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Abstract

Creating a story is a challenging task due to the the complex relations between the parts

that make it up, which is why many new stories are built on those cohesive elements or pat-

terns, called tropes that have been shown to work in the past. A trope is a recurring storytell-

ing device or pattern, or sometimes a meta-element, used by the authors to express ideas

that the audience can recognize or relate to, such as the Hero’s Journey. Discovering tropes

and how they cluster in popular works and doing it at scale to generate new plots may bene-

fit writers; in this paper, we analyze them and use a principled procedure to identify trope

combinations, or communities, that could possible be successful. The degree of develop-

ment of these different communities can help us identify areas that are under-developed

and, thus, susceptible to such a type of development. To detect these communities, with

their associated degree of development and interest, we propose a methodology based on

scientometric and complex network analysis techniques. As a secondary objective, we will

obtain a general perspective in the trope and films network: the tropesphere. We have used

a dataset of 10,766 movies and 25,776 tropes associated with them, together with rating,

genres and popularity. Our analysis has shown that not only there are different trope com-

munities associated with specific genres, and that there are significant differences between

the rating and popularity of these communities but also there are differences on the level of

development between them: emerging/declining, specific, transversal or motor.

1 Introduction

Finding inspiration in creating new stories is a struggle for many creators. Drawing creativity

from stories and ideas that have been well received in the past can not only help professionals,

such as filmmakers and writers, to create interesting (and profitable) works, but using data

from past stories and ideas can also be used as input for automatic story generators. Increas-

ingly, narrative creation is data driven, with streaming platforms basing their decisions to pro-

duce new works on existing data [1]. In many cases, new platforms like videogames simply

lack the tools to create massive backstories for non-playing characters, so they are simply not

developed [2]. However, outside proprietary platforms, there are multiple ways to collect data
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on released works, and analyzing this information will opens a window towards understanding

how humans consume and interact with different cultural media, making some of these cul-

tural works more popular, or simply better, than others.

Every type of media has different languages and means of expression. However, underlying

it all is plot, its structure and patterns that are repeated in it, independently of the final expres-

sion. Professional script writers and storytellers are familiar with the concept of trope. A trope

is a recurring narrative pattern or device that appear in cultural works. One of the most famous

examples is the Hero’s Journey [3]: the protagonist is called to adventure, an old mentor hands

him a weapon, meets allies, confronts evil, and returns home as a hero. Willow, Star Wars: A
New Hope, The Hobbit or Harry Potter are clear examples of movies that use this trope,

although this trope is as old as the Homer’s Odyssey or even older. Other famous ones are Che-
khov’s Gun (a device is presented early in the film to be used later), the Mexican Standoff (sev-

eral characters pointing their guns at each other) or the McGuffin (an object, that could be

magical, that drives the plot). Tropes are intentionally used in different media, such as films,

books, video games or comics to obtain surprising or interesting effects, based on a certain

familiarity or recognition capacity by the audience; in other cases, they simply are identified

after they show up in different pieces. It is virtually impossible to create a story without tropes.

In fact, “The Simpsons did it” is a catchphrase used to indicate that an idea that seems to be

new or original has already been used in an episode of the animated series The Simpsons [4]

that run for more than twenty seasons. However, it is obvious that tropes can be created, they

are not simply there to be picked up by authors; they can also be combined or laid over a plot

in totally original forms. Any of these could be a factor in creating a popular, or simply well-

rounded and finished, work. Researching the use of tropes in different cultural media can

be very interesting in different fields. For example, it is possible to predict the note of a film

from the tropes that form it [5], or to create conceptual spaces between them to help on their

study [6].

Although tropes cannot be used to fully model the plot of an artistic work, they can be con-

sidered as the narrative architecture on which stories are built, and therefore, it is possible to

characterize a work (a film, a comic) from the tropes that form it [5]. In fact, writers do not

have to use it consciously, but sometimes tropes emerge from the structure of the plot. More-

over, there are even tropes not related to the narrative itself, such as the Shout Out trope, in

which a reference or joke is made to another external work.

One of the most important sources of tropes in different media is the TV Tropes wiki

(https://tvtropes.org/); created and curated, in principle, by anyone interested, this web site

currently contains descriptions of nearly 30,000 tropes that appear in more than 80,000 works

in different media, such as anime, cinema, literature, television shows or video games, among

others. The semi-structured text, links and tags constitute a large dataset that has been gener-

ated by crowdsourcing, that is, it is open to anyone to contribute, by adding or editing the

information, so the data collected may vary over time, or even be biased towards the most pop-

ular preferences at the moment. In the work by Garcı́a et al. [5], the authors scraped the dataset

of TV Tropes films along with its associated trope list, and mapped it with the IMDb website

to obtain the rating that the users of that website have given to each film. From this dataset

they trained a neural network, which served as a surrogate model for a genetic algorithm that

optimizes a fixed-size set of tropes to maximize the possible score. Although they performed a

preliminary analysis of TV Tropes, no communities detection study of the complex network

provided was performed, nor was there any relationship between trope communities, genres,

and rating and popularity. In fact, the analysis of information structured as complex networks

can give us information about how humans interact and consume cultural media [7].
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The aim of this paper is to find out how tropes affect the rating and popularity of the films

in which they appear, as well as what is the degree of development of the different communi-

ties of tropes: groups of tropes that are cohesively used in many films and therefore are more

mature, or on the contrary, cohesive tropes used in only specific films, but also, we can detect

which communities are more marginal, and are therefore, emerging or decaying. This will

allow us to find which areas of the troposphere (the complex network that models the relation-

ships between the tropes from the films in which they appear) can be an interesting niche for

developing new films or new linear narratives in any other area such as games. In this

endeavor we should not lose sight of the fact that the source that we are using is biased towards

popular and recent films, so some stories that have not reached popularity for some reason

(minority language, for instance) or that were released a long time ago might have a winning

trope combination that is not reflected in our study. Besides, this bias is not constant, so we

cannot really affirm that some specific genre or kind of movie has been left out (or included)

uniformly across the data we have analyzed.

Fortunately, this bias aligns with our objective, which is narrative generation in the present

sense, as well as the creation of narratives that might be cohesive. We will assume that a part of

what makes a movie popular is the cohesiveness of the tropes they employ, or how they work

together with each other. This means that our results will probably not be affected by this

bias, that will nonetheless have to be taken into account when working towards a different

objective.

As a secondary objective, this paper proposes a methodology that allows us to find combi-

nations of tropes that should appear in a film in order to be popular, but also, it can give us a

vision of the current state of the troposphere, that will allow us to know how the audience con-

sume and interact with such an important cultural medium as films.

The methodology proposed in this paper is based on the analysis of co-word networks in

scientometrics. In this field, networks of co-words are made from the keywords associated by

hand with the paper by its authors (approximately 3 to 5 per paper) [8, 9]. From this co-word

network, communities can be obtained using algorithms such as the Leiden Algorithm [10].

The impact of these communities can be measured by comparing the average number of cita-

tions or the H-index of the papers belonging to each community. Keyword overlapping analy-

ses are also often performed, for example, by dividing the papers by the degree of international

collaboration (local, national or international) to obtain relevant information [11]. The degree

of development of each community is performed by Strategic Diagrams [12]. Applying this

methodology to the tropes that appear in the films involves some differences. The main differ-

ence is that not all films have a homogeneous number of tropes as papers do, either because of

the characteristics of the film itself or because they have not received the same attention from

users when generating the dataset. Therefore it is necessary to perform a descriptive analysis of

the dataset to see if there are any biases. On the other hand, measuring impact is more compli-

cated, since unlike the average number of citations, metrics such as interest (number of votes)

and average score are subjective, and the results should be taken with a grain of salt. In fact,

just as using a particular keyword does not guarantee more citations in a paper, the impact of a

keyword/trope is an indicative of the attention given to a particular theme, not that its mere

use guarantees a benefit. Other factors need to be considered, such as the quality of the results

in the case of the papers, or extra information related to the films, such as directors, actors or

advertising investment, among others. Finally, a keyword defines a paper better than a trope

defines a movie because of its more abstract nature. For example the abstract Chase trope can

be performed by car, ship or running, among many others, and during different settings or

time periods.
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However, this methodology can provide a certain degree of utility, for example in finding

which combinations of tropes and their degree of development can be interesting when creat-

ing new films, or at least a pitch for a new one, or to obtain a snapshot of the current state of

the tropes in a specific medium (movies in this case). Due to the different issues we want to

cover in this paper, we have decided to address the following research questions (RQs):

• RQ1: Are there any biases in the films or in the tropes available on the dataset? Since we are

going to use a large dataset created through crowdsourcing, unlike data obtained from bib-

liometric data sources, it is necessary to understand how the information in this dataset is

distributed before making any assumptions after analyzing it. For example, find out which

genres or films receive the most attention from dataset contributors. These biases will indi-

cate how well the set of tropes detected by the users will match the actual set of tropes in a

movie.

• RQ2: Is there any overlap between the tropes of different genres? Since genres are a primary

and well-known classification of films, understanding which tropes belong to which genres

will also give us insight into the results, and will also help us understand differences between

the different communities of tropes obtained in the following steps. This will also help us

shape or constrain the tropes that are going to be used to generate a story; generally genre

(or combination thereof) comes before the plot itself, and understanding how tropes shape

genres or the other way out will help to generate better stories.

• RQ3: Do sets of related tropes influence the rating and popularity of a film? Once we have

obtained the different communities of related tropes, we can measure the interest of the

films that form them, being able to compare the differences between these communities. We

are assuming that at least a big part of the popularity of a film comes from the specific tropes,

or combination of them, that are being used. We will try and find out to what extent this

happens.

• RQ4: Is there a difference in the degree of development of the thematic of the different trope
communities? By studying the centrality and density of the different communities obtained,

it is possible to visualize their relationship between the tropes that form each community, or

how these communities relate to each other. This will allow us to measure how motor, trans-
versal, specialized or emerging these communities are [9], and eventually identify which areas

of the troposphere deserve to be developed, that is, which specific tropes could be used and

how they could be mixed together to create popular films.

To answer these questions, we will apply this methodology to conduct a study on the rela-

tionship between tropes, genres and the rating and popularity of the films that use them. To do

this, we will perform an overlapping analysis to see which tropes appear in which genres, as

well as a network of co-occurrence of co-films and co-tropes. We will apply a community

detection algorithm on these complex networks and compare and visualize their metrics to

extract the required information.

This methodology will be applied over a dataset of films, tropes, years, genres, rating and

popularity. We will download the films and tropes available at the TV Tropes website, follow-

ing the process explained in [5]. Then, we will map these films to the ones in IMDb in order to

extract complementary information. Finally, we will perform different analysis and visualiza-

tion methods to that dataset.

Moreover, understanding how the use of tropes has evolved throughout the history of a spe-

cific artistic expression area can give us information about the cultural and social changes of

that medium. Therefore, our methodology can also help academics on different fields, such as
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social sciences, to extract knowledge, but also allow to storytellers adapt to these changes or

even extract new ideas.

In general, we think that this methodology can be useful since it gives us a quantitative

approach to the analysis of narrative devices, which can be easily turned into a methodology

for generation of narratives, as a well as a for critical analysis of these systematized narratives

in the past. In this sense, we think it can benefit video game creators, as well as media history

scholars.

The rest of the paper is structured as follows: first, the state of the art in trope analysis is dis-

cussed. Next, the methodology used to obtain the dataset and the different metrics studied is

described. In Section 4 the experimental results are discussed, and finally the conclusions and

future work are presented in the Section 5.

2 Background

The creation of film scripts is a very challenging task due to the complexities of the plot, since

the elements that are part of a work must fit well, because a small failure can cause a cascading

disaster [13]. In fact, the concept of narrative can be seen as a complex adaptive system, in

which the interactions of its elements and events make the story emerge [14].

As stated in the introduction, tropes are the literary constructs that define the overall narra-

tive of a work. While they do not define the plot unequivocally, they constraint it in a number

of ways.

Actually, the concept of “genre” of a film (Thriller, Horror, Comedy, Western, etc.) and the

“trope” are very aligned and interrelated, and both help on describing a film from different

perspectives: whereas a genre relates to the type of the story from a high-level point of view, a

trope is a tool or device to achieve a specific effect on the story and can vary from high-level

structures to details. The concept of “Genre” is an important source of discussion of film the-

ory, and there is some controversy about the definition of this concept, and how to classify

films. In fact, they are easier to recognize than to define, and scholars agree that they cannot be

rigidly identified [15, 16]. There are different distinctions between genres, for example, the

universal ones (Action, Comedy, Drama, Horror, Mystery, Romance and Thriller) versus the

setting genres (Western, War, Sci-Fi or Musical, among others). Classifying a film into a single

genre is also difficult, since, for example, a science fiction film such as Back To The Future III
can also be classified within the Western genre.

There are available in the literature some works studying specific tropes in film and media

studies. For example in [17] action films tropes are discussed, including characters tropes (cop,

cowboy), actions (chase, last minute rescue) and techniques (for example, camera shaking

movement). More works have focused in other kind of tropes, such as the trope of the Zombies
[18], scenes that take place in a museum [19], or even as specific as the Brazilian housemaid

[20].

But as previously stated, and because narrative can be seen as a complex adaptive system,

methods such as complex network analysis can be useful for researchers in this field. For

example, bibliometric networks [8] have been extensively studied using techniques such as co-

word network analysis or strategic diagrams [9]. These methods normally are used to detect

communities between keywords of the published papers and to visualize them [21]. Moreover,

word analysis has been applied in other contexts such as traditional text analysis. For instance,

Herrera et al. [22] proposed a detector, which is based on unsupervised statistical methods, for

detecting keywords in texts. Other application to traditional text analysis is presented by Toha-

lino et al. [23], in which a multilayer network is used to address the extractive multidocument

PLOS ONE The Simpsons did it: Exploring the film trope space and its large scale structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0248881 March 31, 2021 5 / 28

https://doi.org/10.1371/journal.pone.0248881


summarization task. However, in our study we do not analyze corpus of text, but the relation-

ship between movies and the tropes they appear in them, and vice versa.

However, there is a lack of works dealing with complex network analysis in the field of crea-

tive media such as films. In [7], authors use a complex network of interactions between literary

characters (specifically, the Harry Potter saga) to compute their relationships to see how they

evolve throughout their story. Using text extraction algorithms from novels, they generate dif-

ferent social networks from the dialogues. These networks are used to measure some charac-

teristics related to the author’s style, and to the book’s story. Amancio [24] proposed the use of

co-occurrence networks to study and detect the different entities (characters or locations) and

their semantic relationships, which appear in different novels. A topological analysis was

applied to obtain patterns that were not possible to detect using classical methods. Another

application of the use of complex networks is the identification of the meaning of words with

multiple meanings. The work [25] describes a process based on a bi-partite network model

that outperforms widely used machine learning methods to deal with this issue. However, as

stated before, these works rely on the analysis of whole texts to obtain the relationships

between entities, whereas our work is based on the mere occurrence of tropes in the different

films.

Another example of complex networks are those generated by crowd science movements

[26], such as TV Tropes. TV Tropes is a wiki community created in 2004 that unites enthusi-

asts who have been collecting tropes collaboratively since 2014. It currently has over 28,000

pages of tropes, and 77,000 of cultural works, including films, TV, comics, video games, books

and other media. In [26], this wiki community was studied, indicating that the produced net-

work generates knowledge relevant to social and humanities disciplines, and that it can serve

as a starting point for academic studies. However, they conclude that the definition of tropes is

a relatively complex task, and that the contributors of this community approach it using a

qualitative and conceptual approach. On the other hand, and as discussed in [5], being a

dynamic, extensive and organic study, a certain type of bias may exist: the most popular and

recent films usually receive more attention.

Other authors have used examples and data from this website to model a geometric concep-

tual space between tropes [6]. Although their study is limited to three tropes –hero, anti-hero

and villain–, the fact that a measurable distance between tropes can be modelled may be useful

for future research.

To our knowledge, the only work that applies automatic analysis or machine learning tech-

niques to the set of TV Tropes is the one published by Garcı́a-Ortega et al. [5] whose objective

is to optimize which tropes a film should have in order to obtain the highest possible rating.

3 Methodology

In order to carry out the analysis, a specific methodology has been designed. It comprises 8

steps which are explained in what follows.

1. Data acquisition: We have used the Python package tropescraper, available at https://

github.com/raiben/made_recommender, used in [5] to obtain all the tropes available in the

web TV Tropes.org. For each film available on the web, a list of tropes has been obtained.

This package iterates over the tropes of the TV Tropes webpage, extracting all the films

associated with a trope. Then a dictionary of films and its associated tropes is created. Next,

a mapping process is carried out between the films and the data available on the IMDb web-

site (https://datasets.imdbws.com/), in order to add information such as the average rating,

the number of user votes (popularity) and the year. Because the identifier of a film in TV

Tropes is only the name, and sometimes the year, in case of ambiguous associations we

PLOS ONE The Simpsons did it: Exploring the film trope space and its large scale structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0248881 March 31, 2021 6 / 28

https://github.com/raiben/made_recommender
https://github.com/raiben/made_recommender
https://datasets.imdbws.com/
https://doi.org/10.1371/journal.pone.0248881


have performed the match taking into account the popularity in the IMDb dataset. The rest

of the details of how these datasets can be obtained and how the mapping process is done

can be consulted at [5].

2. Preliminary analysis of the dataset: To get an overview of the dataset, a descriptive analysis

is proposed. The analysis includes the standard deviation, mean, minimum, maximum and

the first, second and third quartiles of votes, ratings and tropes. Moreover, a visualization of

the distributions of the number of tropes, ratings and votes is shown. Furthermore, a line

chart with the films per year is presented. Finally, the votes and ratings in periods of two

decades from 1880 to 2020 are analysed as well as the distribution of genres in the dataset.

All the previous analysis will help us to detect whether some biases exist or not. Addition-

ally, the analysis will give information to answer the first research question (RQ1).

3. Dataset pre-processing: in this study, two datasets are considered:

• The dataset obtained from the data acquisition phase. In the rest of the text it will be

referred as Df.

• A second dataset, obtained from Df, in which for each trope a list of films which have that

trope is obtained. After that, the mean of the votes and rating of the films that have each

trope are calculated. These two factors are calculated in order to quantify the quality of

each trope in terms of the votes and rating of the films in which it appears. In the rest of

the paper, it is going to be named as Dt.

This transformation of the dataset will allow discovering how tropes are related among

them based on the films they appear and, inversely, the relations of the films based on the

tropes.

4. Overlapping analysis. Aiming to know how the genres differ from each other in terms of

their tropes (RQ2), the Dt dataset is used to do an overlapping analysis. An overlapping

analysis is a process that reveals how two sets are mixed together with respect to the number

of elements that both sets have. A well-known measure of overlapping is the Jaccard index

[27], which measures the similarity between two sets, and it is defined as the size of the

intersection divided by the size of the union of the sets given. In this paper, the Jaccard

index [27] is computed for each possible pair of set of tropes, each of them corresponding

to a genre. It is is computed from two distinct perspectives, as it is also performed in a simi-

lar way in bibliometric studies [11]:

(a). For all the tropes in genres. This offers a general overview of the mixing between

genres.

(b). For the 100 most voted or rated tropes in genres. This shows how the most relevant

tropes in each genre relate to other genres.

Formally JN is defined as follows:

JNðA;BÞ ¼
jAN \ BN j

jAN [ BN j

Being AN, BN the subset of the N most valued or rated tropes of each set. If N =1 all the

elements in the sets will be considered, for example, the first perspective we proposed

above.

5. Co-films and co-tropes network construction. In bibliometrics [8, 12, 28], a co-occurrence

network is a graph where the nodes are some unit of analysis (e.g words in co-words net-

works) and the edges are the co-occurrence relationships between them. That is, there is an
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edge between two occurrences if they both appear together in a set of documents. There-

fore, co-occurrence networks are built from a set of documents D in which each one has a

set of unit of analysis U. The process of building the network, called in this paper the trope-
sphere, is shown in the Algorithm 1.

Algorithm 1: Algorithm used to build a co-occurrence network

Result: G: The co-occurence network.
foreach document d in D do
U = get unit of analysis from d
for i  1 to |U| do
if U[i] not exists in G then
Add node U[i] to G.

end
for j  i + 1 to |U| do
if U[j] not exists in G then
Add node U[j] to G.

end
if {U[i], U[j]} not exists in G then
Add undirected edge {U[i], U[j]} to G with weight 1.

else
Increase weight of {U[i], U[j]} edge by 1.

end
end

end
end

Following the instructions pointed above, from the original dataset Df the co-tropes network

(tropesphere) is constructed and, similarly, for the Dt dataset co-films network is constructed.

The edges were normalized using the equivalence index [9]. To be clearer, in these co-occur-

rence networks the co-occurrence is measured in two ways:

• Co-films network, the co-occurrence is measured as the number of times that two films

have the same trope.

• Co-tropes network, the co-occurrence is measured as the number of times that two tropes

appear in the same film.

6. Community detection: To determine the groups of films that are related among them and

the groups of tropes that are related, for each dataset a community detection algorithm will

be applied. Specifically, the Leiden algorithm [10], which is a modularity optimization-

based algorithm, will be used since it has demonstrated good behaviour with co-occurrence

networks [11]. The modularity is a very usual metric for measuring the quality of the

detected communities within the network [29].

7. Performance measures: for each co-tropes network community, films belonging to the

nodes within the community will be associated by means of the algebraic union. This

means that a film can belong to more than one node for the same community. From these

communities, different metrics can be obtained, such as the number of films in a commu-

nity, the average score, the popularity or the percentage of films of each genre within the

community etc. Regarding the co-films network, the metrics are also obtained by the films

in the communities (in this case, no films are repeated between communities).

To confirm that there is a statistical significance relationship between the rating and popu-

larity of the obtained communities, a normality study will be conducted to determine the

most appropriate test [30] to apply. Once this is done, we can answer RQ3.
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8. Visualization:

The strategic diagram is widely used in scientometrics [9, 12, 31], helping visualize the

degree of development of a thematic community (cluster) by analyzing the networks of co-

words using the keywords of the papers. It is based on two measures:

• Callon’s centrality: it indicates how well a theme is connected to other themes (external

cohesion). It is defined as: c = 10×∑ekh with k word belonging to the theme and h word

belonging to another themes [9, 31].

• Callon’s density: it measures the internal strength of a network and it can be defined as

d = 100(∑eij/w), with i and j belonging to the theme and w being the total number of words

in the theme [9, 31].

Moreover, the themes plotted in the strategic diagram are labelled by its central node

(referred in the text as central trope or central film, depending on the network), which is

the node with the most degree in the theme, formally n ¼ argmax vðdeg ðvÞÞ. Using the

callon’s density and centrality it is possible to visualize the communities in four quadrants,

whose center is in the position (0.5,0.5). These quadrants indicate if communities are

motor (central and developed communities), transversal (basic and general), specialized/

peripheral, or emerging/declining [9]. This will help to answer RQ4.

Moreover, the structure of networks can be obtained and simplified by the maximum

spanning tree of the network. This structure will be represented using the Gephi software

[32]. This will make it easier to see which tropes or films are most related to each other,

and to see how these communities are organized.

4 Experiments and results

In this section, the steps described in the methodology will be applied and the results will be

discussed. Since the aim of the paper is to find those areas of the troposphere that may be inter-

esting for the development of new films, as well as to get an overview of the state of the tropo-

sphere, we will apply the steps of the methodology on an existing dataset. First we will study

the state of the dataset with respect to bias and genres (RQ1 and RQ2). After that, we will ana-

lyse the co-word networks (co-tropes and co-films) using communities detection, to detect the

differences in popularity and rating between the trope and film communities (RQ3). Finally

we will find those thematic areas in which it could be more interesting for the creation of new

works (RQ4).

4.1 Descriptive analysis of the dataset

As we are using a dataset produced from crowdfunding it is necessary to see if there are any

biases towards the most popular or recent movies. To solve RQ1 we will perform a descriptive

analysis.

Once the dataset has been obtained from https://github.com/raiben/made_recommender/

blob/master/datasets/extended_dataset.csv.bz2 following the steps described in previous sec-

tion (and in higher detail in [5, 33]) this descriptive analysis of the dataset is summarized in

Table 1. The average number of tropes per film is 48.42. As it can be seen, there is a high stan-

dard deviation in the number of votes and tropes per film, so a more detailed analysis is neces-

sary in order to study the distribution of the values.

Fig 1 shows the distribution of tropes by film. As expected, the number of tropes by film

does not follow a normal distribution, but a log-normal one. There exist a smaller number of
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films that concentrate the larger size of tropes. However, the vast majority of films has between

0 and 100 tropes.

As expected, films also follow a non-normal distribution in rating in IMDb website, as it

can be seen in Fig 2. Same happens with the number of votes of each film of our dataset in the

same web (Fig 3), following a log-normal distribution. There is a lot of films with 0 votes,

while there is a little set of about 30 films with more than 1,000,000 votes.

The Table 2, shows the descriptive analysis of the popularity (number of votes) and rating

of the films, divided by periods, of the obtained dataset. It must be noted that only IMDb films

Table 1. Descriptive analysis of the dataset variables.

#Votes Rating #Tropes (per film)

mean 49306.22 6.36 48.42

std 119032.00 1.33 59.86

min 0.00 0.00 0.00

25% 2249.25 5.80 16.00

50% 9368.00 6.60 29.00

75% 42095.00 7.30 56.00

max 2088786.00 9.30 677.00

https://doi.org/10.1371/journal.pone.0248881.t001

Fig 1. Distribution of tropes in films (log-log scale applied, zeros were treated adding one to all the values). Almost all the films have less

than 200 tropes. The higher number of tropes in a film is 677.

https://doi.org/10.1371/journal.pone.0248881.g001
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Fig 2. Rating distribution of all films in the dataset. Skewness: -1.51. Kurtosis: 3.7.

https://doi.org/10.1371/journal.pone.0248881.g002

Fig 3. Distribution of votes (popularity) in films (log-log scale is applied, zeros were treated adding one to all the values).

https://doi.org/10.1371/journal.pone.0248881.g003
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that have tropes on the TV Tropes website are counted, not the whole IMDb dataset. As it can

be seen, the number of films in each period increases over time, with the last 20 years being the

period with the largest number, almost half of the dataset. As mentioned on [5], current films

receive more attention on the TV Tropes website than old films.

This can also be seen in Fig 4, where is a clear tendency of increasing films analysed in the

dataset over the years. In fact, since the 2000s, the amount of films is considerably larger than

the rest of the decades.

Moreover, these films have more tropes analyzed in TV Tropes than old films on average.

An interesting fact from the IMDb data, also discussed in the paper [5], is that current films

tend to receive more votes than older films. Interestingly, and as also shown in Table 2 the

average rating for each period decreases over time.

Summarizing, it is clear that there may be some bias in the dataset regarding the number of

tropes per film and its popularity, since it has been obtained from two sources based on crowd-

sourcing. This is a fundamental difference from applying the methodology in the field of scien-

tific production analysis, where the data to be analysed (citations, keywords) are generally well

defined and fixed. In this case, there may be tropes in certain films that are not be included the

Table 2. Descriptive analysis of votes and ratings by periods for all films of the dataset. Notice that the data for the period (2000, 2020] is not complete.

Votes Rating

Periods count mean sth min max median count mean sth min max median

(1880, 1940] 677 7335.72 24189.94 0 350943 1751 677 7.02 0.85 0 8.5 7.1

(1940, 1960] 933 14323.91 42075.84 0 535004 3767 933 6.84 1.34 0 8.7 7.2

(1960, 1980] 1542 21612.29 75378.71 0 1433459 4511 1542 6.58 1.35 0 9.2 6.9

(1980, 2000] 2879 49363.80 128688.28 0 2088786 12210 2879 6.24 1.28 0 9.3 6.4

(2000, 2020] 4735 71183.88 136557.05 0 2055225 20686 4735 6.17 1.35 0 9.3 6.4

https://doi.org/10.1371/journal.pone.0248881.t002

Fig 4. Number of films by year in the dataset extracted from TV Tropes. The dataset does not include all films of 2019, as it was generated before the year ended.

https://doi.org/10.1371/journal.pone.0248881.g004
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dataset because users have not analyzed that film in more depth because it is older. Knowing

this, it would not be fair to say, for example, that old films were simpler than the current ones

because they have fewer tropes. Moreover, this will be important, for example, when conduct-

ing a study on emerging/decaying trope communities using strategic diagrams, as we will do

later in the paper. Therefore it is important to understand the distribution of data to be used at

each moment when applying our methodology. This answers RQ1.

As mentioned in the introduction, film genres are one of the best known and most widely

used ways of classifying films. Therefore, it is useful and necessary to obtain how the films are

distributed in these genres, so that when we perform some kind of analysis of the tropes

(including overlapping analysis) we can better understand the results.

Table 3 shows that almost half of the films in the dataset (48.18%) are Dramas, followed by

Comedies and Action films, with 34.5% and 20.3% respectively. Next, there are other minor

genres, mostly the ones related to the setting, such as Western, War or Sci-fi, with less than an

8% of presence. There are quite marginal genres, such as Adult, Game-Show and News, with

less than 0.1%. The universal genres, mentioned above, are the most common, except for Mys-

tery, which is overtaken by some setting genres, such as Adventure and Sci-Fi.

Understanding this genre distribution is also important for analyzing results or obtaining

information. For example, if filmmakers want to find the most interesting tropes to create doc-

umentaries it is clear that this genre is not as well represented as the others, possibly because it

has less interest for TVTropes users as explained before, and they will have to filter through

this genre before making their analysis.

4.2 Overlapping analysis

In order to discover the differences among genres based on the tropes (RQ2) we have com-

puted the Jaccard Index for all the genres with all tropes, the 100 most voted tropes and the

100 most rated tropes.

Fig 5c shows the heatmap of the Jaccard index between the tropes belonging to the different

genres. As it can be seen, there is a complete overlapping of tropes between marginal genres,

such as Short and Documentary, and War and History. Although this association may make

sense at first glance, it can also be explained because the number of tropes in those genres is

lower and less specific than in other genres. Some genres have no relation with the others (for

example, Animation and Film noir, or even Western), that can be explained because they com-

bine a low number of films, but also because they are less general than the others. However,

Biography, being a minor genre (5.5% of the films), has a lot of tropes in common with more

extended genres, such as Comedy and Crime, but an extremely high overlapping with Drama.

Table 3. Percentage of film genres in the dataset. NOTE: A film can have more than one genre.

Genre % Genre % Genre %

Drama 48.18 Fantasy 8.77 Musical 2.01

Comedy 34.5 Mystery 8.21 Western 1.88

Action 20.3 Family 5.68 Sport 1.66

Horror 17.96 Biography 5.3 Film-Noir 1.02

Crime 16.09 History 3.5 Animation 0.84

Romance 15.4 War 3.19 None 0.11

Thriller 14.66 Short 2.94 Adult 0.1

Adventure 14.56 Music 2.87 Game-Show 0.02

Sci-Fi 9.54 Documentary 2.2 News 0.02

https://doi.org/10.1371/journal.pone.0248881.t003
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The interesting issue of this Fig is that there are more relation between the universal genres

(Action, Comedy, Drama, Horror, Mystery, Romance and Thriller), but also other broad gen-

res such as Biography, Crime, Adventure, Fantasy and Sci-Fi. Because we are using all the

films of the dataset, it is probably that at least one film of a genre has a trope in common.

Focusing on the top-rated and top voted films, Fig 5a and 5b show some differences con-

cerning the previous overlapping. In this case, while these two new Figures are similar, more

overlapping exist between Sci-Fi with Comedy, Adventure and Horror in the most popular

ones. However, with respect to the general overlapping (Fig 5c) they show less overlapping

between genres with respect to the previous one. Only high overlapping exists between the

next pairs: Crime-Action, Horror-Comedy, Short-Documentary, War-History. This means

that using only the most popular or top-rated films to study the overlap of genres is not enough

Fig 5. Jaccard index heatmaps of the overlapping of tropes. “\N” is used to denote that a film does not belong to a genre. a) Heatmap of the overlapping of tropes

with respect to the top 100 rated films. b) Heatmap of the overlapping of tropes with respect to the top 100 voted films. c) Heatmap of the overlapping of tropes with

respect to all the tropes of the genres.

https://doi.org/10.1371/journal.pone.0248881.g005
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to get an overall picture, as it is clear that viewers prefer little overlap between genres in

general.

4.3 Co-tropes community detection analysis

So far we have discovered that there is a certain bias in the dataset, both at the level of interest

of the films (there is more popularity in the newer films, and they have more detected tropes),

and at the level of the genres. The next step in our methodology is to obtain the different trope

communities, and to discover if the films belonging to each of these communities also receive

more popularity or ratings. Once these communities are found, they can be classified in the

different quadrants of a strategic diagram. In this way, filmmakers will not only be able to

choose the tropes from those communities related to their current idea, but they will also be

able to choose from those communities with higher ratings, or explore the emerging commu-

nities (always taking into account the dataset bias). In addition, this step will also offer a view

of the troposphere in its current state.

The results of applying the Leiden algorithm to the co-trope network indicate the existence

of 42 communities, covering from 10,370 to 1 films, with an average of 2,456.52 ± 2,316.71

films in each. 8 of these communities only have one film.

To confirm that there is a statistical significance relationship between the rating and popu-

larity of the communities, first a Kolmogorov-Smirnov test has been performed to determine

if these metrics follow a normal distribution. All p-values obtained in the sets are less than

0.05, so a non-parametric test is necessary. In this case we have used the Kruskal-Wallis test,

since the number of samples is independent, of different size, and samples do not follow a nor-

mal distribution. The p-value obtained by the Kruskal-Wallis test also obtains a p-value lower

than 0.05, both for the rating and for the popularity, indicating that there are significant differ-

ences between the sets. Therefore we can confirm our hypothesis that there are differences

between the rating and popularity of film communities obtained from tropes (RQ3). However,

this does not mean that using specific tropes guarantees better ratings, but rather that, in gen-

eral, the films that use them have better ratings.

Table 4 describes some of these communities, as well as the metrics of number of films in

each community, examples of films, and ratings and average number of votes. These commu-

nities can be identified from the central trope, and this is what will be done throughout the

paper. The metrics of centrality (c) and density (d) of each community are also shown in the

table, and they will be used later to visualize their degree of development.

As it can be seen, some of these communities are quite recognizable: for example, the tropes

in the community identified by the central trope EldritchAbomination are related to demonic

and supernatural elements, while in others, genres such as Western (MediumAwareness) can

be detected, in which tropes such as Gunslinger, RidingIntoTheSunset or the BountyHunter
appear. Other communities show odder or uneasier themes (EarlyInstallmentWeirdness), or

related to technology (LaserGuidedAmnesia) or to disasters (BigReddButton). The first com-

munity (ShoutOut) is particularly interesting, since instead of relating to a specific theme, it

groups the best-known tropes, such as BigBad or ChekovsGun, and elements inherent to the

narrative, such as sad endings. In this community, there are 10,370 films, practically the size of

the dataset.

Because of the large number of films in each community, examples may not be as obvious.

For example, in the aforementioned EldritchAbomination community, light comedies such as

Jack And Jill appear. This also can be explained because, as shown previously when describing

Fig 5 the Jaccard index between their tropes was very high, therefore they may appear together

in the community.
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Table 4. Performance measures from 10 arbitrary communities obtained with the Leiden algorithm for the co-tropes network.

Id #Films Central Trope Tropes Films Density Centrality Mean/Std.

Rating

Mean/Std. Votes

1 10370 ShoutOut ShoutOut, BigBad, ChekhovsGun,

Foreshadowing, OhCrap,

BittersweetEnding, TitleDrop,

DeadpanSnarker, DownerEnding,

Jerkass

The Legend of

Bagger Vance, A

Tale of Two Sisters,

Blow-Up, House

on Haunted Hill,

Stand Up Guys,

Colossal, Cry-Baby,

Original Sin, The

Astronauts Wife,

Thirteen Days

183,72 186326,98 6.37 ± 1.33 50520.03 ± 119953.41

2 5013 EldritchAbomination DemonicPossession,

EldritchAbomination,

OurVampiresAreDifferent,

DoesNotLikeShoes,

SealedEvilInACan, Satan,

PsychicPowers, HumanSacrifice,

HollywoodAtheist,

OurGhostsAreDifferent

The Invasion, The

Mothman

Prophecies, Conan

the Destroyer,

Frailty, Jack and

Jill, The Sandlot,

Swingers,

Burlesque, The

Uninvited, The

Florida Project

167,64 73999,37 6.31 ± 1.36 71130.22 ± 146138.64

3 4850 TwentyMinutesIntoTheFuture TwentyMinutesIntoTheFuture,

ItCanThink, FeetFirstIntroduction,

AlienInvasion, MegaCorp, TheRival,

ScreamingWoman, GreenAesop,

UncannyValley,

HumansAreTheRealMonsters

xXx: Return of

Xander Cage,

Geostorm,

Heathers, Us,

Flubber, Hardcore

Henry, Universal

Soldier, The

Smurfs, Beasts of

the Southern Wild,

Scrooged

207,37 85646,63 6.34 ± 1.36 77580.52 ± 157457.59

4 3678 DramaticUnmask DramaticUnmask,

FaceFramedInShadow, BankRobbery,

BadLiar, NoHonorAmongThieves,

EvilWearsBlack, BluntYes,

IWarnedYou, CreateYourOwnVillain,

RayOfHopeEnding

Crimson Tide,

Sicario: Day of the

Soldado, I Saw the

Devil, Faster,

Sphere, Attack the

Block, Searching,

Crazy Rich Asians,

The Ladykillers,

Saw VI

229,98 54172,12 6.51 ± 1.31 93440.54 ± 171231.86

5 3229 ComicBookAdaptation YouCantFightFate, TimeTravel,

ImplausibleDeniability,

ComicBookAdaptation,

SetRightWhatOnceWentWrong,

RedScare, StableTimeLoop,

SpoilerTitle, ThrowTheDogABone,

OmnicidalManiac

T2 Trainspotting,

Caddyshack, My

Cousin Vinny,

Safe, Julie & Julia,

Bridget Jones: The

Edge of Reason,

The Forbidden

Kingdom, They

Live, Serpico,

Yojimbo

236,5 46619,06 6.49 ± 1.3 96248.88 ± 177620.28

6 3162 MediumAwareness MediumAwareness, TheGunslinger,

NoFourthWall, TheSheriff,

BestialityIsDepraved, BountyHunter,

CompanionCube,

RidingIntoTheSunset,

YouNoTakeCandle, GoodShepherd

Hunt for the

Wilderpeople,

Runaway Bride,

Cheaper by the

Dozen, The

American, West

Side Story,

National

Lampoons

Vacation,

Colombiana,

Sahara, eXistenZ,

Alita: Battle Angel

174,2 28804,15 6.55 ± 1.27 86994.61 ± 170764.69

(Continued)
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Once we have seen that there are differences between communities, screenwriters can use

combinations of tropes that appear in the highest rated or most popular communities to

inspire them to develop new scripts, although as stated above, this does not automatically guar-

antee success. However, it may also be interesting to seek inspiration from those communities

that are still developing and avoid those that are in decline. In addition, if the type of film to be

developed is very specific, inspiration should also be sought from communities related to that

type of film. That is why we will use a Strategic Diagram to visualize the degree of development

of these communities and to be able to choose among the most appropriate ones.

The strategic diagram obtained is shown in Fig 6. In the upper-right quadrant are the motor
(central and developed) communities. It has high c and high d. The communities in this quad-

rant have nodes that are strongly connected to each other, but also serve as support for the rest

of the communities. In scientometrics it is considered the file core and their position is strate-

gical. The works in this quadrant are treated systematically by a well-defined group of

Table 4. (Continued)

Id #Films Central Trope Tropes Films Density Centrality Mean/Std.

Rating

Mean/Std. Votes

7 1996 BigRedButton JiveTurkey,

AttackOfTheKillerWhatever,

ReptilesAreAbhorrent, BigRedButton,

PlayingAgainstType, TheCassandra,

Bizarrchitecture, WhiteMaskOfDoom,

ActionHero, MadScientistLaboratory

Legion, Touch of

Evil, Willow, Hot

Shots!, Sixteen

Candles, Power

Rangers, Dan in

Real Life,

Deliverance,

Bedazzled, Death

Becomes Her

199,64 23291,64 6.27 ± 1.37 92326.69 ± 172328.62

8 1547 ItWasHisSled ExtraExtraReadAllAboutIt,

YourMindMakesItReal,

TheCanKickedHim, ItWasHisSled,

HostageForMacGuffin, GunStruggle,

TheOphelia, DreamWithinADream,

DeathIsCheap, CreepyTwins

Across the

Universe,

Catwoman, Push,

Upgrade,

Entrapment, Carol,

Bicentennial Man,

Lights Out, End of

Days, Precious

162,28 18107,11 6.51 ± 1.28 101116.32 ± 186806.43

9 4085 EarlyInstallmentWeirdness TheVamp, CrazyJealousGuy,

ParentalIncest, FrameUp,

MaleFrontalNudity, OnlyOneName,

ThePlace, BuryYourGays,

SinisterMinister,

EarlyInstallmentWeirdness

Year One, Licence

to Kill, The Devils

Rejects, Small

Soldiers, The

Legend of Zorro,

The Last Witch

Hunter,

Halloween, Money

Monster, Another

Earth, The Last Boy

Scout

268,24 18835,36 6.48 ± 1.26 85916.57 ± 167876.93

10 851 LaserGuidedAmnesia LaserGuidedAmnesia,

MalignedMixedMarriage,

SeparatedByACommonLanguage,

UnfinishedBusiness, LiteralGenie,

CulturalPosturing,

YourCostumeNeedsWork,

StabTheSalad, TheGreys, Invisibility

Priest, The 6th

Day, The Disaster

Artist, Robin

Hood: Men in

Tights, Casper, The

Dark Tower, Big

Trouble in Little

China, Under the

Skin, The Time

Machine, Star Trek

II: The Wrath of

Khan

171,79 10808,2 6.44 ± 1.3 108922.87 ± 175284.13

https://doi.org/10.1371/journal.pone.0248881.t004
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researchers over a long period of time. In the case of movies, we can say that the tropes are

very related to each other, but they are used as a base in many different types of films, also over

a long span of time. Therefore they may be very known for the general public. That is the rea-

son the vast majority of the communities detected (16 out of 34 with more than one movie)

are in this quadrant (including most of the described in Table 4.

Fig 6. Strategic diagram of the communities obtained from the co-tropes network. Depending on centrality (x-axis) and density (y-axis) of each community,

they can be placed in any of the 4 quadrants whose center is in (0.5,0.5). From left to right and top to bottom: specialized/peripheral, motor (central/developed),

emerging/decaying and transversal. Size of the dots is proportional the number of movies in each community (also shown in numeric value).

https://doi.org/10.1371/journal.pone.0248881.g006
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In the lower-right quadrant are the transversal, or basic/general communities (low d and

high c). In scientometrics these are themes that are not developed, but which serve to develop

the rest of the research in the area. For example, if we are analysing works related to cancer

research, neural networks are not developed in this scientific field, but they are used in a lot of

works. In the case of this paper, we can consider sets of tropes that are in many films, but that

are not usually used all at once. That is, they are becoming mature, but are not yet the object of

investments in other movies. A few of the communities found are in this quadrant, EldritchA-
bomination being one of them (this community included comedies and horror films). The

ShowWithinAShow community includes many tropes common to comedies (mostly roman-

tic), especially tropes related to rival female characters. However, it also serves to characterize

films like Darkman.

In the upper-left quadrant (high d, but low c) are the specialized and peripheral themes:
highly developed, but isolated, themes are considered. If we apply this explanation to case of

the tropes, we can consider they are very cohesive with each other, but they are not so related

to other trope communities. That is, when these tropes are used, they are only used together

and not with other tropes, so that imply they only appear in highly specific films, or because

have been marginalized, generating less and less interest. In fact, tropes that appear in EarlyIn-
stallmentWeirdness can be considered controversial (ParentalIncest, BuryYourGays).

Finally, in the lower-left quadrant (low c and low d) are the emerging or decaying themes.

There are no communities that are supporting them, either because they are very marginal

themes or because they are no longer important, or on the contrary, they are very new. In this

case, an expert analysis is needed to study these themes. That is the reason why the 8 commu-

nities with only 1 movie appear here. Also, communities with more movies, such as LaserGui-
dedAmnesia, although thematically similar to BigRedButton (that appears in the general

quadrant), are represented here. Fig 7 shows the distribution of the movies of these communi-

ties using a heatmap. Results shows how all the movies in the communities of this quadrant

are inclined towards recent years (but as explained before, the whole dataset is unbalanced to

more recent movies). Therefore we cannot assure there exist declining communities. However,

some of the communities are more distributed along extended periods of time, while others

are condensed in more recent years. In addition, there has been an apparent increase in the

number of films from some communities in recent years (ItWasHisSled, DeconstructiveParody,

AdaptionalJerkass), indicating that there is more interest in the tropes represented in those

communities.

After analysing the position of the tropes communities have been able to get an overview of

which of these tropes may be interesting to develop in the future, which are a safe bet, or

which of them may produce less interest. This answers RQ4, showing that the different com-

munities of tropes have different degree of development.

As the next step of the methodology, a co-trope graph has been generated. Fig 8 shows the

spanning tree of the co-trope network, obtained in the same way as the co-word networks are

obtained in the bibliometric analysis. In these networks, each word (trope) is a vertex, whose

edge to another trope measures the number of films that both share. The spanning tree facili-

tates the visualization of these nets. However, since we have to represent 25,776 tropes, we

have had to limit the visualization. To do this, we have filtered the network keeping only the

following: the nodes with a frequency higher than 30, the edges with a weight higher than 60

and the nodes which have at least one edge. As it can be seen, the most important tropes are

OhCrap (something really bad is about to happen), Shoutout (references to other works), Fore-
shadowing (a clue that predicts an event) and BigBad (the villain in general, this trope includes

many types of evil or antagonist characters). From these tropes, linked together, hang related

tropes in a star-shaped way.
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Of all these main tropes, ShoutOut is the only one that is not directly related to the plot, but

it is the one that is most repeated in the dataset. This is why it is related to other tropes not

related to the plot, such as TitleDrop (mention of the film title in the dialogue), FanService (ref-

erences only understood by fans), or RunningGag.

BigBad is related to tropes that have to do with serial killers (AxCrazy), AntiHeroes, or Big-

Bad’s right hand: TheDragon. One of the branches that emerge from BigBad is related to

groups of characters that usually face evil together: TheChick, TheLeader, FiveManBand, TheS-
martGuy and TheBigGuy.

OhCrap is close to tropes that indicate that something bad is going to happen, such as Too-
DumbToLive (the character does not do what the viewer would do in real life and dies) or

KickTheDog (the villain does a cruel and unnecessary action).

Finally, Foreshadowing indicates relationship with tropes that affect the plot (TheReveal,Bit-
tersweetEnding, HeroicSacrifice). This is a technique that is present, and besides several times,

in many movies and TV series; in these generally previous episodes foreshadow what is going

to happen further down the season. In a way, it is similar to Chekhovsgun, although this one

usually refers to a specific device that will foreshadow its use later on in the story.

The genre distribution of the communities found can be seen in Table 5. Although there is

much similarity in the distribution, it can be seen how some of these communities are more

focused on specific genres. For example, BigRedButton is more related to the genre of Horror

and Science Fiction than the other communities. Therefore, depending on the gender of the

Fig 7. Distribution by decade of the movies of all communities detected in the emerging/dissapearing quadrant of the strategic

diagram.

https://doi.org/10.1371/journal.pone.0248881.g007
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story to be developed we can restrict those communities that are more appropriate to our

purposes.

4.4 Co-films community detection analysis

In this case, and after applying the Leiden algorithm, a smaller number of communities have

been detected, only 10, of which five are composed by a single film. As in the previous subsec-

tion, the same methodology has been applied to confirm the statistical significance among the

groups obtained. As these are also samples that do not follow a normal distribution, the

Fig 8. Co-tropes spanning tree of the co-occurrence network. The larger the node more films have the trope. The larger the edges, more films both tropes have in

common.

https://doi.org/10.1371/journal.pone.0248881.g008
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Kruskal-Wallis test for rating and popularity also gives a p-value lower than 0.05, confirming

that there are significant differences in all the measures between the different groups.

Focusing on the 5 communities with more than one film, interesting differences can be

seen, as described in Table 6. Moreover, they show much more difference between the genres,

as shown in Table 7, where each community stands out in some specific genre.

The community with the most tropes (and the most votes) has “Thor” as its central film,

and it is composed of films related mainly to superheroes. The most abundant genres are

Adventure, Action, Comedy and Fantasy. The tropes of this community are related to action

characters (ArmsDealer, TheLastOfHisKind), or dangerous environments (IceBreaker). Others

are related to humor: TheOneThingIDontHateAboutYou (the villain has a funny quality), That-
CameOutWrong (an innocent word game that can be confused with something dirty because

the character has not stopped to think about it). There are also tropes related to non-verbal

communication of characters (IDoNotSpeakNonverbal, Narrative-Shapeshifting), very com-

mon in this kind of films (for example, aliens like Groot from “Guardians of the Galaxy”).
The rest of the communities have a similar number of tropes, between 8000 and 14000.

Community 0 is formed by comedies, many of them romantic. This is also reflected in the

high percentage of both genres with respect to the rest of the communities. It has tropes based

on love or complex relationships, such as RelationshipUpgrade (the moment when two charac-

ters become an official couple) or ButNotTooBi (a bisexual character only relates to one sex),

or IdentityAmnesia (the character has forgotten who he is). Other tropes related to humor:

Non-FatalExplosions (explosions that are not lethal) or Exit-PursuedByABear (the villain runs

away while being chased by an animal).

Community 2 is composed mostly of Thrillers and horror films, with tropes largely related

to the subject matter. There is a group of tropes that define the evil character (EvilSoundsDeep,

VocalDissonance). Another very common one is DwindlingParty: the members of the group

are dying one by one.

“Mullholland Drive” is the centerpiece film of community 3. Despite having a percentage of

genres very similar to community 0, the films of this community also include more serious

films, such as “Birdman” or “Donnie Darko”. However, comedies with a certain degree of fan-

tasy and adventure (“Hot Tub Time Machine”, “The Cannonball Run”) appear here. That is

why there are some tropes related to dark films (FacialHorror, CosmicHorrorStory) or comical

(ZeroChops: the characters fight without knowing how to fight in a funny way).

Finally, community 4 includes the highest percentage of Drama, including war films (“The
Thin Red Line”), family terror (“The Babadook”), or dark science fiction (“Children of men”,
“The Butterfly Effect”). This is the community with the highest average score. The tropes that

Table 5. Rate of genres for 10 arbitrary communities obtained with the algorithm.

Id CentralTrope Action Adventure Comedy Crime Drama Fantasy Horror Romance Sci-Fi Thriller

1 ShoutOut 20.37 14.71 34.5 16.16 48.09 8.84 18.21 15.26 9.63 14.83

2 EldritchAbomination 23.72 19.19 32.68 12.27 40.45 14.58 26.49 11.65 13.76 15.16

3 TwentyMinutesIntoTheFuture 28.91 21.71 29.86 14.97 41.18 11.24 22.39 9.86 17.22 16.87

4 DramaticUnmask 31.16 21.34 33.5 18.76 43.47 10.14 15.39 11.28 12.59 16.23

5 ComicBookAdaptation 29.64 23.32 32.64 14.96 42.46 11.46 16.38 10.37 15.52 15.83

6 MediumAwareness 27.13 21.44 38.14 17.05 42.09 10.34 13.06 12.78 11.7 13.85

7 BigRedButton 30.06 23.65 29.81 11.27 32.16 13.48 29.41 8.52 20.74 17.89

8 ItWasHisSled 28.57 22.24 29.67 16.87 41.89 13.32 21.72 10.41 14.09 17.0

9 EarlyInstallmentWeirdness 26.51 17.92 31.33 20.39 45.51 9.99 19.68 11.95 10.77 17.94

10 LaserGuidedAmnesia 29.96 23.62 34.55 12.69 36.43 14.92 24.09 9.99 19.15 16.8

https://doi.org/10.1371/journal.pone.0248881.t005
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Table 6. Co-films performance measures.

Id #Tropes CentralFilm Tropes Films Density Centrality Mean/

Std.

Rating

Mean/ Std. Votes

0 14158 Bridget Jones:

The Edge of

Reason

ShowdownAtHighNoon,

WhatsAnXLikeYouDoingInAYLikeThis,

ButNotTooBi, OldMoney, ExitPursuedByABear,

RelationshipUpgrade, EvilTastesGood,

WorkingThroughTheCold, NonFatalExplosions,

IdentityAmnesia

Bridget Jones: The Edge of

Reason, The Baby-Sitters

Club, High School

Musical, Carry On, Love

Actually, The Twilight

Samurai, Crazy Rich

Asians, Fighting with My

Family, Enter the Void,

The Favourite

134.52 134803.93 6.63

±0.6

122891.23 ± 88600.93

1 22540 Thor ArmsDealer, TheLastOfHisKind,

ThatCameOutWrong, AnAsskickingChristmas,

IceBreaker, NarrativeShapeshifting,

PrettyFreeloader, IDoNotSpeakNonverbal,

HollywoodLaw,

TheOneThingIDontHateAboutYou

Thor: Ragnarok, Thor,

X-Men: Days of Future

Past, X-Men: Apocalypse,

The Dark Knight Rises,

X-Men: First Class,

TRON: Legacy, Avengers:

Age of Ultron, Captain

America: The First

Avenger, Captain

America: The Winter

Soldier

342.54 172759.61 6.64

±0.73

164811.39 ± 150950.33

2 12894 Paranormal

Activity

DarkReprise, AlliterativeName,

VocalDissonance, VillainWithGoodPublicity,

VirginTension, DwindlingParty, Sting,

EvilSoundsDeep, HostileWeather,

SympatheticVillainProtagonist

The Thing, Paranormal

Activity, Psycho, The

Ring, Se7en, Ju-on: The

Grudge, Alien: Covenant,

Night of the Living Dead,

Laid to Rest, The Grudge

180.51 128023.74 6.52

±0.61

131828.44 ± 94028.68

3 10951 Mulholland

Drive

ShrinesAndTemples, HauntedTechnology,

FacialHorror, LongLostRelative, ZeroChops,

AdaptationalNationality, HarmfulToMinors,

DiesWideOpen, LongHairIsFeminine,

CosmicHorrorStory

Mulholland Drive, The

Parent Trap, LEclisse, The

Great Beauty, Donnie

Darko, Birdman, From

Justin to Kelly, Hot Tub

Time Machine 2, Hot Tub

Time Machine, The

Cannonball Run

154.61 84872.81 6.59

±0.57

127683.12 ± 83410.89

4 7980 Vampire

Academy

HisNameIs, ShaggyDogStory, NightmareFace,

HistoricalVillainUpgrade, MouthOfSauron,

TruthInTelevision, KilledOffScreen, BaldOfEvil,

ShootTheFuelTank, RaceAgainstTheClock

Vampire Academy,

Children of Men,

Wuthering Heights, The

Thin Red Line, The

Breakfast Club, The

Babadook, The Butterfly

Effect, Amadeus, Blue Is

the Warmest Color,

Z-O-M-B-I-E-S

112.7 54620.0 6.67

±0.5

136932.54 ± 82832.22

https://doi.org/10.1371/journal.pone.0248881.t006

Table 7. Co-films rate of genres.

Id CentralFilm Action Adventure Comedy Crime Drama Fantasy Horror Romance Sci-Fi Thriller

0 Bridget Jones: The Edge of Reason 7.44 7.76 41.83 12.53 60.87 6.15 5.03 26.7 3.74 7.92

1 Thor 46.04 30.9 39.38 20.66 33.85 12.23 8.43 6.49 14.8 15.98

2 Paranormal Activity 19.64 10.82 16.72 17.77 34.32 8.99 52.61 3.52 14.07 26.15

3 Mulholland Drive 12.39 12.09 52.8 13.96 45.53 8.95 13.18 17.31 10.23 11.41

4 Vampire Academy 14.2 10.12 16.62 18.73 78.85 8.61 11.18 18.88 7.25 14.05

https://doi.org/10.1371/journal.pone.0248881.t007
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appear in this community represent descriptions of villains: NightmareFace (a horrible face),

HistoricalVillainUpgrade (the historical villain in the film is worse than the real one),

MouthOfSauron (the villain is never seen directly), BaldOfEvil (the villain is bald). Other

tropes, like RaceAgainstTheClock or ShootTheFuelTank are related to the intense rhythm of

the film.

As in the previous subsection, we have created a spanning tree that used the films as nodes,

and the number of common tropes for the vertices. Also, to facilitate the visualization, we have

filtered the network with the same values as before. Fig 9 shows this tree. As it can be seen, the

films shown are usually quite commercial, especially superhero films, and specifically the Mar-

vel Cinematic Universe (MCU), linked together. Films from different sagas (James Bond

Fig 9. Co-films spanning tree of the co-occurrence network. The larger the node more tropes appear in the film. The larger the edges, more tropes both films have in

common.

https://doi.org/10.1371/journal.pone.0248881.g009
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collection, The Lord of The Rings, Star Trek), or similar themes (aliens, giant monsters, Disney

princesses) are also shown together. For example Robocop, Terminator, Dredd and Demolition
man have in common “future element” and “gun violence”, while The Godfather, Goodfellas
and Snatch are clearly mafia-themed films. There are a few films disjointed from the rest of the

films in the tree, mostly first and second parts, being an interesting mention the Herbie saga,

indicating that the movies in this saga share very specific tropes between them. The coherence

of this graph is also be supported by the fact that films within the same saga that keep the same

story are directly connected, to cite some of them, “Jurassic world” (linked to “Jurassic World:

Fallen Kingdom” and to “Jurassic Park”), “Thor” (linked to “Thor: The Dark World”) or “The

Godfather” (linked to its second part) among many others. However, sagas that are known to

change actors, path or even genres are also noticeable, for example, “Thor: Ragnarok” is closer

to “Guardians of the Galaxy” than to its prequels and “Batman & Robin” is closer to “Avengers:

Age of Ultron” than to the other films of the saga.

5 Conclusions

The study of tropes in the field of cinema is a very interesting topic for researchers in social sci-

ences and other fields, for example to understand how humans interact and consume this cul-

tural media, or to find inspiration to develop new works. This is the main motivation for our

paper, which, however, uses in most cases a generic approach to data analysis that could be lev-

eraged in cultural or media studies. In this paper, we have proposed to use techniques based

on scientometrics and complex network analysis to extract information from the tropes that

compose the films: specifically to find out if there are any more popular or rated movies based

on communities of tropes, and and what is the level of development of these communities. We

have used the data available in TV Tropes and IMDb, two collaborative sites edited by enthusi-

asts on the issue, to generate a dataset formed by 10,766 movies and its associated set of tropes

(25,776 different tropes in total). By obtaining some insight on the relationship between pat-

terns (be they cultural, or narrative, since tropes can be any of them) and popularity, we try to

find out what are the causes of that popularity and provide a data-driven approach to story,

plot or simply pitch generation.

In order to gather these insights, we have initially carried out a descriptive study of the data-

set, as well as the study of the overlapping between genres. This study shows a bias in the data-

set towards more recent films in the dataset: these films have more user-defined votes and

tropes. In addition, there is a large overlap of tropes between some specific genres, such as

Action-Crime, History-War or Biography-Drama. These biases should be taken into account

in either sense: either to use these tropes, since they are related to popularity, or to try and find

out what made old or not so popular movies a success in some sense outside the (crowd-

sourced) troposphere.

Regarding the analysis of the communities obtained from the co-trope network, a number

of recognizable communities have been obtained, showing significant differences in rating and

popularity, although the genre distribution of these communities is similar. Also, these com-

munities show a different degree of development. As indicated in the results, there are com-

munities in the emerging quadrant that are precisely related to previous adaptations or

versions (ItWasHisSled, AdaptationalJerkass and DeconstructiveParody). We believe that this

may be due to the large number of remakes and adaptations of other works that are currently

being produced, so we speculate that many of new works will also be adapted to the new times

in one way or another.

However, when applying the Leiden algorithm to the co-film network, fewer communities

have been obtained, but they clearly differentiated with respect to genres. There is also a
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significant difference between the rating and popularity of these communities. The outcomes

of this research regarding the communities of tropes and films are useful for researchers and

authors, as they can easily serve to categorize works in different levels of development, help on

their creation and set expectations by simple comparisons. “Locking” on a genre or combina-

tion of genres, again, can be interpreted in several possible ways from the point of view of plot

generation. Either you directly choose from the set of tropes that are essential to the genre, or

you use genre-defying tropes drawn from the under-developed area of the troposphere, to cre-

ate something with the potential to be popular. After all, popularity breeds itself, but it is also

true that originality and novelty breeds popularity. At any rate, different environments might

warrant different uses of the troposphere analysis: you might want to stick to the tried and true

in the case of creating a backstory for a non-playing character in the videogame, you might

want to mix that with using under-developed areas of the troposphere by putting together so-

far untested combination of tropes to create things like a teen zombie musical movie (Anna

and the Apocalypse (2018)).

It is important to note that although we use scientiometric-based techniques there are

some differences from the analysis of scientific papers: the films analyzed have a very vari-

able number of tropes, the tropes are more abstract in nature, the impact (popularity and

rating) is subjective, and the source of the data (TVTropes) also receives varying degrees of

attention as it is developed. This issue can be addressed by adding other sources of data such

as RottenTomatoes (https://www.rottentomatoes.com/) or MetaCritic (http://www.

metacritic.com). Furthermore, as in bibliometric analysis, the merely use a specific keyword

(or trope) does not guarantee an increase in the impact of the work, but is indicative of the

interest of the community to which they belong. In the case of films, it will also be necessary

to take into consideration other elements, such as the actors, directors or funding, among

others.

This same methodology can be applied to the same dataset, but at different levels, for exam-

ple, to study the evolution of the tropes in a genre, country, or in a specific decade, as the study

of tropes have importance to those scholars interested in film story [17]. Furthermore, TV

Tropes also includes tropes in other media, such as videogames or comics, so a similar analysis

could be also performed in those different fields. Moreover, researchers working on automatic

story generation, and specifically those based on tropes, such as [5], can use this methodology

to detect which tropes may be most suitable for their research.
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