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Abstract
Considering asynchronous shared memory systems in which any number of processes may crash,
this work identifies and formally defines relaxations of queues and stacks that can be non-blocking
or wait-free while being implemented using only read/write operations. Set-linearizability and
Interval-linearizability are used to specify the relaxations formally, and precisely identify the subset
of executions which preserve the original sequential behavior. The relaxations allow for an item to
be returned more than once by different operations, but only in case of concurrency; we call such
a property multiplicity. The stack implementation is wait-free, while the queue implementation is
non-blocking. Interval-linearizability is used to describe a queue with multiplicity, with the additional
relaxation that a dequeue operation can return weak-empty, which means that the queue might be
empty. We present a read/write wait-free interval-linearizable algorithm of a concurrent queue. As
far as we know, this work is the first that provides formalizations of the notions of multiplicity and
weak-emptiness, which can be implemented on top of read/write registers only.
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1 Introduction

In the context of asynchronous crash-prone systems where processes communicate by accessing
a shared memory, linearizable implementations of concurrent counters, queues, stacks, pools,
and other concurrent data structures [32] need extensive synchronization among processes,
which in turn jeopardizes performance and scalability. Moreover, it has been formally shown
that this cost is sometimes unavoidable, under various specific assumptions [11, 12, 19].
However, often applications do not require all guarantees offered by a linearizable sequential
specification [38]. Thus, much research has focused on improving performance of concurrent
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13:2 Relaxed Queues and Stacks from Read/Write Operations

data structures by relaxing their semantics. Furthermore, several works have focused on
relaxations for queues and stacks, achieving significant performance improvements (e.g.,
[21, 22, 28, 38]).

It is impossible however to implement queues and stacks with only Read/Write operations,
without relaxing their specification. This is because queues and stacks have consensus
number two (i.e. they allow consensus to be solved among two processes but not three),
while the consensus number of Read/Write operations is only one [23], hence too weak to
wait-free implement queues and stacks. Thus, atomic Read-Modify-Write operations, such
as Compare&Swap or Test&Set, are required in any queue or stack implementation. To the
best of our knowledge, even relaxed versions of queues or stacks have not been designed that
avoid the use of Read-Modify-Write operations.

In this article, we are interested in exploring if there are meaningful relaxations of queues
and stacks that can be implemented using only simple Read/Write operations, namely, if
there are non-trivial relaxations with consensus number one. Hence, this work is a theoretical
investigation of the power of the crash Read/Write model for relaxed data structures.

Contributions
We identify and formally define relaxations of queues and stacks that can be implemented
using only simple Read/Write operations. We consider queue and stack relaxations with
multiplicity, where an item can be extracted by more than one dequeue or pop operation,
instead of exactly once. However, this may happen only in the presence of concurrent
operations. As already argued [30], this type of relaxation could be useful in a wide range of
applications, such as parallel garbage collection, fixed point computations in program analysis,
constraint solvers (e.g. SAT solvers), state space search exploration in model checking, as
well as integer and mixed programming solvers.

One of the main challenges in designing relaxed data structures lies in the difficulty of
formally specifying what is meant by “relaxed specification”. To provide a formal specification
of our relaxations, we use set-linearizability [33] and interval-linearizability [14], specification
methods that are useful to specify the behavior of a data structure in concurrent patterns
of operation invocations, instead of only in sequential patterns. Using these specification
methods, we are able to precisely state in which executions the relaxed behavior of the data
structure should take place, and demand a strict behavior (not relaxed), in other executions,
especially when operation invocations are sequential.

First Contribution. We define a set-concurrent stack with multiplicity, in which no items
are lost, all items are pushed/popped in LIFO order but an item can be popped by multiple
operations, which are then concurrent. We define a set-concurrent queue with multiplicity
similarly. In both cases we present set-linearizable implementations based only on Read/Write
operations. The stack implementation is wait-free [23], while the queue implementation
is non-blocking [25]. Our set-concurrent implementations imply Read/Write solutions for
idempotent work-stealing [30] and k-FIFO [28] queues and stacks.

Second Contribution. We define an interval-concurrent queue with a weak-emptiness check,
which behaves like a classical sequential queue with the exception that a dequeue operation
can return a control value denoted weak-empty. Intuitively, this value means that the
operation was concurrent with dequeue operations that took the items that were in the
queue when it started, thus the queue might be empty. First, we describe a wait-free
interval-linearizable implementation based on Fetch&Inc and Swap operations. Then, using
the techniques in our set-linearizable stack and queue implementations, we obtain a wait-free
interval-linearizable implementation using only Read/Write operations.
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Our interval-concurrent queue with weak-emptiness check is motivated by a theoretical
question that has been open for more than two decades [4]: it is unknown if there is a wait-free
linearizable queue implementation based on objects with consensus number two (e.g. Fetch&Inc
or Swap), for any number of processes. There are only such non-blocking implementations
in the literature, or wait-free implementations for restricted cases (e.g. [10, 18, 29, 16, 17]).
Interestingly, our interval-concurrent queue allows us to go from non-blocking to wait-freedom.

Since we are interested in the computability power of Read/Write operations to implement
relaxed concurrent objects (that otherwise are impossible), our algorithms are presented in
an idealized shared-memory computational model. We hope these algorithms will help to
develop a better understanding of fundamentals that can derive solutions for real multicore
architectures, with good performance and scalability.

Related Work
It has been frequently pointed out that classic concurrent data structures have to be relaxed
in order to support scalability, and examples are known showing how natural relaxations on
the ordering guarantees of queues or stacks can result in higher performance and greater
scalability [38]. Thus, for the past ten years there has been a surge of interest in relaxed
concurrent data structures from practitioners (e.g. [34]). Also, theoreticians have identified
inherent limitations in achieving high scalability in the implementation of linearizable
objects [11, 12, 19].

Some articles relax the sequential specification of traditional data structures, while others
relax their correctness condition requirements. As an example of relaxing the requirement
of a sequential data structure, [22, 27, 28, 35] present a k-FIFO queue (called out-of-order
in [22]) in which elements may be dequeued out of FIFO order up to a constant k ≥ 0. A
family of relaxed queues and stacks is introduced in [39], and studied from a computability
point of view (consensus numbers). It is defined in [22] the k-stuttering relaxation of a
queue/stack, where an item can be returned by a dequeue/pop operation without actually
removing the item, up to k ≥ 0 times, even in sequential executions. Our queue/stack with
multiplicity is a stronger version of k-stuttering, in the sense that an item can be returned
by two operations if and only if the operations are concurrent. Relaxed priority queues (in
the flavor of [39]) and associated performance experiments are presented in [6, 42].

Other works design a weakening of the consistency condition. For instance, quasi-
linearizability [3], which models relaxed data structures through a distance function from
valid sequential executions. This work provides examples of quasi-linearizable concurrent
implementations that outperform state of the art standard implementations. A quantitative
relaxation framework to formally specify relaxed objects is introduced in [21, 22] where relaxed
queues, stacks and priority queues are studied. This framework is more powerful than quasi-
linearizability. It is shown in [40] that linearizability and three data type relaxations studied
in [22], k-Out-of-Order, k-Lateness, and k-Stuttering, can also be defined as consistency
conditions. The notion of local linearizability is introduced in [20]. It is a relaxed consistency
condition that is applicable to container-type concurrent data structures like pools, queues,
and stacks. The notion of distributional linearizability [5] captures randomized relaxations.
This formalism is applied to MultiQueues [37], a family of concurrent data structures
implementing relaxed concurrent priority queues.

The previous works use relaxed specifications, but still sequential, while we relax the
specification to make it concurrent (using set-linearizability and interval-linearizability).

The notion of idempotent work stealing is introduced in [30], where LIFO, FIFO and
double-ended set implementations are presented; these implementations exploit the relaxed
semantics to deliver better performance than usual work stealing algorithms. Similarly
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13:4 Relaxed Queues and Stacks from Read/Write Operations

to our queues and stacks with multiplicity, the idempotent relaxation means that each
inserted item is eventually extracted at least once, instead of exactly once. In contrast to our
work, the algorithms presented in [30] use Compare&Swap (in the Steal operation). Being
a practical-oriented work, formal specifications of the implemented data structures are not
given.

Organization. The article is organized as follows. Section 2 presents the model of com-
putation and the linearizability, set-linearizability and interval-linearizability correctness
conditions. Sections 3 and 4 contain our Read/Write set-linearizable queue and stack imple-
mentations, and Section 5 explains some implications obtained from these implementations.
Our interval-linearizable queue implementation is presented in Section 6. Finally, Section 7
ends the paper with some final remarks. Full proofs of our claims can be found in the full
version of the paper [15].

2 Preliminaries

Model of Computation. We consider the standard concurrent system model with n asyn-
chronous processes, p1, . . . , pn, which may crash at any time during an execution. The index
of process pi is i. Processes communicate with each other by invoking atomic operations on
shared base objects. A base object can provide atomic Read/Write operations (henceforth
called a register), or more powerful atomic Read-Modify-Write operations, such as Fetch&Inc,
Swap or Compare&Swap.

A (high-level) concurrent object, or data type, is, roughly speaking, defined by a state
machine consisting of a set of states, a finite set of operations, and a set of transitions between
states. The specification does not necessarily have to be sequential, namely, (1) a state might
have pending operations and (2) state transitions might involve several invocations. The
following subsections formalize this notion and the different types of objects.

An implementation of a concurrent object T is a distributed algorithm A consisting
of local state machines A1, . . . , An. Local machine Ai specifies which operations on base
objects pi executes in order to return a response when it invokes a high-level operation of
T . A process is sequential: it can invoke a new high-level operations only when its previous
operation has been responded. Each of these base objects operation invocations is a step.
Thus, an execution of A is a possibly infinite sequence of steps, namely, executions of base
objects operations, plus invocations and responses to high-level operations of the concurrent
object T .

An operation in an execution is complete if both its invocation and response appear in
the execution. An operation is pending if only its invocation appears in the execution. A
process is correct in an execution if it takes infinitely many steps.

An implementation is wait-free if every process completes each operation it invokes [23].
An implementation is non-blocking if whenever processes take steps and at least one of
them does not crash, at least one of them terminates its operation [25]. Thus, a wait-free
implementation is non-blocking but not necessarily vice versa.

The consensus number of a shared object O is the maximum number of processes that can
solve consensus, using any number of instances of O in addition to any number of Read/Write
registers [23]. Consensus numbers induce the consensus hierarchy where objects are classified
according their consensus numbers. The simple Read/Write operations stand at the bottom
of the hierarchy, with consensus number one; these operations are the least expensive ones
in real multicore architectures. At the top of the hierarchy we find operations with infinite
consensus number, like Compare&Swap, that provide the maximum possible coordination.
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Correctness Conditions. Linearizability [25] is the standard notion used to define a correct
concurrent implementation of an object defined by a sequential specification. Intuitively,
an execution is linearizable if its operations can be totally ordered, while respecting the
execution order its non-concurrent operations (see below).

A sequential specification of a concurrent object T is a state machine specified through a
transition function δ. Given a state q and an invocation inv(op), δ(q, inv(op)) returns the
tuple (q′, res(op)) (or a set of tuples if the machine is non-deterministic) indicating that the
machine moves to state q′ and the response to op is res(op). In our specifications, res(op)
is written as a tuple 〈op : r〉, where r is the output value of the operation. The sequences
of invocation-response tuples, 〈inv(op) : res(op)〉, produced by the state machine are its
sequential executions.

Linearizability

Set-Linearizability

Interval-Linearizability

Figure 1 Linearizability requires a total order on the operations, set-linearizability allows several
operations to be linearized at the same linearization point, while interval-linearizability allows an
operation to be decomposed into several linearization points.

To formalize linearizability we define a partial order <α on the completed operations of
an execution α: op <α op′ if and only if res(op) precedes inv(op′) in α. Two operations are
concurrent, denoted op||αop′, if they are incomparable by <α. The execution is sequential if
<α is a total order.

Let A be an implementation of a concurrent object T . An execution α of A is linearizable
if there is a sequential execution S of T such that: (1) S contains every completed operation
of α and might contain some pending operations. Inputs and outputs of invocations and
responses in S agree with inputs and outputs in α. (2) For every two completed operations
op and op′ in α, if op <α op′, then op appears before op′ in S. We say that A is linearizable
if each of its executions is linearizable.

To formally specify our relaxed queues and stacks, we use the formalism provided by
the set-linearizability and interval-linearizability consistency conditions [14, 33]. Roughly
speaking, set-linearizability allows us to linearize several operations in the same point, namely,
all these operations are executed concurrently, while interval-linearizability allows operations
to be linearized concurrently with several non-concurrent operations. Figure 1 schematizes the
differences between the three consistency conditions where each double-end arrow represents
an operation execution.

A set-concurrent specification of a concurrent object differs from a sequential execu-
tion in that δ receives as input the current state q of the machine and a set Inv =
{inv(op1), . . . , inv(opt)} of operation invocations, and δ(q, Inv) returns (q′, Res), where
q′ is the next state and Res = {res(op1), . . . , res(opt)} are the responses to the invocations
in Inv. Intuitively, all operations op1, . . . , opt are performed concurrently and move the
machine from state q to q′. The sets Inv and Res are called concurrency classes. Observe
that a set-concurrent specification in which all concurrency classes have a single element
corresponds to a sequential specification.
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13:6 Relaxed Queues and Stacks from Read/Write Operations

Let A be an implementation of a concurrent object T . An execution α of A is set-
linearizable if there is a set-concurrent execution S of T such that: (1) S contains every
completed operation of α and might contain some pending operations. Inputs and outputs
of invocations and responses in S agree with inputs and outputs in α. (2) For every two
completed operations op and op′ in α, if op <α op′, then op appears before op′ in S. We say
that A is set-linearizable if each of its executions is set-linearizable.

In an interval-concurrent specification, some operations might be pending in a given
state q, namely, the state records that there is an operation of a process without response.
We now have that in (q′, Res) = δ(q, Inv), some of the operations that are pending in q

might still be pending in q′ and operations invoked in Inv may be pending in q′, therefore
Res contains the responses to the operations that are completed when moving from q to q′.

Let A be an implementation of a concurrent object T . An execution α of A is interval-
linearizable if there is an interval-concurrent execution S of T such that: (1) S contains every
completed operation of α and might contain some pending operations. Inputs and outputs
of invocations and responses in S agree with inputs and outputs in α. (2) For every two
completed operations op and op′ in α, if op <α op′, then op appears before op′ in S. We say
that A is interval-linearizable if each of its executions is interval-linearizable.

3 Set-Concurrent Stacks with Multiplicity

By the universality of consensus [23], we know that, for every sequential object there is a
linearizable wait-free implementation of it, for any number of processes, using Read/Write
registers and base objects with consensus number ∞, e.g. Compare&Swap [24, 36, 41].
However, the resulting implementation might not be efficient because first, as it is universal,
the construction does not exploit the semantics of the particular object, and Compare&Swap
may be an expensive base operation. Moreover, such an approach would prevent us from
investigating the power and the limit of the Read/Write model (as it was done for Snapshot
object for which there are several linearizable wait-free Read/Write efficient implementations,
e.g. [1, 8, 26]) and find accordingly meaningful Read/Write-based specifications of relaxed
sequential specifications with efficient implementations.

A Wait-free Linearizable Stack from Consensus Number Two. Afek, Gafni and Morisson
proposed in [2] a simple linearizable wait-free stack implementation for n ≥ 2 processes,
using Fetch&Inc and Test&Set base objects, whose consensus number is 2. Figure 2 contains
a slight variant of this algorithm that uses Swap and readable Fetch&Inc objects, both with
consensus number 2 (the authors explain in [2] how to replace Test&Set with Swap).

A Push operation reserves a slot in Item by atomically reading and incrementing Top
(Line 01) and then places its item in the corresponding position (Line 02). A Pop operation
simply reads the Top of the stack (Line 04) and scans down Items from that position
(Line 05), trying to obtain an item with the help of a Swap operation (Lines 06 and 07); if
the operation cannot get a item (a non-⊥ value), it returns empty (Line 09). In what follows,
we call this implementation Seq-Stack. It is worth mentioning that, although Seq-Stack has
a simple structure, its linearizability proof is far from trivial, the difficult part being proving
that items are taken in LIFO order.

In a formal sense, Seq-Stack is the best we can do, from the perspective of the consensus
hierarchy: if there were a wait-free (or non-blocking) linearizable implementation based only
on Read/Write registers, we could solve consensus among two processes in the standard way, by
popping a value from the stack initialized to a single item containing a predefined value winner;
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Shared Variables:
Top : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Push(xi) is
(01) topi ← Top.Fetch&Inc()
(02) Items[topi].Write(xi)
(03) return true
end Push

Operation Pop() is
(04) topi ← Top.Read()− 1
(05) for ri ← topi down to 1 do
(06) xi ← Items[ri].Swap(⊥)
(07) if xi 6= ⊥ then return xi end if
(08) end for
(09) return ε
end Pop

Figure 2 Stack implementation Seq-Stack of Afek, Gafni and Morisson [2] (code for process pi).

this is a contradiction as consensus cannot be solved from Read/Write registers [24, 36, 41].
Therefore, there is no exact wait-free linearizable stack implementation from Read/Write
registers only. However, we could search for approximate solutions. Below, we show a
formal definition of the notion of a relaxed set-concurrent stack and prove that it can
be wait-free implemented from Read/Write registers. Informally, our solution consists in
implementing relaxed versions of Fetch&Inc and Swap with Read/Write registers, and plug
these implementations in Seq-Stack.

A Set-linearizable Read/Write Stack with Multiplicity. Roughly speaking, our relaxed
stack allows concurrent Pop operations to obtain the same item, but all items are returned
in LIFO order, and no pushed item is lost. Formally, our set-concurrent stack is specified as
follows:

I Definition 1 (Set-Concurrent Stack with Multiplicity). The universe of items that can be
pushed is N = {1, 2, . . .}, and the set of states Q is the infinite set of strings N∗. The initial
state is the empty string, denoted ε. In state q, the first element in q represents the top of
the stack, which might be empty if q is the empty string. The transitions are the following:
1. For q ∈ Q, δ(q,Push(x)) = (x · q, 〈Push(x) : true〉).
2. For q ∈ Q, 1 ≤ t ≤ n and x ∈ N : δ(x · q, {Pop1(), . . . ,Popt()}) = (q, {〈Pop1() :

x〉, . . . , 〈Popt() : x〉}).
3. δ(ε,Pop()) = (ε, 〈Pop() : ε〉).

I Remark 2. Every execution of the set-concurrent stack with all its concurrency classes
containing a single operation boils down to an execution of a sequential stack.

The following lemma shows that any algorithm implementing the set-concurrent stack
keeps the behavior of a sequential stack in several cases. In fact, the only reason the
implementation does not provide linearizability is due only to the Pop operations that are
concurrent.

I Lemma 3. Let A be any set-linearizable implementation of the set-concurrent stack with
multiplicity. Then,
1. All sequential executions of A are executions of the sequential stack.
2. All executions with no concurrent Pop operations are linearizable with respect to the

sequential stack.
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13:8 Relaxed Queues and Stacks from Read/Write Operations

3. All executions with Pop operations returning distinct values are linearizable with respect
to the sequential stack.

4. If Pop operations return the same value in an execution, then they are concurrent.

The algorithm in Figure 3 is a set-linearizable Read/Write wait-free implementation of the
stack with multiplicity, which we call Set-Conc-Stack. This implementation is a modification
of Seq-Stack. The Fetch&Inc operation in Line 01 in Seq-Stack is replaced by a Read and
Increment operations of a Read/Write wait-free linearizable Counter, in Lines 01 and 02 in
Set-Conc-Stack. This causes a problem as two Push operations can set the same value in
their topi local variables. This problem is resolved with the help of a two-dimensional array
Items in Line 03, which guarantees that no pushed item is lost: each row of Items now has
n entries, each of them associated with one and only process. Similarly, the Swap operation
in Line 06 in Seq-Stack is replaced by Read and Write operations in Lines 08 and 10 in
Set-Conc-Stack, together with the test in Line 09 which ensures that a Pop operation modifies
an entry in Items only if an item has been written in it. Thus, it is now possible that two
distinct Pop operations get the same non-⊥ value, which is fine because this can only happen
if the operations are concurrent. Object Top in Set-Conc-Stack can be any of the known
Read/Write wait-free linearizable Counter implementations1.

Shared Variables:
Top : Read/Write Counter object initialized to 1
Items[1, . . .][1, . . . , n] : Read/Write registers init. to ⊥

Operation Push(x) is
(01) topi ← Top.Read()
(02) Top.Increment()
(03) Items[topi, i].Write(x)
(04) return true
end Push

Operation Pop() is
(05) topi ← Top.Read()− 1
(06) for ri ← topi down to 1 do
(07) for si ← n down to 1 do
(08) xi ← Items[ri][si].Read()
(09) if xi 6= ⊥ then
(10) Items[ri][si].Write(⊥)
(11) return xi

(12) end if
(13) end for
(14) end for
(15) return ε
end Pop

Figure 3 Read/Write wait-free set-concurrent stack Set-Conc-Stack with multiplicity (code for
process pi).

I Theorem 4. The algorithm Set-Conc-Stack (Figure 3) is a Read/Write wait-free set-
linearizable implementation of the stack with multiplicity.

Proof sketch. The set-linearizability proof is a “reduction” that proceeds as follows. For
any execution E, we modify it and remove some of its operations to obtain another execution
G of the algorithm. Then, from G, we obtain an execution H of Seq-Stack, and show that
we can obtain a set-linearization SetLin(G) of G from any linearization Lin(H) of H. Finally,
we add to SetLin(G) the operations of E that were removed to obtain a set-linearization

1 To the best of our knowledge, the best implementation is in [7] with polylogarithmic step complexity,
on the number of processes, provided that the number of increments is polynomial.
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SetLin(E) of E. To obtain the execution G, we first obtain intermediate executions F and
then F ′, from which we derive G. For any value y 6= ε that is returned by at least two
concurrent Pop operations in E, we remove all these operations (invocations, responses and
steps) except for the first one that executes Line 10, i.e., the first among these operations
that marks y as taken in Items. Let F be the resulting execution of Set-Conc-Stack. Since
there are no two Pop operations in F popping the same item y 6= ε, then for every Pop
operation we can safely move backward each of its steps in Line 10 next to its previous step
in Line 08 (which corresponds to the same iteration of the for loop in Line 07). Thus, for
every Pop operation, Lines 08 to 10 correspond to a Swap operation. Let F ′ denote the
resulting equivalent execution.

⊥ x1
1 ⊥ · · · x1

2 x1
3 ⊥

⊥ ⊥ · · · ⊥· · ·

x3
1 x3

2⊥ · · · · · ·

⊥ x4
1 · · · x4

2 · · · x4
3 ⊥

...
...

...
...

...
...

...

1 2 n

1

2

3

4

· · · · · ·
x1
1

x1
2

x1
3

x3
1

x3
2

x4
1

x4
2

x4
3

...

1

2

3

4

5

6

7

8

...

Figure 4 An example of the codification of the one-dimensional array Items of Seq-Stack in the
two-dimensional array Items in Set-Conc-Stack. The untouched entries are represented with ⊥.

We now permute the order of some steps in F ′ to obtain G. For each integer b ≥ 0, let
t(b) ∈ [0, . . . , n] be the number of Push operations in F ′ that store their items in row Items[b].
Namely, each of these operations obtains b in its Read steps in Line 01. Let Pushb1, . . . ,Pushbt(b)
denote all these operations. For each Pushbj , let xbj denote the item the operation pushes, let
ebj denote its Read step in Line 01, and let indbj be the index of the process that performs
operation Pushbj . Hence, Pushbj stores its item xbj in Items[b][indbj ] when performs Line 03.
Without loss of generality, let us suppose that indb1 < indb2 < . . . < indbt(b). Observe that
Pushb1, . . . ,Pushbt(b) are concurrent.

Let f b be the first among the steps eb1, . . . , ebt(b) that appears in F ′. As explained in the
full proof, moving forward each ebj right after f b produces another execution equivalent to
F ′. Thus, we obtain G by moving forward all steps eb1, . . . , ebt(b) up to the position of f b,
and place them in that order, eb1, . . . , ebt(b), for every b ≥ 0. Intuitively, all Pushb1, . . . ,Pushbt(b)
concurrently read Top and then concurrently increment it.

The main observation now is that G already corresponds to an execution of Seq-Stack,
if we consider the entries in Items in their usual order (first row, then column). We say
that Items[r][s] is touched in G if there is a Push operation that writes its item in that
entry; otherwise, Items[r][s] is untouched. Now, for every b ≥ 0, in G all Pushb1, . . . ,Pushbt(b)
execute Line 01 one right after the other, in order eb1, . . . , ebt(b). Also, the items they push
appear in row Items[b] from left to right in order Pushb1, . . . ,Pushbt(b). Thus, we can think of
the touched entries in row Items[b] as a column with the left most element at the bottom,
and pile all rows of Items with Items[0] at the bottom. Figure 4 depicts an example of the
transformation. In this way, each ebj corresponds to a Fetch&Inc operation and every Pop
operations scans the touched entries of Items in the order Seq-Stack does (note that it does
not matter if the operation start scanning in a row of Items with no touched entries, since
untouched entries are immaterial). Thus, from G we can obtain an execution H of Seq-Stack.
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Any linearization Lin(H) of H is indeed a set-linearization of F and G with each concur-
rency class having a single operation. To obtain a set-linearization SetLin(E) of E, we put
every Pop operation of E that is removed to obtain F , in the concurrency class of Lin(H)
with the Pop operation that returns the same item. Therefore, E is set-linearizable. J

It is worth observing that indeed it is simple to prove that Set-Conc-Stack is an implement-
ation of the set-concurrent pool with multiplicity, namely, Definition 1 without LIFO order
(i.e. q is a set instead of a string). The hard part in the previous proof is the LIFO order,
which is shown through a reduction to the (nontrivial) linearizability proof of Seq-Stack [2].

A Renaming-based Performance-related Improvement. When the contention on the
shared memory accesses is small, a Pop operation in Set-Conc-Stack might perform several
“useless” Read operations in Line 08, as it scans all entries of Items in every row while trying
to get a non-⊥ value, and some of these entries might never store an item in the execution
(called untouched in the proof of Theorem 4). This issue can be mitigated with the help of
an array Ren with instances of any Read/Write f(n)-adaptive renaming. In f(n)-adaptive
renaming [9], each process starts with its index as input and obtains a unique name in the
space {1, . . . , f(p)}, where p denotes the number of processes participating in the execution.
Several adaptive renaming algorithms have been proposed (see e.g. [13]); a good candidate is
the simple (p2/2)-adaptive renaming algorithm of Moir and Anderson with O(p) individual
step complexity [31].

Push operations storing their items in the same row Items[b], which has now infinite length,
dynamically decide where in the row they store their items, with the help of Ren[b].Rename(·)
before performing Line 02. Additionally, these operations announce the number of operations
that store values in row Items[b] by incrementing a counter NOPS [b] before incrementing
Top in Line 02. In this way, a Pop operation first reads the value x of NOPS [ri] before the
for loop in Line 06, and then scans only that segment of Items[ri] in the for loop in Line 07,
namely, Item[ri][1, . . . , f(x)].

Note that if the contention is small, say O(logx n), every Pop operation scans only the
first entries O(log2x n) of row Items[b] as the processes storing items in that row rename
in the space {1, . . . , (log2x n)/2}, using the Moir and Anderson (p2/2)-adaptive renaming
algorithm. Finally, observe that n does not to be known in the modified algorithm (as in
Seq-Stack).

4 Set-Concurrent Queues with Multiplicity

We now consider the linearizable queue implementation in Figure 5, which uses objects with
consensus number two. The idea of the implementation, which we call Seq-Queue, is similar
to that of Seq-Stack in the previous section. Differently from Seq-Stack, whose operations
are wait-free, Seq-Queue has a wait-free Enqueue and a non-blocking Dequeue.

Seq-Queue is a slight modification of the non-blocking queue implementation of Li [29],
which in turn is a variation of the blocking queue implementation of Herlihy and Wing [25].
Each Enqueue operation simply reserves a slot for its item by performing Fetch&Inc to the tail
of the queue, Line 01, and then stores it in Items, Line 02. A Dequeue operation repeatedly
tries to obtain an item scanning Items from position 1 to the tail of the queue (from its
perspective), Line 07; every time it sees an item has been stored in an entry of Items,
Lines 09 and 10, it tries to obtain the item by atomically replacing it with >, which signals
that the item stored in that entry has been taken, Line 11. While scanning, the operation
records the number of items that has been taken (from its perspective), Line 13, and if this
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number is equal to the number of items that were taken in the previous scan, it declares the
queue is empty, Line 16. Despite its simplicity, Seq-Queue’s linearizability proof is far from
trivial.

Shared Variables:
Tail : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Enqueue(xi) is
(01) taili ← Tail.Fetch&Inc()
(02) Items[taili].Write(xi)
(03) return true
end Enqueue

Operation Dequeue() is
(04) taken′

i ← 0
(05) while true do
(06) takeni ← 0
(07) taili ← Tail.Read()− 1
(08) for ri ← 1 up to taili do
(09) xi ← Items[ri].Read()
(10) if xi 6= ⊥ then
(11) xi ← Items[ri].Swap(>)
(12) if xi 6= > then return xi end if
(13) takeni ← takeni + 1
(14) end if
(15) end for
(16) if takeni = taken′

i then return ε
(17) taken′

i ← takeni

(18) end while
end Dequeue

Figure 5 Non-blocking linearizable queue Seq-Queue from base objects with consensus number 2
(code for pi).

Similarly to the case of the stack, Seq-Queue is optimal from the perspective of the
consensus hierarchy as there is no non-blocking linearizable queue implementation from
Read/Write operations only. However, as we will show below, we can obtain a Read/Write
non-blocking implementation of a set-concurrent queue with multiplicity.

I Definition 5 (Set-Concurrent Queue with Multiplicity). The universe of items that can be
enqueued is N = {1, 2, . . .}, and the set of states Q is the infinite set of strings N∗. The
initial state is the empty string, denoted ε. In state q, the first element in q represents the
head of the queue, which might be empty if q is the empty string. The transitions are the
following:
1. For q ∈ Q, δ(q,Enqueue(x)) = (q · x, 〈Enqueue(x) : true〉).
2. For q ∈ Q, 1 ≤ t ≤ n, x ∈ N : δ(x · q, {Dequeue1(), . . . ,Dequeuet()}) = (q, {〈Dequeue1() :

x〉, . . . , 〈Dequeuet() : x〉}).
3. δ(ε,Dequeue()) = (ε, 〈Dequeue() : ε〉).

I Remark 6. Every execution of the set-concurrent queue with all its concurrency classes
containing a single operation is an execution of the sequential queue.

I Lemma 7. Let A be any set-linearizable implementation of the set-concurrent queue with
multiplicity. Then,
1. All sequential executions of A are executions of the sequential queue.
2. All executions with no concurrent Dequeue operations are linearizable with respect to the

sequential queue.
3. All executions with Dequeue operations returning distinct values are linearizable with

respect to the sequential queue.
4. If two Dequeue operations return the same value in an execution, then they are concurrent.
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Following a similar approach to that in the previous section, Seq-Queue can be modified
to obtain a Read/Write non-blocking implementation of a queue with multiplicity. The
algorithm is modified as follows: (1) replace the Fetch&Inc object in Seq-Queue with a
Read/Write wait-free Counter, (2) extend Items to a matrix to handle collisions, and (3)
simulate the Swap operation with a Read followed by a Write. The correctness proof of the
modified algorithm is similar to the correctness proof of Set-Conc-Stack. In fact, proving that
the algorithm implements the set-concurrent pool with multiplicity is simple, the difficulty
comes from the FIFO order requirement of the queue, which is shown through a simulation
argument.

I Theorem 8. There is a Read/Write non-blocking set-linearizable implementation of the
queue with multiplicity.

5 Implications

Avoiding Costly Synchronization Operations/Patterns. It is worth observing that Set-
Conc-Stack and Set-Conc-Queue allow us to circumvent the linearization-related impossibility
results in [12], where it is shown that every linearizable implementation of a queue or a stack,
as well as other concurrent operation executions as encountered for example in work-stealing,
must use either expensive Read-Modify-Write operations (e.g. Fetch&Inc and Compare&Swap)
or Read-After-Write patterns [12] (i.e. a process writing in a shared variable and then reading
another shared variable, may be performing operation on other variables in between).

In the simplest Read/Write Counter implementation we are aware of, the object is
represented via a shared array M with an entry per process; process pi performs Increment
by incrementing its entry, M [i], and Read by reading, one by one, the entries of M and
returning the sum. Using this simple Counter implementation, we obtain from Set-Conc-Stack
a set-concurrent stack implementation with multiplicity, devoided of (1) Read-Modify-Write
operations, as only Read/Write operations are used, and (2) Read-After-Write patterns, as in
both operations, Push and Pop, a process first reads and then writes. It similarly happens
with Set-Conc-Queue.

Work-stealing with multiplicity. Our implementations also provide relaxed work-stealing
solutions without expensive synchronization operation/patterns. Work-stealing is a popular
technique to implement load balancing in a distributed manner, in which each process
maintains its own pool of tasks and occasionally steals tasks from the pool of another process.
In more detail, a process can Put and Take tasks in its own pool and Steal tasks from another
pool. To improve performance, [30] introduced the notion of idempotent work-stealing which
allows a task to be taken/stolen at least once instead of exactly once as in previous work.
Using this relaxed notion, three different solutions are presented in that paper where the
Put and Take operations avoid Read-Modify-Write operations and Read-After-Write patterns;
however, the Steal operation still uses costly Compare&Swap operations.

Our set-concurrent queue and stack implementations provide idempotent work-stealing
solutions in which no operation uses Read-Modify-Write operations and Read-After-Write
patterns. Moreover, in our solutions both Take and Steal are implemented by Pop (or
Dequeue), hence any process can invoke those operations, allowing more concurrency. If we
insist that Take and Steal can be invoked only by the owner, Items can be a 1-dimensional
array. Additionally, differently from [30], whose approach is practical, our queues and stacks
with multiplicity are formally defined, with a clear and simple semantics.
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Out-of-order queues and stacks with multiplicity: The notion of a k-FIFO queue is
introduced in [28] (called k-out-of-order queue in [22]), in which items can be dequeued out
of FIFO order up to an integer k ≥ 0. More precisely, dequeueing the oldest item may require
up to k + 1 dequeue operations, which may return elements not younger than the k + 1
oldest elements in the queue, or nothing even if the queue is not empty. [28] presents also a
simple way to implement a k-FIFO queue, through p independent FIFO queue linearizable
implementations. When a process wants to perform an operation, it first uses a load balancer
to pick one of the p queues and then performs its operation. The value of k depends on p
and the load balancer. Examples of load balancers are round-robin load balancing, which
requires the use of Read-Modify-Write operations, and randomized load balancing, which does
not require coordination but can be computational locally expensive. As explained in [28],
the notion of a k-FIFO stack can be defined and implemented similarly.

We can relax the k-FIFO queues and stacks to include multiplicity, namely, an item can
be taken by several concurrent operations. Using p instances of our set-concurrent stack or
queue Read/Write implementations, we can easily obtain set-concurrent implementations of
k-FIFO queues and stacks with multiplicity, where the use of Read-Modify-Write operations
or Read-After-Write patterns are in the load balancer.

6 Interval-Concurrent Queues with Weak-Emptiness Check

A natural question is if in Section 4 we could start with a wait-free linearizable queue
implementation instead of Seq-Queue, which is only non-blocking, and hence derive a wait-
free set-linearizable queue implementation with multiplicity. It turns out that it is an
open question if there is a wait-free linearizable queue implementation from objects with
consensus number two. (Concretely, such an algorithm would show that the queue belongs
to the Common2 family of operations [4].) This question has been open for more than
two decades [4] and there have been several papers proposing wait-free implementations of
restricted queues [10, 18, 29, 16, 17], e.g., limiting the number of processes that can perform
a type of operations.

Shared Variables:
Tail : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Enqueue(xi) is
(01) taili ← Tail.Fetch&Inc()
(02) Items[taili].Write(xi)
(03) return true
end Enqueue

Operation Dequeue() is
(04) taili ← Tail.Read()− 1
(05) for ri ← 1 up to taili do
(06) xi ← Items[ri].Swap(⊥)
(07) if xi 6= ⊥ then return xi end if
(08) end for
(09) return ε
end Dequeue

Figure 6 A non-linearizable queue implementation (code for process pi).

The Tail-Chasing Problem. One of the main difficulties to solve when trying to design such
an implementations using objects with consensus number two is that of reading the current
position of the tail. This problem, which we call as tail-chasing, can be easily exemplified
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with the help of the non-linearizable queue implementation in Figure 6. The implementation
is similar to Seq-Stack with the difference that Dequeue operations scan Items in the opposite
order, i.e. from the head to the tail.

The problem with this implementation is that once a Dequeue has scanned unsuccessfully
Item (i.e., the items that were in the queue were taken by “faster” operations), it returns
ε; however, while the operation was scanning, more items could have been enqueued, and
indeed it is not safe to return ε as the queue might not be empty. Figure 7 describes an
execution of the implementation that cannot be linearized because there is no moment in
time during the execution of the Dequeue operation returning ε in which the queue is empty.
Certainly, this problem can be solved as in Seq-Queue: read the tail and scan again; thus, in
order to complete, a Dequeue operation is forced to chase the current position of the tail
until it is sure there are no new items.

Enqueue(x) Enqueue(y) Enqueue(z) Dequeue():x Dequeue():y

Dequeue():εreads
taili = 2

scans
Items[1]

scans
Items[2]

Figure 7 An example of the tail-chasing problem.

Inspired by this problem, below we introduce a relaxed interval-concurrent queue that
allows a Dequeue operation to return a weak-empty value, with the meaning that the
operation was not able take any of the items that were in the queue when it started but it
was concurrent with all the Dequeue operation that took those items, i.e., it has a sort of
certificate that the items were taken, and the queue might be empty. Then, we show that
such a relaxed queue can be wait-free implemented from objects with consensus number two.

A Wait-Free Interval-Concurrent Queue with Weak-Emptiness. Roughly speaking, in our
relaxed interval-concurrent queue, the state is a tuple (q, P ), where q denotes the state of
the queue and P denotes the pending Dequeue operations that eventually return weak-empty,
denoted εw. More precisely, P [i] 6= ⊥ means that process pi has a pending Dequeue operation.
P [i] is a prefix of q and represents the remaining items that have to be dequeued so that the
current Dequeue operation of pi can return εw. Dequeue operations taking items from the
queue, also remove the items from P [i], and the operation of pi can return εw only if P [i] is
ε. Intuitively, the semantics of εw is that the queue could be empty as all items that were in
the queue when the operations started have been taken. So this Dequeue operation virtually
occurs after all the items have been dequeued.

Enqueue(x) Enqueue(y) Enqueue(z) Dequeue():x Dequeue():y

Dequeue():εw

Figure 8 An interval-concurrent execution with a Dequeue operations returning weak-empty.

Figure 8 shows an example of an interval-concurrent execution of our relaxed queue
where the Dequeue operation returning εw is allowed to return only when x and y have been
dequeued. Observe that this execution is an interval-linearization of the execution obtained
from Figure 7 by replacing ε with εw.



A. Castañeda, S. Rajsbaum, and M. Raynal 13:15

I Definition 9 (Interval-Concurrent Queue with Weak-Empty). The universe of items that
can be enqueued is N = {1, 2, . . .} and the set of states is Q = N∗ × (N∗ ∪ {⊥})n, with the
initial state being (ε,⊥, . . . ,⊥). Below, a subscript denotes the ID of the process invoking an
operation. The transitions are the following:
1. For (q, P ) ∈ Q, 0 ≤ t, ` ≤ n− 1, δ(q, P,Enqueue(x),Dequeuei(1)(), . . . ,Dequeuei(t)()) con-

tains the transition (q · x, S, 〈Enqueue(x) : true〉, 〈Dequeuej(1)() : εw〉, . . . , 〈Dequeuej(`)() :
εw〉), satisfying that
a. i(k) 6= i(k′), i(k) 6= the id of the process invoking Enqueue(x), and j(k) 6= j(k′),
b. for each i(k), P [i(k)] = ⊥,
c. for each j(k), either P [j(k)] = ε, or P [j(k)] = ⊥ and q = ε and j(k) = i(k′) for

some k′,
d. for each 1 ≤ s ≤ n, if there is a k with s = j(k), then S[s] = ⊥; otherwise, if there is

k′ with s = i(k′), S[s] = q, else S[s] = P [s].
2. For (x · q, P ) ∈ Q, 0 ≤ t, ` ≤ n− 1, δ(x · q, P,Dequeue(),Dequeuei(1)(), . . . ,Dequeuei(t)())

contains the transition (q, S, 〈Dequeue() : x〉, 〈Dequeuej(1)() : εw〉, . . . , 〈Dequeuej(`)() :
εw〉), satisfying that
a. i(k) 6= i(k′), i(k) 6= the id of the process invoking Dequeue(), and j(k) 6= j(k′),
b. for each i(k), P [i(k)] = ⊥,
c. for each j(k), either P [j(k)] = x, or P [j(k)] = ⊥ and q = ε and j(k) = i(k′) for

some k′,
d. for each 1 ≤ s ≤ n, if there is a k with s = j(k), then S[s] = ⊥; otherwise, if there is

k′ with s = i(k′), S[s] = q, else S[s] is the string obtained by removing the first symbol
of P [s] (which must be x).

e. if x · q = ε and t, ` = 0, then x ∈ {ε, εw}.

I Remark 10. Every execution of the interval-concurrent queue with no dequeue operation
returning εw is an execution of the sequential queue.

I Lemma 11. Let A be any interval-linearizable implementation of the interval-concurrent
queue with weak-empty. Then, (1) all sequential executions of A are executions of the
sequential queue, and (2) all executions in which no Dequeue operation is concurrent with
any other operation are linearizable with respect to the sequential queue.

The algorithm in Figure 9, which we call Int-Conc-Queue, is an interval-linearizable
wait-free implementation of a queue with weak-emptiness, which uses base objects with
consensus number two. Int-Conc-Queue is a simple modification of Seq-Queue in which an
Enqueue operation proceeds as in Seq-Queue, while a Dequeue operation scans Items at most
two times to obtain an item, in both cases recording the number of taken items. If the two
numbers are the same (cf. double clean scan), then the operations return ε, otherwise it
returns εw.

I Theorem 12. The algorithm Int-Conc-Queue (Figure 9) is a wait-free interval-linearizable
implementation of the queue with weak-empty, using objects with consensus number two.

Interval-Concurrent Queue with Weak-emptiness and Multiplicity. Using the techniques
in Sections 3 and 4, we can obtain a Read/Write wait-free implementation of a even more
relaxed interval-concurrent queue in which an item can be taken by several dequeue operations,
i.e., with multiplicity. In more detail, the interval-concurrent queue with weak-emptiness
is modified such that concurrent Dequeue operations can return the same item and are
set-linearized in the same concurrency class, as in Definitions 1 and 5.
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Shared Variables:
Tail : Fetch&Inc object initialized to 1
Items[1, . . .] : Swap objects initialized to ⊥

Operation Enqueue(xi) is
(01) taili ← Tail.Fetch&Inc()
(02) Items[taili].Write(xi)
(03) return true
end Enqueue

Operation Dequeue() is
(04) for k ← 1 up to 2 do
(05) takeni[k]← 0
(06) taili ← Tail.Read()− 1
(07) for ri ← 1 up to taili do
(08) xi ← Items[ri].Read()
(09) if xi 6= ⊥ then
(10) xi ← Items[ri].Swap(>)
(11) if xi 6= > then return xi end if
(12) takeni[k]← takeni[k] + 1
(13) end if
(14) end for
(15) end for
(16) if takeni[1] = takeni[2] then return ε
(17) else return εw

(18) end if
end Dequeue

Figure 9 Wait-free interval-concurrent queue from consensus number 2 (code for pi).

We obtain a Read/Write wait-free interval-concurrent implementation of the queue with
weak-emptiness and multiplicity by doing the following: (1) replace the Fetch&Inc object in
Int-Conc-Queue with a Read/Write wait-free Counter, (2) extend Items to a matrix to handle
collisions, and (3) simulate the Swap operation with a Read followed by a Write. Thus, we
have:

I Theorem 13. There is a Read/Write wait-free interval-linearizable implementation of the
queue with weak-emptiness and multiplicity.

7 Final Discussion

Considering classical data structures initially defined for sequential computing, this work
has introduced new well-defined relaxations to adapt them to concurrency and investigated
algorithms that implement them on top of “as weak as possible” base operations. It has
first introduced the notion of set-concurrent queues and stacks with multiplicity, a relaxed
version of queues and tasks in which an item can be dequeued more than once by concurrent
operations. Non-blocking and wait-free set-linearizable implementations were presented, both
based only on the simplest Read/Write operations. These are the first implementations of
relaxed queues and stacks using only these operations. The implementations imply algorithms
for idempotent work-stealing and out-of-order stacks and queues.

The paper also introduced a relaxed concurrent queue with weak-emptiness check, which
allows a dequeue operation to return a “weak-empty certificate” reporting that the queue
might be empty. A wait-free interval-linearizable implementation using objects with consensus
number two was presented for such a relaxed queue. As there are only non-blocking linearizable
(not relaxed) queue implementations using objects with consensus number two, it is an open
question if there is such a wait-free implementation. The proposed queue relaxation allowed
us to go from non-blocking to wait-freedom using only objects with consensus number two.

This work also can be seen as a work prolonging the results described in [14] where the
notion of interval-linearizability was introduced and set-linearizability [33] is studied. It has
shown that linearizability, set-linearizability and interval-linearizability constitute a hierarchy
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of consistency conditions that allow us to formally express the behavior of non-trivial (and
still meaningful) relaxed queues and stacks on top of simple base objects such as Read/Write
registers. An interesting extension to this work is to explore if the proposed relaxations can
lead to practical efficient implementations. Another interesting extension is to explore if
set-concurrent or interval-concurrent relaxations of other concurrent data structures would
allow implementations to be designed without requiring the stronger computational power
provided by atomic Read-Modify-Write operations.
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