
A Language for the Specification of the Schema
of Spreadsheets for the Materialization of

Ontologies

Sergio Alejandro Gómez1,2 and Pablo Rubén Fillottrani1,2

1Laboratorio de I+D en Ingenieŕıa de Software y Sistemas de Información (LISSI)
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur
San Andrés 800 - Campus Palihue – Bah́ıa Blanca, Buenos Aires, Argentina

Email: {sag,prf}@cs.uns.edu.ar
2Comisión de Investigaciones Cient́ıficas de la Provincia de Buenos Aires (CIC-PBA)

Abstract. Ontology-based Data Access (OBDA) is concerned with pro-
viding end-users and applications with a way to query legacy databases
through a high-level ontology that models both the business logic and
the underlying data sources, accessed by mappings that define how to
express records of the database as ontological assertions. In this research,
we are concerned with providing with tools for performing OBDA with
relational and non-relational data sources. We developed an OBDA tool
that is able to access H2 databases and CSV files allowing the user to
explicitly formulate mappings, and populating an ontology that can be
saved for later querying. In this paper, we present an extension of our
previous work as a language for specifying the schema of the data in a
spreadsheet data application. This specification is then used to access the
contents of a set of Excel books and express them as a relational database
with the ultimate goal of materializing its data as an OWL/RDF ontol-
ogy. We characterize the syntax and semantics of the language, present a
prototypical implementation and report on the performance tests show-
ing that our implementation can handle a workload of Excel tables of
the order of ten thousand records.

Keywords. Ontology-based data access, Ontologies, Relational databases,
Spreadsheets.

1 Introduction

Despite their simplicity and ubiquity, spreadsheets are still important because
they provide a semi-structured way of representing the information of an organi-
zation in a distributed way when there is no formal database; even, many times,
despite the existence of a centralized system in the company, informal or opera-
tional information not covered by the main system is managed in spreadsheets.
Although spreadsheet applications (such as MS Excel, Apache Open Office, or
Libre Office) give the possibility of making totalizations and filters, these tools

ISBN 978-987-4417-90-9 546

CACIC 2020
DIIT UNLaM / Red UNCI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/395159247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

allow limited functionality and are difficult to integrate with the rest of the or-
ganization’s information, having to resort to data mining and datawarehousing
solutions that are not always available to the layman.

Ontology-based data access [1] is a prominent approach to accessing the con-
tent of heterogeneous and legacy databases that has gained relevance in the past
years in which the database schema along with the semantics of the business
model they are exposed as an OWL ontology and the data as RDF triples in dis-
tributed form on the web. These OWL/RDF ontologies can be queried through
SPARQL end-points.

In this research, we are interested in studying formal models and novel ways
of performing OBDA, with the aim of carrying out concrete implementations.
In this sense, in recent times, we have been developing a prototype that allows
to export the schema of a relational database in H2 format as an OWL ontol-
ogy and its relational instance as an RDF graph, also allowing the expression
of mappings to define concepts from of complex SQL queries [2]. In this paper,
we present an extension to our OBDA prototype that allows a user to specify a
spreadsheet application using a schema definition language. This language allows
a naive user to specify the format of the data in the tables contained in sheets
of several books, indicating the orientation of the tables, format of columns and
rows, cross-relations between tables and books. This allows the spreadsheets to
be interpreted as databases and ultimately being integrated with the rest of the
OBDA application. We assume that the reader has a basic knowledge of Descrip-
tion Logics (DL) [3], relational databases and the Web Ontology Language [4].

The rest of the paper is structured as follows. In Sect. 2, we present a frame-
work for conceptual modeling of spreadsheets as ontologies. In Sect. 3, we show
an empirical evaluation of the performance of the prototype creating tables and
ontologies from several Excel files of increasing size. In Sect. 4, we discuss related
work. Finally, in Sect. 5, we conclude and foresee future work.

2 A Framework for Representing Spreadsheets

Now we present a theoretical framework to represent the data of a spreadsheet
application. Later, with this framework, we will define a language to describe
the schema of the data. Such schema will be used to access the contents of the
spreadsheets, interpret them, generate an SQL script, create and populate an
H2 database such script, and then materialize an OWL/RDF ontology with the
contents of such a database. This ontology could then be queried via a SPARQL
processor (see Fig. 1). We provide the syntax of the data description language
in the spreadsheet application using a BNF grammar and give its operational
semantics in terms of this framework. We will use a running example throughout
the article to illustrate how to use it.

A spreadsheet application data is a set of books. More formally:

Definition 1. An spreadsheet application A is a pair (books,m) where books is
a set of books and m is a map from a unique identifier into an object of the
application.

ISBN 978-987-4417-90-9 547

CACIC 2020
DIIT UNLaM / Red UNCI

files

Excel
-

Schema -
file

Adapter - H2

database

- H2 to OWL

translator

- OWL

ontology

?
SPARQL

processor

SPARQL
-

query

Query

result
-

Fig. 1. Architecture of the system

A book is basically a set of sheets along with further information. Formally:

Definition 2. A book b is a tuple (id , path, sheets, sheetByID) where id is the
identifier of the book, path is the absolute path of the Excel file defining the book,
sheets is a list of sheets, and sheetByID is a map from sheet identifier into a
sheet.

A sheeet is composed by a set of tables. Formally:

Definition 3. A sheet s is a tuple (id ,name, tables, tableByID , containerBookID)
where id is the unique identifier of the sheet, name is the sheet’s name in the
container Excel book, tables is the set of tables contained in this sheet, tableByID
is a map from unique table identifier into a table, and containerBookID is the
identifier of the book containing the sheet.

A table has a header, a set of records, and an orientation (either horizontal
or vertical). A cell range defines a rectangle of the data sheet specified by two
cell references. Tables can contain references to other tables. Formally:

Definition 4. A table t is a tuple (id , className, orientation, initialDataCell ,
finalDataCell , initialHeaderCell ,finalHeaderCell , headerInfo, indexOfKeyField,
crossReferences, containerSheetID, containerBookID) where id is the unique
identifier of the table, className is the class in the target ontology defined
by the table, orientation is either vertical or horizontal, initialDataCell is the
top-left corner of the table’s data, finalDataCell is the bottom-right corner of
the table’s data, initialHeaderCell is the top-left corner of the table’s header,
finalHeaderCell is the bottom-right corner of the table’s header, headerInfo is a
map from integer i into a header datum object hi, crossReferences is a set of
cross-references from this table into other tables, containerSheetID is the iden-
tifier of the sheet containing this table, and containerBookID is the identifier of
the book containing this table. A header datum is a tuple (i,name, type) where i
is the 1-based index of the header datum in its container map, name is the name
of the field, and type is the type of the field, that can be one of string, numeric
(either integer or real), boolean, or date. A cell has a row (a positive number)
and a column (a 1-based positive number). A range is pair (ci, cf) composed of
an initial cell ci and a final cell cf . A cross-reference is a tuple (i, t, j) where i

ISBN 978-987-4417-90-9 548

CACIC 2020
DIIT UNLaM / Red UNCI

is the index of the field in the source table, t is the identifier of the destination
table and j is the index of the field in the destination table.

2.1 Grammar for the Spreadsheet Description Language

We need a language for expressing the elements of this framework. Let us consider
the spreadsheet in Fig. 2 containing two tables representing people and their cell
phones. We will use that example in order to introduce the elements of our
language for describing the schema of the data in the spreadsheet with the goal
of materializing an ontology from it that can be queried using SPARQL. We
now define the grammar for writing scripts for defining the structure of Excel
application data. We discuss each construct by giving its meaning, the BNF
grammar that defines its syntax, and an example describing its elements.

Fig. 2. A spreadsheet representing people and their cell phones

A script is a sequence of commands and is the start symbol of the grammar:

hscripti ::= hcommandi*

There are several available commands to be used in the description of schemas
of Excel files.

hcommandi ::= hbook-declarationi | hsheet-declarationi |htable-declarationi
| htable-header-declarationi | htable-data-declarationi | htable-field-declarationi
| htable-key-field-declarationi | hcross-ref-declarationi | hcommenti

A book can be declared by giving it an identifier and a path. Identifiers are
sorrounded by quotation marks and are composed in the usual way.

hbook-declarationi ::= book hidi has-path hpathi

hidi ::= ”hidentifieri”

hidentifieri ::= hletteri.(hletteri|hdigiti)*

hletteri ::= a | b | . . . |z | A | B | . . . | Z

hdigiti ::= 0 | 1 | . . . | 9

hpathi ::= ”. . . windows file path . . . ”

Example 1. Consider the piece of code that expresses that book b1 has as its
path the Excel file book1.xlsx located in the Escritorio8 subfolder in the
desktop folder: book "b1" has-path "c:/users/sgomez/Desktop/Escritorio8/book1.xlsx".

ISBN 978-987-4417-90-9 549

CACIC 2020
DIIT UNLaM / Red UNCI

A book has at least one data sheet. Each sheet has an identifier in this schema
file, a name in the spreadsheet and it is located in a book.

hsheet-declarationi ::= sheet hidi name hidi in hidi

Example 2. Consider the code: sheet "s1" name "Data" in "b1". It expresses that the
spreadsheet s1 has been named Data and it is located in the book b1.

Each spreadsheet can have several tables. Each table has an identifier, is
contained in a certain spreadsheet, defines a class and has an orientation which
either is horizontal or vertical.

htable-declarationi ::= table hidi in-sheet hidi class-name hidi orientation horientation-literali

hclass-namei ::= hidi

horientation-literali ::= horizontal | vertical

Example 3. Consider the commands: table "t1" in-sheet "s1" class-name "Person" orientation

vertical and table "t2" in-sheet "s1" class-name "Phone" orientation horizontal. They de-
fine that there are two tables: t1 and t2, which are both located in sheet s1.
Table t1 defines a class name Person while table t2 defines a class named Phone.
The orientation of t1 is vertical but the orientation of t2 is horizontal.

Every table definition is composed of header and data sections, with syntax:

htable-header-declarationi ::= header hidi range hrange-specificationi

htable-data-declarationi ::= data hidi range hrange-specificationi

hrange-specificationi ::= ”hcell-speci:hcell-speci”

hcell-speci ::= hletteri+hdigiti+

Example 4. Consider the commands for defining the limits of tables t1 and t2:
header "t1" range "b2:g2", data "t1" range "b3:g5", header "t2" range "b8:b11", and data "t2"

range "c8:f11".

Fields are declared by specifying the table to which they belong, an index, a
name and a type. There is an special field called the key field:

htable-field-declarationi ::= field hidi index hpositive-integeri name hidi type htype-idi

htype-idi ::= integer | string | date | real

htable-key-field-declarationi ::= key-field hidi index hpositive-integeri

hpositive-integeri ::= (1..9)hdigiti*

Example 5. Consider the piece of code for defining the fields of tables t1 and t2:

field "t1" index "1" name "PersonID" type integer
field "t1" index "2" name "Name" type string
field "t1" index "3" name "DateOfBirth" type date
field "t1" index "4" name "Checked" type boolean
field "t1" index "5" name "Weight" type real
field "t1" index "6" name "Status" type string
key-field "t1" index "1"
field "t2" index "1" name "CellID" type integer
field "t2" index "2" name "Brand" type string
field "t2" index "3" name "Model" type string
field "t2" index "4" name "Owner" type integer
key-field "t2" index "1"

ISBN 978-987-4417-90-9 550

CACIC 2020
DIIT UNLaM / Red UNCI

The table t1 has 6 fields named PersonID , Name, DateOfBirth, Checked ,
Weight and Status of type integer, date, boolean, real and string, resp. The
table t2 has 4 fields named CellID and Owner both of type integer, and Brand
and Model of type string. The key field of t1 is PersonID while the key field
of t2 is CellID . Notice that no indications are given here if the contents of a
cell is either a formula or a value and it is neither necessary. For instance the
column Status is a formula of the form: =IF(F3>=80, "heavy", "light") indicating that
if the weight of the person is greater than or equal to 80 kilograms, the person
is considered as heavy, otherwise is deemed as light.

A table can have cross-references to other tables.

hcross-ref-declarationi ::= cross-ref from hidi index hpositive-integeri into hidi index hpositive-integeri

Example 6. The following piece of code defines a cross-reference from field num-
ber 4 of table t2 into field number 1 of table t1:

cross-ref from "t2" index "4" into "t1" index "1"

One-line comments are allowed in our scripting language and they begin with
the hashtag character.

hcommenti ::= #hcharacteri*

hcharacteri ::= any Ascii character excluding end of line

2.2 Semantics of Spreadsheet Constructors

The semantics of the empty spreadsheet application create is ({}, {}). The se-
mantics of commands is given in terms of the function Sem from sequences of
commands by spreadsheet applications into spreadsheet applications. The se-
mantics of a book declaration is as follows:

Sem(sheet ”id” name ”n” in ”bid”, (books,m)) = (books0, {(id, s)} ∪ m) where

books
0

= books − {b} ∪ {b0}
b = m(bid) = (bid, p, sheets, sheetByID),

b
0

= (bid, p, {s} ∪ sheets, {(id, s)} ∪ sheetByID)

s = (id, n, {}, {}, bid)

The semantics of the declaration of a table id, in sheet sid, determining a
class c, with orientation o, with n fields named name1, . . . , namen of types t1,
. . . , tn, key field k, m cross-references from fields i1, ldots, im into foreign tables
tid1, . . . , tidm and foreign fields with indexes j1, . . . , jm, resp., header info in
the range h1 : h2 and data info in the range d1 : d2 is given shown in Fig. 3.

2.3 Generation of Databases and Ontologies from Spreadsheets

We now discuss the generation of OWL/RDF ontologies from spreadsheet ap-
plications. Given a book with mapping m of identifiers into objects, let t be
a table such that t = (id, c, o, d1, d2, h1, h2, head , k, cross, s), such that cross =

ISBN 978-987-4417-90-9 551

CACIC 2020
DIIT UNLaM / Red UNCI

Sem(sec, (books,m)) = (books0, {(id, t)} ∪m) where

sec = (table ”id” in-sheet ”sid” class-name ”c” orientation o

header ”id” range ”h1 : h2”

field ”id” index ”1” name ”name1” type t1

. . .

field ”id” index ”n” name ”namen” type tn

key-field ”id” index ”k”

data ”id” range ”d1 : d2”

cross-ref from ”id” index ”i1” into ”tid1” index ”j1”

. . .

cross-ref from ”id” index ”im” into ”tidm” index ”jm”)

s = (sid, name, ts, tableByID, containerBookID) = m(id)

t = (id, c, o, d1, d2, h1, h2, head, k, cross, sid)

s
0

= (sid, name, {t} ∪ ts, {(id, t)} ∪ tableByID, containerBookID)

books
0

= books − {b} ∪ {b0}

b = (bid, p, sheets, sheetByID) = m(containerBookID)

b
0

= (bid, p, sheets
0
, sheetByID)

sheets
0

= {s} ∪ sheets

cross = {(i1, tid1, j1), . . . , (im, tidm, jm)}

head = λi.(i, name, ti), with i = 1, . . . , n

Fig. 3. Semantics of table declaration commands

{(i1, tid1, j1), . . . , (im, tidm, jm)}, and head = λi.(i,namei, ti), with i = 1, . . . , n.
The SQL code in Fig. 4 represents the schema of table t, where second and
sixth are the projectors of the second and the sixth components of a tuple, resp.
Then this SQL code is used to materialize an H2 database, which in turn is used
to materialize an OWL/RDF ontology using the methodology described in our
previous work [5] and in accordance to the architecture shown in Fig. 1.

create table ”c”(

”name1” t1, . . . , ”namek” tk primary key, . . . , ”namen” tn,

foreign key (”second(head(i1))”) references ”second(m(tid1))”(”second(sixth(m(tid1))(j1))”),

. . . , foreign key (”second(head(im))”) references ”second(m(tidm))”(”second(sixth(m(tidm))(jm))”));

Fig. 4. SQL script for creating a generic table t

Example 7. The spreadsheet in Fig. 2 is represented by the SQL script in Fig. 5.
Then, from this script, a database is created and the ontology materialized
from that database has the following DL axioms (that are ultimately serial-
ized as OWL/RDF): Person v ∃PersonID, ∃PersonID− v Integer, Person v ∃name, ∃name− v

String, Person v ∃dateOfBirth, ∃dateOfBirth− v Date, Person v ∃checked, ∃checked− v Boolean,

Person v ∃weight, ∃weight− v Real, Person v ∃status, ∃status− v String, Phone v ∃cellID, ∃cellID− v

Integer, Phone v ∃brand, ∃brand− v String, Phone v ∃model, ∃model− v String, Phone v ∃owner

∃owner− v Integer, Phone v ∃ref owner ∃ref owner− v Person. The assertions for represent-
ing the first record of the class Person are: PersonID(Person#1, 1), name(Person#1, JOHN),

dateOfBirth(Person#1, 1981-01-01), checked(Person#1,TRUE), weight(Person#1, 100.5), and status(Person#1,HEAVY).

ISBN 978-987-4417-90-9 552

CACIC 2020
DIIT UNLaM / Red UNCI

create table ”Person”(

”PersonID” int primary key, ”Name” varchar(50), ”DateOfBirth” date,

”Checked” boolean, ”Weight” real, ”Status” varchar(50));

create table ”Phone”(

”CellID” int primary key, ”Brand” varchar(50), ”Model” varchar(50), ”Owner” int,

foreign key (”Owner”) references ”Person”(”PersonID”));

insert into ”Person”(”PersonID”, ”Name”, ”DateOfBirth”, ”Checked”, ”Weight”, ”Status”)

values (1, ’John’, ’1981-01-01’, true, 100.5, ’heavy’);

insert into ”Person”(”PersonID”, ”Name”, ”DateOfBirth”, ”Checked”, ”Weight”, ”Status”)

values (2, ’Mary’, ’1982-02-02’, false, 60.5, ’light’);

insert into ”Person”(”PersonID”, ”Name”, ”DateOfBirth”, ”Checked”, ”Weight”, ”Status”)

values (3, ’Paul’, ’1983-03-03’, true, 80.5, ’heavy’);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (1, ’Samsung’, ’S8’, 1);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (2, ’Apple’, ’Iphone 11’, 2);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (3, ’Nokia’, ’1100’, 1);

insert into ”Phone”(”CellID”, ”Brand”, ”Model”, ”Owner”) values (4, ’Samsung’, ’J7’, 2);

Fig. 5. SQL code obtained from the spreadsheet in Fig. 2

Table 1. Running times for ontology generation from Excel files

Number Excel Time for Time for Size of
of file loading creating ontology

records size Excel file ontology file
[Megabytes] [seconds] [seconds] [Megabytes]

10 0.012 0.901 0.276 0.115
100 0.033 1.774 0.359 0.910

1,000 0.255 5.825 1.067 8.951
10,000 2.640 29.703 4.253 90.951
100,000 26.742 Out of memory error – –

3 Experimental Evaluation

We now discuss some of the tests we have performed in order to test how our
application handles increasing demands in spreadsheet size. The performance of
our system is affected mainly by the fact that Excel records are materialized as
RDF triples and also by four factors: (i) the system is implemented in the JAVA
programming language; (ii) the database management system that we use as
intermediate data representation is H2, (iii) the handling of the global ontology is
done via the OWL API [6], and (iv) the access to Excel files is implemented using
the Apache POI library [7]. Our tests were conducted on an ASUS notebook
having an Intel Core i7, 3.5GHz CPU, 8GB RAM, 1TB HDD, and Windows 10.
They involved the creation of databases with a single table extracted from Excel
books containing only a sheet with a table containing 100 fields of numeric type
filled with an increasing number of records. In Table 1, we can see the times
for loading the Excel files and the size of the materialized ontologies. Therefore,
we conclude that our application can only handle spreadsheets containing tables
with a size of tens of thousands records.

ISBN 978-987-4417-90-9 553

CACIC 2020
DIIT UNLaM / Red UNCI

4 Related Work

XLWrap [8] constitutes an approach for generating RDF graphs of arbitrary
complexity from various spreadsheet layouts, including cross tables and tables
where data is not aligned in rows. They provide a functionality similar to ours
but relying in JSON for the description of data. Our approach features a simpler
language aimed towards naive users. NOR2O [9] can convert Excel to Scovo and
Data Cube Vocabulary but it is no longer maintained. Excel2rdf 1 is a Java-based
command-line utility that converts Excel files into valid RDF files but as far as
we know it is not possible to make precise definitions of the data contained nor
export terminologies as done in our proposal. RDBToOnto2 allows to automat-
ically generate fine-tuned OWL ontologies from relational databases. A major
feature of this full-fledged tool is the ability to produce structured ontologies
with deeper hierarchies by exploiting both the database schema and the stored
data. RDBToOnto can be exploited to produce RDF Linked Data. It can also be
used to generate highly accurate RDB-to-RDF mapping rules (for D2RQ Server
and Triplify). Spread2RDF 3 is a converter for complex spreadsheets to RDF
and a Ruby-internal DSL for specifying the mapping rules for this conversion.
Other solutions to the problem of wrapping Excel files into semantic technolo-
gies have migrated from the academic world to the commercial world. For exam-
ple, Open Anzo4 used to include both an open-source enterprise-featured RDF
quad store and a sophisticated service oriented, semantic middleware platform
that providing support for multiple users, distributed clients, offline work, real-
time notification, named-graph modularization, versioning, access controls, and
transactions, giving support to applications based on W3C semantic technology
standards like OWL, RDF and SPARQL. This project is no longer available as it
has turned into a company named Cambridge Semantics5. TopBraid Composer6

can convert Excel spreadsheets into instances of an RDF schema. TabLinker7

can convert non-standard Excel spreadsheets to the Data Cube vocabulary. Our
work converts the contents of the records in Excel sheets to RDF but also allows
to precisely define the schema of the data in OWL.

5 Conclusions and Future Work

We have presented a framework for the representation of spreadsheet applica-
tions along with a description language of the schema of the data stored in
them. Furthermore, we have given a formal specification of the syntax of such
a language with a BNF grammar and its formal semantics in terms of the rep-
resentation framework. We have shown an example of how it is used. We have

1 https://github.com/waqarini/excel2rdf
2 https://sourceforge.net/projects/rdbtoonto/
3 https://github.com/marcelotto/spread2rdf
4 https://www.w3.org/2001/sw/wiki/OpenAnzo
5 http://www.cambridgesemantics.com
6 https://www.topquadrant.com/knowledge-assets/faq/tbc/
7 https://github.com/Data2Semantics/TabLinker/wiki

ISBN 978-987-4417-90-9 554

CACIC 2020
DIIT UNLaM / Red UNCI

provided a prototypical implementation, showing how it is integrated into an
ontology-based data access system with the aim of publishing such spreadsheets
as freely available ontologies on the Semantic Web. We believe that this language
provides a valid alternative to more technical options like JSON from which naive
users can benefit while providing more control than WYSIWYG-type applica-
tions that provide similar functionality. Also, we have carried out experimental
tests to determine the workload that our implementation can effectively han-
dle, showing its viability for spreadsheets containing tables with thousands of
records.

As part of future work, we are interested in continuing to explore other
types of NoSQL database models and thinking about integrating them into our
ontology-based data access prototype with the aim of developing novel algo-
rithms and techniques such as virtualization by query-rewriting to provide more
flexibility in regards to volatile data than the one offered by the materialization
approach.

Acknowledgments. This research is funded by Secretaŕıa General de Ciencia y Técnica,

Universidad Nacional del Sur, Argentina and by Comisión de Investigaciones Cient́ıficas

de la Provincia de Buenos Aires (CIC-PBA).

References

1. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-Based Data Access – A Survey. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-
18). (2018) 5511–5519

2. Gómez, S.A., Fillottrani, P.R.: Materialization of OWL ontologies from relational
databases – A practical approach. In Pesado, P., Arroyo, M., eds.: Computer Science
– CACIC 2019 selected papers, Cham, Springer International Publishing (2020)
285–301

3. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic.
Cambridge University Press (2017)

4. Bao, J., Kendall, E.F., McGuinness, D.L., Patel-Schneider, P.F.: OWL 2 Web On-
tology Language Quick Reference Guide (Second Edition) W3C Recommendation
11 December 2012 (2012)

5. Gómez, S.A., Fillottrani, P.R.: Towards a Framework for Ontology-Based Data
Access: Materialization of OWL Ontologies from Relational Databases. In Pesado,
P., Aciti, C., eds.: X Workshop en Innovación en Sistemas de Software (WISS 2018),
XXIV Congreso Argentino de Ciencias de la Computación CACIC 2018. (2018) 857–
866

6. Matentzoglu, N., Palmisano, I.: An Introduction to the OWL API. Technical report,
The University of Manchester (2016)

7. Minh, N.H.: How to Read Excel Files in Java using Apache POI (2019)
8. Langegger, A., Wöß, W.: XLWrap – Querying and Integrating Arbitrary Spread-

sheets with SPARQL. In: Proceedings of the 8th International Semantic Web Con-
ference (ISWC2009), Washington D.C. LNCS 5823, Springer (2009)

9. Terrazas, B.V., Gomez-Perez, A., Calbimonte, J.P.: NOR2O: a library for trans-
forming non-ontological resources to ontologies. In: ESWC’10. (2010)

ISBN 978-987-4417-90-9 555

CACIC 2020
DIIT UNLaM / Red UNCI

	Workshops
	WISS - Innovación en Sistemas de Software
	A Language for the Speciﬁcation of the Schema of Spreadsheets for the Materialization of Ontologies (13420)

