Accy. |

» Lemma 8. Let p and q be two correct nodes. Vag, there exists o > «qg such that we
eventually have (p,p.mg, @) € q.Accy.

Proof. The result follows from Lemma 5 and Lemma 7. ]

» Theorem 9. For any two correct nodes p and q, there exists a time t such that, aftert,
(1) there exists no m’ # p.mg such that (p,m’) € q.Acc, and (2) (p,p.mg) € q.Acc.

Proof. According to Lemma 4, Vm' # p.mg, Count(q,p,m’') <|Z|. According to Lemma 8
we eventually have Count(q,p, p-mg) > |Z| + 1. Thus, the result, according to Rule 5 of our
algorithm. <

7 Conclusion

In this paper, we provided the first self-stabilizing and Byzantine-resilient algorithm for
reliable communication in dynamic networks, and proved its correctness. To go further,
one could consider more probabilistic settings: random positions for Byzantine nodes (each
node may have a given probability to be Byzantine), random evolution of the dynamic
graph. .. One could also consider permanent failures at the level of communication channels
(e.g., regularly and randomly dropping messages). Finally, an interesting open question
would be to consider the time and space complexity of solving this problem, and see if some
optimizations could be made w.r.t. these metrics.
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