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Abstract. Today we can see a significant increase in testing tools avail­
able for both the developer and the tester. Those tools aim at the test­
ing of system implementation and vary according to the implementation 
paradigm, the programming language or the type of errors they seek to 
detect. In this paper, we present TAPIR, a white-box testing framework 
for Object-Oriented Programming. It was designed and implemented to 
detect failures in the sequence of calls that objects make. In that sense, 
we rely on Message Sequence Specification and Aspect-Oriented Pro­
gramming. Hence, TAPIR can be used in any Java project without the 
need to modify the implementation of such a project. Our framework is 
open source and is freely available.

Keywords: Verification and Validation, Testing, Message Sequence Spec­
ification, Aspect-Oriented Programming

1 Introduction

In 1994, Kirani and Tsai [2] presented a technique called Message Sequence Spec­
ification (MSS) that, in the context of an Object-Oriented program, describes 
the correct order in which the methods of a class should be invoked. The MSS 
associated with an object specifies all sequences of messages that the object can 
receive while still providing correct behavior. In this paper, we present TAPIR 
a framework that implements the concept of MSS as a dynamic testing tool. 
The framework was designed to detect failures in the sequence of calls made by 
objects. In that sense, we rely on the concept of Message Sequence Specification. 
Its implementation was done using Aspect-Oriented Programming [3] (AOP) 
and, therefore, it can be used in any Java project without the need to modify 
the implementation of the project. The first version, 1.0, of the framework was 
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introduced in [7] and then 2.0 was described in [4], Its latest version, 3.0, is pre­
sented in this paper. The change track of each version can be summarize here; 
Version 1.0 was limited to test only one instance of one class in the system. It 
was suitable only for usages where the singleton pattern was appropriate. Ver­
sion 2.0 could test multiple instances of a single class in the system. Version 3.0, 
the one presented here, can test multiple instances of multiples classes in the 
system.

2 A review of Message Sequence Specification

The MSS [2] associated with an object specifies all sequences of messages that 
the object can receive while still providing correct behavior. Their strategy used 
regular expressions to model the constraints over the correct order of the method 
invocation. Method names were used as the alphabet of the expression which was 
then used to statically verify the program’s implementation for improper method 
sequences. A runtime verification system identifies incorrect method invocations 
by checking for sequence consistency with respect to the sequencing constraints. 
According to Kirani’s specification, if a class C has a method Mi, this is noted 
as Cmx • Sequence relationships between two methods were classified into three 
categories, sequential, optional, and repeated. If the method Mi of C should 
be invoked before the method M2 of the same class, then this relationship is 
sequential and is represented as CAq • C'l/2 . If only one of the methods Mi 
and M2 can be invoked, then this relationship is optional and is represented as 
C’mi \ Cm2- Finally, if the method Mi can be invoked many times in a row then 
this is a repeated relationship and is represented as (CAq)*. For example, if a 
class X has three methods called create, process, and close, a possible sequencing 
constraint based on MSS could look like Xcreatee(Xprocess)* c[ose- If class X 
is part of a larger system S', then we could statically check the source code of S 
to see if all calls to V’s methods follow the defined expression. If a static analysis 
is not enough, we could implement a runtime verification system that tracks all 
calls to V’s methods and dynamically checks the sequence of calls against its 
regular expression. This technique can also be used to test the robustness of a 
system. Continuing with class X as an example, we can use the defined regular 
expression to create method sequences that are not a derivation from it, i.e. 
incorrect method sequences. These new sequences can be used to test how the 
class handles a misuse. For example, how does class X respond to the following 
sequence of calls?: Xcreate • Xclose • Xprocess

3 Previous Applications of Message Sequence 
Specification

Daniels & Tsai [1] extended the work of Kirani et al. [2] by testing with some se­
quences generated by the expression and others not generated by the expression. 
Also in 1999, Tsai et al. [9] presented Message Framework Sequence Specifica­
tions (MfSS), for generating scenario templates that can be used to generate 
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test cases to test applications developed using extensible design patterns and an 
object-oriented framework. This framework aim to test the dynamic typing and 
dynamic binding of an Object-Oriented program. MfSS involves with multiple 
objects, thus a sequence expression must use the object name together with its 
method name. The framework is suitable for the application of several testing 
technique such as positive testing, negative testing, test slicing, partition testing, 
boundary testing, random testing and stress testing based on scenario templates. 
The MSS presented in that paper is far more expressive than the one we are pre­
senting but, as far as we know, there is no tool or software that implement this 
methodology. The application of the MfSS shown in the original paper was done 
by hand and not with a software. In 2003, Tsai [8] used MSS as a verification 
mechanism to the UDDI servers in the context of Web Services (WS). WS are 
particularly interoperative between each other. This kind of complex relation­
ship was expressed using the MfSS presented in [9]. This approach was part of a 
larger set of testing mechanism for WS presented in that work. Unfortunately, 
only a partial part of the approach was implemented and it did not include the 
MfSS. In 2014, a Java-based tool for monitoring sequences of method calls was 
introduced [6], it had similar objectives as our work but they used annotations 
instead of AOP. In their work, they used annotations to specify method-call se­
quences in terms of regular expressions of method-call signatures. They included 
an implementation of the proposal, in the form of a tool called JMSeq. This tool 
runs alongside the application under test but in a different java virtual machine, 
hence there are two virtual machine running at the same time: one for the pro­
gram under test and the other for the JMSeq execution. Since the annotations 
must be included in the source code to test, the source code must be modified, 
and, potentially, new errors may arise. In our approach, AOP avoids the need 
of modifying the source code under test, hence reducing the possibility of new 
bugs. We introduced MSS as a black-box technique for testing visualizations 
interactions [5] in 2018. The technique is built on constraints imposed over the 
sequences of low-level interactions available in the visualization with User Action 
Notation and MSS. Instead of specifying a sequence constraint on the methods 
of a class, in this work we specify a Sequence Constraint on the Interactions 
(SCI) available in the visualization. This research also included the definition 
of coverage criteria for the technique, both for valid and invalid sequences. The 
work aims to generate two types of testing tools: one to dynamically test the 
correct usage of a visualization tool, i.e., while the user is using the visualization 
our method checks that interactions are being used accordingly to the SCI; and 
the other, to generate the test cases based on the SCI. So far, this research is 
only available as theory without a proper implementation. Turner used sequence 
specification for GUI testing in her Ph.D. thesis in 2019, with previous publi­
cations about this topic [10], [11], In these articles, interaction sequences are 
used as an abstraction of the interactive system to inform a model-based testing 
approach using lightweight formal methods. Interaction sequences provide an 
abstract view of the point at which the functional and interactive components 
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intersect. The formalization of interaction sequences and the modelling of those 
sequences was done using Finite State Automata.

4 TAPIR - An Object-Oriented Programming Testing 
Framework

TAPIR is a testing framework for object-oriented source code based on MSS 
using AOP. AOP allows us to create test cases without modifying the source 
code, and those test cases run automatically for every execution of the program 
under test. The use of MSS allows the developer to describe a regular expression 
for each class which represents its correct behavior. The framework takes each 
of these expressions, runs the program and checks that the methods are used 
according to its class specification. TAPIR can be classified as a dynamic analysis 
testing tool. A major feature of our framework is to be easy to use, with an 
easy to read and understand representation of the correct usage of each classes 
methods. Particularly, the framework was designed to be used by the developer, 
without the need of a testing specialist. The first thing the developer must do to 
use the framework is to create the regular expressions associated with the classes 
under test. These regular expressions must specify the correct behavior or order 
in which the methods of the classes should be called. In order to express this 
in a simple way, the developer must use symbols (i.e. characters) to represent 
each method. This means that the actual names of the methods are not used 
in the expressions. But, to be able to interpret it at some point the developer 
must create a map between the actual methods’ names and their corresponding 
symbol. Any method not included in the class’s regular expression is ignore by 
the framework. Hence, the developer is not required to use all the class’s methods 
in the regular expression. The developer must also specify how he/she wants the 
framework to behave in the event of an error. When the framework detects 
a sequence of calls that is not derived from its associated regular expression, 
it reports the error and can abort the execution or allow it to continue. This 
decision is in the hands of the developer and it can be specified independently for 
each defined regular expression. The regular expressions and the maps between 
methods and symbols are set in the Testing Setup, java class. The framework 
consists of two main components, an aspect, and a java class. The aspect is 
named Testing Core, aj and it contains the implementation of the framework’s 
core. Listing 1.1 shows an example with two classes: CA and CB. In this case, 
the correct order to use the CA class is: first, the object must be created. Then, 
there should be a call to f() followed by a call to g(). After that, there can 
be as many call as desired to either g() or h(). The final call of the sequence 
must be to h(). For the CB class, the correct use is: first, there should be a 
call to alpha() followed by a call to gamma() or, a call to gamma() follow by 
a call to beta(). Afterward, any method between alpha, beta or gamma can be 
called. The listing 1.1 shows how this information is input into TAPIR in the 
TestingSetup.java class.
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Listing 1.1. TAPIR configuration
//Testing setup for CA class
//Definition of the methods and their corresponding symbols 
mapObjectsToCallSequence = new HashMap<>();
mapMethodsToSymbols = new HashMap<String, String>(); 
mapMethodsToSymbols.putf' main.CA.<init>" , " c"); mapMethodsToSymbols.putf' main

.CA.f, "f); mapMethodsToSymbols. put(" main. CA.g" , "g"); 
mapMethodsToSymbols.putf' main.CA.h" , " h");

//Definition of the regular expression 
regularExpression = Pattern, compilef' cfg(g|h)*h”);
//Initializing the regular expressions controller 
matcher = regularExpression. matcherf"');
// All information related to how the class is tested is store in a Testinginformation 

instance
Testinginformation ti = new Testinglnformation(CA.class.toString(), 

mapObjectsToCallSequence, mapMethodsToSymbols, regularExpression, matcher, 
true);

TestingCore.mapClassToTestinglnformation.put(CA.class.toString(), ti);
//Testing setup for CB class
//Definition of the methods and their corresponding symbols 
mapObjectsToCallSequence = new HashMap<>(); 
mapMethodsToSymbols = new HashMap<String, String>(); mapMethodsToSymbols.

put(" main.CB.alpha" , "a”); mapMethodsToSymbols.putf'main.CB.gamma” , "g"); 
mapMethodsToSymbols.putf' main.CB.beta" , " b");

//Definition of the regular expression 
regularExpression = Pattern.compilef' (ag|gb)(a|g|b)*");
//initializing the regular expressions controller 
matcher = regularExpression. matcherf'");
// All information related to how the class is tested is store in a Testinginformation 

instance
ti = new Testinglnformation(CB.class.toString(), mapObjectsToCallSequence, 

mapMethodsToSymbols, regularExpression, matcher, false);
TestingCore.mapClassToTestinglnformation.put(CB.class.toString(), ti);

In Listing 1.2, we can see the framework output when the code portion of 
Listing 1.1 corresponding to the CA class is executed. In this case, the last call 
to f() does not follow the MSS specified for the CA class. As mentioned above, 
when an error is detected, TAPIR informs this by console indicating the class 
and object that produced the error. The method that violated the MSS, the MSS 
in question and the actual sequence of calls are also shown in the console. Finally, 
the system abort the execution because this is what the last true parameter of 
method Testing Information call indicates.

Listing 1.2. Error example for the CA class. The execution is aborted when the error 
is found.
CA cal = new CA();
cal.f();
cal.g();
ca 1. h ();
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cal.f();

------ ERROR FOUND--------
Class: class main.CA
Object Code: 977993101
Method Executed: main.CA.f
Regular Expression: cfg(g|h)*h
Execution Sequence: cfghf 
----------- SYSTEM ABORTING...------------

Listing 1.3. Error example for the CB class. The execution is allow to continue when 
the error is found.
CB cbl = new CB(); 
cbl.alpha(); 
cbl.alpha();
cbl.gamma(); 
cbl.gamma();

------ ERROR FOUND--------
Class: class main.CB
Object Code: 859417998
Method Executed: main.CB.alpha 
Regular Expression: (ag|gb)(a|g|b)* 
Execution Sequence: aa
— CONTINUING EXECUTION...------
------ ERROR FOUND--------
Class: class main.CB
Object Code: 859417998
Method Executed: main.CB.gamma
Regular Expression: (ag|gb)(a|g|b)*
Execution Sequence: aag
— CONTINUING EXECUTION...------

Listing 1.2 shows the framework output when the code portion of Listing 1.1 
corresponding to the CB class is executed. In this case, the second call to alphaQ 
does not follow the MSS specification for class CB. As configured in Listing 1.1, 
the last false parameter in the call to method Testing Information indicates that 
the execution must continue despite the existing errors. This is why, Listing 1.3 
shows multiple errors. The next section shows how the framework can be useful 
in a more complex real-life situation.

5 Case Study. Earth Defender

Earth Defender is a video game developed in one of our programming courses 
at the university. It’s a classic vertical shooter as Space Invader but with more 
modern features. It has 28000 lines of code distributed in 217 classes. It was 
developed in Java 1.8 with Eclipse IDE 4.4. There are three classes that are 
important for our case study; the PlayerlnteractionMananger class is responsible 
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for capturing the user interactions that control the space ship’s movements and 
shots. The Enemy class’s responsibility is to manage each enemy ship in the 
game; in particular, how each ship return a power up when destroyed. Finally, 
the GULGame class deals with all the graphical user interfaces of the game. 
Because of the limitation of the number of pages in this congress, we are not 
showing how the TestingSetup class should be configure for this case. We are 
only focusing on the regular expressions and the errors founds.

For the PlayerlnteractionMananger class, the three main methods to test are 
playerStartMove, play er Stop Move and playerShoot. Its MSS is ((a|&)*x)*, where 
a stands for playerStartMove, b for playerStopMove and x for playerShoot. This 
means that, under a correct behavior, the player can move several times before 
shooting. This can be repeated multiple times during a game session. Two meth­
ods are considered for theEnemy class’s MSS, those are takeDamage represented 
with a t and dropPowerUp, with a d. The MSS for this class is t*d; this means 
that each enemy in the game can take a lot of damage until it drops its power 
up. Power up are dropped when enemies are destroyed. Finally, the GUI-Game 
class has the more complex MSS. Six methods are used: inicializar starts the 
GUI game level, initLifeBar draws the life bar on screen, initScore draws the 
initial score of the player on screen, shoot draws the shooting effects on screen, 
changeLevel starts the next level once the player completes the current one and, 
finally, stopGame deals with the player’s death. These methods are represented 
by the symbols a, 6, c, h, i, and j, respectively. The MSS for the GUI.Game 
class is ((&ca(/i)*)i)*(&ca(/i)*)<7. The (&ca(A)*) part of the MSS represents the 
user playing a level. If the user wins the level, then he/she moves to the next 
level. This is shown in ((bca(7i)*)»)*. The game continues until the players dies, 
which is the second part of the MSS (bca(h)*)j.

5.1 Testing Earth Defender

We configured TAPIR to stop the execution of the game only when an error is 
encounter on the GUI-Game class. If errors are founds on the other two classes, 
TAPIR will inform them but allow the execution to continue. On the first test 
run of the game, we played the first level and lost. When we finished playing we 
found that TAPIR had reported three errors. The output of the framework can 
be seen in Listing 1.4. The three errors correspond to three different objects of 
the Enemy class. We can affirm that they are different objects because the object 
code that is reported in each error is different. In all three cases, by observing 
the execution sequence, we can detect that once a ship delivers its power-up, 
meaning it was destroyed, it still takes new damage. This should not happen 
since the ship was already destroyed. An analysis of the code involved with this 
situation showed that the problem was how the enemies were removed from the 
game once destroyed. Each time an enemy’s life reached 0, the power-up was 
first delivered, then the score and other features of the game were updated and, 
finally, the enemy was removed from the level. Since the instance is eliminated 
last, any other shot that was on the way could still impact it. Consequently, the 
code was modified to remove the enemy immediately after its life reached zero.
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Listing 1.4. TAPIR output of the first test run of Earth Defender
------ ERROR FOUND--------
Class: class Entity.Enemy 
Object Code: 1256786520 
Method Executed: Entity.Enemy. takeDamage 
Regular Expression: t*d 
Execution Sequence: tttdt
— CONTINUING EXECUTION...------
------ ERROR FOUND--------
Class: class Entity.Enemy 
Object Code: 1337065869
Method Executed: Entity.Enemy.takeDamage
Regular Expression: t*d 
Execution Sequence: ttttdt
— CONTINUING EXECUTION...------
------ ERROR FOUND--------
Class: class Entity.Enemy 
Object Code: 1128333601
Method Executed: Entity.Enemy.takeDamage 
Regular Expression: t*d
Execution Sequence: tttttttdt
— CONTINUING EXECUTION...------

We successfully completed the first level, however, since TAPIR detected 
errors in the GULclass and it was configured to abort execution in that case, 
the game closed abruptly at the end of the level. The output of TAPIR can be 
seen in Listing 1.5. Two errors were found for the same instance of the GUI-Game 
class. In this case we can see that the object code reported are the same. We 
believe that TAPIR reported two errors that should abort the execution because 
while processing the first error, the second error was generated. In the first error, 
the method that causes the error is initLifeBar, represented by the symbol b. 
The last shot of the player can lead to two possible actions later, if with that last 
shot he won the level then the changeLevel method must be executed; on the 
other hand if after that last shot the player dies then the stopLevel method must 
be executed. As can be seen in the first error report detected by TAPIR, after the 
last shot that is represented in the sequence with h the method initLifeBar was 
executed. As we know that we successfully completed the level, the correct thing 
would have been the execution of the method changeLevel, symbol i. The second 
error reported is a consequence of the first, so correcting the first should fix the 
second. After inspecting the code, it was discovered that the method initLifeBar 
was called twice each time a level ended. This error was not noticeable from the 
graphical interface. One of the calls was made after changing levels, this call was 
correct; the second call was made as part of the logic that prepares the level 
change. This line of code should have been deleted in a game update but it was 
not. By removing this line, both errors detected by TAPIR were corrected. Three 
more executions of the game were made after this and the framework reported 
no errors.
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Listing 1.5. TAPIR output on the first test run of Earth Defender
------ ERROR FOUND--------
Class: class GUl.GULGame
Object Code: 103210007
Method Executed: GUl.GULGame.initLifeBar
Regular Expression: ((bca(h)*)i)*(bca(h)*)j
Execution Sequence: 
bcahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhb 
----------- SYSTEM ABORTING...------------
------ ERROR FOUND--------  
Class: class GUl.GULGame 
Object Code: 103210007
Method Executed: GUl.GULGame.shoot
Regular Expression: ((bca(h)*)i)*(bca(h)*)j
Execution Sequence: 
bcahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhbh 
----------- SYSTEM ABORTING...------------

6 Conclusions & Future Work

As previously mentioned, our goal was to create an easy-to-use framework for 
developers to test their Java source code without any modification to it, hence 
reducing the possibilities of introducing new errors and minimizing preparation 
time. The objective of this framework is to find those vulnerabilities that allow 
breaking the expected order of execution of the methods of a class. As shown 
in the case study, the framework helps detect errors that would otherwise be 
difficult to find. Future work will consider a more expressive framework. For the 
moment, the framework can only test the order in which methods of a class 
are being called. However, the actual values of the parameters of a method or 
the inner state of the instance can also be relevant in the execution order. For 
example, a class could require a method x to be called after method y if the value 
of a particular attribute is equal to 0. In addition, we will look for the possibility 
of defining a MSS that involves methods of different classes; i.e., being able to 
combine methods of different classes in a common MSS. We will also begin to 
translate TAPIR into other programming languages, such as C# and Python. 
The framework is available for downloading1. The source code is available and 
licensed under a Creative Commons Attribution-Share Alike 4.0 International 
License.

1 http://cs.uns.edu.ar/~mll/lapaz/
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